GCSE Specification and Revision Notes

Last Modified: 10/04/2015

The left column is the complete Edexcel Mathematics A (1MA0) specification. A few items I have merged together (where there was duplication). A few items I have created, either because they weren't explicitly referenced in the specification (e.g. proof), or where I felt a few sub-subtopics deserved an item of their own (e.g. simplifying algebraic fractions).

The second column contains notes I have written and 'Test Your Understanding' questions (a mixture of past paper questions and my own). Use the last column to tick items that you feel you have fully grappled.

Index:

Page 2	Number
Page 10	Algebra
Page 30	Shape, Space and Measures
Page 54	Data Handling & Probability
Page 63	Answers

General Tips:

- 1. You MUST show full workings for each answer. 'Method marks' can usually be obtained when your answer is wrong, but not if there are no workings.
- 2. Do not give answers to anything less than 3 significant figures. Note that 0.0043 is only to 2 significant figures.
- 3. Be wary about copying errors when going from one line of working to the next. Has a 'minus' accidentally become a 'plus'?
- 4. Spot when different units have been used in the same problem, and ensure they are converted to the same unit.
- 5. Don't ever use 'trial and error' for questions where an algebraic approach is expected you won't get any credit.
- 6. Take special care when punching numbers into a calculator and copying results off the display.
- 7. Check your answer looks 'plausible' given the context. If it costs £11500 to seed a garden you've probably gone wrong.
- 8. Check that you've actually answered the question. Often, once you've calculated the correct value, some 'conclusion' is needed, e.g. "Therefore Bob will not have enough money. He is 50p short."

Common General Algebraic Errors:

- $(a+b)^2 \rightarrow a^2 + b^2$. Writing out the bracket twice we actually find $(a+b)(a+b) = a^2 + 2ab + b^2$
- Similarly $\sqrt{a^2 + b^2} \rightarrow a + b$. You can see this is not true when a = 3, b = 4 for example.
- $\frac{x^2+3x+2}{x^2-4} \rightarrow \frac{3x+2}{-4}$. When 'cancelling' fractions, we can only divide, whereas in this example we've incorrectly subtracted x^2 . If we factorised the example, it would be OK to cancel $\frac{(x+1)(x+2)}{(x+2)(x-2)}$ to $\frac{x+1}{x-2}$ because we have indeed divided by x + 2.
- $x(x-1) \to x^2 1$. Oops!
- $\frac{x}{3} + a = y \rightarrow x + a = 3y$. The *a* hasn't been multiplied by 3.
- $c b(a b) \rightarrow c ab b^2$. Sign error at the end.
- $x(x + 1) (x + 2)^2 \rightarrow x^2 + x x^2 + 4x + 4$. A lack of brackets when subtracting expanded expression leads to sign errors. See (53i).
- $a + 3x = b \rightarrow 3x = b + a$ Sign not changed when *a* moved to other side of equation.
- $\frac{x+2b}{3} = y \rightarrow \frac{x}{3} = y 2b$ or $\sqrt{x+2b} = y \rightarrow \sqrt{x} = y 2b$ (2*b* is trapped inside fraction/root so we have to deal with the $\div 3$ and $\sqrt{\text{first}}$)
- $\sqrt{x} = 2x \rightarrow x = 2x^2$ When 2x is squared, you get $4x^2$ not $2x^2$ as $2x \times 2x = 4x^2$

Number

Integers and Decimals		
1. Understand and order integers and decimals	Test Your Understanding: Order the following: $\frac{1}{3}$, 0.33, 0.303, 30%	
2. Use brackets and the hierarchy of operations (BIDMAS)	 BIDMAS is actually (B)(I)(DM)(AS), i.e. Division and Multiplication have the same 'priority', and Addition and Subtraction have the same priority. When you have say a mix of addition and subtraction, evaluate left-to-right. E.g. 9 – 3x + 5x simplifies to 9 + 2x NOT 9 – 8x: in the latter you had done the addition first, when there was no reason to do so. Note that due to BIDMAS, negative numbers to a power require bracketing: -4² would produce -16 on a calculator because it does the square ('indices') first. You want (-4)². This is highly important for the b² in the Quadratic Formula when substituting numbers in. 	
3. Add, subtract, multiply and divide integers, negative numbers and decimals	 When multiplying two decimals, first multiply them as if they were whole numbers, then put the decimal point back in the result by counting the number of jumps in decimal point in the original numbers. When subtracting negative numbers, ensure numbers are lined up in the units column, and fill in any 'gaps' with 0s. We like dividing by whole numbers. Hence if you're dividing by a decimal, multiply both numbers by 10 until you're dividing by a whole number, e.g. 3.678 ÷ 0.09 → 367.8 ÷ 9 Test Your Understanding: a. 3 - (-4)? b. 396 × 48? c. 5.7 - 2.89? d. (-7.1)²? e. 508 97 ÷ 11 	
4. Understand and use positive numbers and negative integers, both as positions and	This just means that you understand $-5 + 7$ for example as starting at -5 on a number line and 'moving'/translating 7 up. This won't specifically be tested.	
translations on a number line		┝──
6. Round decimals to appropriate numbers of decimal places or significant figures	Be wary that any 0s after the first non-zero digit count as significant. e.g. 3.40204 to 3sf is 3.40, NOT 3.4. Similarly it is 3.40 to 2dp, not 3.4. But 0.0020413 is 0.00204 to 3sf. Note that 3.9853 to 1dp is 4.0. Test Your Understanding: Write the following to the indicated number of significant figures or decimal places: a. 24703 to 2sf b. 15.0849 to 1dp c. 25.969403 to 3sf d. 495.18473 to 3dp	
7. Multiply and divide by any number between 0 and 1	You should appreciate that multiplying by a number between 0 and 1 makes it smaller, and dividing by it makes it bigger. You should recognise that \div 0.5 is the same as \times 2 and \div 0.25 the same as \times 4 and so on (see Fractions): this is particularly useful in estimation (see below)	
8. Check their calculations by rounding, eg 29 × 31 ≈ 30 × 30	For estimation questions, the general rule of thumb is to round each number to 1 significant figure, unless it is close to some other nice number (such as $0.26 \rightarrow 0.25$ because it's a quarter), e.g: $\frac{4.98 \times 31}{0.49} \approx \frac{5 \times 30}{0.5} = 300$ Test Your Understanding: Estimate the following. a. $\frac{\frac{79 \times 6.89}{0.52}}{\frac{4.03 \times 4.94}{0.24}}$	
9. Check answers to a division sum using multiplication eg use inverse operations	Not tested as such.	
10. Multiply and divide whole numbers by a given multiple of 10		
11. Put digits in the correct place	in a decimal number	ł

Fractions	
12. Find equivalent fractions	Test Your Understanding: Put $\frac{45}{-1}$ in its simplest form.
and write a fraction in its	54
simplest form.	
13. Compare the sizes of	The strategy is to find a common denominator for all fractions, so that we can just easily
fractions	compare the numerators, e.g. $\frac{5}{7}$ and $\frac{3}{4}$ can be converted to $\frac{20}{28}$ and $\frac{21}{28}$, thus $\frac{3}{4}$ is larger.
	Sometimes the ordering will be obvious by thinking of the fractions on a number line.
	Test Your Understanding: Which of $\frac{4}{5}$ and $\frac{5}{7}$ is bigger?
14. Find fractions of an amount	Test Your Understanding: Find $\frac{3}{7}$ of 35
15. Convert between mixed	For mixed number to improper fractions, to get the new numerator times the whole part
numbers and improper	with the denominator and add the numerator. The denominator stays the same. e.g
fractions	$3\frac{2}{5} \rightarrow \frac{1}{5}$
	For improper fractions to mixed numbers, see how many times the denominator goes into
	the numerator and find the remainder also. $\frac{39}{7} \rightarrow 5\frac{4}{7}$
16. Add and subtract fractions	The 'foolproof' way is to cross-multiply: multiply the two denominators, then times each
	numerator by the other fraction's denominator and add. e.g. $\frac{3}{7} + \frac{1}{4} = \frac{12+7}{28} = \frac{19}{28}$.
	However, sometimes you only need to change one of the fractions, e.g. $\frac{1}{3} + \frac{4}{9} \rightarrow \frac{3}{9} + \frac{4}{9} = \frac{7}{9}$
	Test Your Understanding:
	a. $\frac{4}{2} + \frac{3}{5}$
	b. $1 - \frac{1}{2}$
	-7 - 2
	C. $5 - + 4 - \frac{1}{5}$
17. Multiply and divide	If any whole numbers, put over 1: $4 \rightarrow \frac{4}{1}$. If any mixed numbers, convert to improper
fractions including mixed	fractions first. When multiplying, just multiply numerators and denominators separately.
numbers.	When dividing, 'flip' (reciprocate) the second fraction and instead multiply.
	Test Your Understanding:
	a. $\frac{3}{5} \times \frac{4}{9}$
	b. $2\frac{4}{7} \times 3$
	$c = 1^{\frac{5}{1}} \div 2^{\frac{1}{2}}$
	a. $4 \div 1 \frac{1}{5}$

Factors, Multiples, Primes, Roots	, Powers	
18. Identify factors, multiples	Ensure you don't confuse factors and multiples. Factors of 6: 1, 2, 3, 6. Multiples of 6: 6, 12,	
and prime numbers	18, 24,	
19. Find the prime factor decomposition of positive integers	Use a prime factor tree. Don't forget to write × between each prime factor. Try to collect the same prime factors together using power notation. e.g. $120 = 2 \times 2 \times 2 \times 3 \times 5$, but it would be better to write $2^3 \times 3 \times 5$ Test Your Understanding: Express 240 as the product of its prime factors.	
20. Find the common factors	See below.	
and common multiples of two		
numbers		
21. Find the Highest Common Factor (HCF) and the Least Common Multiple (LCM) of two numbers	 There are two ways you could find the Lowest Common Multiple: Write out multiples of the larger number until you see a multiple of the smaller number. e.g. for 60 and 54, write out multiples of 60: 60, 120, 180, 240, 300, 360, 420, 480, 540. And 540 is the first multiple of 54 in this list so is the LCM. Find the prime factorisation of each number. Then see which things 'wins' in each factor. E.g. 60 = 2² × 3 × 5 and 54 = 2 × 3³. Of the 2s the 2² 'wins' over the 2 so we use 2². The 3³ 'wins' over the 3. And the '5' beats nothing. So the LCM is 2² × 3³ × 5 = 540. To find the HCF: Write out the factors of each number, and look for the highest number in both lists. Alternatively you can again use the prime factorisation of each number, but this time see which factor 'loses' (where 'nothing' loses against anything). So in 60 = 2² × 3 × 5 and 54 = 2 × 3³, the 2 loses, the 3 loses and 'nothing' loses against 5, so the HCF is 2 × 3 = 6. The previous method is faster however. 	

	-
	More Notes : LCM questions often come in an applied setting. e.g. Two buses come every 5 minutes and 7 minutes respectively: if they both come now, when will they next both come at the same time? (i.e. in 35 minutes time)
	Test Your Understanding:
	a. Find the Lowest Common Multiple of 120 and 96.
	b. Find the Highest Common Factor of 48 and 60?
	c. Two train services both arrive at 9am. The first comes every 20 minutes. The second comes every 25 minutes. What is the time when the two train services both come at the same time?
	d. Cookies come in packs of 12 and chocolate bars in packs of 9. I want to have the same number of cookies and chocolate bars. What's the smallest number of packs of cookies can I huw?
22. Recall integer squares from	This is just soving you chould know those of hy heart. Of source, in evem you could work out
22. Recall integer squares from	This is just saying you should know these of-by-field t. Of course, if exam, you could work out 14^2 can by long multiplication, but it's highly useful to memorics these if you haven't
2 × 2 to 13 × 13 and the	14 say by long multiplication, but it's highly useful to memorise these if you haven t
Corresponding square roots.	areauy.
10.	When the neuror of 10 is negative (i.e. we have a small number) the number of 0s on the
25. Use standard form,	when the power of 10 is negative (i.e. we have a small number), the number of 05 of the fract (including the one before the desimal place) is the number in the index. So $0.00147 - 100000000000000000000000000000000000$
notation. Bo able to write very	1.47×10^{-3} as there's 2 leading 0s. But if over in doubt count the number of times the
hotation. Be able to write very	1.47 × 10 ⁻⁴ as there's 3 leading 0s. But if ever in doubt count the number of times the
large and very small numbers	decimal place has to move until you get to a number between 1 and 9.9.
presented in a context in	
standard form. Convert	When converting a number not in standard form, if you divide the first part by 10, you need
between ordinary and standard	to multiply the second part by 10 (i.e. by increasing the power by 1) to cancel out the effect.
form representations. Convert between ordinary and standard	When adding or subtracting two numbers in standard form, it's often easiest to just convert the numbers into normal numbers, then add/subtract, then convert back to standard form.
form representations. Interpret	
a calculator display using	Example: $(3 \times 10^7) \times (4 \times 10^2) = 12 \times 10^9 = 1.2 \times 10^{10}$
standard form	$(2 \times 10^5) \div (8 \times 10^9) = 0.25 \times 10^{-4} = 2.5 \times 10^{-5}$
	$(1.2 \times 10^5) + (3 \times 10^4) = 120000 + 30000$
	$= 150000 = 1.5 \times 10^5$
	Test Your Understanding:
	a. Express 367 000 in standard form.
	b. Express 0.00048 in standard form.
	c. Express 2.67×10^{-2} as an ordinary number.
	d. Express 5.2×10^3 as an ordinary number.
	e. Calculate $(5.2 \times 10^3) \times (2 \times 10^7)$ giving your answer in standard form.
	f. Calculate $(2.4 \times 10^8) \div (4 \times 10^5)$ giving your answer in standard form.
	g. Calculate $(4 \times 10^5) + (3 \times 10^4)$
24. Use index laws to simplify and	calculate the value of numerical expressions involving multiplication and division of integer
powers, and powers of a power	
(Covered later)	

Fractions, Decimals and Percentages		
25. Understand that a percentage is a fraction in	e.g. $34\% = \frac{34}{100}$	
hundredths		
26. Convert between fractions,	To convert (non-recurring) decimals to fractions, just put over 10/100/1000 depending on	i i
decimals and percentages	how many digits are after the decimal point, then simplify. e.g. $0.56 = \frac{56}{100} = \frac{14}{25}$ and	1
	$0.035 = \frac{35}{1000} = \frac{7}{200}$	I
	Test Your Understanding:	
	a. Convert 0.84 to a fraction in its simplest form.	
	b. Express $\frac{3}{8}$ as a percentage.	L
27. Convert between recurring	To convert from a fraction to recurring decimal, just use long division. You will need to add	
decimals and exact fractions as	".00000" to the number you're dividing to get extra digits for which to put your remainders	
well as understanding the proof	on. Make sure you put the decimal point in the same place on the result, and stop once you	
	see the repetition in digits.	

	Example: Convert $\frac{3}{7}$ to a recurring decimal.
	0 4 2 8 5 7 1 4
	7 3 30 20 60 40 50 10 30
	Thus $\frac{3}{7} = 0.428571$
	To convert from recurring decimal, do the following. e.g. For $0.2\dot{3}\dot{4}$ 1. Write $x =$ your number with the repeating digits written out explicitly. x = 0.234343434
	2. See how often your digits a repeating. If it's just 1 repeating digit, times by 10, if 2, times by 100, if 3, times by 1000 and so on. 100x = 23.43434343
	 3. Subtract the first equation from the second. If you lined up the decimal points on your first two lines of working, this will make the subtraction easier. 99x = 23.2 (Noting that everything from the second digit after the decimal place onwards is the same) A. Divide to find x. If you have a decimal in the fraction, times by 10 until it's a whole
	number. Simplify if the question asked you to. $x = \frac{23.2}{99} = \frac{232}{990} = \frac{116}{495}$
	Test Your Understanding:
	a. Convert $\frac{1}{16}$ to a decimal.
	b. Convert $\frac{1}{6}$ to a recurring decimal.
	c. Convert $\frac{1}{7}$ to a recurring decimal.
	d. Convert 0.4 to a fraction.
	e. Convert 0.401 to a fraction. f Convert 0.6315 to a fraction
28. Write one number as a	Just find the proportion one number is of the other, and we times by 100 to convert a
percentage of another number	fraction to a percentage.
	Example: Express 38 as a percentage of 70. $\frac{38}{70} \times 100 = 54.3\%$
29. Calculate the percentage of	The method depends on whether or not you have a calculator.
a given amount	 Calculator Method: Convert the percentage to a decimal then multiply. Calculator Method: 0.28 × 40 = 15.2
	e.g. 38% of $40 = 0.38 \times 40 = 15.2$ Non-Calculator Method: Find more manageable chunks such as 10% 5% 1% and
	combine as necessary. e.g. 35% of 60? $10\% = 6$ thus $30\% = 18$ and $5\% = 3$. Then
	35% = 21
	Test Your Understanding : Without using a calculator, determine 46% of 360.
30. Find a percentage	If not using a calculator, just find the percentage of this number, and add or subtract as
amount	times by this, e.g.
	Find 40%: $\times 0.4$ Increase by 5%: $\times 1.05$ Decrease by 25%: $\times 0.75$
	Example: Find the cost of a £14 tshirt after a 2.5% rise: $\pounds 14 \times 1.025 = \pounds 14.35$
	Test Vour Understanding
	a. One bank account offers 5% interest in your first year followed by 1% in the second.
	Another bank account offers 2% interest followed by 3% interest the next year. If I
31 Find a reverse percentage	It's important for <i>any</i> percentage question to first identify whether you're trying to find the
eg find the original cost of an	new amount or the original amount.
item given the cost after a 10%	Example : A cake is reduced in a sale by 20% to £16. Find the original amount.
deduction	Mathed 1: Work your way back to 100%
	$80\% -> \pm 16$. Therefore $10\% -> \pm 2$. Therefore $100\% -> \pm 20$

	Method 2: Let the original price be x	Τ
	$x \times 0.8 = \pounds 16$	
	$r = \frac{\pm 16}{-\pm 20}$	
	$x = \frac{1}{0.8} = 220$	
	Test Your Understanding:	
	a. A hamster is bought, and sold at a 30% profit for £11.70. Find the original cost of the	
	hamster.	
	b. A pink hat is sold in a sale for 25% less at a sale price of £13.50. But how much has	
	the price been reduced from the original?	
32. Use a multiplier to increase	Just use appropriate decimal multipliers raised to the correct power. Examples:	
by a given percent over a given	• The price of a goldfish starts at £300 and rises by 10% for 5 years. What's the final	
time , eg $64 imes 1.1^8$ increases 64	price of the goldfish? $\pounds 300 \times 1.1^5 = \pounds 483.15$	
by 10% over 8 years	• A polar bear population starts at 6500 and diminishes at a rate of 5% each year.	
	What's the population after 10 years?	
	$6500 \times 0.95^{10} = 3892 \ bears$	
	Test Your Understanding:	
	a. The price of a Ferrari falls from £180 000 by 25% each year for 6 years. What is the	
	new value of the car?	
33. Calculate simple and	Note: Simple interest is where the interest each year is based on the original amount. E.g. If	
compound interest	£1000 accumulate 3% interest each year for 4 years, you end up with £1000 + (4 x £30) =	
	£1120, whereas with compound interest, you'd have $\pounds 1000 \times 1.03^4 = \pounds 1125.51$. Notice	
	you get slightly more with compound interest.	
	Test Your Understanding:	
	a. A bank account offers 3.5% interest per annum. I invest £3500. How much do I have	
	h [Harder] The annual healthcare costs of a Lahrador dog has fallen by 10% for 5 years	
	so the cost is now £1000. What was the original cost 5 years ago?	
	so the cost is now 11000. What was the original cost 5 years ago:	1

Ratio and Scale	
34. Write ratios in their simplest form	Ratios simplify just like fractions. 6:9 \rightarrow 2:3
35. Divide a quantity in a given ratio	For most ratio questions, you need to decide whether the quantity given is (i) the total of the parts (ii) one of the parts or (iii) the difference of the parts. Then find 1 part. Example: Alice and Bob shares £40 in the ratio 5:3. How much does Bob get? The £40 represents the 'total' parts. So: 8 parts = £40 1 part = £5 3 parts = £15
36. Solve a ratio problem in a context. Solve word problems about ratio and proportion	 Test Your Understanding: a. The ratio of cats to dogs in a home is 5:7. There are 56 dogs. How many cats? b. Some money is shared between Alice and Bob in the ratio 4:7. Bob gets £12 more than Alice. How much did Alice get? c. To make magic, you require mixing unicorn horn, fairydust and orphan meat in the ratio 3:5:2. I want to make 5kg of magic. If I have 1600g of unicorn horn, 2400g of fairydust and 1200g of orphan meat, can I make enough magic?
37. Use and interpret maps and scale drawings. Read and construct scale drawings drawing lines and shapes to scale. Estimate lengths using a scale diagram	 Before forming a ratio put the distances in the same unit. Test Your Understanding: a. 10cm on a map represents 5km in real life. Represent this scale in the form 1: n b. A map scale is 1:20 000. What does 5.4cm on the map represent in real life?
38. Calculate an unknown quantity from quantities that vary in direct or inverse proportion	First represent the sentence as an equation, using a constant of proportionality k . Write "= $k \times$ " for "is directly proportional to" and "= $k \div$ " for "is inversely/indirectly proportional to". e.g. " y is directly proportional to the square of x " -> $y = kx^2$ e.g. " y is inversely proportional to the square root of x " -> $y = \frac{k}{\sqrt{x}}$

	Then substitute the given values to work out k , and then use your now full formula (with known k) to work out the answer.
	Example : "y is inversely proportional to the cube of x. When $x = 4$, $y = 20$. To 3sf, find y when $x = 7$." $y = \frac{k}{x^3} \qquad 20 = \frac{k}{4^3} \rightarrow k = 20 \times 4^3 = 1280$ When $x = 7$, $y = \frac{1280}{7^3} = 3.73$
	Test Your Understanding
	 a. q is directly proportional to r. When q = 5, r = 6. What is q when r = 18? b. m is indirectly proportional to n. When m = 5, n = 11. What is m when n = 4? c. y is directly proportional to the square of x. When x = 8, y = 10. What is y when x = 20? d. y is inversely proportional to the square root of x. When x = 10, y = 10. What is x when y = 20?
39. Set up and use equations to solve word and other problems involving direct proportion or	By "graphical representation", it means a line graph. When y is directly proportional to x, from above, we get the equation $y = kx$. This is the equation of a straight line <i>that goes through the origin</i> .
inverse proportion and relate	If y is inversely proportion to x then from above, $y = \frac{k}{r}$. This give a reciprocal graph (see
algebraic solutions to graphical	equations of graphs in Algebra).
representation of the equations	 Test Your Understanding: Of these graphs, identify the one where: a. <i>y</i> is directly proportional to <i>x</i>. b. <i>y</i> is inversely proportional to <i>x</i>.
	$\begin{array}{c} A \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$
Index Notation and Surds	Laws of indicas:
expressions using laws of	Laws of indices: • $a^b \times a^c = a^{b+c}$ • $a^0 = 1$
indices.	$ \frac{a^b}{a^{b-c}} = a^{b-c} $
	• $a^{c} = a^{c}$ • $a^{-b} = \frac{1}{a^{b}}$
	Examples:
	• Simplify $\frac{x^7}{x^{-4}}$. x^{11} (as 74 = 11)
	• Simplify $(m^{-2})^5 = m^{-10} \text{ or } \frac{1}{m^{10}}$
	• If $2^m = 2\sqrt{2}$, find m . $2\sqrt{2} = 2^1 \times 2^{\frac{1}{2}} = 2^{\frac{3}{2}}$ so $m = \frac{3}{2}$

If $a = 2^m$ and $b = 2^n$, find (i) 2^{m+n} in terms of a and b and (ii) 2^{2m} in terms of a. Just use laws of indices backwards: (i) $2^{m+n} = 2^m \times 2^n = ab$ (ii) $2^{2m} = (2^m)^2 = a^m$. a^2

Test Your Understanding:

- a. Simplify $\frac{(y^3 \times y^4)^3}{y^2}$ b. Simplify $\frac{x^{-3}}{y^2}$

- b. Simplify $\frac{x^{-3}}{x^{-5}}$ c. If $3^x = 27\sqrt{3}$, find x d. Simplify $\frac{(a+1)^2}{a+1}$ e. If $x = 3^a$ and $y = 3^b$, find (i) 3^{a-b} in terms of x and y and (ii) 3^{a+2b} in terms of x and y.

41. Simplify a whole term raised	When asked to simplify something like $(2x^2y)^3$, just do each item in the brackets to the	
to a power.	outer power. i.e. $8x^6y^3$. Another example: $(25x^6y^5)^{\frac{1}{2}} = 5x^3y^{\frac{5}{2}}$ Common error: $(27x^6y)^{\frac{1}{3}} = 9x^2y^{\frac{1}{3}}$ (where the 27 has been multiplied by 1/3 rather than	
	raised to the power of 1/3). $(3x^3)^4 = 12x^{12}$ would also be wrong (answer is $81x^{12}$).	

	Test Your Understanding: Simplify the following.
	a. $(3xy^4)^3$
	b. $(5x^2y^2)^2$
	C. $(36x^2y^3)^2$
42. Use index laws to simplify	d. $(64x^8y^3)_3$
and calculate numerical	• Firstly, raising a positive number to a power NEVER gives you a negative number. $-n = 1 + 1 + 1 + 2 + 2 + 1 + (5)^{-1} + 7$
expressions involving powers,	• $a_{1}^{n} = \frac{1}{a^{n}}$, e.g. $4^{-1} = \frac{1}{4}$, $5^{-2} = \frac{1}{25}$, $(\frac{1}{7}) = \frac{1}{5}$
eg $(2^3 \times 2^5) \div 2^4, 4^0, 8^{-2/3}$	• $a^{\overline{n}}_{m} = \sqrt[n]{a}$, for example: $25^{\overline{2}}_{\overline{2}} = 5$, $81^{0.25} = 81^{\overline{4}}_{\overline{4}} = 3$
	• $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$, for example: $8^{\frac{2}{3}} = 2^2 = 4$. i.e. Deal with denominator first (by
	taking that root) but leave the numerator in the power.
	• Further examples: $\left(\frac{25}{9}\right)^{-\frac{1}{2}} = \left(\frac{9}{25}\right)^{\frac{1}{2}} = \left(\frac{3}{5}\right)^{3} = \frac{27}{125}$
	$4^{-\frac{3}{2}} = \frac{1}{\frac{3}{42}} = \frac{1}{2^3} = \frac{1}{8}$
	Test Your Understanding: Evaluate the following.
	a. 3°
	$1 - \frac{1}{2}$
	$d = 0^{\frac{3}{2}}$
	$(27)^{-\frac{2}{3}}$
	e. $\left(\frac{27}{8}\right)^3$
43. Calculate with surds	Laws of surds:
multiplying, dividing, and	$\sqrt{a}\sqrt{b} = \sqrt{ab} \qquad \qquad \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$
expanding brackets)	• To simplify a surd, find the largest square number that goes into it. It's best to put
	the square number first: $a = \sqrt{4}\sqrt{2} = 2\sqrt{2}$ (this and is particularly common) $\sqrt{48} = \sqrt{16}\sqrt{2} = 4\sqrt{2}$
	 To add/subtract surds, simplify first:
	$\sqrt{50} + \sqrt{18} = \sqrt{25}\sqrt{2} + \sqrt{9}\sqrt{2} = 5\sqrt{2} + 3\sqrt{2} = 8\sqrt{2}$
	• To expand brackets, it's best to expand first THEN simplify. Remember that
	$\sqrt{x} \times \sqrt{x} = x$. For example: $(3 - \sqrt{2})(\sqrt{8} + 1) = 3\sqrt{8} + 3 - \sqrt{16} - \sqrt{2}$
	$= 3\sqrt{4}\sqrt{2} + 3 - 4 - \sqrt{2}$
	$= 6\sqrt{2} - 1 - \sqrt{2} = 5\sqrt{2} - 1$
	a Simplify $\sqrt{80}$
	b. Simplify $\sqrt{75} - \sqrt{48}$
	c. Expand and simplify $(\sqrt{27} - 2)(4 + \sqrt{3})$
	d. Expand and simplify $(\sqrt{5}-3)^2$
	e. A rectangle has width $\sqrt{2} + 3$ and height $3\sqrt{18} - 1$. Determine (i) its area and (ii) its
	perimeter.
44. Rationalise the	Multiply top and bottom by the surd at the bottom to rationalise the denominator. Then
+10) ÷ $\sqrt{2}$ in the form $p + q\sqrt{2}$	Examples: $\sqrt{18}+10 - \sqrt{2}(\sqrt{18}+10) - \sqrt{36}+10\sqrt{2} - 2 + 5\sqrt{2}$
-,	Examples. $\frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{2} $
	$\frac{6}{\sqrt{2}} = \frac{6\sqrt{2}}{2} = 3\sqrt{2}$
	Test Your Understanding:
	a. Rationalise the denominator of $\frac{8}{\sqrt{2}}$
	b. Write $\frac{\sqrt{80}+10}{\sqrt{5}}$ in the form $a + b\sqrt{5}$

Using a Calculator		
45. Be able to use a calculator efficiently.	Ensure that you use brackets when appropriate, particularly when raising a negative number to a power. For example, to find "-3 squared on a calculator", you must input "(-3) ² ", otherwise your calculator will give you the incorrect answer of -9 (as the calculator does the squared first according to BIDMAS).	
	A nice trick is to exploit the ANS key. Suppose we wanted to evaluate $3x^2 - x^3 + 2$ when $x = -3.4$. To avoid having to use brackets, first type "-3.4 = ". Now you can use the ANS key: "3 ANS ² - ANS ³ + 2".	
	Test Your Understanding:	
	• Find the value of $\sqrt{\frac{\sin(55)+3}{51.4^2-2^3}}$ giving all the figures on your calculator display.	
	• Using your calculator, evaluate $1 - (9 - 2x^2)^2$ when $x = -3$.	

Algebra

Algebraic Expressions	
46. Form an algebraic	If c is the cost of a cat and d the cost of a dog, then "the cost of four cats and three dogs" could be
expression from a	represented as $4c + 3d$
description	
47 Collect like terms	Terms are only considered (like' if they have both the same variables and the same newers
47. Collect like terms	Terms are only considered like in they have both the same variables and the same powers.
	e.g. $x + x + x + 2 \rightarrow x + 2x + 2$
	lest Your Understanding: Simplify the following:
	a. $x^2y + xy^2 - 2x^2y$
	b. $x + 3y + 2x - 2y$
48. Multiply a single	Just multiply each term in the bracket by the one on the front. Be careful of double negatives.
term over a bracket	$xy(x+y) = x^2y + xy^2$
	1 - 2(3 - x) = 1 - 6 + 2x = 2x - 5
	Test Your Understanding: Expand and simplify the following.
	a. $2(x+4) - 3(2-2x)$
	b. $x(x-y) - y(y-x)$
49. Factorise algebraic	Think both about the numbers and the variables you can factorise out. If the expression in the
expressions by taking	bracket still has a factor you can take out, then you haven't fully factorised and you'd lose marks.
out common factors	Check your solution by expanding it out and seeing if it matches the original expression
	Examples: $2x^2 + 4x = 2x(x + 2)$ $xy^2 - y^2 = y^2(x - 1)$
	$\begin{bmatrix} x \\ x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$
	Test Your Understanding: Easterics the following
	rest four onderstanding: Factorise the following.
	a. $3x - 6$
	D. $6x^2y + 9xy^2$
50.5	$C. 8ab^3 - 12a^2bC$
50. Expand the product	Just multiply each thing in the first bracket by each in the second – this will result in 4 terms. Again,
of two linear	be very careful with double negatives. And remember that say $(3x)^2 = 9x^2$ not $3x^2$.
expressions	Examples: $(x + 1)(x - 4) = x^2 + x - 4x - 4 = x^2 - 3x - 4$
	$(1-2x)^2 = (1-2x)(1-2x) = 1 - 2x - 2x + 4x^2$
	Test Your Understanding: Expand the following:
	a. $(y+6)(y-7)$
	b. $(2x-5)(3x+4)$
	c. $(4x+1)^2$
	d. $(xy^2 + 1)(xy^2 - 1)$
51. Factorise	Notes:
expressions of the	• When the coefficient of x^2 (i.e. the number in front of x^2) is 1, then simply find two numbers
form $ax^2 + bx + c$	which add to give the middle number and times to give the last. To do this consider factor
	nairs of the last number and see which nairs have a sum or difference of the middle
	$a = \frac{x^2 + 2x - 15}{2}$ Eactor pairs of 15 are 5 x 3 and 15 x 1. Notice that 5 and 3 have a
	e.g. $x + 2x = 15$ Factor pairs of 15 are 5 × 5 and 15 × 1. Notice that 5 and 5 have a
	underence of z, which tens us our two humbers are 5 and -5. Thus, $w^2 + 2w = 4F = (w + F)(w - 2)$
	$x^{2} + 2x - 15 = (x + 5)(x - 3)$
	• When the coefficient of x ² then we can either 'intelligently guess' the factorisation (which I
	particularly encourage if the coefficient of x^2 is prime, limiting the possibilities to try) or
	'split the middle term'.
	Example: $2x^2 - x - 6$ \oplus -1 \otimes -12
	We again find two numbers which add to give the middle number (-1) but now, which
	times to give the first times the last number, -12 (rather than just the last number).
	These numbers are 3 and -4, so we 'split the middle term' using these numbers:
	$2x^2 + 3x - 4x - 6$
	Now factorise the first half and the second half separately. The bracket will be the same for
	the two, so as soon as you've got your first bracket, you can duplicate this.
	= x(2x + 3) - 2(2x + 3)
	=(2x+3)(x-2)
	The last step was because $2x + 3$ was common to both terms.

	Test Your Understanding: Factorise the following.				
	a. $x^2 + 2x + 1$	e. $x^2 + ax + bx + ab$			
	b. $x^2 + 6x + 8$	f. $2x^2 + 3x + 1$			
	c. $x^2 - 7x + 10$	g. $3y^2 + 11y - 4$			
	d. $x^2 - 3x - 10$	h. $12x^2 - x - 1$			
52. Factorise quadratic expressions using the difference of two squares	You know you have the difference of two squares where, unsurprisingly, you have: (i) two terms (ii) the difference between them (iii) each term looks like something squared. Then write out two bracket, one with +, one with -, and write the square root of each term before and after each. Note that the <u>order matters</u> , so for $1 - x^2$, $(1 + x)(1 - x)$ is a correct factorisation, but $(x + 1)(x - 1)$ is not. Examples : $x^2 - 9 = (x + 3)(x - 3)$ $4x^2 - b^2 = (2x + b)(2x - b)$				
	Test Your Understanding: Factorise the following. a. $4 - x^2$				
	b. $x^2y^2 - 1$ c. $25y^4 - 36z^2$				
531. Simplify rational expressions by cancelling, adding, subtracting, and multiplying	Be careful of sign errors in expanding. Whenever so squared), leave it in brackets first to avoid a sign error 3(x + 2) - 4(3 - x) $1 - (1 - x)^2 \rightarrow$	ubtracting the product of two brackets (or is $\rightarrow 3x + 6 - 12 + 4x$ $1 - (1 - 2x + x^2)$ $1 - 1 + 2x - x^2$ $2x - x^2$			
	Test Verm Understanding: Circulify the following (s				
	Test Your Understanding: Simplify the following (e	expanding where necessary).			
	d. $2x \times 5y$ b. $3xy^2 \times 4y$ c. $\frac{xy^2}{2xy}$ d. $(x + y)^2 + (x - y)^2$	e. $(x + 1) - 3(x + 2)$ f. $(2x + 1)^2 - (x + 1)(x - 3)$ g. $(3x + 1)(2x - 3) - (1 - 2x)^2$			
53ii. Simplify algebraic	The key is to factorise top and bottom of the fracti	on before <i>cancelling</i> common factors.			
fractions.	Examples:				
	$\frac{x^2 + x}{x + 1} = \frac{x}{x}$	$\frac{x(x+1)}{x+1} = x$			
	$\frac{x^2 + 3x + 2}{x^2 - 1} = \frac{(x - x)^2}{(x - x)^2}$	$\frac{(x+1)(x+2)}{(x-1)} = \frac{x+2}{x-1}$			
	Test Your Understanding: Simplify the following al a. $\frac{2x^2+3x+1}{x^2+2x+1}$ b. $\frac{2x^2+5x-3}{x^2-9}$ c. $\frac{x^2+2xy+y^2}{x^2+2xy+y^2}$	gebraic fractions.			
53iii Add and subtract	2x+2y The principle of adding/subtracting fractions is equ	vally applicable to algebraic fractions			
algebraic fractions	e.g. for $\frac{1}{3} + \frac{2}{7}$, we'd multiply the denominators, the (2×3) . Examples: $\frac{1}{x} + \frac{2}{y} = \frac{y+2x}{xy}$ $\frac{x}{x-1} - \frac{2}{x+2} = \frac{x(x+2)-x}{(x-1)(x-1)(x-1)(x-1)}$. Notice in the latter example that we need not expanded as a laways we need to be careful with Note that it's not always necessary to multiply the $\frac{1}{x} + \frac{1}{x^2} = \frac{x}{x^2}$. This is similar to how with $\frac{1}{2} + \frac{3}{4}$ we can use 4 as the Test Your Understanding: Express the following as	n 'cross multiply' the numerators, i.e. $(1 \times 7) + \frac{2(x-1)}{(x+2)} = \frac{x^2+2x-2x+2}{(x-1)(x+2)} = \frac{x^2+2}{(x-1)(x+2)}$ and out the denominator – it makes it no 'simpler'. In double negatives. denominators, e.g: $+\frac{1}{x^2} = \frac{x+1}{x^2}$ e common denominator rather than 8.			
	a. $\frac{1}{2} + \frac{3}{x}$ b. $\frac{2}{x} + \frac{1}{x^2}$ c. $\frac{1}{x} + \frac{1}{x+1}$ d. $\frac{2}{x-1} - \frac{3}{x}$ e. $\frac{x+1}{x-1} - \frac{x-1}{x+1}$				

Patterns and Sequences	
54. Generate simple sequences	Example: Find the number of dots in the 100 th diagram in this sequence:
of numbers, squared integers	
and sequences derived from	
diagrams	
	The number of dots is 1, 4, 7, 10, The formula for the n th term is therefore $3n - 2$. Therefore the 100 th term is $3(100) - 2 = 297$
	Test Very the density of the state of we take the tight and the the Fo th is seen in this
	sequence.
55. Describe the term-to-term	e.g. "The terms double each time" or "The terms decrease by 3 each time". 'Term-to-term'
definition of a sequence in words	just means that the rule to generate new terms is based on the previous term (or multiple terms, in the case of the Fibonacci sequence) rather than on the position n . So "add 3 each
	time" would be a term-to-term rule, whereas $3n + 1$ would be a position-to-term rule.
56. Identify which terms cannot	This may be because:
be in a sequence	 Using the formula for the nth term would lead to a non-whole number of n; it's not possible to say have the 13.4th term!
	Suppose the rule for the n th term is $3n + 2$ and we're establishing if 76 is in the
	sequence. $2m + 2 = 76$
	3n + 2 = 76 $2m - 74$
	3n - 74
	$n = 24\frac{2}{2}$
	which is not possible as n is not whole, so 76 is not in the sequence.
	 The terms all end in certain digits (e.g. 6, 11, 16, 21, always ends in 1 or 6) and the term given does not end in this digit.
	Test Your Understanding: Establish with explanation whether the following terms are in the
	sequence with the given formula.
	a. 24 where n th term is $2n + 1$
	b. 255 where sequence is 7, 12, 17, 27,
	c. 104 where n th term is $7n - 3$
	d. 2792 where n th term is $6n + 2$
57. Generate specific terms in a	Example: Write the first four terms of the sequence whose <i>n</i> th term is $n^2 - 2n + 3$
sequence using the position-to-	For the first term, $n = 1$, so $1^2 - 2(1) + 3 = 2$
term and term-to-term rules	The second term is $2^2 - 2(2) + 3 = 3$
	Using this method, first four terms are 2, 3, 6, 11
	Test Your Understanding : Find the first three terms of the following sequences
	a. The sequence whose n^{th} term is $7n + 3$
	b. The sequence whose n^{th} term is $10 - 2n$
	c. The sequence whose n th term is $3^n - n^2$
	d. The sequence whose first term is 3 and each term is twice the previous term.
58. Find and use the nth term of	You will only need to find the n^{th} term of a linear sequence (where the difference between
an arithmetic sequence	terms is constant), NOT quadratic sequences (where the second difference is constant).
	Example: "Find the formula for the <i>n</i> th term of the sequence 5, 8, 11, 14, Hence find the 100^{th} term of the sequence "
	The terms increase by 3 each time, so our formula starts $3n$. Then imagine the 3 times table
	(as this is the sequence $3n$ would give). We need to add 2 to 'correct' it, so the formula is
	3n+2.
	Therefore the 100 th term is $(3 \times 100) + 2 = 302$
	Test Your Understanding: For the following sequences, find the formula for the nth term
	and hence determine the 100 th term of the sequence
	a. 2, 5, 8, 11,
	b. 5. 6. 7. 8
	c. 11, 9, 7, 5,
	d $5\frac{1}{6}6\frac{1}{6}6\frac{5}{7}7\frac{1}{7}$
	······································

Formulae and Solutions to Linear Equations				
59. Substitute numbers into a	The key to avoiding errors with substitution are:			
formula. Substitute positive and	• Observe the laws of BIDMAS. If $x = 4$, then $2x^2$ would be $2 \times 4^2 = 32$, NOT			
negative numbers into	$(2 \times 4)^2 = 64$ (a very common student error).			
expressions such as $3x^2 + 4$ and	• Be careful with negatives (particularly when there are squared/cubed terms).			
2 <i>x</i> ³	If $a = 1, b = -2$, then $a - b^2 = 1 - 4 = -3$, and $a - 2b = 1 + 4 = 5$. Note that			
	when evaluating "minus four squared" on a calculator, you need to use $(-4)^2$ and			
	not -4^2 as previously discussed.			
	Test Your Understanding: Given that $a = -1$ and $b = 2$ and $c = -3$ determine the value of:			
	a. $a - bc$			
	b. $a^2 + bc$			
	c. $b^2 - c^2$			
	d. $bc - ac$			
	e. $c^2 - 4bc$			
60. Solve linear equations,	• If the unknown is on one side then collect on the side where the number on front of			
including where the unknown	the unknown is greater. Collect anything that doesn't involve the unknown on the			
appears on both sides, and	other side.			
where the equation may	e.g. $2 - 3x = 5x + 5 \rightarrow -3 = 8x$			
including negative signs and	 Ensure you do the 'opposite' when moving something to the other side. 			
brackets.	• The result may be negative and/or fractional. Simplify the fraction if necessary, but			
	there is no need to convert to a decimal.			
	Expand out any brackets present first.			
	• Example: $3(4x - 2) = 2(1 - 3x) + x$			
	12x - 6 = 2 - 6x + x			
	12x - 6 = 2 - 5x			
	17x = 8			
	$r = \frac{8}{3}$			
	$x = \frac{1}{17}$			
	Test Your Understanding: Solve the following.			
	a. $3x + 4 = 6$			
	b. $3(2x+6) = 2(5x-7)$			
	C. $1 - 2(3 - 2y) = y$			
61. Set up linear equations from				
word problems and geometric	• "The angles in a triangle are $2x + 6$, $3x + 10$ and $4x - 7$. Determine x."			
contexts.	The angles in a triangle add to 180, so: 2w + C + 2w + 10 + 4w = 7 = 100			
	2x + 6 + 3x + 10 + 4x - 7 = 180			
	9x + 9 = 180 9x - 171			
	5x - 171 $x - 10^{\circ}$			
	• "In A years time I will be A times as old as I was 11 years ago. How old am $12^{"}$			
	If your age now is a then your age in A years time is $a \pm 4$ and A times your age 11			
	vears ago is $4(a - 11)$			
	a + 4 = 4(a - 11)			
	a + 4 = 4a - 44			
	48 = 3a			
	x = 16			
62. Solve linear equations in	If there is a fraction in your equation, your instinct should be to times both sides of the			
one unknown, with fractional	equation by the denominator of this fraction. Example:			
coefficients	$\frac{x}{-+4} = x$			
	3^{+1-2}			
	$\begin{array}{c} x + 12 = 3x \\ 12 - 2y \end{array}$			
	12 = 2x			
	x = 0			
	A common error is to lorger to multiply one of the terms, e.g. writing $x + 4 = 3x$			
	Note examples, (both past paper questions)			
	• Solve $\frac{1}{5} = 1 \rightarrow 2 - y = 5 \rightarrow 2 - 5 = y \rightarrow y = -3$			

	• Solve $\frac{5(2x+1)^2}{2} = 5x - 1$
	$50000 \frac{4x+5}{4x+5} = 5(2x+1)^2 - (5x-1)(4x+5)$
	5(2x + 1) = (3x - 1)(4x + 3) $5(2x + 1)(2x + 1) = 20x^{2} - 4x + 25x - 5$
	$5(2x + 1)(2x + 1) = 20x^{2} + 25x + 5$ $5(4x^{2} + 4x + 1) = 20x^{2} + 21x - 5$
	3(1x + 1x + 1) = 20x + 21x - 5 $20x^2 + 20x + 5 = 20x^2 + 21x - 5$
	20x + 20x + 5 = 20x + 21x - 5 20x + 5 = 21x - 5
	10 = r
	Notice in expanding $5(2x + 1)^2$, we maintained an outer bracket while expanding
	the $(2x + 1)^2$ part, to avoid error (see (53i)).
	Test Your Understanding: Solve the following.
	$a - 2 - \frac{x}{2} = 6$
	3 - 4y
	b. $\frac{1}{6} = p$
	c. $\frac{2(3x-1)^2}{2} = 2x + 1$
63 Solve simple linear	9x-1 $9x-1$
inequalities in one variable and	you divide by a negative number, the direction of the inequality is reversed. This is avoidable
represent the solution set on a	by making sure the x term is positive (and moved to the other side if not), so that we only
number line	by making sure the x term is positive (and moved to the other side in hot), so that we only
number me	Example: $1 - 3r > 5$
	$1 \times 5 \perp 3r$
	$1 > 3 + 3\lambda$ -4 > 3r
	4
	$-\frac{1}{3} > x$
	(which is the same as $r < -\frac{4}{-}$)
	$\frac{1}{3}$
	Example: "Poprocent $x > A$ " on a number line
	Example: Represent $x \ge 4$ of a number line.
	Remember that a filled circle means "including 4" and an empty circle would mean
	"evoluting 4" Note that arrow indicating the line centinues to infinity
	excluding 4 . Note that arrow, indicating the line continues to infinity.
	Test Your Understanding:
	rest four officerstationing. 2. Solve $2x - 1 < 5$ representing your solution set on a number line
	a. Solve $2(4 - 2r) > 7$
64. Use the correct notation to	5. Solve $S(4 - 2x) \ge 7$ This is checking you understand the difference between say $x < 3$ (all values strictly less
show inclusive and exclusive	than 3) and $r < 3$ (all values at most 3, which can include 3)
inequalities	that 5 and $x \leq 5$ (at values at most 5, which can include 5).
65 Change the subject of a	When the subject appears multiple times, the approach is "collect and factorise" i.e. collect
formula including cases where	all the terms involving the subject on one side of the equation (expanding brackets first if
the subject is on both sides of	necessary) factorising this subject out, and then dividing through
the original formula or where a	Example: Make x the subject of $x = \frac{a+ax}{a}$
power of the subject appears	(2 2)
	y(2-3x) = a + ax
	2y - 3yx = a + ax
	2y - a = ax + 3yx (collected x terms on RHS, since this keeps terms positive)
	2y - a = x(a + 3y) (Factorise out x) 2y - a
	$x = \frac{2y}{x + 2y}$
	u + 5y
	For other expressions where the subject only appears once, you just need to undo the last thing done to r'' (or whatever the subject is) each time.
	Test Your Understanding: In each case make x the subject
	$\frac{1}{4r-1}$
	a. $b = \sqrt{\frac{4x - 1}{3}}$
	b. $a - 3x = b$
	$c = \pi x + \frac{x}{2}$ (hint: times both sides by 3 first)
	2x+1
	d. $a = \frac{2}{2x-1}$
	e. $\frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ (hint: what should you times both sides by to have no fractions?)

Linear Graphs	
66. Recognise that equations of	You should understand that <i>m</i> is the gradient and <i>c</i> is the <i>y</i> -intercept.
the form $y = mx + c$ correspond	
to straight-line graphs in the	
coordinate plane	
67. Draw straight line graphs for	For a 'fixed charge' graph, e.g. a builder charges a fixed charge of £50 and an hourly rate of
real-life situations	£25/hr, then if total cost is plotted with time, then the £50 will be the <i>y</i> -intercept (i.e the
 ready reckoner graphs 	cost when the time is 0) and the £25 will be the gradient.
 conversion graphs 	To plot a straight line representing the charges, just calculate the total charge for two
 fuel bills, eg gas and 	different amounts of time, plot the points and join with a straight line.
electric	You may have to compare the charges of two different builders, e.g. draw a straight line for
 fixed charge (standing 	each, and find their intersection to work out for what amount of time the total cost will be
charge) and cost per unit	the same.
68. Plot and draw graphs of	The trick here is to pick just two suitable values of x (preferably at each of end of your
straight lines with equations of	provided axis) and work out the corresponding y value by substituting into the equation.
the form $v = mx + c$	Then just join up these two points (ensuring your line goes to the end of the available space.
,	to indicate clearly that your line is infinitely long).
	For example, if the equation was $x + 2y = 4$, the choosing $x = 0$ gives you $y = 2$, hence
	plot the point (0,2). Plot one more point and hey presto. We could also choose $v = 0$, so
	that $x = 4$, giving us the point (4.0). This method avoids any problems when the scales of
	the x and y axis are different.
	Test Your Understanding:
	a. With x-axis varying from -3 to 3 and y axis from -8 to 8, plot the line with equation
	v = 2x - 1.
	b. With x-axis and y-axis varying from 0 to 6, plot the line with equation $x + 2y = 6$
69. Find the gradient of a	If you're given a graph, find the coordinates of any two points on the graph.
straight line from a graph or	Gradient is then:
given two points on the line.	change in y
0	$m = \frac{1}{change in x}$
	Ensure you are consistent in what point you're considering the change from. e.g. If $A(3.6)$
	and $B(5, -8)$ are two points on the line, then the v change is -14 and the x change is 2 (not
	14 and 2), thus the gradient is 7.
	Test Your Understanding:
	a. A line goes through the points (2.5) and (6.3). Determine the gradient of the line.
70. Be able to identify the v and	Notes:
x intercept of a straight line	• When a line crosses the <i>v</i> -axis then $x = 0$. Just substitute into your equation.
with the axis.	e.g. "Find where $2x + 3y = 4$ intercepts the <i>v</i> -axis." When $x = 0$, $0 + 3y = 4$, thus
	$u = {}^{4}$ The point is therefore $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$
	$y = \frac{1}{3}$. The point is therefore $\left(0, \frac{1}{3}\right)$
	• When a line crosses the x-axis then $y = 0$. Again substitute and solve.
	Test Your Understanding:
	a. Find the coordinates of the points at which the line with equation $y = 3x + 4$
	crosses (i) the y-axis and (ii) the x-axis.
71. Analyse problems and use	If the gradient is negative, as one variable increases, the other decreases. If the gradient is
gradients to interpret how one	positive, as one variable increases, the other increases. As the gradient increases in
variable changes in relation to	magnitude, one variable rises (or falls) more sharply as the other increases.
another	
72. Find the gradient of a	Make y the subject so that your equation is in the form $y = mx + c$. Then m is the gradient.
straight line from its equation	Example : "Find the gradient of the line with equation $x + 2y = 1$
	x + 2y = 1
	2y = -x + 1
	$y = -\frac{1}{2}x + \frac{1}{2}$
	$\angle \angle \angle$
	mus the gradient is $-\frac{1}{2}$
	Test Your Understanding: Find the gradient of the lines with equations.
	a. $y = 1 - 3x$
	b. $x + y = 1$
	c. $2x - y = 4$
	d $3r + 4y = 5$

73. Explore the gradients of parallel lines and lines perpendicular to each other	 Lines which are parallel have the same gradient. If two lines with gradients m₁ and m₂ are perpendicular then m₁ × m₂ = −1 (this is useful to state if you have to prove two lines are perpendicular). If you have one gradient and want to work out the other, find the <i>negative reciprocal</i>. So 2 → −¹/₂, ¹/₃ → −3, -⁴/₅ → ⁵/₄ If two lines a parallel they will never intersect. Otherwise they will. Examples: "Line A has the equation x + 2y = 1. Line B passes through the points (0,3) and (4,11). Are the lines parallel, perpendicular or neither?" For line A rearranging gives y = -¹/₂x + ¹/₂ so m₁ = -¹/₂. The gradient of line B is m₂ = ⁸/₄ = 2. Since -¹/₂ × 2 = -1, the lines are perpendicular. 				
74. Write down the equation of a line parallel or perpendicular to a given line, or the line which also passes through a given point.	Since $-\frac{1}{2} \times 2 = -1$, the lines are perpendicular.If asked to find "a" line parallel or perpendicular to another, this suggests there are multiple possibilities. The y-intercept can be anything you like. Examples: • "Find the equation of a line parallel to $y = 3x + 4$ ". $y = 3x + 1$ or even just $y = 3x$ will do, as we only require the gradients are the same!• "Find the equation of a line perpendicular to $y = -2x + 1$ ". Find the 'negative reciprocal' of the gradient, in this case $\frac{1}{2}$. Thus $y = \frac{1}{2}x + 5$ is a suitable example.If the line also has to pass through a given point, there's only ONE possible line.Example: "Find the equation of the line perpendicular to $y = 2x + 1$ and passes through the point $(4,1)$."We know our equation will starts $y = -\frac{1}{2}x + \cdots$ There's two methods to determine the correct y-intercept:1. The quick ('mental') way: If we evaluate $-\frac{1}{2}x$ for our point $(4,1)$, then $-\frac{1}{2}(4) = -2$. Then we have to 'correct' this by adding 3 to get to the y value of 1. Thus $y = -\frac{1}{2}x + 3$ 2. $y = -\frac{1}{2}x + 3$ These methods are effectively the same: it's just (1) is a mental way of approaching (2).Test Your Understanding: a. Find the equation of a line which is perpendicular to $y = -5x + 2$ b. Find the equation of a line which is parallel to another line $y = 3x + 1$, and goes through the point (4,2)				
75. Find the equation of a line which passes through two given	First use the two points to find the gradient, then repeat as above. Example: "Find the equation of the line which passes through the points (2.5) and (4.4)"				
points.	Gradient $m = -\frac{1}{2}$ Then using either of the points (let's say (4,4)) then $y = -\frac{1}{2}x + 6$				
76 Solve more difficult	Example: "APCD is a service of the				
76. Solve more difficult problems involving straight line equations	Example: "ABCD is a square. P and D are points on the y-axis. A is a point on the x-axis. PAB is a straight line. The equation of the line that passes through the points A and D is $y = -2x + 6$ Find the length of PD." We need to find points D and P. D is just the y-intercept of the equation so is (0,6) To find P, we first need to coordinate of A, i.e. the x-intercept of $y = -2x + 6$. This occurs at (3,0)				

Simultaneous Equations					
78. Use elimination or	To solve by elimination, scale each equation so that either the x terms or the y terms are the				
substitution to solve	same. If they have different signs, adding the equations will make them cancel. If they're the				
simultaneous equations	same sign, subtracting the equations will make them cancel.				
	e.g. "Solve the simultaneous equations				
	4x + 7y = 1				
	3x + 10y = 15				
	Scaling so that say y is the same:				
	40x + 70y = 10				
	21x + 70y = 105				
	Subtracting to eliminate y, being very careful that you subtract the same way round:				
	19x = -95				
	x = -5				
	Substituting this into one of original equations:				
	4(-5) + 7y = 1				
	7y = 1 + 20 = 21				
	y = 3				
	You can check your answer by substituting both your values into the other equation:				
	3(-5) + 10(3) = 15				
	-15 + 30 = 15				
	15 = 15				
	Test Your Understanding:				
	a. Solve the following simultaneous equations:				
	5x - y = 27				
	3x - y = 17				
	b. Solve the simultaneous equations:				
	5x + 6y = 12				
	3x - 4y = 11				
79. Interpret a pair of	Example: The graph of the straight line $x + 2y = 8$ is shown on the grid.				
simultaneous equations as a	(a) On the grid, draw the graph of $y = \frac{x}{2} - 1$				
pair of straight lines and their	(b) Use the graphs to find estimates for the solution				
solution as the point of	of				
intersection. Consider the real	x + 2y = 8				
life applications, eg mobile	$y = \frac{x}{-1}$				
phone bills	y - 2 - 1				
	By correctly drawing the line in (a), then the				
	solution to the simultaneous equations is just the				
	coordinate of their intersection, which is (5,1.5)				
	thus $x = 5$ and $y = 1.5$.				
	Test Your Understanding:				
	On the axis provided, sketch the lines $x + y = 3$ and $y = 2x - 3$. Hence determine the				
	solutions to the simultaneous equations:				
	x + y = 3				
	y = 2x - 3				
	x -5 -4 -3 -2 -1 1 2 3 4 5 6				
· · · · · · · · · · · · · · · · · · ·					

80. Set up a pair of	Are you able to take a problem in words and turn it into simultaneous equations?
simultaneous equations in two	Exampl e: "Four Aardvarks and five Buffalo cost £2.50. Two Aardvarks and one Buffalo costs
variables	80p. How much is one Aardvark?"
	We can form two equations (letting <i>a</i> be the cost of an aardvark and <i>b</i> the cost for a
	buffalo):
	4a + 5b = 250
	2a + b = 80
	Then solve.
	Test Your Understanding : "In 1999 the concert had 3 readings and 9 songs. It lasted 120 minutes. In 2000 the concert had 5 readings and 5 songs. It lasted 90 minutes. In 2001 the school plans to have 5 readings and 7 songs. Use simultaneous equations to estimate how long the concert will last."

Trial and Improvement			
81. Solve cubic functions by successive substitution of values of x. Use systematic trial and improvement to find approximate solutions of equations where there is no simple analytical method of solving them.	Example: Suppose you wish to solve $x^3 + 2x = 30$, correct • Have tried the solution to 1dp (or the specific accursolution. • Have then tried the midpoint of the two. This is cruling the maximum of the two is the follows: $x = 3 \rightarrow 3^3 + 2(3) = 33$ $x = 2.7 \rightarrow 2.7^3 + 2(2.7) = 25.083$ $x = 2.9 \rightarrow 2.9^3 + 2(2.9) = 30.189$ $x = 2.8 \rightarrow 2.8^3 + 2(2.8) = 27.552$ $x = 2.85 \rightarrow 28.849 \dots$ Therefore the solution to 1dp is 2.9. Note that it was not sufficient to try 2.8 and 2.9 and choose 30. It's theoretically possible that 2.8 was closer. But by trying the top show the solution lies between 2.85 and guaranteed to be 2.9 to 1dp.	to 1dp. The key is to: racy) either side of the precise ucial to get full marks. Too large Too small Too large Too small e 2.9 because 30.189 is closer to ing 2.85 and observing it gives a d 2.9. Any number in this range is	
	Test Your Understanding: Find the solution to $x^3 - 3x = 10$ correct to 1dp.		l
82. Understand the connections between changes of sign and location of roots	Suppose we were solving $x^3 + x - 11 = 0$ and found that $x = 2.1$ gives 0.361. Since this passes 0, we know that if we line would cross the x-axis (i.e. we'd have a 'root') somewh You are unlikely to be tested on this.	x = 2.0 gives -1 on the LHS and e sketched $y = x^3 + x - 11$, the ere between $x = 2.0$ and $x = 2.1$	

Quadratic Equations, Functions and Graphs								
83. Generate points and plot	You're just bein	You're just being tested on your ability to substitute values into an equation, plot them on a						
graphs of simple quadratic	graph, and join	graph, and join with a curved line (not straight lines between points!). The mark scheme						
functions, then more general	allows your line	to stray at mos	st 1mm from yo	our plotted point	ts, so beware.			
guadratic functions								
•	The 'TABLE' mo	The 'TABLE' mode on your calculator is very helpful, e.g. To generate a table of points for						
	$v = x^2 + 2x$. p	$y = x^2 + 2x$ press MODE -> TABLE which should bring up " $f(X) =$ " Then type in $X^2 + 2X$ "						
	you can get X u	sing the 'alpha'	button at the t	op and find the	red X. Press =. 1	then say type -3		
	for 'start' 3 for	'end' (so that v	our table goes f	from $x = -3 to$	3) and step size	e 1 (so that your		
	x value goes up	by 1 each time	Press = and v	ou should have	a table which y	ou can navigate		
	through using v	λ value goes up by 1 each time). Fress – and you should have a table, which you can having the through using your cursor keys. Use MODE \rightarrow COMP to go back to computation mode						
		our cursor keys				on mouel		
	Test Your Unde	rstanding:						
	Given that $y = x^2 - 2x - 3$ complete the following table							
	r	-2	-1		1	2		
	$\begin{bmatrix} y \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$							
	Hence on suitable axis sketch the graph with equation $y = x^2 - 2x - 3$.							

88i. Be able to complete the square.	'Completing the square' means to get your equation in the form $a(x + b)^2 + b$ (at GCSE, <i>a</i> is usually, but not necessarily, 1)		
	 Examples: Put x² + 6x - 1 in the form (x + a)² + b. Half the coefficient of x -> (x + 3)² But because the expansion of this would give a +9 term we don't want, we 'throw it away'. Hence: x² + 6x - 1 = (x + 3)² - 9 - 1 = (x + 3)² - 10 i.e. a = 3 and b = -10 Similarly: x² - 8x + 2 = (x - 4)² - 16 + 2 = (x - 4)² - 14 Notice we always <i>subtract</i> the square of this halved term, regardless of whether the number we squared was positive or negative. "Put 2x² + 16x + 4 in the form a(x + b)² + c." First factorise out the number on front of the x². Then complete the square for what's inside, ensuring the outer brackets remain untouched for now. 		
	$= 2(x^{2} + 8x + 2)$ $= 2((x + 4)^{2} - 16 + 2)$ $= 2((x + 4)^{2} - 14)$ Lastly expand out the outer brackets. $= 2(x + 4)^{2} - 28$ Test Your Understanding: a. Put y ² + 10y - 3 in the form (y + a) ² + b b. Given x ² - 14x + 5 = (x + a) ² - b, find the values of a and b.		
	c. Put $3x^2 + 18x - 6$ in the form $a(x + b)^2 + c$ d. Put $2x^2 - 4x + 1$ in the form $a(x - b)^2 + c$		
 88ii. Be able to identify the minimum/maximum value of an expression and the value of <i>x</i> for which this minimum/maximum occurs. Be able to identify the minimum/maximum point of a quadratic graph. 89. Solve quadratic equations 	d. Put $2x^2 - 4x + 1$ in the form $a(x - b)^2 + c$ Example: "By completing the square, find the minimum value of $x^2 + 6x + 15$ ". $x^2 + 6x + 15 = (x + 3)^2 + 6$ Squared things are always at least 0 (since negative times negative is positive). Thus the smallest the $(x + 3)^6$ can be is 0. Thus the minimum value of the expression is 6. "Find the value of x for which this minimum occurs." To make $(x + 3)^2$ zero, just make $x = -3$. "The sketch shows the line with equation $y = x^2 - 8x + 21$. Find the coordinate of the minimum point P." $y = (x - 4)^2 + 5$ Letting $x = 4$ makes the squared term zero, so the y value is 5. Thus $P = (4,5)$. Test Your Understanding: a. Determine (i) the minimum value of $x^2 + 8x - 1$ and (ii) the value of x for which this minimum occurs. b. Determine the coordinate of the minimum point of $y = x^2 + 2x + 10$. It's recommended when given the choice to solve either by factorisation or by the quadratic		
89. Solve quadratic equations by completing the square.	It's recommended when given the choice to solve either by factorisation or by the quadratic formula, to use the quadratic formula (since the quadratic formula is derived from completing the square anyway!). However, if you've already been asked to complete the square in the first part of a question and are subsequently asked to solve an equation involving the expression, you can now quickly solve. Example: Given that $x^2 + 4x - 1 = (x + 2)^2 - 5$, solve the equation $x^2 + 4x - 1 = 0$ This means: $(x + 2)^2 - 5 = 0$ $(x + 2)^2 = 5$ $x + 2 = \pm\sqrt{5}$ $x = -2 \pm \sqrt{5}$ Test Your Understanding: Given that $x^2 - 6x - 5 = (x - 3)^2 - 14$, determine the exact solutions to $x^2 - 6x - 5 = 0$.		

90. Solve simple quadratic	The quadratic formula is in your formula booklet, but it's useful to memorise it:			
equations by using the	$If \ ax^2 + bx + c = 0$			
quadratic formula	$-b \pm \sqrt{b^2 - 4ac}$			
	$x = \frac{-2a}{2a}$			
	You know you will need to use the formula when the auestion specifies "to 3 significant			
	figures" or "to 2 decimal places" as it implies the answer will not be a nice whole number			
	and thus factorisation is not an ontion			
	Common student errors			
	When his sections then forgetting that how ill he positive			
	• when b is negative, then forgetting that $-b$ will be positive.			
	• When b is negative (say -5), writing -5^2 on your calculator to represent b^2 . As			
	mentioned, whenever squaring negative numbers, you require brackets, i.e. $(-5)^2$			
	Example : Solve $2x^2 - 4x - 1 = 0$, giving your answer in exact form.			
	a = 2, b = -4, c = -1 (it's helpful to explicitly right out a, b, c. Ensure that you observe			
	the sign of each number)			
	$4 \pm \sqrt{16 - (4 \times 2 \times -1)}$			
	$x = \frac{-1}{4}$			
	$4 \pm \sqrt{16 \pm 8}$ $4 \pm \sqrt{24}$			
	$=\frac{1}{4} \frac{1}{4} 1$			
	4 4 $4 \pm 2\sqrt{6}$ 1 1			
	$=\frac{4\pm 2\sqrt{6}}{1+1}=1+\frac{1}{2}\sqrt{6} \text{ or } 1-\frac{1}{2}\sqrt{6}$			
	4 2 2			
	Test Your Understanding:			
	a. Find solutions to $3x^2 - x - 5 = 0$, giving your solutions to 3 significant figures.			
	b. Find solutions to $x^2 + 4x - 44 = 0$, giving your solutions in the form $a \pm b\sqrt{3}$.			
	c. Find solutions to $2x^2 + 5x - 1 = 0$, giving your solutions in exact form.			
91. Select and apply algebraic	The 'graphical' approach to approximating the solutions is to sketch the lines representing			
and graphical techniques to	the two equations, and find the point(s) of intersection. See (85)			
solve simultaneous equations				
where one is linear and one	The 'algebraic' approach is as such:			
quadratic	• Step 1: Rearrange your linear equation to make either x or y the subject. If for			
qualitie	example you had $x + 2y = 1$, it would be easier to rearrange to make $x = 1 - 2y$			
	than it would be to have $y = \frac{1-x}{2}$			
	 Step 2: Substitute this expression into the guadratic equation 			
	 Step 3: Simplify and solve (ensuring you get 0 on one side first) 			
	 Step 3: Simplify and solve (choung you get 0 on one side mist) Step 4: For each solution (for either x or y) work out the value of the other variable. 			
	• Step 4. For each solution (for either x or y), work out the value of the other variable (a.g. using your rearranged linear equation)			
	(e.g. using your real angeu nitear equation).			
	• Step 5: Check your solutions by substituting them into the original equations.			
	Evenue las Calva de a sincultar a sus dianas			
	Example: Solve the simultaneous equations:			
	$x^2 + y^2 = 5$			
	x - y = 1			
	Step 1: $x = 1 + y$			
	Step 2: $(1 + y)^2 + y^2 = 5$			
	Step 3: $(1 + y)(1 + y) + y^2 = 5$ (notice we repeated the brackets)			
	$1 + 2y + y^2 + y^2 = 5$ (a <u>VERY common error</u> here is to forget the original y^2)			
	$2y^2 + 2y - 4 = 0$			
	$y^2 + y - 2 = 0$			
	(y+2)(y-1) = 0			
	y = -2 or y = 1			
	Step 4: Using $x = 1 + y$, $x = -1$ or $x = 2$			
	Step 5: Checking. When $x = 2$ and $y = 1$: $2^2 + 1^2 = 5$ (correct) and $2 - 1 = 1$ (correct)			
	When $x = -1$ and $y = -2$: $(-1)^2 + (-2)^2 = 5$ (correct) and $-1 - (-2) = 1$ (correct)			
	Test Your Understanding: Solve the following simultaneous equations, giving each answer to			
	3 significant figures where relevant			
	$a x^2 + y^2 = 8$			
	v = x + A			
	$y - x + y^2$ b $y^2 + y^2 - 5$			
	$\begin{array}{c} 0 \cdot \mathbf{A} + \mathbf{y} = 0 \\ \mathbf{y} = 3\mathbf{y} = 5 \end{array}$			
	$x^{-}y^{-}y^{-}$			
	y = x - x - 2 y = 2y - 10 (giving your solutions to 2 significant figures)			

92. Solve equations involving algebraic fractions which lead to quadratic equations	Just times both sides of your equation by any denominators there might be. Example : "Solve $\frac{2}{x^2} - \frac{3}{x} = 4$, giving your answer to 3sf." If we times both sides by x^2 , we get: $2 - 3x = 4x^2$ $4x^2 + 3x - 2 = 0$ Then we proceed to use the quadratic formula.
93. Derive the quadratic equation by completing the square	Test Your Understanding:a. Find the solutions to $\frac{1}{x^2} + \frac{1}{x} = 1$, giving your solutions to 3sf.b. Find the solutions to $\frac{2}{x} + 3 = \frac{5}{x^2}$, giving your solutions to 3sf.c. Find the solutions to $\frac{(2x+2)^2}{x+1} = 5x + 1$ You do not need to know this for the exam.

Further Graphs and Functions You need to be able to recognise the shapes of different graphs. 94. Plot and Recall that a line is all the points which satisfy some given equation. For example if the equation of the recognise cubic, reciprocal, line is $x^2 + y^2 = 9$, then (0,3) would be a point on your line because $0^2 + 3^2 = 9$. exponential and circular functions. Cubic Quadratic Cubic Quadratic $y = ax^2 + bx + c$ $=ax^3+bx^2$ $y = ax^3$ $+ bx^{2} + cx + d$ $y = ax^2 + bx + c$ + cx + d*a* < 0 a > 0a < 0 a > 0Reciprocal Linear Reciprocal Exponential Circle а v = ax + b $v = -\frac{a}{2}$ а $x^2 + v^2 = r^2$ $y = a \times b^x$ \overline{x} , x a > 0 b > 1a < 0In the above equations, x and y are variables and a, b, c, d are constants. Properties: **Quadratic:** Either U shapes of \cap shaped depending on whether the coefficient of x^2 is positive or negative respectively. Quadratics either have a single minimum point or a single maximum point. They may or may not cross the x axis. **Cubic:** Depending on whether the coefficient of x^3 is positive or negative, you either get an 'uphill rollercoaster' shape or a 'downhill rollercoaster' respectively, each with two 'turns'. Cubics always have at least one root because the line must pass the x-axis at some point. **Reciprocal:** There is no point on the line when x = 0 because in $y = \frac{2}{x}$ for example, you can't divide by 0. Similarly y can't be 0 because you would have to divide 2 by infinity. Make sure you can distinguish reciprocal graphs when the numerator is positive and when it is negative (if you forget, just consider what you'd get say if say x = 1 and consider where this point would be on the graph). **Exponential:** Note firstly that the y value is always positive (assuming we restrict the base to a positive value, which is usually the case), hence the graph is always above the x-axis. If $y = a \times b^x$, then when x = 0, $y = a \times b^0 = a$. **Circle:** If $x^2 = y^2 = r^2$, the circle is centred at the original and has radius *r*. So for example if $x^2 + y^2 = 5$, then the radius is $\sqrt{5}$.

95. Plot and recognise trigonometric functions $y = \sin x$ and $y = \cos x$, within the range -360° to $+360^{\circ}$	You need to be able to draw the graphs of $y = \sin x$ and $y = \cos x$. You should start by labelling your y- axis with just -1 and 1 (as both graphs' y-values can only vary between -1 and 1) and x-axis with multiples of 90° (these gives points of interest as the y values at these points will either be -1, 0 or 1). sin starts at 0 and initially goes up (oscillating between 0, 1, 0, -1, 0) whereas cos starts at 1 and therefore must initially go down (oscillating between 1, 0, -1, 0, 1). Both graphs then repeat (and thus can be duplicated if you have to sketch the graph when x is negative) $y = \sin x$
96. Use the graphs	You did this in (85) with quadratics – the principle is exactly the same for other graphs (e.g. a reciprocal
of these functions to find approximate solutions to equations, eg given x find y (and vice versa)	graph intersecting with a linear one).
97. Find the values	$y = pq^x$ is an exponential function. The key to finding p and q is using strategic points on the graph.
or p and q in the function $y = pq^x$	Example: Suppose $y = pq^x$ goes through the point (0,3) and (2,48), where p, q are positive constants.
given the graph of $v = pa^{x}$	Notes: For (0,3), $x = 0$, $y = 3$, so substituting into the equation: $3 = na^0 = n \times 1 = n$
7 64	Thus $p = 3$. Then substituting $x = 2$, $y = 48$ (and $p = 3$) using the second point into $y = pq^x$: $48 = 3 \times q^2$ $q^2 = 16$ $q = 4$
	Thus our function is $y = 3 \times 4^x$.
	The questions are slightly harder if x is not 0 for one of the points: Example: "The graph shows two points (1,7) and (3,175) on a line with equation: $y = ka^x$ Determine k and a (where k and a are positive constants)." Substituting using our points, we get two simultaneous equations: 7 = ka (1) $175 = ka^3$ (2) With simultaneous equations in the past you've eliminated by adding or subtracting. But it's also possible to divide! Dividing (2) by (1): $27 = a^3$ a = 3 Then substituting back into equation (1): $7 = k \times 3$ $k = \frac{7}{3}$ Test Your Understanding:
	a. Given that (2,6) and (5,162) are points on the curve $y = ka^x$, find the value of k and a . b. Given that (3,45) and $\left(1,\frac{9}{5}\right)$ are points on the curve $y = a^2b^x$ where a and b are positive constants, find the value of a and b .

Transformations of Functions					
101i. Apply to the graph of	If for example we had the function $y = f(x)$ then $y = f(x + a)$ is a new function because				
y = f(x) the transformations	we're modifying the inpu	we're modifying the input to the function. This will affect how we draw the graph. If you			
y = f(x) + a, y = f(ax),	were to think of this as a 'number machine' where f is a box in your number machine that				
y = f(x + a), y = a f(x) for	transforms some input into some output, then $f(x + a)$ represents adding a to the input				
linear, quadratic, sine and	before it goes through the f number machine.				
cosine functions	All function transformations can be summarised using the following table:				
		Affects which axis?	What we expect or opposite?		
	Change <u>inside</u> $f()$	x	Opposite		

v

What we expect

Change outside f()

	Examples:	
	Examples: • $f(x + 2)$: Change is inside brack left 2 units. • $f(2x)$: Halves the x values (so 'so • $3f(x)$: Triples the y values. • $f(x - 2) + 1$: Shift right 2 units a • $2f\left(\frac{x}{3}\right) - 4$: Stretch horizontally be double y values) and move down • $f(-x)$: By the table above, the x versa. This is a reflection in the y • $-f(x)$: Similarly, the y values sw reflection in the x-axis. • $-f(-x)$: By reflecting in both ax Very important point: When transforming <u>MUST start by transforming the points w</u> coordinates), as these points will be check • $f(-x) = \frac{y}{6}$ • $f(-x$	kets, so we do the opposite to x , i.e. shift the graph quashed' horizontally) and shifts up 1 unit. be a factor of 3, stretch vertically by factor of 2 (i.e. a 4 units. values switch from negative to positive and vice -axis. vitch between positive and negative, so this is a is, this is equivalent to a 180° rotation. graphs that have already been drawn for you, <u>you</u> <u>hich are exactly on the gridlines</u> (i.e. have integer ted in the mark scheme. Example : "The graph of $y = f(x)$ is shown on the grid. On the same axis, draw $y = f(x - 3)$ " By our rules above, this is a translation 3 units right. The points that are exactly on the grid points on $y = f(x)$ are (-2,5), (-1,0), (0, -2), (2, -2), (3,0), (4,5) Translating each of these points 3 right, we get: (1,5), (2,0), (3, -2), (5, -2), (6,0), (7,5) Plot each points then join them up with a curved line to match the original graph. Using this method, you're guaranteed full marks for your drawing. b. On this grid, sketch the graph of y = f(2x)
		-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 x
101ii. Determine the effect of transformations on specific points.	Some questions just give you points in iso a transformation. Just use the rules above	lation and ask you to calculate the coordinate after e.
	 "If (3, -2) is a point on y = f(x). We subtract 2 from x and y is un "If (3, -2) is a point on y = f(x). x value is halved and we add 1 to "If (3, -2) is a point on y = f(x). y value is negated and x value is), what is the transformed point on $y = f(x + 2)$?" affected, so $(1, -2)$), what is the transformed point on $y = f(2x) + 1$? by value, so $\left(\frac{3}{2}, -1\right)$), what is the transformed point on $y = -f(x)$?" unchanged, giving (3,2).
	the maximum point for the graph with equilation $y = y$	f(x) has a maximum value of $(-4,3)$. Calculate uation $y = f(-x)$.

101iii. Consider the effect of transformations on	Exactly the same rules as above apply. Recall e	arlier where we chose points exactly on the	
trigonometric graphs.	of the peaks, troughs and the intercepts with the x and y axis, and transform each.		
	Exam a) De This is b) On y = 2 This r function, so it affects the y axis and d notes, consider the points (0,1), (90, transformation these become (0,2), (and join up with the same curved sha More examples: Consider the graph of $y = sir$ y = sin(x) + 1: The graph shifts up 2 2. y = sin(2x): The x values are halved	ple: The diagram shows a sketch of $y = \cos x$. termine the coordinates of the point A. s (90,0) the same diagram, draw a sketch of 2 cos x. modification of "× 2" is outside the cos oes what we expect. As per the advice in the 0), (180, -1), (270,0), (360,1). After (90,0), (180, -2), (270,0), (360,2). Plot these pe. a(x). What transformation would you need for: 1 unit, so that the y values vary between 0 and d.	
	• $y = -\sin(x)$. Reflected in the x-axis.		
	Test Your Understanding:		
	y =	a) The diagram shows a sketch of $\cos x$. On the same diagram, draw a sketch of $y = \cos(2x)$	
	y = 0	b) The diagram shows a sketch of $\cos x$. On the same diagram, draw a sketch $=\frac{1}{\cos(\frac{1}{x})}$	
		2 2 2 2 1 7	
102. Select and apply the	We can represent some of our geometric trans	sformations on a function $y = f(x)$:	
rotation. enlargement and	Rotation 180° about the origin	y = -f(-x) (as this reflects in both the x and y axis).	
translation of functions	Enlargement by scale factor <i>a</i> about the	$y = af\left(\frac{x}{a}\right)$	
expressed algebraically	Translation by $\binom{a}{b}$	$\frac{\langle u \rangle}{y = f(x - a) + b}$	
	Reflection in the <i>y</i> -axis	y = -f(x)	
	Reflection in the <i>x</i> -axis	y = f(-x)	
	Note that you are unlikely to be asked say the	transformation for a 180° rotation about the	
	transformation and asked to work out the resu	llting graph. (Or see 103i below)	
103i. Interpret and analyse	This is the opposite of (102): given a drawn gra	ph and its drawn transformation, can you	
and write the functions	specify what the transformation was using $y = y_{A}$	= f() notation?	
algebraically	y = f(x) 4 graph G -6 -4 -2 O 2 4 6	Example: Graph <i>G</i> is a translation of $y = f(x)$, as pictured below. Write the equation of <i>G</i> . The translation is 6 units right. Thus the equation is $y = f(x - 6)$ (remembering that the change inside the function brackets is reversed)	

Proof (not explicitly in specificati	on but implied by it)	
104. Understand parity	You should know that:	
arguments (i.e. how odd and	• $odd \times odd = odd$ $odd \times even = even$	
even numbers combine) and be	• $even \times even = even$ $odd + odd = even$	
able to prove that an	• $odd + even = odd$ $even + even = even$	
expression is always odd or		
even.	Example: $m = n(n + 1)$ where m and n are integers. Explain why m is always even.	
	Do a <i>case analysis</i> , i.e. consider when <i>m</i> is odd, and when <i>m</i> is even.	
	"If n is odd, then $n + 1$ is even, and $odd \times even = even$.	
	If n is even, then $n + 1$ is odd, and so $even \times odd = even$.	
	Therefore m is always even."	
	Test Your Understanding: Prove that $n^2 + n + 1$ is odd for all integers <i>n</i> .	
105. Be able to generically	If you have to form a proof which starts something like "for any two consecutive integers",	
represent consecutive	you need to represent ANY possible consecutive integers – it is not sufficient to prove for	
numbers, even numbers,	specific examples. We represent the numbers ALGEBRAICALLY.	
consecutive even numbers, and		
so on.	• Two consecutive integers: x , $x + 1$	
	• Three consecutive integers: x , $x + 1$, $x + 2$	
	However, it often makes the maths easier if the numbers are $x - 1, x, x + 1$ as you	
	find terms often cancel.	
	• Even integers: 2x	
	• Odd integers: $2x + 1$ (this works because all odd integers are 1 more than a	
	multiple of 2)	
	• Two consecutive odd integers: $2x - 1$, $2x + 1$ (or $2x + 1, 2x + 3$)	
106. Know how to prove that an	Example : To show that $24n$ is a multiple of 8, we'd just need to rewrite it as $8(3n)$, i.e. we	
expression is a multiple of some	explicitly need to show the factor of 8 by factorising it out of our expression.	
number.	Test Your Understanding: Show that $3n + 9$ is a multiple of 3.	
107. Form proofs about related	Example: "Prove that the difference of the squares of two consecutive odd integers is a	
numbers and expressions.	multiple of 8".	
	As above, we need to show it's possible for ANY two consecutive odd integers, so we need to	
	represent them algebraically:	
	• First odd integer: $2x - 1$	
	• Second odd integer: $2x + 1$	
	• Difference of squares: $(2x + 1)^2 - (2x - 1)^2$	
	Then expanding and simplifying: $(2x + 1)(2x + 1) - (2x - 1)(2x - 1)$	
	$= 4x^{2} + 4x + 1 - (4x^{2} - 4x + 1)$	
	$= 4x^2 + 4x + 1 - 4x^2 + 4x - 1$	
	=8x	
	which is a multiple of 8.	
	Test Your Understanding:	
	a. Prove that the sum of three consecutive numbers is a multiple of 3.	
	b. Prove that the difference of the squares of two consecutive integers is the sum of	
	the two integers.	
	c. Prove that $(2n+3)^2 - (2n-3)^2$ is a multiple of 8 for all values of n	

Shape, Space and Measures

	Test Meson the devices diam.
	 a) (i) Determine the angle x. (ii) Determine the angle y, giving a reason for your
	Diagram NOT
	accurately drawn
	y ^y
	150°
	85°
	b) Calculate x. You must give reasons for your answer.
	$A \longrightarrow B$ Diagram NOT accurately drawn
	(120°)
	E 41°
111 Understand draw and	Dorrings are massured electruice from North
measure bearings. Calculate	bearings are measured <u>clockwise</u> from <u>North</u> .
hearings and solve hearings	• When measuring a bearing, ensure the of on your protractor (outer vs inner). To measure
problems.	an angle of more than 180°, measure the angle anticlockwise from North and
	subtract from 360°.
	• Be very careful about the wording "the bearing of B from A". The bearing is being
	measured at A". Similarly with "the bearing of A to B", the bearing is again being
	measured at A".
	• For questions such as "If the bearing of <i>B</i> from <i>A</i> is 70°, what is the bearing of <i>A</i>
	from B ?", then the following diagram solves this: (which need not be drawn using a
	protractor, as you'll be using laws of angles to solve)
	N N
	\wedge \wedge
	A
	Because the smaller angle at B is 110° (cointerior angles sum to 180), the bearing of
	A from B must be $360^{\circ} - 110^{\circ} = 250^{\circ}$.
	The simple way to going from "A from B" to the opposite, "B from A", is to add
	180° if the original bearing is 180° , and add subtract 180° otherwise.
	lest Your Understanding: a) The bearing of <i>B</i> from <i>A</i> is 200°. What is the bearing of <i>A</i> from <i>B</i> 2″
	a) The bearing of B from A is 500. What is the bearing of A from a lighthouse I. A whale W is 60km A
	from the lighthouse, at a bearing of 200° from the lighthouse. (i) Using a scale of
	1cm : 10km, draw a the positions of the ship, whale and lighthouse. (ii) Hence
	estimate the distance from the whale to the ship.
112. Distinguish between	Recall:
scalene, isosceles, equilateral,	 Equilateral triangle: All sides the same length (and angles all 60°)
and right-angled triangles.	 Isosceles triangle: Two of the sides (and two of the angles) are the same.
Use the size/angle properties of	 Scalene triangle: All sides and angles are different.
isosceles and equilateral	• Right-angled triangle: One angle is 90°, opposite the hypotenuse. The remaining
thangles.	two angles sum to 90°.
	we get two extra sentences we can use for justify angle calculations:
	"Base angles of an isosceles triangle are equal "
	38°
	Diagram NOT accurately drawn
	Test Your Understanding:
	Work out the size of angle <i>x</i> . You must give
	reasons for your answer.

113. Understand and use the angle properties of	The angles in a quadrilateral add to 360°. (This stems from the formula, explored later, for the sum of the interior angles of a polygon in general)		
quadrilaterals. Explain why			
angle sum is 360.	Test Your Understanding:		
114 Understand a proof that	a. The angles of a quadrilateral are $5x$, $2x - 5$, $x + 10$ and $2x + 15$. Determine x. Suppose that as per the diagram below $\angle POR = a$ and $\angle OPR = b$. Then $\angle ORP = 180 - b$.		
the exterior angle of a triangle	a - b (angles in a triangle sum to 180). Then the other angle at R is $180 - (180 - a - b) = 100$		
is equal to the sum of the	a + b (angles on a straight line add to 180). Thus the exterior angle of the triangle is the sum		
interior angles at the other two	of the interior angles at the other two vertices.		
vertices.			
	a		
	$P \xrightarrow{R} R$		
115. Give reasons for angle	Learn these verbatim to quote word for word in an exam:		
calculations.	- "Angles in a triangle sum to 180"		
	 "<u>Base</u> angles of an isosceles triangle are equal" "Angles on a statistic line over the 100" 		
	 Angles on a straight line sum to 180 "Alternate angles are equal" (don't just write "alternate angles") 		
	- "Corresponding angles are equal".		
	- "Vertically opposite angles are equal".		
	- "Cointerior angles sum to 180"		
116. Understand what is meant	Recall that an exterior angle is the angle between an extended side of the polygon and the adjacent side of the polygon. As can be seen from the diagram, the exterior and interior		
exterior angle, and that the two	angles clearly add to 180°.		
at any given point sum to 180°			
	Interior		
117. Calculate the sum of the	• The sum of the exterior angles of ANY polygon is 360°. You can remember this by		
interior angles of an n-sided	imagining yourself walking around the polygon. Each 'turning angle' is the exterior		
polygon.	angle, and you would have made a full spin by the time you get back to the start.		
Use that sum of exterior angles	• The total interior angle is: $180(n-2)$		
	(because the polygon can be divided up into $n-2$ triangles)		
	Test Your Understanding:		
	b. Four of the interior angles in a pentagon are 100°. What is the fifth interior angle?		
	c. Five of the exterior angles of a hexagon are 50°. Find the remaining exterior angle.		
118. Find the size of each	Examples:		
interior angle or the size of	• "What is each exterior angle of a regular hexagon?"		
number of sides of a regular	360		
polygon	$\frac{-6}{6} = 60$		
	• "What is each interior angle of a regular hexagon?"		
	Interior and exterior angles sum to 180, therefore: $180 - 60 - 120^{\circ}$		
	 "The interior angle of a regular polygon is 150°. How many sides does it have?" 		
	If 360 divided by the number of sides gives each exterior angle, then 360 divided by		
	the exterior angle must give the number of sides.		
	Exterior angle = $180 - 150 = 30^{\circ}$ Number of sides = $\frac{360}{120} = 120^{\circ}$		
	Number of sides = $\frac{12^{-3}}{30}$ = 12 ⁻³		
	Test Your Understanding:		
	a. A regular polygon has an exterior angle of 3°. How many sides does it have?		
	b. A regular polygon has an interior angle of 175°. How many sides does it have?		

		d. The diag regular octagon.	gram on the le Calculate the	ft shows a regular hexago angle <i>x</i> .	n and a
119. Use geometric language	Simply a case of	of memorisation.			,
appropriately and recognise	Num sides	Name	Num sides	Name	
and name pentagons,	4	Quadrilateral	8	Octagon	-
hexagons, heptagons, octagons	5	Pentagon	9	Nonagon	
and decagons	6	Hexagon	10	Decagon	
	7	Heptagon (not 'septagon'!)			
of regular and irregular polygons and combinations of polygons. Explain why some shapes tessellate when other shapes do not.	A A interin e.g. " that A At any angle Extern Numb Test Your Und as pictured on how many side	A A A A A A A A A A A A A A	whether mu when <u>the internation</u> when <u>the internation</u> when <u>the internation</u> when with internation of tessellate b o. d problems m g the number of <i>n A</i> and <i>a</i> square one square an 45° us <i>A</i> is an octan up of two tiles r polygons. We	refior angles joining at a poi on tessellates with itself as for angle 120°, whereas a ecause its interior angle of ight require to you to find of sides <i>are tessellate as pictured. F</i> and two copies of <i>A</i> . Thus in gon.	the <i>Prove</i> terior

2D and 3D Shapes	
121. Use 2-D representations of 3-D shapes. Use isometric grids. Draw nets and show how they fold to make a 3-D solid	An isometric grid is one which consists of equilateral triangles, inside of the usual squares.
122. Understand and draw front and side elevations and plans of shapes made from simple solids. Given the front and side elevations and the plan of a solid, draw a sketch of the 3-D solid	Recall that the <u>plan</u> is the view from the top, the <u>front elevation</u> is the horizontal view from the designated 'front' (which will be indicated), and the <u>side elevation</u> the horizontal view from the side. Example: Consider the following shapes sketched isometrically: Then the plan, front elevation and side elevation are as follows. Ensure you correctly count the number of squares! Test Your Understanding: A cuboid is $4cm \times 2cm \times 3cm$ as pictured. On a square grid, draw the plan, front elevation and side elevation. Front 2cm 3cm

Perimeter, Area	os mado from trianglos and roctanglos	
123. Calculate perimeters of shap	Area of triangles ¹ y have y norman disular height	┢
formulae for the area of a	Area of triangle: $\frac{1}{2} \times base \times perpendicular height$	
triangle, rectangle and a	Area of parallelogram: base × perpendicular height	
parallelogram	Area of kite: $\frac{1}{2} \times width \times height$	
125. Calculate perimeter and area	a of compound shapes made from triangles, rectangles and other shapes	T
126. Find circumferences of	• Area of circle: πr^2	
circles and areas enclosed by	• Circumference of circle: $2\pi r$	
circles	(ensure that if provided the diameter, you halve it)	
127. Appreciate how to leave	This simply means that you appreciate that answers can be left "in terms of π ", e.g. an	
answers 'in terms of π '.	answer may be given as " 5π ". This allows certain answers to be expressed exactly. We can	
120 Find the menine stars and	collect like terms where appropriate: $\pi + 6\pi \rightarrow 7\pi$	_
128. Find the perimeters and	Example: "Find the area and perimeter of this shape." $\pi \times 6^2$	
circles	It's a quarter circle so $Area = \frac{\pi X G}{4} = 9\pi \ cm^2$	
	Perimeter consists of quartile circle and two straight lines:	
	Perimeter = $6 + 6 + \frac{2 \times \pi \times 6}{2} = 12 + 3\pi \text{ cm}$	
	4	
	6cm	
	Test Your Understanding:	
	a. Find the area and perimeter of a semicircle with diameter 10cm.	
	b. Find the area and perimeter of a quarter circle of radius 10cm.	
129. Calculate the lengths of	• Area of sector: <i>fraction of circle</i> × <i>area of whole circle</i>	
arcs and the areas of sectors of	$=\frac{\theta}{2} \times \pi r^2$	
circles		
	• Length of arc: fraction of circle × circumference of whole circle	
	$=\frac{0}{260}\times 2\pi r$	
	Example:	
	105	
	Area = $\frac{1}{360} \times \pi \times 2.1^2 = 4.04 cm^2$	
	105° Perimeter = $21 + 21 + (\frac{105}{2} \times 2 \times \pi \times 21) = 8.05$ cm	
	2.1cm $1 \text{ evineter} = 2.1 + 2.1 + (360 \times 2 \times n \times 2.1) = 0.03 \text{ cm}$	
	 (Notice that perimeter includes the straight lengths) 	
	^B Test Your Understanding: Determine the area of the shaded	
	region (note: you will need the formula for the area of a non-	
	right angle triangle: $A = \frac{1}{2}ah\sin(C)$	
	$\frac{6}{P}$	
	$A \leftarrow 6 \text{ cm} \rightarrow b$	
130. Find the area of a segment	(Note: Revise this only after you've covered non-right angle triangles)	
of a circle given the radius and	To find the area of a segment: (i) Start with the area of the	
length of the chord	s sector then (ii) 'cut out' the triangle, using the formula	
	$A = \frac{1}{2}ab \sin C$ (i.e. the area of a non-right angle triangle).	
	8 cm / 8 cm Example: "Calculate the area of the shaded segment, and	
	Area of costor $= \frac{40}{3} \times \pi \times \frac{9^2}{3} = \frac{64}{3} \pi$	
	$40^{\circ} \qquad \text{Area of sector} = \frac{360}{360} \times \pi \times 8^{\circ} = \frac{9}{9}\pi$	
	Area of triangle = $\frac{1}{2} \times 8 \times 8 \times \sin 40 = 20.5692$	
	: Area of segment $=\frac{64}{9}\pi - 20.5692 = 1.77 cm^2$	
	Use cosine rule to find length of chord <i>PS</i> :	
	$PS^2 = 8^2 + 8^2 - (2 \times 8 \times 8 \times \cos 40)$	
	$PS = 5.47 cm \ to \ 3sf$	
	Test Your Understanding	
	a Find the area of segment with radius 5.2cm and angle at the circle centre of 70°	
	b. Find the length of this chord.	
		4

131. Convert between units of	Since a $1m \times 1m = 1m^2$ square is the same as a $100cm \times 100cm = 10\ 000cm^2$ square,	
area	therefore $1m^2 = 10\ 000 cm^2$. That is, whenever we <u>convert between area units</u> , we have to	
	multiply/divide by the scale factor squared.	
	Test Your Understanding:	
	a. What is $4.5m^2$ in cm^2 ?	
	b. What is $3cm^2$ in mm^2 ?	

Surface Area and Volume	
122 Know and use formulae to	For surface area, simply calculate the area of each face individually and add up
calculate the surface areas and	For volume of a prism, use Valume $-$ Area of cross section \times length
volumos of cuboids	For volume of a prism, use v orante – Area of cross section × tength
and right prisms	Example.
	a) Find the surface area of the following thangular prism.
	b) That is volume.
	Using Duthagonas, the longer length is $\sqrt{2^2 + 4^2} = 5 \text{ cm}$
	$^{+\text{cm}}$ $^{20 \text{ cm}}$ $^{20 \text{ cm}}$ $^{20 \text{ cm}}$ 1 1 1 1 2
	Surface area = $(\frac{-2}{2} \times 4 \times 3) + (\frac{-2}{2} \times 4 \times 3) + (3 \times 20) +$
	$(4 \times 20) + (5 \times 20) = 252cm^2$
	Ensure you count the number of sides to check you haven't missed any, and that
	you use the correct unit.
	1
	For volume: Cross-sectional area $=\frac{1}{2} \times 4 \times 3 = 6$
	Therefore $Volume = 6 \times 20 = 120 cm^3$
	Common errors: Forgetting to halve when finding the area of the triangle, or getting wrong
	unit.
	Test Your Understanding: Find the volume of this prism.
	→5 cm→
	7 cm 4 cm 20 cm
122 Find the volume of a	Since a cylinder is a prism with circular ends, its volume is:
cylinder and surface area of a	$V = area of cross section \times length$
cylinder	$= \pi r^2 h$
cymaci	
	For surface area (which is not given in your formula booklet), we need area of the two ends
	(two lots of πr^2) and the curved surface. For the latter, imagine curving a piece of paper so it
	forms a hollow cylinder. The area of the paper gives the curved area we want. This is a
	rectangle with length $2\pi r$ (the circumference of a circle) and height h.
	Thus:
	surface area of cylinder = $2\pi r^2 + 2\pi rh$
	Test Your Understanding:
	a. Find the surface area and volume of a cylinder with radius 6cm and length 5cm
	b. A cylindrical vase with radius 8cm and height 20cm is filled with cups of water.
	where each cup is a cylinder with radius 3cm and height 10cm. How many cups will
	fill the vase?

134. Find the surface area and	These formulae are given in the formula booklet:
volume of cones, spheres and	• Volume of cohere: $\frac{4}{3}\pi r^3$
hemispheres.	$\sqrt{100}$
	• Surface area of sphere: $4\pi r^2$
	• Curved surface area of cone (i.e. excluding the bottom): πrl , where l is the slant
	neight. $1 - 2 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +$
	• Volume of cone: $-\frac{\pi r^2 h}{3}$ (where h is the perpendicular height of the cone)
	Freezelas
	Examples:
	• "A solid cone has radius 3cm and height 4cm. Find its surface
	The area consists of the curved face and the flat bottom We $\frac{1}{10000000000000000000000000000000000$
	need <i>l</i> the slant height. We can see from the diagram we can
	use Pythagoras.
	$l = \sqrt{3^2 + 4^2} = 5$
	Surface area = $(\pi \times 3 \times 5) + (\pi \times 3^2)$
	$= 24\pi$
	• "A solid hemisphere has radius 5cm. Determine its volume and surface area."
	The volume is simply half the volume of a sphere:
	$\frac{1}{2} \times \left(\frac{4}{2}\pi \times 5^3\right) = \frac{250}{2}\pi = 261.799 cm^3$
	$2 \setminus 3 / 3$ The surface area is half the surface area of a sphere but we have to include the flat
	face as well (a circle) given that the hemisphere is solid:
	Area of surface surface $=\frac{1}{2} \times (4\pi \times 5^2) = 50\pi$
	Area of flat top = $\pi \times 5^2 = 25\pi$
	Total surface area = 75π
	Test Your Understanding:
	 Determine the total surface area of a solid hemisphere with radius 10m. Determine the values and surface area of a construct radius form and slott being the solution.
	D. Determine the volume and surface area of a cone with radius 5cm and sight neight 13cm (bint: you will need to work out the perpendicular height)
135 Find the volume of a	$\frac{1}{2} \times have \times new endication height.$
pyramid.	Volume of a pyramic = $\frac{1}{3} \times base \times perpenatorial field fit$
r /	Example: Find the volume of a square-based pyramid with base of side 5cm and height of
	1
	$Volume = \frac{1}{3} \times 5^2 \times 12 = 100 cm^3$
	More difficult problems might be where the slant height of the pyramid is given rather than
	the height perpendicular to the base. We have to use 3D Pythagoras.
	Example: "The square based pyramid has sides all of length 10cm. Determine its volume."
	Suppose the centre of the base was 0. We could use triangle AOD to find the height of the pyramid OA . However, we don't know the length OD . But OD is half of BD , which by
	pyramid OA. However, we don't know the length OD. But OD is han of DD, which by Dythagoras is $\sqrt{10^2 \pm 10^2} = 10\sqrt{2}$. Then using Dythagoras on
	triangle AOD .
	$AO^2 + (5\sqrt{2})^2 - 10^2$
	AO + (5V2) = 10
	$AU = \sqrt{100 - 50} = \sqrt{50}$
	1
	$Volume = \frac{1}{3} \times 10^2 \times \sqrt{50} = 235.7 cm^3$
	Test Your Understanding:
	a. Determine the volume of a pyramid with a rectangular base of width 6cm and
	length 8cm, and a slant height of 13cm (your answer should turn out to be a whole
126) Solve a reason of anything	number).
1301. Solve a range of problems	Example: The volume of a cylinder is $100cm^{\circ}$ and its length $5cm$. Determine its radius."
volume eggiven the volume	
and length of a cylinder find the	$100 = \pi \times r^2 \times 5 \qquad r^2 = \frac{100}{5\pi}$
radius	r = 2.52cm
	Test Your Understanding: A cone has a volume of $100 cm^3$ and a height of 10cm. Determine
	its radius.

136ii. Solve problems in which the surface area or volume of two shapes is equated.	Example: "Pictured are a solid cone and a solid hemisphere. The surface area of the cone is equal to the surface area of the hemisphere. Express h in terms of x." We'll need the slant height l first of the cone as it is required in the surface area formula. $l = \sqrt{x^2 + h^2}$ $SA_{cone} = \pi x \sqrt{x^2 + h^2} + \pi x^2$ $SA_{hemisphere} = \left(\frac{1}{2} \times 4\pi x^2\right) + \pi x^2$
	Equating:
	$\pi x \sqrt{x^2 + h^2} + \pi x^2 = 2\pi x^2 + \pi x^2$ $\pi x \sqrt{x^2 + h^2} = 2\pi x^2$
	$\sqrt{x^2 + h^2} = 2x$ $x^2 + h^2 = 4x^2$ $h^2 = 3x^2$
	$h = \sqrt{3}x$
	Test Your Understanding:
	a. A solid hemisphere with radius x has the same surface area as a cylinder with radius
	x and height h. Determine the height of the cylinder in terms of x.
	b. A solid sphere of radius x is merced down to form a cone of radius x and height n . Determine the height of the cone in terms of x.
137. Convert between volume	Since a $1m \times 1m \times 1m = 1m^3$ cube is the same as a $100cm \times 100cm \times 100cm =$
measures, including cubic	$1000\ 000 cm^3$ cube, therefore $1m^3 = 1\ 000\ 000 cm^3$. That is, whenever we <u>convert</u>
centimetres and cubic metres	between volume units, we have to multiply/divide by the scale factor cubed!
	Test Your Understanding:
	a. What is $300\ 000\ cm^3$ in m^3 ?
	b. What is $4.2m^3$ in cm^3 ?
	c. What is $20cm^3$ in mm^3 ?
138. Solve problems involving	A frustum is a cone with the top chopped off.
more complex shapes and	Evenue "Mark out the values of this fructure"
circles and frustums of cones	2 Note that if the 'chopped off' cone is a quarter of the size of the overall
	cone, it must have a guarter the radius, i.e. 3. Thus:
	$V = (\frac{1}{2}\pi \times 12^2 \times 8) - (\frac{1}{2}\pi \times 3^2 \times 2) = 384\pi - 6\pi = 378\pi$
	Test Your Understanding: Determine the volume of this
	frustum.
	9

Constructions and Loci	
139. Construct triangles including an equilateral triangle	 To construct a triangles with sides of different lengths, say 4cm, 5cm and 6cm: Start by drawing a straight line with one of the lengths, say 6cm. Set your compass to one of the other two lengths, say 4cm, and draw an arc with the compass at one of the ends of your straight line. Now putting the point of the compass at the other end of the straight line, draw an arc of the last length (5cm), ensuring your arc crosses the one you drew earlier. Then connect your original straight line to this point of intersection. To construct an equilateral triangle, start with a straight line of any length. Simply set your compass to be the length of your line, draw an arc at each end as above, and join your line to the point of intersection. Note that you <u>MUST show your construction lines</u>, or you will likely receive <u>NO MARKS</u>. Test Your Understanding: Construct a triangle with lengths 10cm, 7cm and 5cm.

	h Construct an equilateral triangle of length 8cm
140 the density of frequently a	D. Construct all equilateral triangle of length 8cm.
140. Understand, from the	Inis will be covered later in "congruent triangle proots", but observe in the diagram below
experience of constructing	that we have two triangles which are the same in terms of 'SSA' (side-side-angle), but are
them, that triangles satisfying	clearly not congruent:
SSS, SAS, ASA and RHS are	
unique but SSA triangles are	
not	\times \times \star
not	
141. Construct the	Recall that the perpendicular bisector of two points is the line consisting of all points which
perpendicular bisector of a	are equidistant (i.e. the same distance) from these two points
given line	Stone are (i) but your compass tip on one and of the line and set the
given line	Steps are. (i) Fut your compass to port one end of the line and set the
	distance slightly over halfway, but not too close to halfway. (ii) Draw
	an arc, and then putting your compass on the other end of the line,
	draw the parts of a new arc necessary to overlap the first arc. (iii)
	Draw a line connecting the two points of intersection.
	Y S .
	Important note: You will lose marks if either (a) your perpendicular
	iniportant note, rou win lose marks i efficie (a) you perpendicular
	bisector isn't long enough or (b) your two arcs don't overlap sufficiently – for example if they
	only merely 'touched' rather than crossed at two points, the straight line will then be difficult
	to draw.
142. Construct the	You have a point not on the line, and want to draw a line that goes through this point that is
perpendicular from a point to a	nernendicular to a line
	(i) Division and the point and using a suitable distance, work two little one that
line	(i) Put your compass at the point, and using a suitable distance, mark two little arcs that
	intersect with the line. (ii) The perpendicular bisector of these two points will be the desired
	line. Thus, set your compass slightly over halfway the distance between these two points of
	intersection, and two intersecting arcs. Join this point of intersection with the original point.
	*
	Test Your Understanding: Draw a line and a point act on the line. Construct the
	lest your Understanding: Draw a line and a point not on the line. Construct the
	perpendicular from this point to the line.
143. Construct the	This time, the point is on the line. Simplify use any distance with your compass to draw two
perpendicular from a point on a	little arcs either side, then find the perpendicular bisector of these two points. If the
line	resulting line doesn't go through the original point, you've gone wrong!
	resulting line doesn't go through the original point, you to go to hong.
	\vee
	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular
	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular.
144. Construct the bisector of a	• •
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST loave your construction lines
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines.
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines.
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines.
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines.
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines.
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines.
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines.
144. Construct the bisector of a given angle	Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines.
144. Construct the bisector of a given angle 145. Construct angles of 60°.	 Test Your Understanding: Draw a line and a point on the line. Construct the perpendicular. The bisector of an angle is a line which divides the angle exactly into two. (i) Put the tip of the compass at the point where the lines join, and setting your distance on the compass suitably far, draw two little arcs on the lines (the same distance), then (ii) find the perpendicular bisector of these two new points in the usual way. If this line doesn't go through the point of intersection of the original two lines, you've gone wrong. As always, you MUST leave your construction lines. To construct 60°, use the same method as constructing an equilateral triangle.

The common student mistake is to draw the angle bisector of AB and AD as the line connecting the two corners of the rectangle, AC. But this is not the angle bisector, which needs to be at 45°! Ensure constructions lines are used for the angle bisector, and don't forget to indicate the final region.

Pythagoras and Trigonometry 149. Be able to decide which of You have Pythagoras, trigonometry or You want Use sine/cosine rules to use based Right-angled triangle with Other side Pythagoras on available information. two sides known 5 4 Right-angled triangle with SOH/CAH/TOA An angle two sides known 4 Right-angled triangle with SOH/CAH/TOA Another side side and angle known 5 ? 30° Non-right-angled triangle An angle Cosine rule with all three sides known 8 ? a Non-right-angled triangle Remaining side Cosine rule with two sides known and a 8 missing side opposite a 40° known angle 9 Non-right-angled triangle Remaining side Sine rule twice (we'll get to with two sides known and a this) 8 missing side not opposite 40° the known angle ? 6 ...although either the angle Sine rule Non-right-angled triangle or the side in that second with an angle and opposite side known, and another pair is missing. side-angle pair... 8 70° 6

150. Understand, recall and use Pythagoras' theorem in 2-D. Give an answer in the use of Pythagoras' Theorem as √13	 Ensure you first identify the hypotenuse – this is the term on its own on one side of the equation in Pythagoras. You can ONLY use Pythagoras if your triangle is right-angled. The 'quick' way to use Pythagoras is to see if the missing side is the hypotenuse or one of the shorter sides. We want hypotenuse h: Do square root of sum of squares. h = √a² + b² We want shorter side a: Do square root of difference of squares: a = √h² - b² If you're asked to give your answer in 'exact' form, leave it as a square root, as surds cannot be represented 'exactly' in decimal form. Check your answer looks sensible. It can help to leave a side in surd form if you will need to use it in a subsequent calculation
	Example: Determine x. Central length: $y = \sqrt{6^2 - 3^2} = \sqrt{27}$ Then: $x = \sqrt{27 + 4^2} = \sqrt{43}$ Notice that by leaving the central length as $\sqrt{27}$, when we used it again in the left triangle, squaring it conveniently gave us 27.
	A 5 6 5 B b. Find the height of this isosceles B triangle.
	1 1 1 1 1 1 1 1 1 1
151. Use Pythagoras to solve 3D problems, including the diagonal of a cuboid and the height of a pyramid.	We encountered the use of Pythagoras to find the height of a squared-based pyramid earlier in Volumes of Solids. 4 Example: "Find the internal diagonal of a cuboid with sides 4cm, 5cm and 6cm." The key with most 3D problems is to form a 2D triangle inside the shape. The bottom length of this triangle, using Pythagoras on the base of the cuboid, is $\sqrt{6^2 + 5^2} = \sqrt{61}$. Then using this length length on the blue triangle: $diagonal = \sqrt{61 + 4^2} = \sqrt{77} = 8.77 cm$
	 Test Your Understanding: a. What is the length of the internal diagonal of a cube of unit length? b. What is the length of the internal diagonal of a cuboid with side lengths 3cm, 4cm, 12cm.
152. Recall and use the trigonometric ratios to solve 2- D and 3-D problems	Remember that trigonometry only applies to right-angled triangles. Ensure your calculator is set to 'degrees' mode (a 'D' should be at the top of your calculator). 4 5 30° 2 30° x y
	Examples: Determine θ , x , y . First example: Opposite and hypotenuse are involved, so use sin (remember "soh cah toa"). $\sin \theta = \frac{4}{5}$
	$\theta = \sin^{-1}\left(\frac{4}{5}\right) = 53.1^{\circ}$ Remember that we're trying to make θ the subject and \sin^{-1} (undoes' the sin
	I REMEMBEL MALWE TE U YING TO MAKE O THE SUBJECT, AND SILL AND UNDUES THE SILL.

Non Dight Angled Triangles	
155. Find the unknown lengths, or angles, in non right-angle	As previously explained, there are a number of cases to consider. Ensure your answer looks sensible based on the diagram. With one exception, the way to tell between cosine and sine
triangles using the sine and cosine rules	rule is see how many angles are involved (whether known or needs to be determined). If one angle only, use cosine rule, otherwise use sine rule.
	1. <u>Two pairs of sides and opposite angles, where in one pair the side is missing. Use the version of the sine rule where the unknown side appears at the top: $\frac{a}{\sin A} = \frac{b}{\sin B}$</u>
	8 8 8 8 10° 10° 10° 10° 10° 10° 10° 10°
	2. <u>Two pairs of sides and opposite angles, where in one pair the angle is missing. Use the version of the sine rule where the unknown angle appears at the top. $\frac{\sin A}{a} = \frac{\sin B}{b}$</u>
	Example: Find θ in the diagram on the right. $\frac{\sin \theta}{6} = \frac{\sin 70}{8}$ $\sin \theta = \frac{6 \sin 70}{2}$ 6 70°
	$\theta = \sin^{-1}\left(\frac{6\sin 70}{8}\right) = 44.8^{\circ}$
	3. Two sides given and angle given, and unknown side opposite given angle. Use cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$. Since the only angle in the formula is A , label the angle A and its opposite side a , and so forth.
	Example: Determine x in the diagram on the right. $x^2 = 8^2 + 9^2 - (2 \times 8 \times 9 \times \cos 40)$ $= 34.6896 \dots$ x y y x y
	x = 5.89 Common student error: Because of BIDMAS, the cosine rule should be interpreted as $a^2 = b^2 + c^2 - (2bc \cos A)$ However, some incorrectly evaluate $(b^2 + c^2 - 2bc) \cos A$ instead, calculating $b^2 + c^2 - 2bc$ before multiplying by $\cos A$. The brackets in the example above are to avoid this confusion.
	 4. <u>Three sides given, and an unknown angle.</u> Again, cosine rule is used. This time, more rearrangement is required. 8 mine θ.
	b b c b c b c c c c c c c c

$\frac{BC}{\sin 67} = \frac{8.7}{\sin 64}$ BC = 8.91015
Then: $Area = \frac{1}{2} \times 8.7 \times 8.91015 \dots \times \sin 49 = 29.25 cm^2$
Test Your Understanding: Determine the area of each of these triangles.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Compound Measures	
157. Convert between units of	You should know all of the obvious: 1m = 100cm, 1cm = 10mm, 1km = 1000m, 1l = 1000ml,
measure in the same system.	1kg = 1000g, 1 ton = 1000kg.
(NB: Conversion between imperial	A less obvious conversion is $1I = 1000 cm^3$ (i.e. 1 litre is equivalent to a cube with sides
units will be given. metric	10cm).
equivalents should be known	
158. Know rough metric	These are (which you unfortunately MUST MEMORISE):
equivalents of pounds, feet,	• 1 kg \approx 2.2 pounds (\approx means 'approximately equal to')
miles, pints and gallons: Metric	• 1 litre \approx 1.75 pints
/Imperial	• 4.5 litres \approx 1 gallon
Convert between imperial and	• 8 km \approx 5 miles
metric measures	• $30 \text{cm} \approx 1 \text{ foot}$
	Example: Convert 4.59km to miles.
	Just identify the scale factor to get from km to miles, ensuring you apply a 'common sense'
	check in terms of dividing vs multiplying, to see whether you should be making the value
	larger or smaller
	8
	$\frac{1}{5} = 1.6$
	$4.59 \ km \div 1.6 = 2.87 \ miles \ to \ 3sf$
	Check Your Understanding:
	a. Convert 6.7 litres to gallons.
	b. Convert 6.7 litres to pints.
159. Use the relationship	Use your speed-distance-time triangle. To convert time in hours from decimal form to hours
between distance, speed and	and minutes, just multiply the decimal part by 60, e.g. 6.2 hours: $0.2 \times 60 = 12$ minutes.
time to solve problems.	therefore 6.2 hours = 6 hours 12 minutes. Similarly, when time is given in minutes, you can
Calculate speed when, eg	divide by 60.
fractions of an hour must be	Example: "A car journey of 180km takes 4 hours and 20 minutes. Determine the average
entered as fractions or as	speed."
decimals	1
	$t = 4\frac{1}{3}$ $d = 180$
	180
	$s = \frac{1}{\sqrt{1}} = 41.54 \text{ km/h}$
	$4\overline{3}$
	Test Your Understanding:
	a. A dolphin swims 50km at a speed of 6.3km/h. Determine the time it takes the
	dolphin in hours and minutes.
160. Convert between metric	The key here is to (a) convert one unit at a time and (b) always check whether you should be
units of speed eg km/h to m/s	making the value smaller or larger (using common sense!)
	Example: Convert 8km/h to m/s.
	$8 \text{km/h} = 8000 \text{m/h} = \frac{8000}{2.22} \text{m/s}$
	3600 '. We could tell we needed to divide by 3600 (rather than multiply) because you travel less
	metres in a second than you do in an hour
	Test Your Understanding: Convert 6.7 km/h to m/s.
161. Construct and interpret	When the line is horizontal, the object is not moving
	when the life is not zontal, the object is not moving.

distance time graphs	• The steeper the line, the greater the speed. The speed is given by the gradient.
162. Know that density is found by mass ÷ volume. Use the relationship between density, mass and volume to solve problems, eg find the mass of an object with a given volume and density. Convert between metric units of density eg kg/m ³ to g/cm ³	You can use the 'density-mass-volume' triangle in the same way you can use a 'speed- distance-time' triangle. Example : "A gold bar is in a cuboid shape of 15cm by 5cm by 6cm. Its mass is 10kg. Calculate the density of gold." $density = \frac{10}{15 \times 5 \times 6} = 0.0222kg/cm^3 = 22.2g/cm^3$ Note that we can change the units (see 'Convert between metric of units of speed' above) Test Your Understanding: a. A block of zinc has density 6g/cm ³ . If its volume is $2m^3$ what is its mass? b. A slab of Unobtanium is in the shape of a triangular prism, with length 30cm and whose cross section has base 5cm and height 4cm. If its mass is 2500g, what is its density?
163. Calculate the upper and lower bounds of calculations, particularly when working with measurements. Find the upper and lower bounds of calculations involving perimeter, areas and volumes of 2-D and 3-D shapes. Give the final answer to an appropriate degree of accuracy following an analysis of the upper and lower bounds of a calculation	To find the lower or upper bound of a value, <u>subtract and add half the accuracy</u> . e.g. "3.6cm correct to 1dp" gives lower bound 3.55cm and upper bound 3.65cm (recall that while technically the highest possible value which rounds down is 3.649, we don't write this). To find the lower bound and upper bound of a quantity which is the result of a multiplication, just use common sense. If $a = b \times c$, then to get the upper bound of a , we use the upper bound of b and the upper bound of c to make the value of a as large as possible. Similarly if $a = \frac{b}{c}$, to get the upper bound we divide the upper bound of b by the lower bound of c (since we want to divide by a small a value as possible to end up with a value as high as possible). To give your answer to "an appropriate degree of accuracy", give as many decimal places as possible where the upper bound and lower bound would be the same to this degree of accuracy. Example: " $m = \frac{\sqrt{5}}{c}$ $s = 3.47$ correct to 2 decimal places. $t = 8.132$ correct to 3 decimal places. By considering bounds, work out the value of m to a suitable degree of accuracy. You must show all your working and give a reason for your final answer." $s_{lower} = 3.455$ $s_{upper} = 3.475$ $t_{lower} = \frac{\sqrt{5upper}}{8.1315} = 0.2292486 \dots$ $m_{lower} = \frac{\sqrt{5upper}}{t_{upper}} = \frac{\sqrt{3.475}}{8.1325} = 0.2288903 \dots$ The answer is 0.229, 'as both the lower and upper bound of m are this value to 3 decimal places'. Use that last sentence word-for-word to guarantee the final mark! The point is that both bounds are still the same to 3dp, but not once you specify to 4dp, and thus it would be inappropriate to give this level of accuracy. A common student error is to forget other operations in the equation, in this case the square root. Another common error is to take the value of m just to be the midpoint of the lower and upper bound. Test Your Understanding: a. $x = y \times z$. y = 4.5 correct to 1 decimal place. $z = 3.68$ correct to 2 decimal places. Work
	r = 2.87 correct to 2 decimal places. $s = 3.584$ correct to 3 decimal places. Work out the value of q to a suitable degree of accuracy, giving a reason for your answer.

Transformations	
Overview: Be able to both	How marks are allocated for describing transformations:
describe transformations and	a. "A translation (1 mark) by the vector (1 mark)"
carry out transformations	b. "A rotation (1 mark) by° clockwise/anticlockwise (1 mark) about the point
involving translation, rotation,	(1 mark)"
reflection and enlargement.	c. "A reflection (1 mark) in the line (1 mark)"
	a. An enlargement (1 mark) by the scale factor (1 mark) about the point (1
	ilidik)
	For practice questions, see my "GCSE Revision: Transformations" questions.
164. Understand translation as	"Describe the transformation from P to Q"
a combination of a horizontal	By choosing the top-left corner and counting squares to
and vertical shift including signs	the top-left corner of Q, we can see x increases by 6 and
for directions. Translate a given	y decreases by 1. Thus:
shape by the vector	"A translation by the vector $\begin{pmatrix} 6 \\ 1 \end{pmatrix}$ "
	-6 -5 -4 -3 -2 -1 0 -1 2 -3 -4 -5 -6 x
165. Understand rotation as a	"Describe the transformation from P to Q"
(anti clockwise) turn about a	Fortunately, almost always in exams, the centre of
given origin. Describe and	rotation is the origin, allowing you to say "about the
transform 2-D shapes using	origin" or "about the point (0,0)". Always check this
single rotations. Find the centre	as the centre first.
of rotation	If it isn't, guess a sensible centre point and check it
	as follows. (i) choose any point on the image (ii) draw lines
	from these points to your centre [e.g. see diagram]
	(iii) see if this angle looks like 90°. You can count
	squares from each point to the centre. Notice from P to the centre we want 1 square across
	and 4 squares down. From the centre to Q, we went 4 across and 1 up. The across
	movements and up/down movements swap for 90° rotations.
	If the rotation was 180°, choose a point on the original shape and equivalent point on the
	resulting shape. Draw a line between them: the centre is then the midpoint.
	The same approach can be used to rotate a given shape. For each vertex on the original
	shape, draw a line to the centre. Using 'common sense' to have a rough sense of where the
	point will end up, count squares from the point to the centre. If a 90° rotation, the counts
	swap. If a 180° rotation, just go this same number of squares past the centre. Repeat.
166. Reflect shapes in a given	To reflect a shape in a line, for each point, draw a line directly towards the line of reflection,
mirror line; parallel to the	counting squares (whether horizontal, diagonal, or diagonally). Then continue this number of
coordinate axes and then y = x	squares beyond the line of reflection and leave a point. Repeat.
Or y = -x.	To identify cools factor, just compare two lengths on your original and onlarged shape
scale factor from a given point.	• To identify scale factor, just compare two lengths on your original and enlarged shape. E σ if the width was 2 and is now 6, the scale factor is 3. If the shape has 'flipped' the
using positive and negative	scale factor will be negative.
scale factors greater and less	 To identify the centre of enlargement, pick a point on the original shape and the
than one. Find the centre of	equivalent point on the large shape. Join up with a line, extending the line out. Repeat
enlargement	with another pair of points. The centre of enlargement is the intersection of the two
	lines.
	• To carry out an enlargement, for each point on the original shape, count the squares
	across and up/down from the centre of enlargement. Times each of these values by the
	scale factor. Then go this number of squares across and up/down from the centre again.
	If the value if negative, go in the opposite direction.

Example: "Enlarge by scale factor $-\frac{1}{2}$, centre (0, -2)"

Using top-left corner (2,4): Squares across from centre: 2, Squares up: 6. Multiplying each by $-\frac{1}{2}$, we get 1 square left and 3 squares down (from the centre). Therefore plot the point (-1, -5). Repeating with the other points, we get (-1, -4) and (-3, -4.5). Join up your new points.

168. Understand that shapes produced by translation, rotation and reflection are congruent to the image. Use congruence to show that translations, rotations and reflections preserve length and angle, so that any figure is congruent to its image under any of these transformations. Recognise that enlargements preserve angle but not length, linking to similarity

Similarity and Congruence

169. Understand and use SSS, SAS, ASA and RHS conditions to prove the congruence of triangles using formal arguments, and to verify standard ruler and a pair of compasses constructions. Formal geometric proof of similarity of two given triangles

The first means for example that two triangles are congruent if all their sides are the same. In the last one "R" stands for Right Angle, "H" for hypotenuse and "S" for 'another side', i.e. both triangles must have a right angle, hypotenuse of same length, and another side of the same length.

Note that the order of the letters matters. 'SAS' means that the angle is in between the two sides (i.e. the included angle). As seen earlier 'ASS' meanwhile would not necessarily lead to congruent triangles.

'AAS' however is equivalent to 'ASA' because if two angles are the same, the third angle would be the same, so in ASA, the side need not be in between the two angles.

To do congruence proofs, it may help to structure your proof in the following way:

- Put four bullet points. For the first three, label to the left of each bullet point each letter of the proof you want to use (e.g. 'R', 'H' and 'S') and leave the final bullet point for your conclusion.
- For each of the first three bullet points, justify (whether equating angles, sides, mentioning midpoints, laws of angles or using circle theorems) why your sides or angles are the same.
- In the conclusion, write: "Therefore, triangles [ABC] and [DEF] are congruent by [SAS]" (obviously replacing [...] as appropriate)

Example: "ABCD is a square and CDF and BCE are equilateral triangles. Prove that triangle BCF is congruent to triangle DCE."

SAS seems like the best proof to use as we can work out the angles, and know from the fact that we have regular polygons that all sides are the same.

- (s) FC = CD as CDF is equilateral.
- (A) $\angle DCE = \angle FCB = 150^{\circ}$
- (s) CB = CE as BCE is equilateral.
- Therefore, BCF is congruent to DCE by SAS.

Once we've proven that two triangles are congruent, then any sides or angles that we hadn't previously shown were equal as part of the proof, we have now proven are equal as well. This is useful for follow up questions, where we can use " $\dots = \dots$ as \dots and \dots are congruent".

Example: (Continuing) "G is the point such that BEFG is a parallelogram. Prove that ED = EG."

area and volume of shapes and	
solids. Know the relationships	Area: \rightarrow
between linear, area and	$Volume: \rightarrow$
mathematically similar shapes and solids	Example : "Shape A is enlarged to form shape B. The surface area of shape A is $30cm^2$ and the surface area of B is $270cm^2$. If the volume of shape A is $80cm^3$, what is the volume of shape B?" Fill in initial information, working out the scale factor for area: Length: \rightarrow Area: $30 \xrightarrow{\times 9} 270$ Volume: $80 \rightarrow$ Since the scale factor of length is squared to get area, the scale factor of length is $\sqrt{9} = 3$. This allows us to work out the scale factor of volume, $3^3 = 27$. This in turn allows us to work out the new volume.
	Length: ×3 → Area: 30 → 270 Volume: 80 → 2160cm ³ Final note: If the question talks about mass instead of volume, note that mass can be treated as volume since it's proportional to it (for a fixed density). Test Your Understanding: a. Two cylinders A and B haves volumes 10cm ³ and 640cm ³ . If the surface area of solid A is 20cm ² , what is the surface area of solid B? b. Cylinder A and cylinder B are mathematically similar. The length of cylinder A is 4 cm and the length of cylinder B is 6 cm. The volume of cylinder A is 80cm ³ . Calculate the volume of cylinder B.
Circle Theorem	
173. Recall the definition of a	

is twice the angle at the circumference.

- The angle in a semicircle is 90.
- Opposite angles of a cyclic quadrilateral are 180.
- Angles in same segment are equal.
- Alternate Segment Theorem.

Vectors							
175. Understand that 2 <i>a</i> is	Two vectors are <u>parallel</u> if <u>one is a multiple of the other</u> (e.g. if you have two vectors						
parallel to a and twice its	$\overrightarrow{AB} = \frac{3}{2}(a+b)$ and $\overrightarrow{CD} = \frac{1}{2}(a+b)$, you could say " \overrightarrow{AB} is a multiple of \overrightarrow{CD} ").						
length, and understand that a is							
parallel to $-a$ and in the							
opposite direction							
176. Use and interpret vectors	This just means that just as a coordinate represents a 'position' in space, a vector represents						
as displacements in the plane	a 'movement' (or displacement).						
(with an associated direction)							
177. Use standard vector	You should use this notation in vector proofs (see examples below): it's important so that						
notation to combine vectors by	you can show which vectors you combined together.						
addition, e.g. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$							
and $a + b = c$							
178 Represents vectors and	· · · · · · · · · · · · · · · · · · ·						
combination of vectors on a	Vectors are written like $\begin{pmatrix} -3 \end{pmatrix}$ whereas coordinates are						
plane.	written like $(2, -3)$. In this diagram $a = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $b = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$.						
P.0							
	$c = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$						
	Test Your Understanding: Find the remaining vectors.						
	N S S S S S S S S S S S S S S S S S S S						
	e						
	c						
179. Solve geometrical	This includes:						
problems involving vectors.	- Being able to use ratios to find a fraction of some vector E g If $\overrightarrow{OA} = a$ and P is a						
	point on the line such that $OP_1 PA = 2:4$ then $\overrightarrow{OP} = \frac{3}{2}a$						
	point on the line such that $OP:PA = 5:4$, then $OP = \frac{-a}{7}$						
	- Being able to prove three points A, B, C form a straight line (by showing that AB and						
	\overrightarrow{BC} are parallel (and share a common point <i>B</i>).						
	Note that vectors questions at GCSE tend to have a very set structure:						
	• Part (a) gets you to find some vector in the diagram. This is usually easy to						
	determine.						
	• A harder follow up question. You can almost always use your answer to part (a), so						
	your 'route' through the diagram should include this vector.						
	Examples:						

P is the point on *AB* such that AP: PB = 2:3. a) Find \overrightarrow{AB} = -2a + 3b (as we have to go backward along the 2a vector) b) Prove that \overrightarrow{OP} is parallel to a + b $\overrightarrow{OP} = \overrightarrow{OA} + \frac{2}{5}\overrightarrow{AB}$ $= 2a + \frac{2}{5}(-2a + 3b)$ = $2a - \frac{4}{5}a + \frac{6}{5}b$ = $\frac{6}{5}a + \frac{6}{5}b$ = $\frac{6}{5}(a + b)$ $=\frac{6}{5}(a+b)$ Note: The factorisation at the end is important because it shows you expression is a multiple of a + b. С a) Find the vector \overrightarrow{PB} . R $\overrightarrow{PB} = -3b + a$ b) *B* is the midpoint of *AC* and *M* is the midpoint of PB. Prove that NMC is a straight line. *NMC* is a straight line if \overrightarrow{NM} and \overrightarrow{MC} are parallel. Recall that to show two vectors are parallel, we need to show one is 'a multiple' of the other. $\overrightarrow{NM} = \overrightarrow{NP} + \frac{1}{2}\overrightarrow{PB}$ (notice that we're using our answer to part (a)) $\overrightarrow{NM} = b + \frac{1}{2}(-3b + a)$ $= b - \frac{3}{2}b + \frac{1}{2}a$ $=\frac{1}{2}a - \frac{1}{2}b = \frac{1}{2}(a - b)$ $\overrightarrow{MC} = \frac{1}{2}\overrightarrow{PB} + \overrightarrow{BC}$ $=\frac{1}{2}(-3b+a)+a$ $=-\frac{3}{2}b+\frac{1}{2}a+a$ $=\frac{3}{2}a - \frac{3}{2}b = \frac{3}{2}(a - b)$ " \overrightarrow{NM} is parallel to \overrightarrow{MC} (and share a common point *M*, therefore *NMC* is a parallel line". Notice that by factorising out the fraction when determining each vector, it was easier to show that one vector is a multiple of the other **Test Your Understanding:** a. PQRS is a parallelogram. N is a point on SQ such that SN: NQ = 3:2. (i) Write down, in terms of *a* and *b*, an expression for \overrightarrow{SQ} . (ii) Express \overrightarrow{NR} in terms of \boldsymbol{a} and \boldsymbol{b} . 0 (More questions can be found in my Vectors past paper questions compilation)

Data Handling & Probability

To practice these questions, refer to my compiled past paper Data Handling questions.

Collecting Data 180. Discuss how data relates Particularly common criticisms of questionnaire questions (it's worth memorising the to a problem, identify possible wording of these): sources of bias and plan to "Overlapping regions" (e.g. one response box is 1-3 times and another 3-5 times) minimise it. Consider fairness "Non-exhaustive response boxes" (e.g. there's no option for '0 times') Understand how different "No timescale" (is it per week or per month?) sample sizes may affect the "Response labels too vague" (what does 'occasionally' mean?) • reliability of conclusions drawn Common problems with bias and sampling: Understand sample and "Question is biased" (i.e. is pressuring respondents to give a particular answer) population. "Sample size too small" • Design and criticise questions • "Only people/things in a particular area were asked" (i.e. sample was not random) for a questionnaire When asked to rewrite a questionnaire question: You must have a timeframe. You must have "at least 3 non-overlapping response boxes". The response boxes should also cover all possibilities (e.g. '0 times') 181. Select and justify a **Random sampling:** sampling scheme and a method Definition: "Random sampling is when each thing in the population has an equal to investigate a population, chance of being chosen" - the 'equal chance' is the important bit here. including random "How would you achieve a random sample?" - Any method which would ensure and stratified sampling. Use each thing is equally likely to be chosen. Best way: "Assign each person a number, stratified sampling. then use a random number generator to select a person." Stratified sampling: Definition: "The population is divided into groups (e.g. by ethnicity or year group) and the same proportion are randomly sampled from each group." Example Question: In a school of 100 people, 40 people are in Class X, 50 people in class Y and 10 people in Class Z. I wish to obtain a sample of 20 people. How many do I sample from each class?" Proportion of people sampled $=\frac{20}{100}=\frac{1}{5}$ Class X: $\frac{1}{5} \times 40 = 8$. Class Y: $\frac{1}{5} \times 50 = 10$. Class Z: $\frac{1}{5} \times 10 = 2$ Test Your Understanding: In a school there are 200 students, and students can study one of Geography, History and Maths. Of the boys, 45 study Geography, 10 study History and 25 study Maths. Of the girls, 70 study Geography, 15 study History and 35 study Maths. I want a stratified sample of 50 people stratified by gender and subject. How many boys studying Geography do I sample? For a tally sheet, the three marks will be for three column headings in your table: 182. Design and use datacollection sheets for grouped, 1. The values you're taking a tally of, e.g. football teams, favourite colour. discrete and continuous data. 2. "Tally" "Frequency" (i.e. the data collector would add the tallies up after collection) Sort, classify and tabulate data. 3. 183. Group discrete and This means you turn for example this data: Height: 47cm, 55cm, 59cm, 63cm, 68cm, 69cm, 69cm, 73cm, 74cm continuous data into class intervals of equal width. Into a grouped frequency table like this: Height (h) in cm Frequency $40 \le h < 50$ 1 $50 \le h < 60$ 2 $60 \leq h < 70$ 4 $70 \le h < 80$ 1 Filling out a two-way table is simply common sense. These are often used to derive 184. Design and use two-way probabilities. tables, and use information provided to complete a two-Girls Total Boys way table. Likes pie 20 25 45 Does not like pie 40 15 55 60 40 100 Total Calculate:

1. The probability that a randomly selected student is a boy: $\frac{60}{100} = \frac{2}{5}$
3. The probability that a randomly selected student likes pie: $\frac{25}{40} = \frac{5}{8}$
4. The probability that a randomly selected person who likes pie, is a boy: $\frac{20}{45} = \frac{4}{9}$

Displaying Data							
185. Produce:	• To produce a pie chart, simply work out the angle for each thing. If for example there were 50						
composite bar charts,	students and 15 studied history, then find $\frac{15}{10}$ of 360°: $\frac{15}{10} \times 360 = 108^{\circ}$						
comparative and dual	To plot a frequency polygon, use the MIDPOINT of each interval and plot against frequency, Join up						
bar charts, pie charts,	each pair of dots with a straight line (and don't join to the origin).						
frequency polygons,			. (
and frequency				Time (<i>t</i> minutes)	Frequency		
diagrams for grouped	10			$0 < t \le 10$	5		
graphs line graphs	9			$0 < t \le 10$ 10 < t < 20	7		
frequency polygons	8	\land		$\frac{10 < t \le 20}{20 < t \le 20}$	7 9		
for grouped data.	7			$\frac{20 < l \le 30}{20 < l \le 40}$	0 6		
grouped frequency	6 Ensurement			$\frac{30 < l \le 40}{40}$	0		
tables for continuous	5			$40 < t \le 50$	4		
data	4						
	3						
	2						
	1						
	0 10	20 30 40	50				
		Time (t minutes)					
186. Interpret: compos	ite bar charts, compara	ative and dual bar o	harts, pie ch	arts, scatter graphs, frequ	ency polygons a	nd	
histograms							
187. Recognise simple	patterns, characteristic	s and relationships	in line grapł	ns and frequency polygons	5		
188. For histograms:	You just need to know	w that:					
- Produce a	• frequency den	$sity = \frac{frequency}{alagge width}$					
histogram from a	Class width is the	e width of the inter	val (e.g. the	width of $5 < w \le 20$ is 15	5.		
grouped frequency	Frequency densi	ty can be interprete	ed as 'the nu	mber of things/people pe	r each value'. So	if in a	
table.	run there are 20	runners who ran b	etween 10s-:	14s, then the frequency d	ensity of 5 repres	sents '5	
- Find the median	runners (on aver	age) for each secor	nd interval'.				
any other	For the purposes	s of GCSE, the <u>area</u>	of each bar =	<u>frequency</u> (the exception	n is problems in (189))	
information from a	Sometimes the f	requency density s	cale on the h	istogram is not given. If no	ot, you can work	it out	
histogram such as	using an existing bar on the histogram by using the information in the table (see example). Once						
the number of	you have your so	ale, you can then a	dd missing b	ars.			
people in a given	When a grouped	frequency table is	given, <u>alway</u>	s add a frequency density	<u>column</u> .		
interval							
- Complete a grouped	Example: "Use the hi	stogram to comple	të the table,	and use the table to comp	lete the histogra	<i>m.</i> "	
frequency table and	Height (<i>h</i> cm)	Frequency		f			
understand and	$100 \le h \le 130$	30					
define frequency density.	$130 < h \le 150$						
	150 < <i>h</i> ≤ 160						
	160 < <i>h</i> ≤ 180	40	Frequency				
	180 < h < 210	19	density				
	180 < n ≤ 210	10					
			0 -			·····	
	100 120 140 160 180 200 220						
				Height (h c	m)		

	$(2 \times 28) + 250 + 125 = 431$				
	Estimate of number of farms above 38 hectares: $\frac{431}{2} \times 285 = 86.2$ farms.				
	Frequency density 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.				
190. From line graphs,	frequency polygons and frequency diagrams: read off frequency values, calculate total population, find				
greatest and least value	es				
191. From pie charts: find the total frequency and find the frequency represented by each sector	Example: "A pie chart represents the favourite colour of 120 people. It has three slices, 'Red', 'Blue' and 'Green' with angles of 147°, 168°, 45° respectively. Determine how many people the 'Red' slice represents." Find how many degrees one person represents: $\frac{120}{360} = \frac{1}{3}$ 147 × $\frac{1}{3} = 49$ people.				
192 Look at data to	An extreme value on a scatter graph is one which is far away from the line of best fit				
find patterns and exceptions, explain an isolated point on a	An extreme value on a scatter graph is one which is far away from the line of best fit.				
102 Draw lines of	A scatter graph is when each data point has two values, for example, each point could represent a				
best fit by eye, understanding what these represent. Use a line of best fit, or otherwise, to predict values of one variable given values of the other variable	person, each with two values for 'English mark' and 'Maths mark'. By drawing a line of best fit, you can use it as a line graph in the usual way to estimate one value from the other.				
194. Distinguish	£70.00 40				
between positive, negative and zero correlation using lines of best fit	$\left(\text{Strong} \right) \text{ positive correlation} \left(\text{Strong} \right) \text{ positive correlation} \right)$				
	(Weak) negative correlation				
195. Understand that correlation does not imply causality. Appreciate that correlation is a measure of the strength of the association between two variables and that zero correlation does not necessarily imply 'no relationship'	The number of deaths due to cancer has decreased over the years. Similarly, the number of mobile devices has increased. This means the two are negative correlated, but it is clear that more mobile devices doesn't <u>cause</u> less cancer deaths.				

Averages and Range							
196. Calculate mean, mode,	Example: Here are some heights of people: $162cm$ $168cm$ $171cm$ $171cm$						
median and range for small	Range = 171 – 162 = 9cm. Mode = 171cm (most common value).						
data sets	Median = $\frac{168+171}{2}$ = 169.5 <i>cm</i>	\imath (the middle value: i	f two middle, ta	ake average of two)			
	Mean = $\frac{(162+168+171+171)}{4}$ = 168 <i>cm</i>						
197. Determine the quartiles	Example: Find the interquartile range of the following data:						
and interquartile range for	1 <i>cm 2cm 2ci</i>	m 3cm 4cm 7cm 8c	m 10cm 12cm	1/cm 20cm			
listed data.	you a number of items one le	hes of listed data in a	4 (in this case 1	11)			
	A trick is to add one to the nu	umber of items, then	find quarters of	f this. Thus we want the 3 rd .			
	6 th and 9 th items for the Lowe	er Quartile, Median a	nd Upper Quar	tile respectively, i.e. 2cm			
	7cm, 12cm.						
	Interquartil = 12cm - 2c	le Range = Upper Q cm = 10cm	Quartile — Low	ver Quartile			
198. Recognise the advantages	Mode is the only average	e available if the valu	es are categorio	cal (i.e. not numerical), e.g.			
and disadvantages between	favourite colour.						
measures of average	Mean is best from the pe	erspective of taking a	ll values into ac	count.			
	• "Explain why the median	n may be a more appr	opriate average	e than the mean": "The			
	median is <u>not affected by</u>	<u>v extreme values</u> ".					
199. Produce ordered stem and	Example: "Here are the times	s, in minutes, taken t	o solve a puzzle	24 15			
find the range and averages	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. o / 10 8	20 55 10 20	24 15 16 10			
The the tange and averages	In the space below, draw a st	em and leaf diagram	to show these	times."			
				The 'stem' is the first digit			
	0 578			and the 'leaf' is the second.			
	1 0 0 0 0 2 5	5 5 Key:	3 7 means	You need a key to indicate			
	2 0 0 0 4 4	37 m	inutes	what each value means,			
	3 3 5			e.g. "4 1 means 4.1cm".			
				Leaves must be in			
				ascending of der.			
	Example: "Use your stem and	d leaf diagram to det	ermine the med	lian."			
	Now that your values are in a	ascending order, it's e	easier to find th	e middle one. It may help to			
	put a dot next to the first and	l last leaf (05 and 35)	, and move inw	ards one leaf at a time until			
	you get to the middle. Alterna	atively, because ther	e are 20 items,	you known the median lies			
	between the 10 th and 11 th , so	count this many in.	This gives a me	dian of 15.			
2001. Calculate averages and		Num children	Frequency				
(Lise Σf and $\Sigma f x$)	-	0	15				
	-	1	5				
	The above table shows how i						
	As always the mean is the sur	m of the values divide	ed by the numb	er of values. If there's 15			
	families with 0 children, that'	's 0 children. If there'	s 20 families wi	th one child, that's 20			
	children, and if there's 5 fami	ilies with 2 children, t	that's 10 childre	en.			
	There's 15 + 20 + 5 = 40 famil	lies, so mean is $\frac{30}{40} =$	0.75				
	Thus, the approach is to sum	the products of the	values each wit	h its frequency (i.e. $\Sigma f x$,			
	where x means the number of	of children, and Σ me	ans 'sum of'), a	nd divide by the total			
	frequency (Σf).						
	i.e. $mean = \frac{\Sigma f x}{\Sigma f}$ (But I reco	ommend you rememb	per the method	rather than the formula)			
	2)						
	Common student errors: Divi	iding by 3 instead of	40, because you	u think 3 rows means			
	there's 3 values. No: the value	es are each duplicate	ed (e.g. there ar	e 15 zeros!)			
200ii. Solve problems involving	Example: "The mean of mark	of 20 students in a c	lass is 70. A nev	v person joins the class and			
mean.	the mean mark rises to 71. W	/hat was his mark?"	tolo and diff-	near of totals			
	Total mark of 20 students: 20	is just to <u>consider to</u> $\sqrt{70} - 1400$	tal mark of 21 c	<u>TICES OF TOTALS</u> . tudents: $21 \times 71 = 1401$			
	So mark of 21 st students: 20	0 × 70 = 1400 0 91 - 1400 - 91	tal mark of 21 S	1491			
		/1 1100 - /1					

	Example: "A class mean mark of all Total mark of bo Total mark of bo Total mark of gir Mean mark of gir Test Your Under a. The me mean w b. Galapag and 15 130 and c. On Farr This yea farms e caught	is consists o I the students: 6 ys: 62×20 Is: $1950 -$ rls: $\frac{710}{10} = 7$ standing: an weight o reight decre gos tortoises tortoises reist I 120 years. ner Frost's f ach cat caughy each of I	f 20 boys its was 65 $5 \times 30 =$ 1 = 1240 1240 = 7 1 f 10 pand asses to 1 s can only spectively What is f arm ther rost's cat ght 115 n ngall's ca	and 10 girls. The mean m 5. What is the mean mark = 1950 710 710 25g. How heavy was the a y be found on two islands: y. The mean age of the too the average age across the e are 20 cats. On Farmer I is have caught 120 mice of hice on average. What is t ts?	ark of the boys is of the girls?" ditional pancake additional pancake A and B, where t rtoises on the two e two islands? ngall's farm there n average. Across he average numb	62 and the e? here are 25 o islands is e are 50 cats. the two er of mice
201. Estimate the mean for	Time taken (train	utes) Fra	eoner	If the data is grouped if	the only difference	e from above
large data sets with grouped		intesy 110	équency	is that you use the mid	points of each int	erval as a
data (and understand that it is	0 < t ≤ 10		D	representative value		
an estimate)	$10 \le t \le 20$		11			
	20 < <i>t</i> ≤ 30		8	Example: Estimate the	mean time taken	using the
	$30 \le t \le 40$		5	table on the left.		
	Total time: $(5 \times Total frequency)$ Mean $= \frac{570}{30} = 19$ Example: <i>"Expla</i> Because we don Test Your Under people from Nor	$6) + (15 \times = 6 + 11 +)$ minutes. in why this is it	11) + (2) $8 + 5 =$ mean is a exact time table is the	$25 \times 8) + (35 \times 5) = 579$ 30 <i>on estimate</i> " hes within each range. shows the IQs of some ean IQ.	$ \begin{array}{c} IQ \\ 70 < i \leq 90 \\ 90 < i \leq 100 \\ 100 < i \leq 130 \\ 130 < i \leq 160 \end{array} $	Frequency 6 20 7 1
202. Find the median class	Time (t seconds)	Frequency	To fin	d the modal class interval	, just specify the i	nterval with
interval and modal class	60 < <i>t</i> < 70	12	the hi	ighest frequency: $90 < t$	< 100	
interval from a grouped	70 < <i>t</i> < 80	22	To fin	d the median class interva	<u>al</u> , find in what int	erval the
frequency table.	80 < <i>t</i> < 90	23	middl	e item would occur, using	cumulative frequ	iencies.
	90 < <i>t</i> < 100	24	There	are 100 items (i.e. total o	of frequencies) so	we want the
	100 < <i>t</i> < 110	19	50 th . ⁻	This doesn't occur within f	irst Rocket money	(fr) Frequency
			12 ite	ms, nor the first 34 (12+2	2) $p \in x \leq 2$	
	but does occur v	vithin the fir	rst 57 (12	+22+23), thus median clas	$\frac{6 < x \le 2}{2 < x < 4}$	10
	interval is $80 < 100$	t < 90			$\frac{2}{4 \le x \le 6}$	23
					6 <r<8< td=""><td>14</td></r<8<>	14
	Test Your Under	standing: U	Ising the	table on the right, (a) wha	t is $8 \le x \le 10$	
	the modal class i	nterval? (b)	What is	the median class interval?	0 4 2 10	, 2
203. Draw cumulative	'Cumulative' me	ans 'running	g total'. A	cumulative frequency gra	aph allows you to	see how
frequency tables and graphs.	many people hav	ve <u>some val</u>	ue OR LE	<u>SS</u> .		
Use cumulative frequency	If you're given a	frequency t	able, you	I can get the cumulative fr	equency for each	row for the
graphs to find median, quartiles	total value up to	that value	so far.			
and interquartile range	For plotting poin	ts, you use	the <u>end</u> o	of each interval (unlike a f	requency polygon	, where you
	use the midpoin	t) because f	or examp	ole (using the table below)	, you don't know	where the 5
	people are in the	e 170-175cn	n interval	, but you do know 5 peop	le have a height c	of 175cm or
	less.					,
	This means the p	olots you po	int are (1	75,5), (180,23) and so on.	You ALSO plot a	'zero point':
	You know 0 peop	ple have a h	eight of 2	170 or less, so plot (170,0)	. Join up with stra	aight lines
	between each na	air (a curve i	is also ac	cepted).		

	$\frac{1}{10 \le h < 195} \frac{1}{10 \le h < 10} \frac{1}{10 \le 10} 1$
	from 20 to our graph, then down, the median is 179cm. For the Lower Quartile, use the 10 th person: this gives 176.5cm. For the Upper Quartile, use the 30 th person: this gives 183cm. Therefore Interquartile Range = 183 – 176.5 = 6.5cm.
204. Draw box plots from a cumulative frequency graph	We can use the values from above to construct a box plot. The minimum and maximum values will always be given to you (because it's impossible to tell where the minimum for example occurs within the 170-175cm range, and likewise for the maximum). Example: (From above) "The minimum height was 173cm and the maximum height was 192cm. Construct a box plot." Important data are as a structure of the maximum height was 173 to 175 180 185 190 195
205. Compare the measures of spread between a pair of box plots/cumulative frequency graphs	 There will always be two marks for this: Compare the <u>medians</u> of the two box plots/box plot and CF graph. <u>It is not sufficient</u> to simply state the two values: you need to say which is bigger, or state they are the same. e.g. "The boys' median time was greater than the girls." If you wrote "the boy's median time was 15.6s and the girls 15.8s", then you will NOT get a mark. Compare a measure of spread: either the <u>range</u> or the <u>interquartile range</u>. E.g. "The boys' interquartile range of times was the same as the girls."
206. Interpret box plots to find median, quartiles, range and interquartile range	min 0 5 10 15 20 25 30
207. Compare distributions and make inferences, using the shapes of distributions and measures of average and spread, including median and quartiles	From the box plot above, you could state there are more extreme values below the median (because of the long whisker to the left). You could also say the values are overall more spread out above the mean, because the right box is wider.
Brobability	

Probability		
208. Write probabilities using fractions, percentages or decimals		
209. Compare experimental data and theoretical probabilities. Compare relative frequencies from samples of different sizes	 Theoretical probabilities are the exact <u>true probability of something happening</u>, e.g. the theoretical probability of rolling a five on a fair die is ¹/₆. Experimental probabilities (also known as relative frequencies) are probabilities <u>based on observed counts</u>. e.g. If I roll a die 120 times and see 25 sixes, the relative frequency of heads if ²⁵/₁₂₀ = 0.208. Relative frequencies tend to be given as decimals. 	

	• The more times an experiment is repeated, the close the relative frequency will be to the theoretical probability. e.g. If I throw a die repeatedly and count fives, the proportion of throws which will land five will get increasingly closer to $\frac{1}{6}$ as I throw more and more times. i.e. Relative frequencies become more reliable when the sample size increases.				
210. Find the probability of successive events, such as several throws of a single dice. Identify different mutually exclusive outcomes and know that the sum of the probabilities of all these outcomes is 1	 If events are <u>independent</u>, it means they don't affect each other (e.g. "winning the lottery" and "owning a garden gnome"). If we want the probability that "A happened <u>AND</u> B happened", then we <u>multiply</u> the probabilities. If events are <u>mutually exclusive</u>, it means they can't happen at the same time. If we want the probability that "A happened <u>OR</u> B happened", we <u>add</u> the probabilities. Example: "What's the probability of throwing 3 Heads in a row with a fair coin?" P(H₁ and H₂ and H₃) = ¹/₂ × ¹/₂ × ¹/₂ = ¹/₈ Example: "A spinner has three colours: red, green and blue. The probability of getting red i 0.2 and getting blue 0.3. What is the probability of getting green or blue?" Colours are mutually exclusive as we can't get two colours at once. P(blue) = 1 - 0.2 - 0.3 = 0.5 So P(arcam or blue) = 0.2 + 0.5 = 0.9 				
211. Estimate the number of times an event will occur, given the probability and the number of trials	Simply multiply probability by number of trials. Example : "The probability I get a six on an unfair die is 0.15. I throw the coin 120 times. How many sixes do I expect to see?" $120 \times 0.15 = 18 \text{ times}$				
212. List all outcomes for single events, and for two successive events, systematically. Use and draw sample space diagrams	$120 \times 0.15 = 18 times$ The <u>sample space</u> is the list of all possible outcomes. You can either present in list form or (in the case of two things happening) table form, known as a sample space diagram. Example: "You throw three coins. (a) List the possible outcomes and (b) hence determine the probability of throwing exactly two heads." Outcomes: HHH, HHT, HTH, HTT, THH, THT, TTH (note that listing them in a systematic order prevents you from forgetting any possibilities) In 3 of the 8 of these, you have two heads, thus $P(2 \text{ Heads}) = \frac{3}{8}$ Example: "You roll two dice and add the values. Draw a sample space, diagram, and hence determine the probability that the total of the two dice is 8." Example: "You roll two dice and add the values. Draw a sample space, diagram, and hence determine the probability that the total of the two dice is 8." Example: "You roll two dice and add the values. Draw a sample space, diagram, and hence determine the probability that the total of the two dice is 8." Example: "You roll two dice and add the values. Draw a sample space, diagram, and hence determine the probability that the total of the two dice is 8." Example: "You roll two dice and multiply the two dices is 8." Example: To the probability that the total of the two dice is 8." Example: "You roll two dice and add the values. Draw a sample space, diagram, and hence determine the probability that the total of the two dice is 8." Example: To the probability that the total of the two dices is 8." Example: To the probability that the total of the two dices is 8." Example: "You roll two dice and add the values. Draw a sample space, diagram, and hence determine the probability that the total of the two dices is 8." Example: To the total of the two dices is 8." Example: To the total of the two dices is 8." Example: To the total of the two dices is 8." Example: To the total of the two dices is 8." Example: To the total of the two dices is 8." Example: To the total dist the total of the two dices				
213. Understand conditional probabilities. Use a tree diagram to calculate conditional probability	Suppose the probability it rains today is 0.3 (irrespective or previous weather). If it rained yesterday, the probability it rains today will be higher. So probabilities can change depending on what events previous occurred. Example : <i>"The probability I win a tennis game today (W) is 0.7. If I win today, the probability I win tomorrow (T) is 0.9, and if I didn't win today, the probability I win tomorrow is 0.4. (a) Draw a tree diagram to represent this information. (b) Hence determine the probability that I win a game tomorrow."</i> Diagram shown above. To find a probability from a tree: (i) Multiply the probabilities across each matching path across the tree and (ii) add these probabilities. Therefore probability is $(0.7 \times 0.9) + (0.3 \times 0.4) = 0.75$				

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
214. Solve more complex problems involving combinations of outcomes.	Example : "The probability I buy avocado today is 0.7. The probability I buy asparagus is 0.6. Find the probability I buy either (but not both)" For such problems, I'd advise: (i) listing the matching combinations of outcomes, (ii) finding the probability of each (by multiplying) and (iii) adding these together. A suitable tree diagram would also work. Avocado and not asparagus: $0.7 \times 0.4 = 0.28$ Not avocado and asparagus: $0.3 \times 0.7 = 0.18$ Probability of either (by not both): $0.28 + 0.18 = 0.46$ Test Your Understanding : The probability I pass my maths test is 0.68. The probability I pass my English test is 0.87. What's the probability I pass: (i) neither (ii) either (but not both).
215. Understand selection with or without replacement. Draw a probability tree diagram based on given information	I generally advise using the above method rather than a probability tree, as you don't wastefully have to worry about unused parts of your tree. Be careful to note whether the item is not replaced (which changes BOTH the overall count of objects and the count of that type of object) or replaced. If you're just told "you take 3 sandwiches" then non-replacement is clearly implied. Example: "A shop has 3 cheese sandwiches, 5 ham sandwiches and 2 dog sandwiches. I buy 2 sandwiches at random. Determine the probability I have two sandwiches of the same type." As above, list out outcomes (the ordering of the sandwiches in the selection matters!), multiply to find probability of each and then add. DON'T simplify your probabilities until the end, otherwise you'll make it more difficult to add your fractions. $CC: \frac{3}{10} \times \frac{2}{9} = \frac{6}{90}$ $HH: \frac{5}{10} \times \frac{4}{9} = \frac{20}{90}$ $DD: \frac{2}{10} \times \frac{1}{9} = \frac{2}{90}$
	 Test Your Understanding: a. I have seven 10p coins and three 5p coins. I select three coins at random. Determine the probability that I have 25p in total. b. I have a bag of 6 green balls and 3 blue balls. I take a ball at random, note the colour then put it back. I take another ball. Determine the probability I have balls of different colours. c. I go to Battersea Dogs and Cats Home, which has 5 black cats, 3 white cats and 3 green cats. As a crazy cat person I take home three cats home with me at random. Determine the probability the cats are all of different colours.

Answers

Number

1	30%, 0.303, 0.33, $\frac{1}{2}$ (since $\frac{1}{2} = 0.3333 \dots$)
3	a. 7
	b. 19008
	c. 2.81
	d. 50.41
	e. 462.7
6	a. 25000
	b. 15.1
	c. 26.0
	d. 495.185
7	a. $\frac{60\times7}{0.5} = 1120$
	b. $\frac{4\times5}{4\times5} = 80$ or $\frac{4\times5}{100} = 100$
12	0.25 0.2 100 5
12	6
13	Two fractions are $\frac{28}{35}$ and $\frac{25}{35}$ thus $\frac{4}{5}$ is bigger.
14	15
16	a. $\frac{47}{45}$
	b. $\frac{15}{15}$
	c. $\frac{1}{20} = 10 \frac{1}{20}$
17	a. $\frac{4}{15}$
	$\frac{15}{42}$
	5. 25
	C. $\frac{23}{44}$
	d. $\frac{10}{10}$
19	$\frac{3}{2^4 \times 3 \times 5}$
21	a. 480
	b. 12
	c. 10.40am
	d. 3 packs of cookies (and 4 of chocolate bars)
23	a. 3.67×10^5
	b. 4.8×10^{-4}
	C. U.U26/
	u. 5200 e 1.04×10^{11}
	$f. 6 \times 10^2$
	g. 4.3×10^5
26	a. 21
	25
	L b 0.375
27	b. 0.375 a. 0.1875
27	b. 0.375 a. 0.1875 b. 0.27
27	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142
27	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{2}$
27	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ $\frac{401}{401}$
27	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ e. $\frac{401}{999}$
27	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ e. $\frac{401}{999}$ f. $\frac{701}{110}$
27	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ e. $\frac{401}{999}$ f. $\frac{701}{1110}$
27 29 30	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ e. $\frac{401}{999}$ f. $\frac{701}{1110}$ 165.6 Suppose initial amount was £1. Then in first bank account.
27 29 30	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ e. $\frac{401}{999}$ f. $\frac{701}{1110}$ 165.6 Suppose initial amount was £1. Then in first bank account, we'd have $1 \times 1.05 \times 1.01 = £1.0605$. In second
27 29 30	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ e. $\frac{401}{999}$ f. $\frac{701}{1110}$ 165.6 Suppose initial amount was £1. Then in first bank account, we'd have $1 \times 1.05 \times 1.01 = £1.0605$. In second $1 \times 1.02 \times 1.03 = £1.0506$. So first is better.
27 29 30 31	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ e. $\frac{401}{999}$ f. $\frac{701}{1110}$ 165.6 Suppose initial amount was £1. Then in first bank account, we'd have $1 \times 1.05 \times 1.01 = £1.0605$. In second $1 \times 1.02 \times 1.03 = £1.0506$. So first is better. a. £11.70 ÷ 1.3 = £9
27 29 30 31	b. 0.375 a. 0.1875 b. 0.27 c. 0.857142 d. $\frac{4}{9}$ e. $\frac{401}{999}$ f. $\frac{701}{1110}$ 165.6 Suppose initial amount was £1. Then in first bank account, we'd have $1 \times 1.05 \times 1.01 = \pounds 1.0605$. In second $1 \times 1.02 \times 1.03 = \pounds 1.0506$. So first is better. a. $\pounds 11.70 \div 1.3 = \pounds 9$ b. $\pounds 13.50 \div 0.75 = \pounds 18$

32		$\pounds 180\ 000 \times 0.75^6 = \pounds 32\ 036.13$
33	a.	$\pounds3500 \times 1.035^{10} = \pounds4937.10$
	h.	$\pounds 1000 \div 0.9^5 = \pounds 1693.51$
36	р. а	40
30	a. h	40
	υ.	$5 \mu a_1 t_5 = E I Z$
		1 part = £4
		Thus 4 parts = £16
	с.	10 parts = 5000g
		1 part = 500g
		Unicorn: 1500g (so enough)
		Fairydust: 2500g (so NOT enough)
37	a.	10cm : 5 000m
		= 10cm : 500 000cm
		= 1 · 50 000
	h	$5 4 cm \times 20000 - 108000 cm$
	υ.	-1080m
		= 1000m
20		= 1.00 km
38	a.	$q = \kappa r$
		b = bK
		$k = \frac{5}{2}$
		6
		$a = - \times 18 = 15$
		4 6 10 10 k
	b.	$m = \frac{\kappa}{n}$
		k ,
		$5 = \frac{11}{11} \rightarrow k = 55$
		55
		$m = \frac{1}{4} = 13.75$
	с.	$y = kx^2$
		10 10 10
		$10 = k \times 8^2 \rightarrow k = \frac{1}{64}$
		10 202 (25
		$y = \frac{1}{64} \times 20^2 = 62.5$
	d.	$v = \frac{k}{k}$
		\sqrt{x}
		$10 = \frac{\kappa}{k} \rightarrow k = 10\sqrt{10}$
		$\sqrt{10}$
		$20 - \frac{10\sqrt{10}}{10}$
		$20 = \frac{1}{\sqrt{x}}$
		$10\sqrt{10}$
		$\sqrt{x} = \frac{10\sqrt{10}}{10}$
		20
20		$\lambda = 2.5$
39	а.	C, because $y = \kappa x$ is the equation of a
		straight line which goes through the origin.
	b.	D, because $y = \frac{\pi}{r}$ is a reciprocal graph.
40	я	v ¹⁹
	a. h	$\frac{1}{\gamma^2}$
	υ.	
	с.	$27\sqrt{3} = 3^3 \times 3^{\overline{2}} = 3^{\overline{2}}$
		So $x = \frac{7}{2}$
	Ь	a + 1
	u.	a = 1
	e.	(i) $3^{a-b} = \frac{a}{3^b} = \frac{a}{y}$
		(ii) $3^{a+2b} = 3^a \times 3^{2b}$
		$-2^{a} \times (2^{b})^{2}$
		$= 5 \times (5)$ $= rv^2$
/1	2	$\frac{-\lambda y}{27r^3y^{12}}$
41 	d. հ	$21\lambda y$ $25x^4x^8$
	D.	25x y
	с.	$0 \mathbf{x}^{-} \mathbf{y}^{-}$
	р	$4x_{3}$ v

42	a.	1
	b.	$\frac{1}{49}$
	с.	4
	d.	1 27
	e.	$\frac{4}{9}$
43	a.	$4\sqrt{5}$
	b.	$\sqrt{3}$
	с.	$1 + 10\sqrt{3}$
	d.	$14 - 6\sqrt{5}$
	e.	(i) $15 + 26\sqrt{2}$
		(ii) $4 + 20\sqrt{2}$
44	a.	$=\frac{8\sqrt{2}}{2}=4\sqrt{2}$
	b.	$=\frac{\sqrt{400}+10\sqrt{5}}{5}=\frac{20+10\sqrt{5}}{5}$
		$= 4 + 2\sqrt{5}$
45	a.	0.0380784
	b.	-80

Algebra

47		a. $-x^2y + xy^2$
		b. $3x + y$
48		a. $2x + 8 - 6 + 6x$
		= 8x + 2
		b. $x^2 - xy - y^2 + xy$
		$=x^2-y^2$
49		a. $3(x-2)$
		b. $3xy(2x + 3y)$
		c. $4ab(2b^2 - 3ac)$
50		a. $y^2 - y - 42$
		b. $6x^2 - 7x - 20$
		c. $16x^2 + 8x + 1$
		d. $x^2y^4 - 1$
51		a. $(x+1)^2$
		b. $(x+4)(x+2)$
		c. $(x-5)(x-2)$
		d. $(x+2)(x-5)$
		e. $(x + a)(x + b)$
		f. $(2x+1)(x+1)$
		g. $(3y-1)(y+4)$
		h. $(4x+1)(3x-1)$
52		a. $(2+x)(2-x)$
		b. $(xy+1)(xy-1)$
		c. $(5y^2 + 6z)(5y^2 - 6z)$
53i	a.	6 <i>xy</i>
	b.	$12xy^3$
	с.	<u>y</u> 2
	d.	$x^{2} + 2xy + y^{2} + x^{2} - 2xy + y^{2}$
	-	$=2x^{2}+2y^{2}$
	e.	$x^2 - x - 5$
	f.	(2x + 1)(2x + 1) - (x + 1)(x - 3)
		$= 4x^2 + 4x + 1 - (x^2 - 2x - 3)$
		$= 4x^2 + 4x + 1 - x^2 + 2x + 3$
		$= 3x^2 + 6x + 4$
	g.	(3x+1)(2x-3) - (1-2x)(1-2x)
		$= 6x^2 - 7x - 3 - (1 - 4x + 4x^2)$
		$= 6x^2 - 7x - 3 - 1 + 4x - 4x^2$
		$=2x^2-3x-4$

53ii	a. $=\frac{(2x+1)(x+1)}{(x+1)(x+1)} = \frac{2x+1}{x+1}$
	b. = $\frac{(2x-1)(x+1)}{(2x-1)(x+3)} = \frac{2x-1}{2x-1}$
	$\begin{array}{c} (x+3)(x-3) & x-3 \\ (x+y)(x+y) & x+y \end{array}$
	c. $\frac{(x+y)(x+y)}{2(x+y)} = \frac{x+y}{2}$
53iii	a. $\frac{x+6}{2x}$
	h $\frac{2x}{2x+1}$
	x^2 $2x+1$
	C. $\frac{1}{x(x+1)}$
	d. $\frac{-x+3}{x(x-1)}$
	e $\frac{(x+1)^2 - (x-1)^2}{2} = \frac{4x}{2}$
E 4	$\frac{(x+1)(x-1)}{(x+1)(x-1)} $
54	$s_0(3 \times 50) - 2 = 148$
56	a. No. as n would be 11.5
	b. No, as number does not end in 2 or 7.
	c. No as $n = 15.2857 \dots$
	d. Yes, <i>n</i> = 465
57	a. 10, 17, 24
	b. 8, 6, 4
58	2, 5, 18
50	b. $n + 4$
	c. 13 – 2 <i>n</i>
	d. $\frac{2}{3}n + \frac{29}{6}$
59	a. $-1 - 6 = 5$
	b. $1 - 6 = -5$
	c. $4 - 9 = -5$
	d. $-6 - 3 = -9$
60	e. 9 - 24 - 35
00	a. $x = \frac{1}{3}$
	b. $6x + 16 = 10x - 14$ 32 = 4r
	x = 8
	c. $1 - 6 + 4y = y$
	3y = 5
	$y = \frac{5}{2}$
62	a. $6 - x = 18$
-	x = -12
	b. $3 - 4p = 6p$
	$3 = \frac{10p}{3}$
	$p = \frac{3}{10}$
	c. $2(3x-1)^2 = (2x+1)(9x-1)$
	$2(3x-1)(3x-1) = 18x^2 + 7x - 1$
	$2(9x^2 - 6x + 1) = 18x^2 + 7x - 1$
	$18x^{2} - 12x + 2 = 18x^{2} + 7x - 1$ $-12x + 2 = 7x - 1$
	3 = 19x
	$r = \frac{3}{2}$
62	$\frac{x-19}{19}$
63	a. $x < 3$ b. $12 - 6r > 7$
	5 > $6x$
	5
	$x \ge \overline{6}$
65	a. $x = \frac{3b^2 + 1}{4}$
	b. $x = \frac{a-b}{c}$
	c. $3a = {}^{3}{}_{3}\pi x + x$
·	

	$3a = x(3\pi + 1)$ $x = \frac{3a}{3\pi + 1}$ d. $a(2x - 1) = 2x + 1$ 2ax - 2a = 2x + 1	79	
	2ax - 2x = 1 + 2a x(2a - 2) = 1 + 2a $x = \frac{1 + 2a}{2a - 2}$		5
	e. $ab + bx = ax$ ab = ax - bx ab = x(a - b)		
68	$x = \frac{ab}{a-b}$ a. Your line should go through (0, -1) and	80	3r + 5r + Solvi
69	b. Your line should go through $(0,3)$ and $(6,0)$	81	x = 1 You I
	$m = \frac{1}{4} = -\frac{1}{2}$		mark
70	(i) $(0,4)$ (ii) $(-\frac{4}{2},0)$	83	IVIISS Lising
72	(1) $(3, 0)$	85	USIN
/2	b1		
	c. 2		\ \
	d. $-\frac{3}{4}$		
74	a. $y = \frac{1}{5}x + c$ (where c is anything)		
	b. $y = 3x - 10$		_
	c. $y = -\frac{1}{3}x + 4$	87	i
75	$y = -\frac{1}{2}x + 7$		I
76	Point A is $(-8,0)$ Equation of $A0: y = 2x \pm 16$		
	Point Q is therefore $(0,16)$		
	QB is parallel to PA so has gradient $-\frac{1}{2}$		
	Equation of QB: $y = -\frac{1}{2}x + 16$		
	Thus point B: (32,0)		
	Length $AB = 8 + 32 = 40$	88i	
77	3-		
	2		
	R		
		88ii	
	2 -1 0 1 1 2 3 ×	0011	
	<i>P</i> (1.1)		
78	a. $x = 5, y = -2$	89	
	b. $x = 3, y = -\frac{1}{2}$	-	
		00	
		90	á

r	
91	a. $x = -2, y = 2$
	$\begin{array}{c} y = -1, \ y = -2 \\ x = 2, \ y = -1 \end{array}$
	c. $x = -2.41, y = 6.20$
02	x = 2.91, 3.55
92	a. $1 + x = x^2$ $x^2 - x - 1 = 0$
	x = x = 1 = 0 x = -0.62, 1.62
	b. $2x + 3x^2 = 5$
	$3x^2 + 2x - 5 = 0$
	$x = -\frac{5}{2}, x - 1$
	c. $(2x+2)^2 = (5x+1)(x+1)$
	$4x^2 + 8x + 4 = 5x^2 + 6x + 1$
	$x^2 - 2x - 3 = 0$
97	x = -1, x = 3 a $6 = k \times a^2$
57	$162 = k \times a^5$
	Dividing: $27 = a^3$
	a = 3
	$k = \frac{0}{3^2} = \frac{2}{3}$
	b. $45 = a^2 b^3$
	$\frac{9}{-} = a^2b$
	5 Dividing: $25 = b^2$
	b = 5
	$45 = a^2 \times 125 \rightarrow a = \frac{5}{2}$
00	$\frac{1}{3}$
98 99	Circle centred at the origin and going through all the
	3s on the axes.
	Using points of intersection of circle and line:
	x = -1.6, y = 2.6
100	$\frac{x - 2.0, y - 1.0}{1}$
	5
	-5 5
	$\langle A \rangle$
	-5
	\ \
	Note that the perpendicular bisector goes through the
	centre of the circle.
101i	Line MUST go through points
	a. $(-2, -0), (-1, 0), (0, 2), (2, 2),$ (30) (4 -6)
	b. Must go through points:
	(-0.5, 3), (0,0), (0.5, -1),
	(1,0), (1.5,3)
101i	(4,3)
101i	a.
ii	

Shape, Space and Measures

108		$\begin{array}{l} A(5,0) B(3,2) C(0,4) D(-2,3) \\ E(-1,0) F(-4,-1) G(0,-3) \\ H(1,-2) \end{array}$
		<i>A</i> (0,2,0) <i>B</i> (0,2,3) <i>C</i> (4,0,0) <i>D</i> (4,2,3)
109	a.	(2.5, 2)
	b.	(5, -1, -2)
110	a.	i) $x = 150^\circ$ (corresponding angles), ii)
		$y = 95^{\circ}$ (could have "corresponding angles
		are equal and angles on a straight line sum to
		180" or "angles on a straight line sum to 180
		and alternate angles are equal")

	b. $\angle ADC = 60^{\circ}$ (cointerior angles sum to 180)
	$\angle BDC = 60 - 38 = 22^{\circ}$
	$\angle DEC = 139^{\circ}$ (angles on straight line sum to
	$r = 180 - 139 - 22 = 19^{\circ}$ (angles in
	triangle sum to 180)
111	a. 120°
112	$\angle AED = 38^{\circ}$ (alternate angles are equal)
	$\angle ADE = \frac{180-38}{2} = 71^{\circ}$ (base angles of isosceles
	triangle are equal)
	$x = 180 - 71 = 109^{\circ}$ (angles on straight line sum to
113	3x + 2x - 5 + x + 10 + 2x + 15 = 360
	8x + 20 = 360
	8x = 340
447	$x = 42.5^{\circ}$
11/	a. $180(15 - 2) = 2340^{\circ}$ b. 140°
	c. $360 - (5 \times 50) = 110^{\circ}$
118	a. $\frac{360}{120} = 120$ sides
	b. Exterior = $180 - 175 = 5^{\circ}$
	$\frac{360}{3} = 72$ sides
	5 360 34
	C. $\frac{15}{15} = 24$
	$180 - 24 = 156^{\circ}$ d $360 - 120 - 135 - 105^{\circ}$
120	Angles at the bottom of the top triangle:
	Interior angle of A = $\frac{360-60}{100} = 150$
	2 Exterior angle = 180 - 150 = 30
	Num sides = $\frac{360}{100}$ = 12
122	Front elevation: A rectangle of width 4cm and height
	2cm
	Plan: A rectangle of sides 3cm and 4cm
	Side elevation: A rectangle of width 3cm and height
178	$\frac{1}{2}$ Cff.
120	a. $Area = \frac{1}{2} = 39.27 cm^2$
	$Perimeter = 10 + \frac{2 \times \pi \times 5}{2} = 10 + 5\pi$
	b $4rag = \frac{\pi \times 10^2}{2} = 25\pi$
	$\begin{array}{c} 5. A = 2 \\ 4 \\ 2 \times \pi \times 10 \end{array}$
	$Perimeter = 10 + 10 + \frac{2 \times n \times 10}{4}$
	$= 20 + 5\pi$
129	Area of whole triangle:
	$\frac{1}{2} \times 6 \times 6 \times \sin 60 = 9\sqrt{3}$
	Area of sector:
	$60 \times \pi \times 2^2 = 3 \pi$
	$\frac{1}{360} \times n \times 3 = \frac{1}{2}n$
	Shaded area:
	$9\sqrt{3}-\frac{3}{2}\pi$
130	$\left(\frac{70}{2} \times \pi \times 52^{2}\right) - \left(\frac{1}{2} \times 52 \times 52 \times \sin 70\right)$
	$(360^{-1.2})^{-1.2} (2^{-3.2} \times 3.2 \times 31170)$
	$= 3.81cm^2$
131	a. $4.5m^2 = 45\ 000cm^2$
	b. $3cm^2 = 300mm^2$
132	Cross-sectional area:
	$44 + 15 = 59cm^2$
1	1

	Volume:
	$V = 59 \times 20 = 1180 cm^2$
133	a. Surface Area = $2(\pi \times 6^2) + (2 \times \pi \times 6 \times 6)$
	$5) = 72\pi + 60\pi = 132\pi$
	<i>Volume</i> = $\pi \times 6^2 \times 5 = 180^\circ$
	b. Volume of cup = $\pi \times 3^2 \times 10 = 90\pi$
	$\frac{1280\pi}{12} = 14^{2}$
	$Cups = \frac{14}{90\pi} = 14\frac{1}{9}$
134	a. $=\frac{4\pi \times 10^2}{2} + (\pi \times 10^2) = 300\pi$
	h Height = $\sqrt{13^2 - 5^2} = 12$
	Volume $-\frac{1}{2}\pi \times 5^2 \times 12 - 100\pi$
	Volume $-\frac{3}{3}n \times 5^{2} \times 12 = 100n$
	Surface area = $(\pi \times 5^2) + (\pi \times 5 \times 13)$
135	= 90h
133	Diagonal across base: $\sqrt{6^2 + 8^2} = 10$
	Thus halfway across base is 5.
	Height = $\sqrt{13^2 - 5^2} = 12$
	Volume = $\frac{1}{2} \times (6 \times 8) \times 12 = 192 cm^3$
136i	1 2 1 1 2
	$\frac{1}{3} \times \pi \times r^2 \times 10 = 100$
	$10\pi r^2 = 300$
	$r^2 = \frac{500}{12}$
	$\frac{10\pi}{2}$
	$r = \frac{300}{300}$
	$1 - \sqrt{10\pi}$
136ii	a. Surface area of solid hemisphere:
	$4\pi x^2$ + $\pi x^2 - 2\pi x^2$
	$\frac{1}{2} + \pi x = 3\pi x$
	Surface area of cylinder:
	$2\pi x^2 + 2\pi xh$
	Equalling: $3\pi r^2 - 2\pi r^2 \pm 2\pi rh$
	$\pi x^2 = 2\pi x h$
	$\pi x^2 x$
	$h = \frac{1}{2\pi x} = \frac{1}{2}$
	b. 'Melted down' means volume is preserved.
	Volume of sphere:
	$\frac{4}{-}\pi x^3$
	3
	$\frac{1}{3}\pi x^2 h$
	Equating volumes:
	$4\pi x^{3} - 1\pi x^{2}h$
	$\frac{1}{3}nx - \frac{1}{3}nx n$
	$4\pi x^3 = \pi x^2 h$
127	4x = n
101	b. $4.2 \times 100^3 = 4200000 cm^3$
	c. $20 \times 10^3 = 20\ 000 mm^3$
138	Volume of full cone: $\frac{1}{2}\pi \times 4^2 \times 12 = 64\pi$
	$\frac{3}{1}\pi \times 1^2 \times 2 = \pi$
	Volume of fructum: $\frac{62\pi}{3}$
150	$\sqrt{\frac{1}{2}}$
100	a. $\sqrt{5^2 - (6 - 3)^2} = 4$
	$AB = \sqrt{4^2 + 6^2} = \sqrt{80}$
	5. Splitting the thangle fitto two. $b = \sqrt{122 - \Gamma^2} = 12$
	$n = \sqrt{13^2 - 5^2} = 12$

		c. $\sqrt{1^2 + 1^2} = \sqrt{2}$
		$x = \sqrt{1^2 + 2} = \sqrt{3}$
151	a.	$\sqrt{3}$
	b.	13cm
152	a. h	$x = 1.5 \tan 70 = 4.12$
	υ.	$1) x = 22 \cos 40 = 10.9$
		11) $x = \frac{1}{\sin 80} = 20.5$
		ii) $x = \frac{11.7}{\cos 70} = 11.7$
	с.	Right-most side: $6 \tan 65 = 12.86704 \dots$
		12.86704
		$=\frac{1280701}{\tan 35}=18.376$
		x = 18.376 - 6 = 12.376
	d.	i) $\theta = \tan^{-1}\left(\frac{2}{3}\right) = 33.69^{\circ}$
		ii) $\theta = \sin^{-1}\left(\frac{6}{2}\right) = 48.6^{\circ}$
154		$0 = \tan^{-1} \begin{pmatrix} 10 \\ 1 \end{pmatrix} = 57.4$
		$\theta = \tan^{-1}\left(\frac{1}{\sqrt{41}}\right) = 57.4^{\circ}$
155	a.	$\frac{x}{\sin 42} = \frac{5}{\sin 70}$ $x = \frac{5 \sin 42}{\sin 70} = 3.56 cm$
	b.	$x = \sqrt{6^2 + 4^2 - (2 \times 6 \times 4 \times \cos 100)}$
		= 7.77 <i>cm</i>
	с.	$\frac{\sin\theta}{4} = \frac{\sin 2\theta}{2}$
		$4^{4} = 2^{4} = 4^{2} \sin^{-1}(4\sin^{2}\theta) = 42.2^{8}$
		$\theta = \sin\left(\frac{1}{2}\right) = 43.2$
	d.	$4.8^{2} = 3^{2} + 4^{2} - (2 \times 3 \times 4 \times \cos \theta)$ $22.04 = 25 - 24 \cos \theta$
		$23.04 = 25 - 24\cos\theta$ $24\cos\theta = 1.96$
		$0 = \cos^{-1}(\frac{1.96}{1.96}) = 85.2^{\circ}$
		$\theta = \cos\left(\frac{1}{24}\right) = 83.5$
	e.	First finding angle at left of triangle: $\sin \theta = \sin 50$
		$\frac{5110}{52} = \frac{51100}{36}$
		$\theta = \sin^{-1}(5.2 \sin 50)$
		$0 = \sin \left(\frac{4.2}{4.2} \right)$
		= /1.5203°
		Angle at top: $180 - 50 - 71.5203 = 58.4797^{\circ}$
		Using sine rule again:
		$\frac{x}{$
		sin 58.4797 sin 50 4.2 sin 58.4797
		$x = \frac{4.2 \sin 50.4777}{\sin 50} = 4.67 cm$
156	a.	$A = \frac{1}{7} \times 11 \times 9 \times \sin 45 = 35.00$
	b.	Find angle say between 8 and 9:
		$6^2 = 8^2 + 9^2 - (2 \times 8 \times 9 \times \cos \theta)$
		$\theta = 40.8044^{\circ}$
		Then $A = \frac{1}{2} \times 8 \times 9 \times \sin 40.8044$
		= 23.5
	С.	as 155(e): 9 21975
		$A = \frac{1}{2} \times 9.21975 \times 8 \times \sin 40 = 23.7$
158		a. $6.7 \div 4.5 = 1.49$ gallons b. $6.7 \times 1.75 = 11.7$ mints
159		$\frac{10.0.7 \times 1.75 - 11.7}{d}$
		$t = \frac{1}{s} = \frac{1}{6.3} = 7.936 = 7$ hours 56 mins
160	6.7	$km/h = 6700 \ m/h = 1.86 \ m/s$

162a. $2m^3 = 2000000cm^3$ $m = 2000000c^3 = 12000000g$ $= 12000000cm^3$ $d = 2500$ $300cm^3$ b. $V = \left(\frac{1}{2} \times 5 \times 4\right) \times 30 = 300cm^3$ $d = \frac{2500}{300} = 8.33g/cm^3$ 163a. $x_{lower} = 4.45 \times 3.675 = 16.35375$ $x_{upper} = 4.55 \times 3.685 = 16.76675$ b. $q_{lower} = \frac{2.875^2}{3.5845} = 2.289921886 \dots$ $q_{upper} = \frac{2.875^2}{3.5835} = 2.306578 \dots$ So $q = 2.3 to 1dp$ as both bounds are the same to this level of accuracy.169a.Option 1: SAS $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as ΔOAD is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA = 90^\circ$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle AABD = \angle ADC$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as ΔOAD is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^\circ$ as AD is perpendicular to BC . $AB = AC$ as ΔABC is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^\circ$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$.171a. $\frac{\pi}{x} = \frac{5}{12}$ $x = 3.75cm$ $y = \frac{5}{12}$ $x = 3.75cm$ $y = \frac{5}{12}$ $x = 4.5$ 172a. $320cm^2$ $b.80 \times 1.5^3 = 270cm^3174a. \angle BUM = 160^\circ (opposite angles of cyclicquadrilateral a$			
$m = 2\ 000\ 000 \times 6 = 12\ 000\ 000\ g$ $= 12\ 000\ kg = 12\ tons$ b. $V = \left(\frac{1}{2} \times 5 \times 4\right) \times 30 = 300\ cm^{3}$ $d = \frac{2500}{300} = 8.33g/cm^{3}$ 163 a. $x_{lower} = 4.45 \times 3.675 = 16.35375$ $x_{upper} = 4.55 \times 3.685 = 16.76675$ b. $q_{lower} = \frac{2.865^{2}}{3.5845} = 2.289921886\dots$ $q_{upver} = \frac{2.875^{2}}{3.5845} = 2.306578\dots$ So $q = 2.3\ to\ 1dp\ as\ both\ bounds\ are\ the\ same\ to\ this\ level\ of\ accuracy.$ 169 a. Option 1: SAS $BD = CA\ as\ both\ are\ diameters.$ $\angle OAD = \angle ODA\ as\ \Delta OAD\ is\ isosceles.$ $AD\ is\ common.$ Therefore $ABD\ and\ ACD\ are\ congruent\ by\ SAS.$ Option 2: RHS $\angle BAD = \angle CDA\ as\ both\ are\ diameters.$ $AD\ is\ common.$ Therefore $ABD\ and\ ACD\ are\ congruent\ by\ RHS.$ Option 3: ASA $\angle ABD = \angle ADC\ as\ both\ are\ diameters.$ $\angle OAD = \angle ODA\ as\ \Delta OAD\ is\ isosceles.$ Therefore $ABD\ and\ ACD\ are\ congruent\ by\ ASA.$ b. By RHS: $\angle ABD = \angle ADC\ as\ \Delta OAD\ is\ isosceles.$ Therefore $ABD\ and\ ACD\ are\ congruent\ by\ ASA.$ b. By RHS: $\angle ABD = \angle ADC\ as\ \Delta OAD\ is\ isosceles.$ Therefore $ABD\ and\ ACD\ are\ congruent\ by\ ASA.$ b. By RHS: $\angle ABD\ = \angle ADC\ = 90^{\circ}\ as\ AD\ is\ isosceles.$ Therefore $ABD\ and\ ACD\ are\ congruent\ by\ ASA.$ b. By RHS: $\angle ABD\ = \angle ADC\ = 90^{\circ}\ as\ AD\ is\ isosceles.$ Therefore $ABD\ and\ ADC\ are\ congruent\ by\ ASA.$ b. By RHS: $\angle ABD\ = \angle ADC\ = 90^{\circ}\ as\ AD\ is\ isosceles.$ Therefore $ABD\ and\ ADC\ are\ congruent\ by\ ASA.$ b. By RHS: $\angle ABD\ = CA\ as\ bABC\ is\ equilateral.$ $AD\ is\ common.$ Therefore $ABD\ and\ ADC\ are\ congruent\ by\ RHS.$ We could have also use\ ASA\ or\ SAS\ given\ that $\angle ABD\ = 60^{\circ}\ and\ \angle BAD\ = 180\ -90\ -60\ = 30^{\circ}\ Only\ SSS\ is\ not\ avalid\ proof\ here\ as\ con't\ ye\ show\ BD\ = DC.$ (ii) Given that\ $ABD\ and\ ADC\ are\ congruent\ by\ RHS.$ 171 a. $x\ is\ bx\ bx\ bx\ bx\ bx\ bx\ bx\ bx\ bx\ bx$	162	a.	$2m^3 = 2\ 000\ 000\ cm^3$
$= 12000kg = 12tons$ b. $V = (\frac{1}{2} \times 5 \times 4) \times 30 = 300cm^3$ $\frac{d = \frac{2500}{300} = 8.33g/cm^3}{163}$ a. $x_{lower} = 4.45 \times 3.675 = 16.35375$ $x_{upper} = 4.55 \times 3.685 = 16.76675$ b. $q_{lower} = \frac{2.865^2}{3.5845} = 2.289921886$ $q_{upper} = \frac{2.875^2}{3.5835} = 2.306578$ So $q = 2.3$ to $1dp$ as both bounds are the same to this level of accuracy. 169 a. Option 1: SAS $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS. Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS. Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS. Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 = 30^{\circ}$. only SSS is not a valid proof here as we can't yet show $BD = DC$. (i) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.5}{12} = x = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4} = x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			$m = 2\ 000\ 000 \times 6 = 12\ 000\ 000\ g$
b. $V = (\frac{1}{2} \times 5 \times 4) \times 30 = 300 \ cm^3$ $d = \frac{2500}{300} = 8.33 g/cm^3$ 163 a. $x_{tower} = 4.45 \times 3.675 = 16.35375$ $x_{upper} = 4.55 \times 3.685 = 16.76675$ b. $q_{tower} = \frac{2.865^2}{3.5845} = 2.289921886$ $q_{upper} = \frac{2.875^2}{3.5835} = 2.306578$ So $q = 2.3$ to $1dp$ as both bounds are the same to this level of accuracy. 169 a. Option 1: SAS BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS. Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90°. BD = CA as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS. Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 = 30^{\circ}$ only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.5}{12} x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12} r = 3.75 \ cm$ c. $\frac{x}{3} = \frac{6}{4} x = 4.5$ 172 a. $2BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			$= 12\ 000\ kg = 12\ tons$
$d = \frac{2500}{300} = 8.33g/cm^3$ 163 a. $x_{lower} = 4.45 \times 3.675 = 16.35375$ $x_{upper} = 4.55 \times 3.685 = 16.76675$ b. $q_{lower} = \frac{2.865^2}{3.5845} = 2.289921886$ $q_{upper} = \frac{2.875^2}{3.5835} = 2.306578$ So $q = 2.3$ to 1 dp as both bounds are the same to this level of accuracy. 169 a. Option 1: SAS BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS. Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . BD = CA as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS. Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ACD$ as ΔOAD is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 = 30^{\circ}$. Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{12}{15}$ $x = 10.8m$ b. $\frac{x}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{4} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is		р.	$V = \left(\frac{1}{2} \times 5 \times 4\right) \times 30 = 300 \ cm^3$
163a. $x_{lower} = 4.45 \times 3.675 = 16.35375$ $x_{upper} = 4.55 \times 3.685 = 16.76675$ b. $q_{lower} = \frac{2.865^2}{3.5845} = 2.289921886 \dots$ $q_{upper} = \frac{2.875^2}{3.5835} = 2.306578 \dots$ So $q = 2.3$ to $1dp$ as both bounds are the same to this level of accuracy.169a.Option 1: SAS $BD = CA$ as both are diameters. $\angle OADD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS.0Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS.0Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle AADD = \angle ADC$ as $ADAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.171a. $\frac{\pi}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{\pi}{2} = \frac{5}{1.2}$ $x = 3.75cm$ $c.\frac{\pi}{3} = \frac{6}{4}x = 4.5172a.2BUM = 160^{\circ} (opposite angles of cyclicquadrilateral add to 180, angle at centre is twiceangle at circumference)b.z = 115^{\circ} (angle between radius and tangent is$			$d = \frac{2500}{200} = 8.33g/cm^3$
$x_{upper} = 4.55 \times 3.685 = 16.76675$ b. $q_{lower} = \frac{2.865^2}{3.5845} = 2.289921886$ $q_{upper} = \frac{2.8675^2}{3.5835} = 2.306578$ So $q = 2.3$ to $1dp$ as both bounds are the same to this level of accuracy. 169 a. Option 1: SAS $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle ADD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS. Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS. Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle ADI$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle CABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle ADI$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 = 30^{\circ}$. Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{12.5}$ $x = 10.8m$ b. $\frac{1}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{4} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is	163	a.	$x_{lower} = 4.45 \times 3.675 = 16.35375$
b. $q_{lower} = \frac{2.865^2}{3.5845} = 2.289921886$ $q_{upper} = \frac{2.875^2}{3.5835} = 2.306578$ So $q = 2.3$ to $1dp$ as both bounds are the same to this level of accuracy. 169 a. Option 1: SAS BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS. Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . BD = CA as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS. Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle CABD = \angle ACD$ as $\triangle DAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 = 30^{\circ}$. Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{12}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{4} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is		-	$x_{unner} = 4.55 \times 3.685 = 16.76675$
10. $q_{lower} = \frac{2.875^2}{3.5835} = 2.306578 \dots$ So $q = 2.3$ to $1dp$ as both bounds are the same to this level of accuracy.169a.Option 1: SAS $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA$ as 00° as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle CABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$.171a. $\frac{x}{15} = \frac{18}{12}$ $x = 3.75cm$ $c.\frac{x}{3} = \frac{4}{2}x = 4.5172a.320cm^2b.80 \times 1.5^3 = 270cm^3174a.\angle BUM = 160^{\circ} (opposite angles of cyclicquadrilateral add to 180, angle at centre is twiceangle at circumference)b.z = 115^{\circ} (angle between radius and tangent is$		h	$a = -\frac{2.865^2}{2} = 2.289921886$
$\begin{array}{c c} q_{upper} = \frac{2.875}{3.5835} = 2.306578 \dots \\ \text{So } q = 2.3 \text{ to } 1dp \text{ as both bounds are the same to this level of accuracy.} \\ \hline \text{a. Option 1: SAS} \\ BD = CA \text{ as both are diameters.} \\ \angle OAD = \angle ODA \text{ as } \Delta OAD \text{ is isosceles.} \\ AD \text{ is common.} \\ \text{Therefore } ABD \text{ and } ACD \text{ are congruent by SAS.} \\ \hline \text{Option 2: RHS} \\ \angle BAD = \angle CDA = 90^{\circ} \text{ as angle in semicircle is } 90^{\circ}. \\ BD = CA \text{ as both are diameters.} \\ AD \text{ is common.} \\ \text{Therefore } ABD \text{ and } ACD \text{ are congruent by RHS.} \\ \hline \text{Option 3: ASA} \\ \angle ABD = \angle ACDA \text{ as odth are diameters.} \\ AD \text{ is common.} \\ \text{Therefore } ABD \text{ and } ACD \text{ are congruent by RHS.} \\ \hline \text{Option 3: ASA} \\ \angle ABD = \angle ACD \text{ as angles in same segment are equal.} \\ BD = CA \text{ as both are diameters.} \\ \angle OAD = \angle ODA \text{ as } \Delta OAD \text{ is isosceles.} \\ \text{Therefore } ABD \text{ and } ACD \text{ are congruent by ASA.} \\ \text{b. By RHS:} \\ \angle ABD = \angle ADC = 90^{\circ} \text{ as } AD \text{ is perpendicular to } BC. \\ AB = AC \text{ as } \Delta ABC \text{ is equilateral.} \\ AD \text{ is common.} \\ \text{Therefore } ABD \text{ and } ADC \text{ are congruent by RHS.} \\ \hline \text{We could have also use ASA or SAS given that } \\ \angle ABD = 60^{\circ} \text{ and } \angle BAD = 180 - 90 - 60 = 30^{\circ}. \\ \text{Only SSS is not a valid proof here as we can't yet show BD = DC. \\ \hline \text{(ii) Given that } ABD \text{ and } ADC \text{ are congruent,} \\ BD = DC \text{ thus } BD = \frac{1}{2}BC = \frac{1}{2}AB. \\ \hline 171 \text{ a. } \frac{x}{15} = \frac{1.8}{2.5} x = 10.8m \\ \text{b. } \frac{r}{9} = \frac{5}{12} r = 3.75cm \\ \text{c. } \frac{x}{3} = \frac{6}{4} x = 4.5 \\ \hline 172 \text{ a. } 320cm^2 \\ \text{b. } 80 \times 1.5^3 = 270cm^3 \\ \text{b. } x = 4.5 \\ \hline 174 \\ \text{a. } \angle BUM = 160^{\circ} \text{ opposite angles of cyclic} \\ \text{ quadrilateral add to 180, angle at centre is twice angle at circumference)} \\ \text{b. } z = 115^{\circ} \text{ (angle between radius and tangent is } \\ \hline \end{array}$		υ.	$q_{lower} = \frac{1}{3.5845} = 2.207721000 \dots$
13.5835So $q = 2.3$ to $1dp$ as both bounds are the same to this level of accuracy.169a. Option 1: SAS $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $ABD = \angle ABD = ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{t}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			$q_{ummer} = \frac{2.875}{2.5025} = 2.306578 \dots$
to this level of accuracy.169a. Option 1: SAS $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. 			So $a = 2.3$ to $1dp$ as both bounds are the same
169a.Option 1: SAS BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. AD is common. Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . BD = CA as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC. $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show BD = DC.171a. $\frac{x}{15} = \frac{12}{2.5}$ $x = 10.8m$ b. $\frac{x}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ $b.$ $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			to this level of accuracy.
BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles.AD is common.Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90°.BD = CA as both are diameters.AD is common.Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles.Therefore ABD and ACD are congruent by ASA.b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common.Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.(ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$.171a. $\frac{x}{15} = \frac{18}{2.5} x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12} r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4} x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclicquadrilateral add to 180, angle at centre is twice angle at circumference)b. $z = 115^{\circ}$ (angle between radius and tangent is	169	a.	Option 1: SAS
20AD = 20DA as ΔOAD is isosceles.AD is common.Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° .BD = CA as both are diameters.AD is common.Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment areequal.BD = CA as both are diameters. $\angle OAD = \angle ODA$ as ΔOAD is isosceles.Therefore ABD and ACD are congruent by ASA.b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular toBC.AB = AC as $\triangle ABC$ is equilateral.AD is common.Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30°. Only SSS is not a valid proof here as we can'tyet show BD = DC.(ii) Given that ABD and ADC are congruent,BD = DC thus BD = $\frac{1}{2}BC = \frac{1}{2}AB$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclicquadrilateral add to 180, angle at centre is twiceangle at circumference)b. $z = 115^{\circ}$ (angle between radius and tangent is			BD = CA as both are diameters.
AD is continue.Therefore ABD and ACD are congruent by SAS.Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° .BD = CA as both are diameters. AD is common.Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA.b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC.b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC.b. By RHS: $\angle ABD = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show BD = DC.(ii) Given that ABD and ADC are congruent, BD = DC thus BD = $\frac{1}{2}BC = \frac{1}{2}AB$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $x = 3.75cm$ $c. \frac{x}{3} = \frac{6}{4}x = 4.5172a. 320cm^2b. 80 \times 1.5^3 = 270cm^3174a. \angle BUM = 160^{\circ} (opposite angles of cyclicquadrilateral add to 180, angle at centre is twiceangle at circumference)b. z = 115^{\circ} (angle between radius and tangent is$			$\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles.
Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ $c. \frac{x}{3} = \frac{6}{4}x = 4.5172a. \angle BUM = 160^{\circ} (opposite angles of cyclicquadrilateral add to 180, angle at centre is twiceangle at circumference)b. z = 115^{\circ} (angle between radius and tangent is$			Therefore ABD and ACD are congruent by SAS.
Option 2: RHS $\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is 90° . $BD = CA$ as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $\frac{∠BUM}{320cm^2}$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			
$2BAD = 2CDA = 90^{\circ} \text{ as angle in semicircle is}$ 90°. BD = CA as both are diameters. AD is common. Therefore ABD and ACD are congruent by RHS. Option 3: ASA 2ABD = 2ACD as angles in same segment are equal. BD = CA as both are diameters. $2OAD = 2ODA$ as ΔOAD is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $2ABD = 2ADC = 90^{\circ}$ as AD is perpendicular to BC. $AB = AC$ as ΔABC is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $2ABD = 60^{\circ}$ and $2BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show BD = DC. (ii) Given that ABD and ADC are congruent, BD = DC thus BD = $\frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $2BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			Option 2: RHS
90°.BD = CA as both are diameters.AD is common.Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment areequal.BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles.Therefore ABD and ACD are congruent by ASA.b. By RHS: $\angle ABD = \angle ADC = 90^\circ$ as AD is perpendicular toBC.AB = AC as $\triangle ABC$ is equilateral.AD is common.Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^\circ$ and $\angle BAD = 180 - 90 - 60 =$ 30°. Only SSS is not a valid proof here as we can'tyet show BD = DC.(ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{x}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^\circ$ (opposite angles of cyclicquadrilateral add to 180, angle at centre is twiceangle at circumference)b. $z = 115^\circ$ (angle between radius and tangent is			$\angle BAD = \angle CDA = 90^{\circ}$ as angle in semicircle is
AD= CA as both are diameters.ADis common.Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment areequal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles.Therefore ABD and ACD are congruent by ASA.b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral.AD is common.Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can'tyet show $BD = DC$.(ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{x}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclicquadrilateral add to 180, angle at centre is twiceangle at circumference)b. $z = 115^{\circ}$ (angle between radius and tangent is			90° . BD — C4 as both are diameters
Therefore ABD and ACD are congruent by RHS.Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA.b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			<i>AD</i> is common.
Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{x}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			Therefore <i>ABD</i> and <i>ACD</i> are congruent by RHS.
Option 3: ASA $\angle ABD = \angle ACD$ as angles in same segment are equal. BD = CA as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC. $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			
2ABD = 2ACD as angles in same segment are equal. $BD = CA$ as both are diameters. $\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles. Therefore ABD and ACD are congruent by ASA.b.By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to BC . $AB = AC$ as $\triangle ABC$ is equilateral. AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			Option 3: ASA $(APD = (ACD)$ as angles in same segment are
$BD = CA \text{ as both are diameters.}$ $\angle OAD = \angle ODA \text{ as } \triangle OAD \text{ is isosceles.}$ Therefore ABD and ACD are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ} \text{ as } AD \text{ is perpendicular to}$ $BC.$ $AB = AC \text{ as } \triangle ABC \text{ is equilateral.}$ $AD \text{ is common.}$ Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ} \text{ and } \angle BAD = 180 - 90 - 60 =$ $30^{\circ}. \text{ Only SSS is not a valid proof here as we can't}$ yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC \text{ thus } BD = \frac{1}{2}BC = \frac{1}{2}AB.$ 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			equal.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BD = CA as both are diameters.
Therefore <i>ABD</i> and <i>ACD</i> are congruent by ASA. b. By RHS: $\angle ABD = \angle ADC = 90^{\circ}$ as <i>AD</i> is perpendicular to <i>BC</i> . <i>AB</i> = <i>AC</i> as $\triangle ABC$ is equilateral. <i>AD</i> is common. Therefore <i>ABD</i> and <i>ADC</i> are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show <i>BD</i> = <i>DC</i> . (ii) Given that <i>ABD</i> and <i>ADC</i> are congruent, <i>BD</i> = <i>DC</i> thus <i>BD</i> = $\frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			$\angle OAD = \angle ODA$ as $\triangle OAD$ is isosceles.
b. By RHS: $\angle ABD = \angle ADC = 90^{\circ} \text{ as } AD \text{ is perpendicular to}$ BC. $AB = AC \text{ as } \triangle ABC \text{ is equilateral.}$ AD is common. Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ} \text{ and } \angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is		b	Therefore <i>ABD</i> and <i>ACD</i> are congruent by ASA.
$BC.$ $AB = AC \text{ as } \Delta ABC \text{ is equilateral.}$ $AD \text{ is common.}$ Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ} \text{ and } \angle BAD = 180 - 90 - 60 =$ $30^{\circ}. Only SSS is not a valid proof here as we can't yet show BD = DC.(ii) Given that ABD and ADC are congruent,BD = DC thus BD = \frac{1}{2}BC = \frac{1}{2}AB.171 a. \frac{x}{15} = \frac{1.8}{2.5} x = 10.8mb. \frac{r}{9} = \frac{5}{12} r = 3.75cmc. \frac{x}{3} = \frac{6}{4} x = 4.5172 a. 320cm^{2}b. 80 \times 1.5^{3} = 270cm^{3}174 a. \angle BUM = 160^{\circ} (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference)b. z = 115^{\circ} (angle between radius and tangent is$		υ.	By KHS: $\angle ABD = \angle ADC = 90^{\circ}$ as AD is perpendicular to
$AB = AC \text{ as } \Delta ABC \text{ is equilateral.}$ $AD \text{ is common.}$ Therefore ABD and ADC are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ} \text{ and } \angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^{2}$ b. $80 \times 1.5^{3} = 270cm^{3}$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			<i>BC</i> .
AD is common. Therefore ABD and ADC are congruent by RHS.We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$.(ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$.171a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			$AB = AC$ as $\triangle ABC$ is equilateral.
Therefore <i>ABD</i> and <i>ADC</i> are congruent by RHS. We could have also use ASA or SAS given that $\angle ABD = 60^{\circ}$ and $\angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show <i>BD</i> = <i>DC</i> . (ii) Given that <i>ABD</i> and <i>ADC</i> are congruent, <i>BD</i> = <i>DC</i> thus <i>BD</i> = $\frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			AD is common.
We could have also use ASA or SAS given that $\angle ABD = 60^{\circ} \text{ and } \angle BAD = 180 - 90 - 60 =$ 30° . Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			Therefore <i>ABD</i> and <i>ADC</i> are congruent by RHS.
$\angle ABD = 60^{\circ} \text{ and } \angle BAD = 180 - 90 - 60 =$ $30^{\circ}. \text{ Only SSS is not a valid proof here as we can't}$ yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is			We could have also use ASA or SAS given that
30°. Only SSS is not a valid proof here as we can't yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^\circ$ (angle between radius and tangent is			$\angle ABD = 60^{\circ} \text{ and } \angle BAD = 180 - 90 - 60 =$
yet show $BD = DC$. (ii) Given that ABD and ADC are congruent, $BD = DC$ thus $BD = \frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^\circ$ (angle between radius and tangent is			30°. Only SSS is not a valid proof here as we can't
(ii) Given that <i>ABD</i> and <i>ADC</i> are congruent, <i>BD</i> = <i>DC</i> thus <i>BD</i> = $\frac{1}{2}BC = \frac{1}{2}AB$. 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^\circ$ (angle between radius and tangent is			yet show $BD = DC$.
$BD = DC \text{ thus } BD = \frac{1}{2}BC = \frac{1}{2}AB.$ 171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^\circ$ (angle between radius and tangent is			(ii) Given that ABD and ADC are congruent.
171 a. $\frac{x}{15} = \frac{1.8}{2.5}$ $x = 10.8m$ b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^\circ$ (angle between radius and tangent is			$BD = DC$ thus $BD = \frac{1}{B}C = \frac{1}{A}B$.
b. $\frac{r}{9} = \frac{5}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^\circ$ (angle between radius and tangent is	171	2	$\frac{x}{x} = \frac{1.8}{10}$ $x = 10.8m$
b. $\frac{1}{9} = \frac{1}{12}$ $r = 3.75cm$ c. $\frac{x}{3} = \frac{6}{4}$ $x = 4.5$ 172 a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174 a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^\circ$ (angle between radius and tangent is		а.	15 2.5
c. $\frac{x}{3} = \frac{9}{4}$ $x = 4.5$ 172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference)b. $z = 115^\circ$ (angle between radius and tangent is		b.	$\frac{1}{9} = \frac{1}{12}$ $r = 3.75 cm$
172a. $320cm^2$ b. $80 \times 1.5^3 = 270cm^3$ 174a. $\angle BUM = 160^\circ$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference)b. $z = 115^\circ$ (angle between radius and tangent is		с.	$\frac{x}{3} = \frac{6}{4}$ $x = 4.5$
b. $80 \times 1.5^{\circ} = 270 cm^{\circ}$ 174 a. $\angle BUM = 160^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is	172	a.	$320cm^2$
a. $\angle B U M = 100^{\circ}$ (opposite angles of cyclic quadrilateral add to 180, angle at centre is twice angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is	174	b.	$80 \times 1.5^{\circ} = 270 cm^{\circ}$
angle at circumference) b. $z = 115^{\circ}$ (angle between radius and tangent is	1/4	d.	$\angle DOM = 100$ (opposite angles of cyclic quadrilateral add to 180 angle at centre is twice
b. $z = 115^{\circ}$ (angle between radius and tangent is			angle at circumference)
		b.	$z=115^{\circ}$ (angle between radius and tangent is
90, angles in quadrilateral sum to 360)			90, angles in quadrilateral sum to 360)
c. $\angle DBA = 39^{\circ}$ (Alternate Segment Theorem)		С.	$\angle DBA = 39^{\circ}$ (Alternate Segment Theorem)

	$\angle DAB = 77^{\circ}$ (opposite angles of cyclic
	quadrilateral add to 180)
	$\angle ADB = 180 - 77 - 39 = 64^{\circ}$ (angles in
	triangle sum to 180)
178	$d = \begin{pmatrix} -4 \\ 2 \end{pmatrix} e = \begin{pmatrix} -4 \\ -4 \end{pmatrix} f = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
179	(i) $\overrightarrow{SQ} = -b + a \text{ or } a - b$
	(ii) $\overrightarrow{NR} = \overrightarrow{NQ} + \overrightarrow{QR}$
	$=\frac{2}{-(-h+a)}+h$
	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	$=-\frac{2}{\pi}b+\frac{2}{\pi}a+b$
	$=\frac{2}{5}a+\frac{3}{5}b$

Data Handling and Probability

181	$\frac{50}{200} \times 45 = 11.25$ so 11 boys
200ii	a. $(135 \times 11) - (140 \times 10) = 85g$
	b. $\frac{(25 \times 130) + (15 \times 120)}{40} = 126.25$
	c. $\frac{(60 \times 115) - (20 \times 120)}{50} = 113$
201	$Mean = \frac{(80 \times 6) + (95 \times 20) + (115 \times 7) + (145 \times 1)}{6}$
	= 97.9
202	(a) Modal class interval = $4 < x \le 6$

	(b) Median class interval: $4 < x \le 6$ (as
	25 th item occurs within this interval)
212	a. $\frac{22}{36} = \frac{11}{18}$
24.4	$\begin{array}{c} \textbf{D.} A\textbf{U}, A\textbf{D}, A\textbf{E}, B\textbf{U}, B\textbf{D}, B\textbf{E} \\ (1) \textbf{O}, 22, 12, 0, 0, 41. (1) \\ (2) \textbf{O}, 22, 12, 0, 0, 41. (1) \\ (3) \textbf{O}, 12, 0, 0, 41. (1) \\ (4) \textbf{O}, 12, 0, 0, 12, 0, 0, 41. (1) \\ (4) \textbf{O}, 12, 0, 0, 0, 12, 0, 0, 12, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
214	(1) $0.32 \times 0.13 = 0.0416$
	(ii) $(0.68 \times 0.13) + (0.32 \times 0.87)$
	= 0.3668
215	a. 10p 10p 5p: $\frac{7}{10} \times \frac{6}{9} \times \frac{3}{8} = \frac{7}{40}$
	10p 5p 10p: = $\frac{7}{40}$
	5p 10p 10p: = $\frac{7}{40}$
	Therefore probability is $3 \times \frac{7}{40} = \frac{21}{40}$
	b. GB: $\frac{6}{10} \times \frac{3}{10} = \frac{18}{100}$ BG: $\frac{3}{10} \times \frac{6}{10} = \frac{18}{100}$
	Probability is $\frac{10}{100} + \frac{100}{100} + \frac{18}{100} = \frac{9}{25}$
	c. BWG: $\frac{5}{11} \times \frac{3}{10} \times \frac{3}{9} = \frac{1}{22}$
	BGW: = $\frac{1}{22}$
	WBG, WGB, GWB, GBW also give $\frac{1}{22}$
	So probability is $\frac{1}{22} \times 6 = \frac{3}{11}$