

GCSE **Mathematics**

8300/2 - Paper 2 Foundation Tier Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
sc	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a ≤ value < b
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments		
	y + y	B1			
1	Addi	tional G	uidance		
	0.32	B1			
2	Addi	tional G	uidance		
	5 ⁴	B1			
3	Addi	tional G	uidance		
	8	B1			
4	Additional Guidance				
	$(3^6 =) 729 \text{ seen or } (\sqrt{841} =) 29 \text{ seen}$	M1			
	700	A1			
5	Add	itional G	uidance		
	School	B1	1		
	Additional Guidance				
6(a)	School and 26		B1		
	26		В0		

Question		Answer	Mark	Commer	nts
	4 in key		B1		
	$6\frac{1}{2}$ symb	ols in 'School'	B1ft	ft their key ≠ 1	
	$2\frac{3}{4}$ symb	ols in 'Guides'	B1ft	ft their key ≠ 1	
		Add	itional G	uidance	
		Key : ○ represents 4 friends	í		
	Family	00			
6(b)	Netball	00			В3
	School	0000001			
	Guides	000			
	Half circle				
	Three-qua				
	Mark inter				
	If the key				
	Ignore an	y symbols added to the first to	wo rows		
	<i>d</i> + 3 or	3 + <i>d</i>	B1	must be seen in (a)	
7/2)	Additional Guidance				
7(a)	Condone $e = d + 3$ or $e = 3 + d$				B1
	d = e - 3				В0

Question	Answer	Mark	Comments			
	<i>d</i> – 5	B1	must be seen in (b)			
7/b)	Add	ditional G	uidance			
7(b)	Condone $f = d - 5$			B1		
	d = f + 5			В0		
	their $(d + 3)$ – their $(d - 5)$		oe eg $d + 3 - d + 5$ or $3 + 6$	+ <i>d</i> + 5 – <i>d</i>		
	or		ft their expressions in (a)	and (b) if both in		
	3 – –5		terms of d and at least or numerical term	ne has a		
	or		may be implied by eg $f =$	a _ 8		
	chooses values for d , e and f with e 3 more than d and f 5 less than d and subtracts f from e	M1	may be implied by eg j =	e – 0		
	or					
	chooses values for e and f with e 8 more than f and subtracts f from e					
	8 A1ft correct or ft their expression and some state of their expression and some stat			. , . , ,		
7(c)	Additional Guidance					
	8			M1A1		
	(d = 10,) e = 13 and f = 5 and 13 - 5	(d = 10,) e = 13 and f = 5 and 13 - 5				
	Only condone missing brackets if recov					
	d+3-d-5 and no recovery			MO		
	d + 3 - d - 5 and answer 8		M1A1			
	d + 3 in (a), $5 - d$ in (b) and $2d - 2$ in (c		(B1B0)M1A1ft			
	3d in (a), d-5 in (b) and 2d+5 in (c)			(B0B1)M1A1ft		
	3d in (a), -5d in (b) and 8d in (c)		(B0B0)M0A0			

Question	Answer				Mar	«		C	omme	nts		
		3	8	5	10			B2 for three sides addir given numbers with no three sides				-
		12			9			the	e given	numbe	rs with	adding to 26 using no repeats across
		4			1		B3	the	e one o	r two si	des	
		7	11	2	6							
	W	ith 1	and 9 ii	n eithe	r order							
	Additional Guidance											
			Τ_	Τ_	1.0							
		3	8	5	10							
8		12			1	the fo	Four sides add to 26 but across the four sides there is one repeat (8) so only three sides qualify			repeat	t	B2
8		4			6	(8) s						
		7	8	2	9							
	Γ				<u> </u>						1	
		3	11	5	10		3	9	5	10		
		12			3		12			3		B1
		4			5		4		·	10		
		7	9	2	8		7	14	2	3		
	Three sides add to 26 but across these three sides there is one repeat (3) so only two sides qualify				side h and 3 do no of the	as rep so the t qualif remai	s 14, or eats of se two y. Only ning sid o qualif	10 sides one es				

Question	Answer	Mark	Comments			
	Alternative method 1					
	5 x 12 x 2.5 or 150 or 8 x 2.5 or 20	M1	oe eg 2.5 + 2.5 + 2.5 + 2.5 - 2.5	+ 2.5 + 2.5 + 2.5 +		
	5 × 12 × 2.5 + 8 × 2.5 or 150 + 20	M1dep				
	170	A1				
	Alternative method 2					
	5 × 12 + 8 or 68	M1				
	their 68 × 2.5	M1dep				
9	170	A1				
	Alternative method 3					
	[5.66, 5.67] × 12 or [67.92, 68.04] or [5.66, 5.67] × 2.5 or [14.15, 14.175]	M1	oe			
	[5.66, 5.67] × 12 × 2.5 or [169.8, 170.1]	M1dep	oe			
	170	A1				
	Additional Guidance					
	Use of 5.8 is an incorrect method eg 5.8 x 12 = 69.6 and 69.6 x 2.5 = 174			M0M0A0		
	8	B1				
10	Ad	│ ditional G	uidance			

Question	Answer	Mark	Comments		
	Any one of 123660 1339(65) 1442(70) 1545(75) 164880 1751(85) 185490 195795	M1	must be evaluated correctly number pairs may be shown separately e $15 \times 3 = 45$ (and $15 \times 5 = 75$) $16 \times 3 = 48$ and $16 \times 5 = 80$		
	At least two of 123660 1339(65) 1442(70) 1545(75) 164880 1751(85) 185490 195795 or 18 and 54 and 90	M1dep	must be evaluated correctly number pairs may be shown separately		
11	185490	A1			
	Additional Guidance				
	185490	M1M1A1			
	The digits in brackets are not required for the M marks as duplication has already been shown but if seen must be correct				
	Answer 18 54 90 18 54 90	M2A1			
	185490 written in first three spaces wit	M2A1			
	185490 written in first three spaces follows	M2A0			
	For the final mark do not accept misco				
	315	B1			
12	Additional Guidance				

Question	Answer	Mark	Comments		
	1.5 × 7 + 0.5 or 10.5 + 0.5	M1	oe		
	11	A1			
	Additional Guidance				
13(a)	$1.5 \times 7 = 10.5$ and $0.5 \times 7 = 3.5$ and 10	M0A0			
	7 × 1.5 <i>r</i> + 0.5	M0A0			
	7 × 1.5r + 0.5 and answer 11r	M0A0			
	$7 \times 1.5r + 0.5$ and answer 11 (has reco	M1A1			

Question	Answer	Mark	Comments			
	Alternative method 1					
	20 – 0.5 or 19.5		oe			
	or	M1				
	$r = \frac{w - 0.5}{1.5}$					
	their 19.5 ÷ 1.5	M1dep	oe (20 – 0.5) ÷ 1.5 is M2			
	13	A1				
	Alternative method 2	l				
	20 – their 11 from part (a) implied by '6 extra c			ps (of rice)'		
13(b)	or 9	1011				
13(5)	7 + (their 9 ÷ 1.5) or 7 + 6	M1dep				
	13	A1				
	Additional Guidance					
	13 from incorrect working					
	eg rounding 20 ÷ 1.5 = 13			M0M0A0		
	eg scaling 11 and rounding ie 20 ÷ 11					
	Brackets omitted ie 20 – 0.5 ÷ 1.5, unl	ered	M0M0A0			
	$1.5 \times 13 + 0.5 = 20$, unless 13 selecte		M1M1A0			
	1.5 x 13 = 19.5, unless 13 selected		M1M1A0			
	Trial and improvement, unless answer	r 13		M0M0A0		

Question	Answer	Mark	Comments			
	2950.2745(00)	B1				
	Ado	ditional G	uidance			
14(a)	2'950.2745 or 2,950.2745			B1		
	2.950.2745			В0		
	Allow correct rounding or truncation or	nce full valu	ue seen			
	10 or 10 ² or 100 or 30	M1				
	$10 \times 10 \times 30$ or $10^2 \times 30$ or 100×30	M1dep				
	$10 \times 10 \times 30 = 3000$ and Sensible or		ft their answer to part (a) for the decision		
	$10^2 \times 30 = 3000$ and Sensible	A1ft				
	or 100 × 30 = 3000 and Sensible					
14(b)	Additional Guidance					
1 1(0)	3000 (and Sensible) with no working			M0M0A0		
	Their decision must be based on part in part (b)					
	$10^2 \times 30 = 3000 \text{ and } 10^2 \times 29 = 2900$	ble	M1M1A1			
	$10^2 \times 30$ and $10^2 \times 29$ and Sensible	M1M1A0				
	$10^2 \times 29 = 2900$ and Sensible	M1M0A0				
	ft should be Sensible if their part (a) is					
	eg (a) 295.02745 (b) 10 × 10 × 30 =	3000 and	Not sensible	(B0)M1M1A1ft		

Question	Answer	Mark	Comments			
	Any two of (-2, -9), (-1, -7), (0, -5), (1, -3), (2, -1), (3, 1), (4, 3), (5, 5)	M1	gives at least two correct pairs of coordinates, may be in a table implied by points plotted $\pm \frac{1}{2}$ small square			
15(a)	At least two correct points plotted or at least two of their points plotted correctly	M1dep	implied by correct line which does not have to extend from $x = -2$ to $x = 5$ $\pm \frac{1}{2}$ small square			
	Correct line from (-2, -9) to (5, 5)	A1	$\pm \frac{1}{2}$ small square ignore ends of line outside [-2, 5]			
	Ade					
	Ignore extra points that are incorrect					
	3	B1ft	correct or ft the intersect with the given graph $\pm \frac{1}{2} \text{ small square}$	tion of their graph		
-	Add					
15(b)	Answer 3 with or without correct graph	B1				
	Answer (3, 1)	В0				
	Answer ($x = 0$ 3, $y = 1$	B1				
	If their graph intersects the given graph to give the correct <i>x</i> -coordinate of each	B1ft				

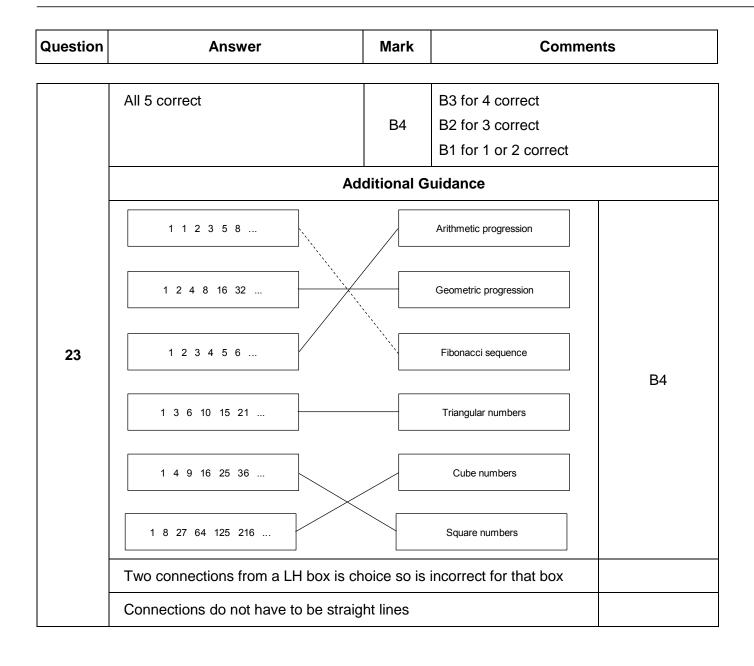
Question	Answer	Mark	Comments		
	180 ÷ 3 or 60	M1	oe eg 60 + 60 + 60 = 180	,	
	(180 – 28) ÷ 2 or 152 ÷ 2 or 76	M1	oe eg 76 + 76 + 28 = 180	1	
	180 – their 60 – their 76	M1dep	oe eg 44 + 60 + 76 = 180 dep on M1M1	1	
16(a)	44	A1			
10(4)	Additional Guidance				
	60 or 76 seen in appropriate place on mark for each				
	Answer 44 not from wrong working	M3A1			
	180 − 28 ÷ 2 unless recovered	2nd M0			

Question	Answer	Mark	Commer	nts	
	No and gives correct reason	8) It the interior) Cute Indication of No			
			- Indianioc		
	A correct reason may be 1. showing a correct method 2. correction of her method (error and replacement shown) 3. correction of her answer (answer and replacement shown)				
	No, It should be 135 not 45 (3)			B1	
	No, It should be 1080 not 360 (2)			B1	
16(b)	No, because the interior angles should	B1			
	No, she needs to subtract her answer	B1			
	No, $((8-2) \times 180) \div 8$ (1)			B1	
	No, It should be $((n-2) \times 180) \div 8$ (doesn't use $n=8$)			В0	
	Any numbers quoted must be correct but ignore other non-contradictory statements				
	eg No, It should be 720. She's worked	l out the e	xterior angle	В0	
	No, There's not 360 in an octagon or No, Angles in an octagon do not add to	up to 360		В0	
	No, Interior angles add up to more that	ın 360		В0	
	No, It should be 135			В0	
	No, It should be 1080			В0	
	No, 45 is the outside angle			В0	

Question	Answer	Mark	Comments
	270	B1	
17(a)	Ade	ditional G	uidance

	Alternative method 1 (working in cm	1)	
	[6.3, 6.7]	B1	implied by 1300
	[2.5, 2.9] and [1.8, 2.2]		implied by 540 and 400
	or [4.5, 4.9]	B1	implied by 940
	their 6.5 × 200 or 1300		oe
	and their 2.7 × 200 or 540		1300 and 540 and 400 implies B2M1
	and their 2 x 200 or 400		1300 and 940 implies B2M1
	or their 6.5 × 200 or 1300	M1	distances must be exact if measurements not shown
	and (their 2.7 + their 2) × 200 or 940		
17(b)	or		
	their 6.5 × 200 or 1300 and their 4.7 × 200 or 940		if only one value used for BC from the start, their 4.7 must be > 4 and < 6
	their 1300 – their 540 – their 400		oe
	or their 1300 – their 940	M1dep	may be implied by correct answer for their distances
			their 940 must be > 800 and < 1200
	Correct answer for their 6.5 and their 2.7 and their 2 with all measurements		ft their measurements
	or	A1ft	
	Correct answer for their 6.5 and their 4.7 with all measurements seen		their 4.7 must be > 4 and < 6

Mark scheme and additional guidance continues on the next page


Question	Answer	Mark	Comme	nts	
	Alternative method 2 (working in cm)				
	[6.3, 6.7]	B1			
	[2.5, 2.9] and [1.8, 2.2] or [4.5, 4.9]	B1			
	their 6.5 – their 2.7 – their 2 or their 6.5 – their 4.7 or 1.8	M1	oe if only one value used for start, their 4.7 must be		
	their 1.8 × 200	M1dep	oe may be implied by corre	ect answer	
17(b) cont	Correct answer for their 0.5 and their			nd < 6	
	Additional Guidance				
	Allow work in mm but note that they m				
	Working may be on diagram				
	Must show measurements to score the correct for their original measurements		nd answer must be		
	1300 – 940 and answer 360 (no meas		B1B1M1M1A0		
	1300 – 920 and answer 380 (no measurements)			B1B0M0M0A0	
	6.5, 4.6, 1300 – 920 and answer 380			B1B1M1M1A1ft	
	6.5, 4.2, 1300 – 840 and answer 460			B1B0M1M1A1ft	
	6.5, 2.6, 2 on diagram, 1300 – 5 × 200 addition not shown)	(5 wrong	for their values and	B1B1M0M0A0ft	

Question	Answer	Mark	Comme	nts
	Positive	B1		
18(a)	Add	ditional G	uidance	
	Ignore descriptive words such as 'stron	ng' or 'wea	k' or 'scattered'	
	Correct straight line which passes between (10, 35) and (10, 55) and between (70, 135) and (70, 155)	B1	line must extend from 10) to 70
	Draws a vertical line from umbrella		their line / curve must be	e increasing
18(b)	sales of £60 to meet their line or marks a point on their line of best fit corresponding to umbrella sales of £60	M1	may be implied by corre line / curve	ct value for their
	Correct value for their line		ft their increasing line / c	curve
		A1ft	allow any reading within square eg if their vertical line crobest fit in the first square [125, 130]	osses their line of
	Additional Guidance			
	No increasing line / curve drawn			В0М0А0
	Mark intention for straight line for B1			
	The line may go through the coordinate above or below			
	Ignore any parts of the line outside the range 10 to 70			
	$x^2 - 4x$	B1		
19	Add	ditional G	uidance	

Question	Answer	Mark	Comme	nts
	2.5	B1		
20	Ad	⊔ ditional G	uidance	
	$2 \times 4.2 \times \pi$ or 8.4π	M1	oe allow [3.14, 3.142] f	Or π
			-	
	[26.376, 26.393]	A1	may be implied by 26.4	as answer
	26.4	B1ft	ft their value to at least 2 dp rounded correctly to 1 dp	
21(a)	Additional Guidance			
	26.4			M1A1B1ft
	26.3 only			M0A0B0ft
	55.4 only			M0A0B0ft
	Sector drawn correctly B1 two radii joined at the ce			entre of the circle
	Ado	ditional G	uidance	
	Mark intention			
21(b)	Diameter drawn			B1
	Any number of sectors (eg diameter and radius drawn)			B1
	Ends of radii joined to form segment with whole sector shaded			B1
	Ends of radii joined to form segment w	ithout who	ole sector shaded	В0

Question	Answer	Mark	Comments	
	$\frac{1}{3}$ or $\frac{2}{6}$ or 0.33 or 33.()% on each top branch and $\frac{2}{3}$ or $\frac{4}{6}$ or 0.66 or 0.67 or 66.()% or 67% on each bottom branch	B1	accept any equivalent fraction or percentage	on, decimal
		ditional G		
	Decimals must have at least 2 decima or 0.7	ll places so	do not accept 0.3 or 0.6	
	Only accept the percentages shown, o	do not acce	ept 30% or 60%	
	Ignore working around the edge of the			
22(a)	Less than 3 $\frac{2}{3}$ 3 or more	$\frac{\frac{1}{3}}{\frac{2}{3}}$	3 or more Less than 3	B1
22(b)	1/9 or 0.11 or 11.()%	B1		
22(0)		ditional G		
	Ignore probability words such as 'unli	ikely' or 'ev	vens'	

Accept equivalent answers eg $\frac{2}{18}$, $\frac{3}{27}$, $0.\dot{1}$	
Do not accept 0.1 or 10%	

Question	Answer	Mark	Comments
	Alternative method 1		
24	Any one of $60\ 000 \div 420\ 000\ \text{or}\ 0.14$ or $14.()\%$ or $\frac{1}{7}$ or $480\ 000 \div 420\ 000\ \text{or}\ 1.14$ or $114.()\%$ or $\frac{8}{7}$ or $420\ 000 \div 60\ 000\ \text{or}\ 7$ or $420\ 000 \div 480\ 000\ \text{or}\ 0.875$ or 87.5% or $\frac{7}{8}$ or $60\ 000 \div 540\ 000\ \text{or}\ 0.11$ or $11.()\%$ or $\frac{1}{9}$ or $540\ 000 \div 60\ 000\ \text{or}\ 9$	M1	oe eg 60 000 : 420 000 or 1 : 7 or 480 000 : 420 000 or 8 : 7
	Any one of $60\ 000 \div 480\ 000\ \text{or}\ 0.125$ or 12.5% or $\frac{1}{8}$ or $540\ 000 \div 480\ 000\ \text{or}\ 1.125$ or 112.5% or $\frac{9}{8}$ or $480\ 000 \div 60\ 000\ \text{or}\ 8$ or $480\ 000 \div 540\ 000\ \text{or}\ 0.88$ or $0.89\ \text{or}\ 88.()\%$ or 89% or $\frac{8}{9}$	M1	must be a matching pair (could be different forms) to award M2 (see A1 for list of matching pairs) oe eg 60 000 : 480 000 or 1 : 8 or 540 000 : 480 000 or 9 : 8

Mark scheme continues on the next page

Question	Answer	Mark	Comments
24 cont	Answer $\frac{1}{7}$ and $\frac{1}{8}$ and No or $\frac{8}{7}$ and $\frac{9}{8}$ and No or 0.14 and 0.125 and No or 14.()% and 12.5% and No or 1.14 and 1.125 and No or 7 and 8 and No or 7 and 8 and No or $\frac{7}{8}$ and $\frac{8}{9}$ and No or 9 and 8 and No or 0.11 and 0.125 and No or 0.875 and 0.88 or 0.89 and No or 87.5% and 88.()% or 89% and No	Mark A1	Oe eg 1:7 and 1:8 and No

Mark scheme continues on the next page

Alternative method 2 No and any one of $\frac{60\ 000}{420\ 000} \times 480\ 000$ and B2 any one of the calculation B1 any one of the fractions of B2 any one of the fractions of B3 any one of the fractions of B4 any one of the fractions of C4 and C5 and	e mals and
$\frac{60\ 000}{420\ 000} \times 480\ 000\ \text{ and }$ B2 any one of the calculation B1 any one of the fractions of th	e mals and
[67 200, 68 640] or $\frac{60\ 000}{480\ 000} \times 540\ 000\ \text{ and } 67\ 500$ for equivalent fractions, decir percentages see Alternative or $\frac{60\ 000}{480\ 000} \times 420\ 000\ \text{ and } 52\ 500$ or $\frac{60\ 000}{540\ 000} \times 480\ 000\ \text{ and }$	e mals and
or $\frac{60\ 000}{480\ 000} \times 540\ 000$ and 67 500 for equivalent fractions, decir percentages see Alternative or $\frac{60\ 000}{480\ 000} \times 420\ 000$ and 52 500 or $\frac{60\ 000}{540\ 000} \times 480\ 000$ and	nals and
$\frac{60\ 000}{480\ 000} \times 540\ 000\ \ \text{and}\ \ 67\ 500$ for equivalent fractions, decir percentages see Alternative or $\frac{60\ 000}{480\ 000} \times 420\ 000\ \ \text{and}\ \ 52\ 500$ or $\frac{60\ 000}{540\ 000} \times 480\ 000\ \ \text{and}$	
$\overline{480000}$ × 540 000 and 67 500 percentages see Alternative or $\frac{60000}{480000}$ × 420 000 and 52 500 or $\frac{60000}{540000}$ × 480 000 and	
$\frac{60\ 000}{480\ 000} \times 420\ 000$ and 52 500 or $\frac{60\ 000}{540\ 000} \times 480\ 000$ and	
or $\frac{60\ 000}{540\ 000} \times 480\ 000$ and	
$\frac{60\ 000}{540\ 000} \times 480\ 000$ and	
24 cont [52 800, 53 334] B3	
or B3	
$\frac{420\ 000}{480\ 000} \times 540\ 000$ and 472 500	
or	
$\frac{480\ 000}{420\ 000} \times 480\ 000$ and	
[547 200, 548 640]	
or	
$\frac{480\ 000}{540\ 000} \times 480\ 000$ and	
[422 400, 427 200]	
or	
$\frac{540\ 000}{480\ 000} \times 420\ 000$ and 472 500	

Additional guidance continues on the next page

Question	Answer	Mark	Comments

	Additional Guidance				
	In Alt 1, for M2 the matching pair do not have to be in comparable form				
	eg 14.3% and $\frac{1}{8}$ and No	M1M1A0			
	For comparable fractions, they must be in their lowest terms or have the same numerators or the same denominators for the A1				
24 cont	eg Alt 1 $\frac{60\ 000}{420\ 000}$ and $\frac{60\ 000}{480\ 000}$ and No	M1M1A1			
	For comparable ratios, they must be in their lowest terms or have the same LH sides or the same RH sides for the A1				
	eg Alt 1 60 000 : 420 000 and 60 000 : 480 000 and No	M1M1A1			
	If working with percentages, condone absence of % symbol				
	eg Alt 1 14 and 12.5 and No	M1M1A1			
	Both are increases of 60 000 and it is then over different amounts so cannot be the same percentage	МОМОАО			

Question	Answer	Mark	Comments
25(a)	Two different probabilities from $\frac{15}{20}$ or 0.75 or 75% or $\frac{22}{30}$ or 0.73 or 73.()% or $\frac{17}{40}$ or 0.425 or 0.43 or 42.5% or 43% or $\frac{54}{90}$ or 0.6 or 60% or $\frac{37}{50}$ or 0.74 or 74% or $\frac{32}{60}$ or 0.53 or 53.()% or $\frac{39}{70}$ or 0.557 or 0.56 or 55.7% or 56%	B2	oe B1 for one correct probability

Additional guidance continues on the next page

Question Answer Mark Comments	Question	Answer	Mark	Comments
-------------------------------------	----------	--------	------	----------

	Additional Guidance	
25(a) cont	Accept $\frac{108}{180}$ as one of the probabilities	
	Mark the answer line if it has two answers ignoring any incorrect probabilities in the working lines	
	Ignore any incorrect cancelling or change of form (fraction, decimal or percentage)	
	If the answer line only has one answer, check the working lines for a second answer for B2. Ignore any extra probabilities, unless incorrect, in which case award B1 max	
	eg Working lines $\frac{15}{20}$ Answer line $\frac{54}{90}$	B2
	eg Working lines $\frac{15}{20}$, $\frac{5}{15}$ Answer line $\frac{54}{90}$	B1
	If the answer line is blank, check the working lines for answers for B1 or B2. Ignore any extra probabilities, unless incorrect, in which case award B1 max	
	eg Working lines $\frac{15}{20}$, $\frac{22}{30}$, $\frac{54}{90}$ Answer line blank	B2
	eg Working lines $\frac{15}{20}$, $\frac{5}{15}$, $\frac{54}{90}$ Answer line blank	B1
	Probabilities must not be given as ratios	
	Do not accept the average of the given probabilities as answer	

Question	Answer	Mark	Commer	nts
	Alternative method 1 (ft their part (
	Their probability with the greater number of trials and valid reason eg More throws	B1ft	ft their two different prob part (a) both probabilities must h denominator based on the	ave a
	Alternative method 2 (independent	of part (a)))	
	54 90 and valid reason eg Total throws	B1	oe	
	Additional Guidance			
	Accept any unambiguous indication of their probability eg the day			
25(b)	Using ratios			В0
	Ignore any non-contradictory statements			
	60% and It's for all three days			B1
	$\frac{54}{90}$ and It takes into account more throws			B1
	$\frac{17}{40}$ (with $\frac{22}{30}$ also in (a)) and Because he threw it more on Wednesday			B1ft
	$\frac{54}{90}$ and Shows the overall probability			B1
	$\frac{54}{90}$ and Probability over total throws			B1
	$\frac{54}{90}$ (with Wednesday probability in (a)) and It's the average total days, not just Wednesdays			B1ft

Additional guidance continues on the next page

Question	Answer	Mark	Comments
	Correct ft probability or $\frac{54}{90}$ and It's m	nore reliabl	е В0
25(b) cont	$\frac{54}{90}$ and There's a lot of data	В0	
	Correct ft probability or $\frac{54}{90}$ and He m	ter with more throws B0	
	$\frac{54}{90}$ and He throws 90 times	В0	
	Correct ft probability or $\frac{54}{90}$ and More	hits	В0

	Alternative method 1		
	22.5(0) and 4		
	or		
	27 and 8		
	or		
	31.5(0) and 12		
	or		
	36 and 16		
	or	M1	
26	40.5(0) and 20		
	or		
	45 and 24		
	or		
	30 : 16		
	or		
	45 : 24		
	45 and 24 chosen	A1	eg 45 : 24 is the final ratio seen
	6	A1	

Mark scheme and additional guidance continues on the next page

Question	Answer	Commen	ts		
	Alternative method 2				
26 cont	18 + 4.5x and 4x seen or $\frac{18 + 4.5x}{15} = \frac{4x}{8}$	M1	any letter oe sets up correct equation		
	8(18 + 4.5x) = 60x or $144 + 36x = 60x$ or $24x = 144$	M1dep	eliminates denominators oe		
	6	A1			
	Additional Guidance				
	Answer 6 that is not from incorrect method			M1A1A1	
	45 and 24 followed by eg 49.5(0) and 28 (answer not 6)			M1A0A0	
	Equivalent ratio to 15:8 that is not 30:16 or 45:24 eg 60:32 (answer not 6)			M0A0A0	
	Final calculation $\frac{15}{8} \times 24 = 45$ (answer not 6)			M1A1A0	

Question	Answer	Mark	Comments
	Alternative method 1		
	$\frac{4}{3}\pi \times 30^3 \text{ or } 36\ 000\pi$ or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3}\pi \times 30^3 \text{ or } 18\ 000\pi$ or [55 954, 56 839]	M1	oe allow 1.33 for $\frac{4}{3}$ allow 0.66 or 0.67 for $\frac{2}{3}$
27	their [112 757, 113 112] \div 4000 or 9π or 28.() or their [55 954, 56 839] \div 4000 or $\frac{9\pi}{2}$ or [13.9, 14.21] or their [112 757, 113 112] \div (4000 \times 60) or $\frac{3\pi}{20}$ or [0.46, 0.4713] or their [55 954, 56 839] \div (4000 \times 60) or $\frac{3\pi}{40}$ or 0.23 or 0.24	M1dep	
	[13.9, 14.21] and Yes or 0.23 or 0.24 and Yes	A1	

Mark scheme and additional guidance continues on the next page

Question	Answer	Mark	Comments
	Alternative method 2		
	$\frac{4}{3}\pi \times 30^3 \text{ or } 36\ 000\pi$ or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3}\pi \times 30^3 \text{ or } 18\ 000\pi$ or [55 954, 56 839]	M1	oe allow 1.33 for $\frac{4}{3}$ allow 0.66 or 0.67 for $\frac{2}{3}$
	4000 × 15 or 60 000	M1	
27 cont	[55 954, 56 839] and 60 000 and Yes	A1	
	Alternative method 3		
	$\frac{4}{3}\pi \times 30^3 \text{ or } 36\ 000\pi$ or [112 757, 113 112] or $\frac{1}{2} \times \frac{4}{3}\pi \times 30^3 \text{ or } 18\ 000\pi$ or [55 954, 56 839]	M1	oe allow 1.33 for $\frac{4}{3}$ allow 0.66 or 0.67 for $\frac{2}{3}$
	their [112 757, 113 112] \div 15 or 2400 π or [7517, 7541] or their [55 954, 56 839] \div 15 or 1200 π or [3730, 3790]	M1dep	
	[3730, 3790] and Yes	A1	
	Ac	lditional G	uidance
	Do not award A1 if incorrect convers	sion of $\frac{1}{4}$ he	our seen

Question	n Answer Mark Comments			
28(a)	8.35 and 8.45 in the correct order	B2	B1 8.35 on the left or 8.4 or 8.45 and 8.35 in the vaccept 8.449 for 8.45	
	Ad	ditional G	Guidance	
	Do not accept 8.449 for 8.449			
	41.75 and 42.25	B1ft	correct or ft their two different (a) their 8.35 must be in the their 8.45 must be in the correct order or ft order accept 42.249 for 42.25	range (8.3, 8.4]
28(b)	Additional Guidance			
	(8.3, 8.4] does not include 8.3 but does include 8.4 (8.4, 8.5] does not include 8.4 but does include 8.5			
	Answer of 8.35 and 8.44 in part (a) leading to 41.75 and 42.2			B1ft
	Answer of 8 and 9 in part (a) leading to 40 and 45			B0ft