GCSE
MATHEMATICS
NEW PRACTICE PAPER SET 2 Foundation Tier Paper 1
Mark Scheme (Published November 2015)

8300/1F

Version 1.0

In Spring 2015, students across the country took this set of practice papers as a Mock Examination. Principal Examiners have marked the papers and these mark schemes have, therefore, been through the normal process of standardisation. For some questions, Principal Examiners have written Additional Guidance based on responses seen.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.		
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.		
B	Marks awarded independent of method.		
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.		
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.		
M dep method mark dependent on a previous method mark being			
awarded.		\quad	A mark that can only be awarded if a previous independent mark
:---			
has been awarded.			

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.
Questions which do not ask students to show working
As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

AQA

Q	Answer	Mark	Comments
6(a)	$200 \div 5$ or 40 or 200×3 or 600 or $\frac{3}{5} \times 200$ or 0.6×200	M1	
	120	A1	
	Additional Guidance		
6(b)	Attempt to divide 12.6 by 2 or 6.3	M1	
	32.1	A1	SC1 for 19.2
	Additional Guidance		
7	$10 a+3 b$	B2	B1 for one term correct Do not ignore further work for B2
	Additional Guidance		
	$10 a+3 b=13 a b$		B1B0
8	$\frac{3}{8}$	B1	

Q	Answer	Mark	Comments
9(a)	57	B1	
	Additional Guidance		

9(b)	$27+3$ or 30 seen	M1		
	6	A1	SC1 for 150 or 4.8	
	Additional Guidance			

9(c)	$5 x-3$	B1	Allow $y=5 x-3$
	Additional Guidance		
	Allow $x \times 5-3$ or $y=x \times 5-3$	B1	
	Do not allow $x=5 x-3$	B0	

Q	Answer	Mark	Comments	
10(a)	12×3 or 36 and 3×-2 or -6	M1	oe	
	30	A1		
	Additional Guidance			
10(b)	$\frac{16}{20}(\times 100)$	M1	oe $\text { eg } \frac{4}{5}$	
	80	A1		
	Additional Guidance			
10(c)	3 and -2 and -2 seen or implied	M1	$\begin{aligned} & \text { oe } \\ & \text { eg } 38,36,34 \\ & 33,31,34 \\ & 33,36,34 \end{aligned}$	
	1 correct 0 no attempt (accept if blank) 2 incorrect	A1	Must interpret correctly	
	Additional Guidance			

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{1 1 (a)}$	$2 n+2$	B1	

11(b)	Yes and valid reason	B1	$\text { eg } \begin{aligned} & 2(n+1) \\ & 2 n+2 \text { is a multiple of } 2 \\ & 2 n+2 \text { is divisible by } 2 \end{aligned}$ It is the 2 times table It is a multiple of 2 It starts even and then add 2 each time	
	Additional Guidance			
	Even + even = even			B1
	Even +2 = even			B1
	Because you add 2 all the time			B0

Q	Answer	Mark	Comments
14(a)	144 and 36	B2	Any order B1 for two square numbers with a total greater than 100 or for 12 and 6 seen or 12^{2} and 6^{2}
	Additional Guidance		

14(b)	No and two square numbers correctly added to give an odd number	B1	eg No and $4+9=1$ No and $2^{2}+3^{2}=13$	
	Additional Guidance			
	Even square + odd square = odd number (correctly evaluated) with No			B1
	$4+9=13$ (Not stated No)			B0

15(a)	1993	B1		
15(b)	2021		B1	
	Additional Guidance			

15(c)	Valid reason		eg 2009 + multiple of 4 can never be a multiple of 4 Always 1 year after a leap year Always in an odd year
	Additional Guidance		B1
	09 is not a leap year and every 4 years	B0	
	09 is not divisible by 4	B0	
	Always between leap years		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

17	$5(3 x+7 y-8 z)$	B1		
	Additional Guidance			

Q	Answer	Mark	Comments
18(a)	$\frac{1}{5}$	B1	oe
	Additional Guidance		

18(b)	Alternative method 1		
	25 outcomes for 2 spins	M1	Implied by a probability with denominator 25 or by a 5 by 5 possibility space diagram
	All 6 ways of getting a total of 4 identified.	M1	eg in a possibility space diagram or in a list
	$\frac{6}{25}$	A1	No incorrect totals should be seen for this mark.
	Alternative method 2		
	$\frac{2}{5} \times \frac{2}{5}$ or $\frac{1}{5} \times \frac{1}{5}$	M1	oe
	$\frac{2}{5} \times \frac{2}{5}+\frac{1}{5} \times \frac{1}{5}+\frac{1}{5} \times \frac{1}{5}$	M1	oe
	$\frac{6}{25}$	A1	oe
	Additional Guidance		

19(b)	130-25 or 105	M1	
	$\begin{aligned} & 25 \div 50 \\ & \text { or } 0.5 \text { or } 30 \text { minutes } \end{aligned}$	M1	oe
	their $105 \div 70$ or 1.5 or 1 hour 30 minutes or 90 minutes	M1dep	Dependent on 1st M1 or subtracting 25 from their distance oe
	2 hours or 120 minutes	A1	
	Additional Guidance		

| 19(c) | (The journey will) take longer | B1 | oe |
| :--- | :--- | :--- | :--- | :--- |
| | Additional Guidance | | |
| | More time | B1 | |
| | (The journey will) be slower | B0 | |

AQA

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

20(a)	Both Geography and History	B1oe eg 7 do both	
	Additional Guidance		
	They are in both sets	B1	

21(a)	$450 \div(2+7)$ or 50	M1	oe	
	100	A1		
	Additional Guidance			

21(b)	$210 \div 7$ or 30 or $7 \div 2$ or 3.5 or $80 \div 2$ or 40	M1	
	their 30×2 or $210 \div 3.5$ or 60 or $9 \times$ their 30 or their 40×7 or 280	M1dep	
	270 ml	A1	SC1 for 360
	Additional Guidance		

\mathbf{Q}	Answer	Mark	Comments

22	Alternative method 1			
	$\begin{aligned} & \text { radius }=12 \div 4 \text { or } 3 \\ & \text { or diameter }=12 \div 2 \text { or } 6 \\ & \text { or } 12 \times 12 \text { or } 144 \end{aligned}$	M1		
	$\pi \times$ their 3^{2} or 9π	M1		
	$4 \times \pi \times$ their 3^{2} or 36π	M1dep		
	144-36	A1	Ignore attempts at factorisation Do not ignore further work	
	Alternative method 2			
	radius $=12 \div 4$ or 3 or diameter $=12 \div 2$ or 6 or 6×6 or 36	M1		
	$\pi \times$ their 3^{2} or 9π	M1		
	$36-9 \pi$	M1dep		
	$4(36-9 \pi)$	A1	Ignore attempts at expansio Do not ignore further work	
	Additional Guidance			
	$144-36 \pi=108 \pi$			M1M1M1A0
	$144-36 \pi=12(12-4 \pi)($ e	risation)		M1M1M1A1
	Accept 3.14 or better for π for method marks			

Q	Answer	Mark	Comments
23	$\frac{10}{30}$ or $\frac{8}{20}$ seen	B1	oe $0.33(\ldots)$ or 0.4 or $33(\ldots) \%$ or 40%
	A correct probability from each bag, with attempt at a comparable form, with at least one correct	M1	$\begin{aligned} & \text { eg } \\ & \frac{20}{60} \text { and } \frac{24}{60} \end{aligned}$ or $0.33(\ldots)$ and 0.4 or 33(...)\% and 40\%
	No and both probabilities correct and in the same format	A1	eg Incorrect and $\frac{20}{60}$ and $\frac{24}{60}$ seen No and 0.33(...) and 0.4 No and $33(\ldots) \%$ and 40%
	Additional Guidance		

61.6×10^{3}

Q	Answer	Mark	Comments
25	$\sqrt{98.5}<10$	B1	oe May be implied by numerator is negative
	$\begin{aligned} & \text { negative } \div \text { negative }=\text { positive } \\ & \text { and No } \end{aligned}$	B1	
	Additional Guidance		
26	$\frac{20}{100} \times 50$ or 10	M1	oe
	2	A1	SC1 for 32
	Additional Guidance		

27	A pair of intersecting arcs of equal radii from ends of line with two intersections	M1	oe	
	Perpendicular line drawn through points of intersection	A1	1 mm tolerance	
	Additional Guidance			

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

28	Alternative method 1		
	$6^{2}+6^{2}$ or $36+36$ or 72	M1	
	$\sqrt{6^{2}+6^{2}}$ or $\sqrt{72}$	M1dep	oe
	$\sqrt{72}<10$	A1	oe eg $\sqrt{72}$ is between 8 and 9
	Alternative method 2		
	$3^{2}+3^{2}$ or $9+9$ or 18	M1	
	$\sqrt{3^{2}+3^{2}}$ or $\sqrt{18}$	M1dep	oe
	$\sqrt{18}<5$	A1	oe eg $\sqrt{18}$ is between 4 and 5
	Additional Guidance		

