GCSE to BTEC Applied Science unit 1 - bridging the gap pack 1

Overview -

BTEC applied science starts with a compulsory externally examined unit called Unit 1

- Principles and applications of science 1.

It is a blend of biology, chemistry and physics topics.
Unit 1 covers; animal and plant cells; tissues; atomic structure and bonding; chemical and physical properties of substances related to their uses; waves and their application in communications. There is a written examination consisting of 3 separate papers that are put together to give you a Pass, Merit or Distinction(*) grade. The exam normally take place in January and students can be entered for a second attempt in June.

To help you to retain knowledge in these areas from your GCSE course this bridging pack will help you revise relevant areas that are revisited and expanded in the BTEC course. There are 12 lessons and all work needs to be completed by the 31 ${ }^{\text {st }}$ of May 2020.

The work highlighted in green is what I would like you to photograph and /or send to me for marking at the end of each lesson.

Lesson	GCSE topic for revising	1 hour Task
1	Structure and function of Plant cells	Starter - Label a plant cell Main - Create a revision poster describing the appearance of each of the organelles of a plant cell and explaining what their function is. Plenary - Past paper question on plant cells
2	Structure and function of Animal cells	Starter - Label an animal cell Main - Create a revision poster describing the appearance of each of the organelles of an animal cell and explaining what their function is. Retrieval practice table
3	Tissues	Starter - Put key words in order Main - Draw flow diagrams of human organ systems Plenary - Past paper question on the blood and blood vessels
4	microscopy	Starter - Revise structure and function of a light microscope Main A - Create instruction leaflets/worksheets on how to
prepare microscope slides and view them under a light		
microscope and an electron scanning microscope		

		Main B-Microscopy calculation revision using BBC bitesize then complete calculations worksheet Plenary - Past paper question
5	The structure of the atom and isotopes	Starter - Revise atomic structure and isotopes using bbc bitesize Main - Questions on isotopes and atomic structure Plenary -
6	Ionic, covalent and Metallic Bonding and structures	Starter - Define the three types of chemical bond Main - Create a knowledge organiser of the types of chemical bond, their properties and example structures Plenary - Complete the comparison table
7	Structure of the periodic table including trends in Group1 and Group 7	Starter - Retrieval practice on bonding using assignment on Seneca learning Main - Complete the revision pack on the periodic table Plenary - Summary flash cards
8	Calculations such as Mr, number of moles, empirical formula, etc	Starter - Revise relative molecular mass online Main - Complete the calculations tasks Plenary - 3 Find the formula questions
9	Properties of waves	Starter - Matching ideas about different waves Main - Knowledge organiser poster on properties of longitudinal and transverse waves Plenary - Past paper questions
10	The wave equation	Starter - Retrieval practice on wave forms Main - Wave equation practice Plenary - Past paper question
11	The EM spectrum	Starter- Revise EM spectrum using BBC bitesize and take the test - Send in your score via email Main- Complete the knowledge organiser placemat Plenary-Complete the past paper questions
12	Ultrasound and infrasound	Starter - Watch the you tube clip and make notes Main - complete the Tasks based on the videos about ultrasound and infrasound Plenary - Past paper questions

Lesson 1 - structure and function of Plant cells

Starter - Label this plant cell diagram with the names of the organelles

Main activity - use a GCSE revision guide or the internet to create a revision poster describing the appearance of each of the 8 organelles of a plant cell and explaining in detail what their function is.

Plenary - testing your understanding complete this past paper question
Question 1 (a) (i) This plant cell also contains chloroplasts, a cell wall and a vacuole. Label each of these parts on the diagram.

(ii) Complete the table giving the function of these parts of a plant cell.

Chloroplast	
Cell wall	
Vacuole	

Q1 (a) (i) one mark for each correctly labelled part
cell wall
do not accept anything inboard of the inner edge vacuole accept anything inboard of transplant
chloroplast: site of photosynthesis/ for photosynthesis accept word equation or balanced equation
cell wall: supports the cell/keeps the shape/keeps it rigid do not accept protects the cells
(ii) vacuole: acts as reservoir for water / chemicals/(cell)/sap
or
keeps cell turgid/pushes content to edge
or
maintains concentration gradient
or
allows cell elongation (not growth)

Lesson 2 - structure and function of animal cells

Starter - Label this plant cell diagram with the names of the organelles

Main activity - use a GCSE revision guide or the internet $+n$ rreate a revision poster describing the appearance of each of the 5 organelles of a plant cell an laining in detail what their function is. Retrieval practice - Draw a table of all the organelles in plant and animal cells with the headings of the one below

Name of the organelle	Only in plant cells	Only in animal cells	Common to both plant and animal cells

Plenary - complete this past paper question on animal cells and green pen your work using the mark scheme

Q1.
The diagram shows an animal cell.

(a) Complete the table below naming each labelled part and give its function.

Part	Name	Function
A		
B		
C		

Q1.
(a) A cytoplasm
where (chemical) reactions take place
do not accept where cell functions take place

or

carries/holds the organelles/named organelles / named chemicals (including nutrients)
do not accept keeps the shape of the cell
or
contains water
or
presses out on the membrane
allow: keeps cell turgid
allows transport through the cell
B membrane
do not accept by themselves:
protects cell
gives shape
controls what enters/leaves the cell
or
contains the cell/holds the cell together
do not accept keeps harmful substances out
or
allows movement into and out of the cell C nucleus
contains the genetic
material/DNA/genes/chromosomes
do not accept:
brain of the cell
stores information/instructions tells cell what to do
or
controls (the activity) of the cell

Lesson 3 - Tissues

Starter - Place the following structures in order of size smallest to largest

Cells, organism, organs, Organelles, tissues, organ systems

Main Activity - Draw 6 separate flow-diagrams giving an example of a tissue from each of the body's organ systems- see the example below of how to lay out a flow-diagram

The body's systems are

- Circulatory (example)
- Nervous
- Muscular- skeletal
- Endocrine
- Excretory
- Digestive
- Reproductive

Plenary - The circulatory system has some very specialised tissues in blood vessels and the blood. Complete the following question on blood vessels and the blood using a revision guide or the internet to help you. Mark your work using the markscheme.

1. The drawings show the structure of three types of blood vessel, \mathbf{A}, \mathbf{B} and \mathbf{C}. They are drawn to the scales indicated.

A

B

C
(a) Name the three types of blood vessel.

A
B \qquad
C \qquad
(b) Describe the job of blood vessel B.
\qquad
\qquad
\qquad
\qquad
2. (a) What type of blood vessels join arteries to veins?
\qquad
(b) How are oxygen and carbon dioxide carried in the blood?
\qquad
\qquad
\qquad
(c) List three things that are carried around the body in the blood plasma.

1. \qquad
2.
3. \qquad
4. Capillaries are blood vessels in the body which join the arteries to the veins. They have walls which
are one cell thick and so are able to exchange substances with the body cells.
(i) Name two substances that travel from the muscle cells to the blood in the capillaries.
5. \qquad
2 \qquad
(ii) Glucose is one substance that travels from the blood in the capillaries to the body cells. Explain how this happens.
\qquad
\qquad
\qquad
6. The diagram shows a red blood cell.

(a) What is the function of red blood cells?
\qquad
\qquad
(b) Explain, as fully as you can, how the structure of a red blood cell is related to its function.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q1.
(a) (i) transport of substances or named substance or blood around the body each for 1 mark
(ii) breaks down (not digests) food absorption (into blood) each for 1 mark
(b) water filtered from blood smaller proportion reabsorbed therefore larger volume of dilute urine produced each for 1 mark

Lesson 4 - Microscopy

Starter - Microscope revision - Copy this diagram and its labels onto an A4 sheet - use your paper in the landscape orientation. Now, match the function of each part of the microscope to a label and add the function information to your drawing.

Eyepiece Lens	This keeps the microscope steady on the desk and stops it from tipping over.
Objective Lens	This is used to get the microscope slide into focus so that you can see the image clearly.
Stage	There are three lenses of different strengths which can be used to look at the slide in more detail.
Diaphragm	This is the place where you put a microscope slide. tens times bigger than real life.
Light	This is used to get the microscope slide into focus so that the image is very sharp and clear.
Base	This controls the amount of light that goes onto the microscope slide.
Arm	This holds the eyepiece lens above the stage.
Fine Focus Knob	This projects light onto the microscope slide.
Coarse Focus Knob	

Main activity

Main activity A -

1. Use your revision guide or the Internet to write an instruction leaflet or worksheet to advise students on how to prepare a cheek cell microscope slide and how to view it under a light microscope. Also draw a micrograph of what they should see using the maximum objective lens.
2. Use the internet to describe how specimens are prepared to be able to be observed using an electron microscope
3. Give 3 advantages of using an electron microscope rather than a light microscope and 1 disadvantage.

Main activity B - go to https://www.bbc.co.uk/bitesize/guides/zpqpqhv/revision/1
Work through the Cell measurement section and complete the microscopy calculation question.
Now complete this worksheet

Microscopy Practice Calculations

1.

Convert the following distances:
A. $5 \mathrm{~mm}=$ \qquad $\mu \mathrm{m}$
E. $10 \mathrm{um}=$ \qquad mm
B. $2.5 \mathrm{~mm}=$ \qquad $\mu \mathrm{m}$
F. $\quad 2.9 \mathrm{~mm}=$ \qquad $\mu \mathrm{m}$
C. $8 \mathrm{o} \mu \mathrm{m}=$ \qquad mm
D. $7.4 \mathrm{~mm}=$ \qquad $\mu \mathrm{m}$
G. $1.7 \mathrm{~mm}=$ \qquad $\mu \mathrm{m}$
H. $\quad 47 \mathrm{um}=$ \qquad mm
2. A microscope has a magnification of $X 40$. At this magnification, the field of view is 5 mm . What is the field of view when the magnification is $X 80$? \qquad
3. A microscope has a magnification of X_{400}. At this magnification, the field of view is 200 um. How big will the field of view be if the magnification is changed to X_{100} ?
4. Fill in the table below:

Ocular	Objective	Magnification
X_{5}	X_{10}	
X_{5}		X_{100}
X_{10}		X_{200}

5. Fill in the table below:

The pattern is:

If the magnification is multiplied by two, the field of view is halved.
If the magnification is multiplied by three, the field of view is divided by three.
If the magnification is multiplied by ten, the field of view is divided by ten.
(Can you see the pattern?!

Magnification	Field of view
$\times 40$	80 mm
$\times 80$	
X_{160}	
$\times 400$	
$\times 800$	

Plenary/retrieval practice - Complete the past paper question and the Calculations worksheet

Q1.
The image below shows part of a root from a cress plant.

(a) What type of microscope was used to create the image above?
(b) The magnification of the cress root in the image above is $\times 200$.

There are 1000 micrometres $(\mu \mathrm{m})$ in a millimetre (mm).
Calculate the real length of the root hair, \mathbf{X}.
Give your answer in micrometres ($\mu \mathrm{m}$).
\qquad
\qquad
\qquad
\qquad
Real length $\mathbf{X}=$ \qquad $\mu \mathrm{m}$
(c) Root hair cells take up water from the soil.

Explain one way in which the root hair cell is adapted to this function.
\qquad
\qquad
\qquad
\qquad

The table shows the water uptake by a plant's roots on two different days.

	Mean water uptake in $\mathbf{c m}^{\mathbf{3}}$ per hour
Cold day	1.8
Hot day	3.4

(d) Explain why the mean rate of water uptake is higher on a hot day than on a cold day.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) The concentration of mineral ions in the soil is lower than in root hair cells.

Root hair cells take up mineral ions from the soil.
Root hair cells contain mitochondria.
Explain why root hair cells contain mitochondria.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1 (a) electron (microscope)
(b) $\frac{30000}{200}$
an answer of 150 ($\mu \mathrm{m}$) scores 2 marks

150 ($\mu \mathrm{m}$)
if answer is incorrect allow for $\mathbf{1}$ mark sight of 0.015 / 0.15 /
1.5 / 15
allow ecf for incorrect measurement of line \boldsymbol{X} for max $\mathbf{1}$ mark
(c) either
large surface area
allow (vacuole contains) cell sap that is more concentrated than soil water (1)
for more / faster osmosis
create / maintain concentration / water potential gradient (1)
or
allow thin (cell) walls
for short(er) diffusion distance
(d) (on hot day) more water lost
allow converse for a cold day if clearly indicated
more transpiration
or
more evaporation
so more water taken up (by roots) to replace (water) loss (from leaves)
(e) (aerobic) respiration occurs in mitochondria
do not accept anaerobic respiration
(mitochondria / respiration) release energy
do not accept energy produced / made / created
(energy used for) active transport
to transport ions, against the concentration gradient
or
from a low concentration to a high concentration

Lesson 5 - The structure of the atom and isotopes

Starter - Go to https://www.bbc.co.uk/bitesize/guides/z3sg2nb/revision/6 work through the 6 revision pages making notes as necessary then check your understanding by taking the test.

Main - Complete the following 4 questions

Isotopes are copies of an element, that have the same proton (atomic) number, but different mass numbers/number of neutrons in the nucleus.

- Identify the isotopes, then write the name of the element.

1.

name:
2.

name:
3.

name:
4. Complete the table.

	No. of protons	No. of neutrons	No. of electrons
24 \mathbf{X} 13			
28	13	13	
\mathbf{X}			13
13			

Radioactivity and atomic structure

Atomic Structure Rule Box

1. The number of protons in the nucleus is called the atomic or proton number.
2. The number of nucleons (neutrons + protons) is called the mass number.
3. In a neutral atom, number of electrons $=$ number of protons.
4. Isotopes of an element have the same number of protons in the nucleus but different numbers of neutrons.

Questions

1. An isotope of carbon contains 6 protons and 8 neutrons.
a) What is its atomic number? \qquad
b) What is its mass number? \qquad
c) Write down the symbol for this isotope \qquad
d) How many electrons would a neutral atom have?
2. Complete this table

Symbol	Number of protons	Number of neutrons	Number of electrons	Atomic number	Mass number
${ }^{{ }_{2}^{4} \mathrm{He}}$	2	2			
${ }_{2}^{12} \mathrm{C}$					
${ }_{6}^{12}$	6	8			
${ }_{8}^{16} \mathrm{O}$				17	
54 Fe	8	30		26	
26					

3. Which of the atoms in this table are isotopes of the same element?

Plenary- Complete this past exam paper question and mark it using the mark-scheme

Q1.

This question is about atoms and isotopes.
(a) Atoms contain protons, neutrons and electrons.

A lithium atom has the symbol ${ }^{7} \mathrm{Li}$
Explain, in terms of sub-atomic particles, why the mass number of this lithium atom is 7 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Amounts of substances can be described in different ways.

Complete the sentences.
One mole of a substance is the relative formula mass in

The relative atomic mass of an element compares the mass of an atom of an element with the mass of an atom of
\qquad
(c) Two isotopes of oxygen are ${ }_{8}^{18} \mathrm{O}$ and ${ }_{8}^{16} \mathrm{O}$

Describe the similarities and differences between the isotopes ${ }_{8}^{18} \mathrm{O}$ and ${ }_{8}^{16} \mathrm{O}$
You should refer to the numbers of sub-atomic particles in each isotope.
\qquad
\qquad
\qquad
\qquad

Mark schemes

Q1.

(a) because this lithium atom has

3 protons
and 4 neutrons
mass number is total of neutrons and protons
accept protons and neutrons have a mass of 1
accept number of neutrons $=7-3$ (protons)
ignore mass of electron is negligible
(b) grams
accept g
${ }^{12} \mathrm{C}$
allow carbon-12 or C-12
ignore hydrogen or H
(c) any three from:
max 2 if no numbers given
numbers if given must be correct

- both have 8 protons
accept same number of protons
- $\quad{ }^{18} \mathrm{O}$ has 10 neutrons
- $\quad{ }^{16} \mathrm{O}$ has 8 neutrons
accept different number of neutrons or ${ }^{18} \mathrm{O}$ has two more neutrons for 1 mark
- both have 8 electrons.
accept same number of electrons

Lesson 6 - lonic, covalent and Metallic Bonding and structures

Starter - Go to https://www.youtube.com/watch?v=QXT4OVM4vXI for a brief recap of chemical bonding. Write a definition for all 3 types of chemical bond. Metallic, covalent and ionic.

Main - Go to
https://cmat.sharepoint.com/SVAIntranet/Departments/Science/Student\ Documents/Forms/Allltems.aspx ? viewid=1b245e86\%2D359c\%2D44ac\%2D96f4\%2D49b32c488a40\&id=\%2FSVAIntranet\%2FDepartments\%2FSci ence\%2FStudent\%20Documents\%2Fkey\%20stage\%205\%2FBTEC\%20bridging\%20packresources
The power-point presentation is called Types of bonding and the first slide looks like this
Work through the slides making notes and copying diagrams to create a knowledge organiser

1. Simple covalent bonding

Normally small molecules made from non-metals bonded to non-metals

Methane, CH_{4}

Ammonia, NH_{3}

Sulfur dioxide, SO_{2}

But it also applies to relatively large molecules, like proteins and polymers

Nylon

Plenary - complete the following task

Use this list to complete the table of the three types of chemical bond

- Metal and non-metal atoms
- Non-metal atoms only
- Metal atoms only
- Form giant lattices that are easy to crush
- Forms a strong lattice structure with
- Form molecules with weak forces of attraction so are mainly gases and liquids
- High melting point and boiling point
- High melting point and boiling point
- Low melting point and boiling point
- Many are soluble in water
- Are not soluble in water
- Are not soluble in water
- Some are magnetic
- Not magnetic
- Mot magnetic
- Will conduct electricity when solid or molten
- Will not conduct electricity
- Will conduct electricity when molten or dissolved in water
- Water need for life
- Copper -used in wiring electrical appliances
- Sodium chloride -used to flavour food

PropertyBonding Type	lonic	Covalent (simple)	Metallic
Which types of atoms does it involve?			
How are they structured?			
An example of the bonding type is			
What is the melting point or boiling point like?			
Are they magnetic?			
Are they soluble in water?			
Do they conduct electricity when solid liquid, gas or dissolved?			
Give an example substance with a use			

Lesson 7-Periodic table and group 1 and 7 elements

Starter - Retrieval practice - Use the link email to you to access Seneca Learning and complete the assignment

Main- Complete the following tasks

Fill in the missing words

Elements are arranged in rows and columns in the periodic table in order of increasing atomic mass. The vertical \qquad are called groups and the \qquad rows are called periods. Li, \qquad and K are in the same group while N, \qquad , F are in the same period.

Elements in the same groups have the same number of electrons in their outer \qquad . For example, all the elements in \qquad have 7 electrons on their outer shells. Elements in the same groups have similar \qquad and physical properties

Some groups have specific names: Group 1 elements are called Alkali, Group 2 Alkali Earth metal, Group 7 - halogen, Group 0- Noble Gases. Elements in the same period have the same number of outer shells.

O, Group VII, columns, horizontal, chemical, shells, Na

Elements in Group 7 (halogens)

A. Write down the names or symbols of the first 5 elements in Group 7

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
B. Write down the electron arrangement for Fluorine and Chlorine
6. Fluorine: atomic number 9 : \qquad
7. Chlorine: Atomic number 17: \qquad
C. Draw the arrangement of fluorine and Chlorine below

D. What do you notice about the number of electrons in the outer shell?
E. how many more electrons would it need to make a full shell? \qquad
Trends in Group 7 - The Halogens - Look at the table below:

halogen	atomic number	boiling point $\left({ }^{\circ} \mathrm{C}\right)$
fluorine	9	-188
chlorine	17	-34
bromine	35	58
iodine	53	184

Ploll this information on the graph below

Questions

1 What is the pattern going down Group 7?

2 Which halogens are gases at room temperature $\left(25^{\circ} \mathrm{C}\right)$?

3 Astatine is below iodine in Group 7.
Predict its physical state at room temperature.

Trends and properties of group 7

I. Complete the table to describe their appearance of chlorine, bromine and iodine by using research from the information in your revision guide or on the internet

Halogen	State at room temperature (25)	Appearance	Atomic number
Fluorine			
Chlorine			
Bromine			
Iodine			

II. Research the use of at least two of the group VII elements.
1.
2.
III. Note one interesting fact from your research.

Trends in group 1 - The alkali metals

A. Write down the names or symbols of the first 5 elements in Group I

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
B. Write down the electron arrangement for $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$
6. Lithium: atomic number 3: \qquad
7. Sodium: Atomic number 11: \qquad
8. Potassium Atomic number 19 \qquad
C. Draw the arrangement of $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ below:

C. What do you notice about the number of electrons in the outer shell?
E. how many more electrons would it need to make a full shell? \qquad

Trends in group 1 - The alkali metals Look at the table below:

Element	Atomic number	Melting point $\left({ }^{\circ} \mathrm{C}\right)$
Lithium	3	180
Sodium	11	98
Potassium	19	63
Rubidium	53	39
Casesium	5	

Questions

1. How does the melting point change as you go down Group 1?
2. What state are these elements likely to exist in at room temperature?
3. How does the size of the atom change as you go down a group?
4. Describe how the size of the atom changes with the melting point.
5. Francium is below Caesium in the periodic table. Suggest what the melting point may be?
6. What state do you predict francium to be in at room temperature?

Reaction of alkali metals with water:

I. Complete the table to describe their appearance and reactions of alkali metals with water using: research from the internet at https://www.youtube.com/watch?v=0KonBvfnzdo

Record what CHANGES that you SEE happen, in the table below.

METAL	SYMB OL	APPEARANCE	OBSERVATIONS
lithium			
sodium			
potassium			

1. Use your observations to put the metals in order of their reactivity.

Highest 1. \qquad 2. \qquad 3. \qquad Lowest
2. Why did you put them in this order?
3. Which gas was produced? \qquad .
(b) How do you know? \qquad
4. What type of solution is formed from the reaction of alkali metals with water?
\qquad -.
(b)How do you know? \qquad
Trends in group 2 - The alkali earth metals
A. Write down the names of the first 5 elements in Group II

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
D. Write down the electron arrangement for Be, Mg
6. Lithium: atomic number 4 : \qquad
7. Sodium: Atomic number 12: \qquad
C. Draw the arrangement of Be, Mg

D. What do you notice about the number of electrons in the outer shell?
E. how many more electrons would it need to make a full shell? \qquad

Elements in Group O (noble gases)

A. Another name for noble gases is inert gases. Why do you think inert means?
B. Write down the names or symbols of the first 5 elements in Group 0

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
C. Write down the electron arrangement for $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$,
6. Helium: atomic number 2 : \qquad
7. Neon: Atomic number 10: \qquad
8. Argon: Atomic number 18: \qquad
D. Draw the arrangement of $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$ below:

E. What do you notice about the number of electrons in the outer shell?

Plenary - Complete 3 summary revision flash cards, 1 on the "rules of the periodic table, 1 on group 1 elements and 1 on group 7 elements

Starter - Go to https://www.youtube.com/watch?v=q49NwIrjaFw and revise Relative molecular mass. Make notes as necessary.

Main

RELATIVE MOLECULAR MASS

Chemists cannot weigh atoms directly, but they can compare the weight of atoms with each other. This gives us the relative atomic mass or $\mathbf{A}_{\mathbf{r}}$. This gives a relative mass compared with the ${ }^{12} \mathrm{C}$ isotope, which is given the value of 12.000 . It has no units because it is a ratio. On this scale, $A_{r}(H)=1.0097$ (it is not a whole number because it is an average for the different isotopes which have different A_{r} values.) and $A_{r}(O)=15.999$. Some periodic tables round up the A_{r} values, or quote the mass number instead which is the relative mass of an individual isotope.
To find the relative mass of a compound, we add up the relative masses of all the atoms present. This means we have to take into account the numbers in the formula (the stoichiometries!)
The result is called the relative molecular mass $\left(M_{r}\right)$ for small molecules, but for giant structures we call it the relative formula mass.

$$
\begin{aligned}
& \text { eg from the periodic table, } A_{r}(\mathrm{Na})=23 \text { and } A_{r}(\mathrm{Cl})=35.5 \\
& \text { so the relative formular mass of } \mathrm{NaCl}=23+35.5=37.5 \\
& \text { and for } \mathrm{NH}_{3}, \mathrm{~A}_{\mathrm{r}}(\mathrm{~N})=14 \text { and } \mathrm{A}_{\mathrm{r}}(\mathrm{H})=1 \\
& \text { so } M_{r}\left(\mathrm{NH}_{3}\right)=14+1+1+1=17 \\
& \text { and for glucose, } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\
& \mathrm{M}_{\mathrm{r}}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=(6 \times 12)+(12 \times 1)+(6 \times 16) \\
& =72+12+96 \\
& =180
\end{aligned}
$$

Calculate the relative molecular mass or relative formular mass of the following compounds...

Formula	calculation	M_{r} or RFM
$\mathrm{H}_{2} \mathrm{O}$		
SO_{2}		
NaEr		
CaCl_{2}		
LNO_{3}		
HNO_{3}		
$\mathrm{C}_{2} \mathrm{H}_{6}$		
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$		
SF_{6}		
∞		
CO_{2}		
N_{3}		
$\mathrm{Mg}_{\left(\mathrm{NO}_{3}\right)_{2}}$		
$\mathrm{AlOH})_{3}$		
PCl_{5}		
AgNO_{3}		
BaSO_{4}		
$\mathrm{H}_{2} \mathrm{SO}_{4}$		
O_{3}		

Mole Calculations

Calculate M_{r} for each of the following then use the equation above to calculate the number of moles. An example is done for you.

$$
\begin{array}{ll}
88 g \text { of } \mathrm{CO}_{2} & M_{r}=12+(16 \times 2)=44 \\
\text { No. of moles }=\frac{\text { mass }}{M_{r}}=\frac{88}{44}=2 \mathrm{moles}
\end{array}
$$

1. 146 g of HCl
2. 20 g of NaOH
3. 25.5 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$
4. 73.6 g of NO_{2}
5. 15 g of CaCO_{3}
6. 47.7 g of CuO
7. 192 g of Br_{2}
8. 12 g of MgO
9. 9.8 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$
10. 6.3 g of HNO_{3}
11. 11.2 g of KOH
12. 6.6 g of Xe
13. 1.6 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
14. $19.2 \mathrm{~g}_{\text {of }} \mathrm{SiO}_{2}$
15. 8.92 g of $\mathrm{Mg}(\mathrm{OH})_{2}$

Rearrange the equation to calculate the mass of the following. An example is done for you.

3 moles of NH_{3}

$$
\begin{aligned}
& M_{r}=14+(1 \times 3)=17 \\
& \text { Mass = moles } \times M_{r}=3 \times 17=51 g
\end{aligned}
$$

1. 2 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$
2. 5 moles of MgO
3. 1.5 moles of NH_{3}
4. 0.7 moles of Br_{2}
5. 1.3 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
6. 21 moles of CuO
7. 0.6 moles of HNO_{3}
8. 1.2 moles of NO_{2}
9. 1.4 moles of CaSO_{4}
10. 2.1 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
11. 1.3 moles of MgCl_{2}
12. 0.4 moles of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

CALCULATING EMPIRICAL FORMULA

You will need to refer to a periodic table to find values for relative atomic masses of the elements. Use the data presented in each question to calculate the empirical formula for each of the compounds. The first one has been completed for you as an example.

1. A compound which contains 11.6% nitrogen and 88.4% chlorine.

List the elements present:
What is the \% or mass?
Divide by the A_{r} of each element

This gives a ratio between the elements
Divide by the smallest number
$=\underline{0.8286}$
$=2.4901$
0.8286

1

11.6

14

Simplest whole number ratio is \square五
2. A compound which contains 40% sulphur and 60% oxygen.
3. A compound which contains 37.21% carbon, 7.75% hydrogen and 55.04% chlorine.

Plenary- Find the formula of each of the following.

1. Iron oxide, in which 11.2 g of iron combine with 3.2 g of oxygen gas.
2. Carbon fluoride, where 24 g of carbon react with 152 g of fluorine.
3. Methane, in which 2.4 g of carbon combine with 0.8 g of hydrogen gas.

Lesson 9 Properties of Waves

Starter - revisit these ideas about waves and complete the matching task

The nature of waves

1. Waves (level 3/4)

Waves are vibrations (movements up and down) that move.
They transfer energy from one place to another.
There are lots of different types of wave.
Task 1: In your books state the type of wave and match it to its description.

1. Sound waves

2. Radio waves

3. Seismic waves

4. X-Rays

5. Light waves

6. Water waves

Travels through the ground and causes earthquakes.	These types of wave allow us to see.

High energy
waves, passes
through some
solid objects.
Can be
developed on
photographic
film.

Can be used to
carry
information
between
electronic
devices.

Can be caused
by the Moon
orbiting the
Earth, or by
something
hitting the
surface.

Travels through air, allows us to hear noises.

Main activity - Using this diagram create a revision poster that has the following keywords on it explaining the properties of longitudinal and transverse waves. Add as much information as you can.

Longitudinal, transverse, wavelength, peak, trough, rarefaction, compression, frequency, period, direction of wave, sound, light, amplitude,

Finally add the ideas below about how waveforms change with amplitude and wavelength to your poster

Plenary - Complete the past paper questions and mark them using the markscheme

Q1.
Waves may be longitudinal or transverse.
(a) Describe the differences between longitudinal waves and transverse waves.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.
(a) The student is using a microphone connected to a cathode ray oscilloscope (CRO).

The CRO displays the sound waves as waves on its screen. What does the microphone do?
\qquad
\qquad
\qquad
(b) The amplitude, the frequency and the wavelength of a sound wave can each be either increased or decreased.
(i) What change, or changes, would make the sound quieter?
\qquad
(ii) What change, or changes, would make the sound higher in pitch?
\qquad

Q3.
Some students made a small hand-turned a.c. generator, similar to a bicycle dynamo. They connected it to the Y plates of a cathode ray oscilloscope, CRO, and turned the generator slowly. The trace on the CRO looked like this:

They then turned the generator faster and the trace looked like this:

(a) Why did the trace on the CRO show:
(i) an increase in frequency;
\qquad
(ii) a decrease in wavelength;
\qquad
(iii) an increase in amplitude?
\qquad
(b) One way to alter the output from the generator is to change the speed of turning. State two other ways to adapt parts of the generator to increase its output.
\qquad
\qquad

Lesson 10-The wave equation

Starter- retrieval practice - From memory complete this labelling task

Main Activity - The wave equation calculation practice

Calculating Wave Speed

Wave speed is the speed at which energy is transferred (or the wave moves) through a medium.

All waves obey the following equation:
Wave speed $(\mathrm{m} / \mathrm{s})=$ frequency $(\mathrm{Hz}) \mathrm{x}$ wavelength (m)

$$
V=f \lambda
$$

Take note of the units used for each of the variables - meters per second, hertz and meters.

Using this information complete the following calculations

Calculate the following:

1. The speed of a wave with a frequency of 10 kHz and a wavelength of 2 m .
2. The speed of a wave with a wavelength of 50 cm and a frequency of 4 kHz
3. The frequency of a wave travelling at $500 \mathrm{~m} / \mathrm{s}$ with a wavelength of 25 m
4. The speed of a radio wave with a wavelength of 3000 m and a frequency of 100 kHz
5. The speed of a wave with a frequency of 30 M Hz and wavelength of 10 m
6. The wavelength of a wave travelling at $11 \mathrm{~km} / \mathrm{s}$ with a frequency of 5.5 kHz
7. The frequency of the wave below, which is travelling at $9 \mathrm{~km} / \mathrm{s}$

Plenary - Past paper question complete them and mark them with the markscheme.

Q1.

(i) Use the words frequency, wavelength and wave speed to write an equation which shows the relationship between them.
\qquad
(ii) Calculate the speed of a sound wave with a frequency of 250 Hz and a wavelength of 1.3 m .

Show how you get to your answer and give the unit.
\qquad
\qquad
Speed = \qquad
(Total 3 marks)

Q2.

Some students did an investigation to study the behaviour of waves.
The figure below shows a ripple tank that they used to model the behaviour of waves.

(a) Complete the wave fronts on the figure above.

Show how the wave is refracted as it passes from the shallow region into the deep region.
(b) Explain what happens to the waves as they pass into the deep region.
\qquad
\qquad
\qquad
(c) The waves generated on the surface of the water are transverse waves.

Describe the differences between longitudinal waves and transverse waves.
You may include labelled diagrams to help your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Some students investigate the properties of the waves generated in the figure above.

Student A says 'the waves move water from one end of the tank to the other'.
Student B says 'that's wrong. Only the waves move, not the water'.
Suggest what the students could do to decide which of them is correct.
\qquad
\qquad
\qquad
\qquad
(e) Another student uses a ripple tank where all the water is the same depth.

She measures the wavelength of each wave as 0.34 m .
The period of each wave is 0.42 s .
Calculate the speed of the wave.
Use the correct equation from the Physics Equation Sheet.
Give the unit.
Give your answer to three significant figures.

Speed $=$
Unit $=$
(5)
(Total 13 marks)

Mark schemes

Q1.
(i) (wave) speed $=$ frequency \times wavelength
or any correctly transposed version
accept $v=f \times \lambda$
or transposed version
accept $\mathrm{m} / \mathrm{s}=1 / \mathrm{s} \times \mathrm{m}$
or transposed version

but only if subsequently used correctly
(i) 325
metres per second
or m / s or $0.325 \mathrm{~km} / \mathrm{s}$ for 2 marks

Q2.
(a)

lines should be further apart with the bottom of the wave fronts further to the right than the top
(b) they will speed up
so wave (fronts) move further apart
(c) longitudinal waves:

- the oscillations are parallel to the direction of energy transfer
- show areas of compression and rarefaction
transverse waves:
- the oscillations / movement are perpendicular to the direction of energy transfer.
(d) place a floating object / plastic duck on the surface of the water
it will stay in the same place or only bob up and down if the water doesn't move
(e) $0.42=1 / \mathrm{f}$
$\mathrm{f}=2.38$
$v=2.38 \times 0.34$
1

1

1
$=0.809$
allow 0.809 with no working shown for 4 marks incorrect sig. figs max 3 marks
m / s
correct unit

Starter - revise the GCSE course content using bbc bitesize https://www.bbc.co.uk/bitesize/guides/zc36w6f/revision/1

Then take the test to check your understanding and send in your score by email

Main - Complete these prompt boxes to create an A4 knowledge organiser placemat

Plenary - Complete the past paper question and send it to me for marking. Complete as much as you can in $\mathbf{3 0}$ minutes

Q1.

Different parts of the electromagnetic spectrum have different uses.
(a) The diagram shows the electromagnetic spectrum.

Radio waves	Microwaves	Infrared	Visible light	Ultraviolet	X-rays	Gamma rays

(i) Use the correct answers from the box to complete the sentence.

amplitude	frequency	speed	wavelength

The arrow in the diagram is in the direction of increasing \qquad and decreasing \qquad .
(ii) Draw a ring around the correct answer to complete the sentence.

The range of wavelengths for waves in the electromagnetic

spectrum is approximately | 10^{-15} |
| :--- |
| to 10^{4} |
| 10^{-4} to 10^{4} |
| 10^{4} to 10^{15} | metres.

(b) The wavelength of a radio wave is 1500 m .

The speed of radio waves is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
Calculate the frequency of the radio wave.
Give the unit.
\qquad
\qquad
\qquad
Frequency $=$ \qquad
(c) (i) State one hazard of exposure to infrared radiation.
\qquad
(ii) State one hazard of exposure to ultraviolet radiation.
\qquad
(d) X-rays are used in hospitals for computed tomography (CT) scans.
(i) State one other medical use for X -rays.
\qquad
\qquad
(ii) State a property of X-rays that makes them suitable for your answer in part (d)(i).
\qquad
\qquad
(iii) The scientific unit of measurement used to measure the dose received from radiations, such as X-rays or background radiation, is the millisievert (mSv).

The table shows the X-ray dose resulting from CT scans of various parts of the body.

The table also shows the time it would take to get the same dose from background radiation.

Part of the body	X-ray dose in $\mathbf{~ m S v}$	Time it would take to get the same dose from background radiation
Abdomen	9.0	3 years
Sinuses	0.5	2 months
Spine	4.0	16 months

A student suggests that the X -ray dose and the time it would take to get the same dose from background radiation are directly proportional.

Use calculations to test this suggestion and state your conclusion.
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.
(a) The wavelengths of four different types of electromagnetic wave, including visible light waves, are given in the table.

Type of wave	Wavelength
Visible light	0.0005 mm
A	1.1 km
B	100 mm
C	0.18 mm

Which of the waves, \mathbf{A}, \mathbf{B}, or \mathbf{C}, is an infra red wave?
\qquad
(b) A TV station broadcasts at 500000 kHz . The waves travel through the air at $300000000 \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the waves broadcast by this station.
Show clearly how you work out your answer.
\qquad
\qquad
Wavelength $=$ \qquad m
(c) What happens when a metal aerial absorbs radio waves?
\qquad
\qquad
\qquad
\qquad
(d) Stars emit all types of electromagnetic waves. Telescopes that monitor X-rays are mounted on satellites in space.

Why would an X-ray telescope based on Earth not be able to detect X-rays emitted from distant stars?
\qquad
\qquad

Q3.
Radio waves and microwaves are two types of electromagnetic wave.
Both waves:

- can be used for communications
- travel at the same speed through air.
(a) Give two more properties that are the same for both radio waves and microwaves.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Some satellites are used to transmit television programmes. Signals are sent to, and transmitted from, the satellites using microwaves.

What is the property of microwaves that allows them to be used for satellite communications?
\qquad
\qquad
(c) Electromagnetic waves travel at a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

A radio station transmits waves with a wavelength of $2.5 \times 10^{2} \mathrm{~m}$.
Calculate the frequency of the radio waves.
Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Frequency $=$
(Total 6 marks)

Q4.
(a) Microwaves are one type of electromagnetic wave.
(i) Which type of electromagnetic wave has a lower frequency than microwaves?
\qquad
(ii) What do all types of electromagnetic wave transfer from one place to another?
\qquad
(b) The picture shows a tennis coach using a speed gun to measure how fast the player serves the ball.

(i) The microwaves transmitted by the speed gun have a frequency of 24000000 000 Hz and travel through the air at $300000000 \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the microwaves emitted from the speed gun.
Show clearly how you work out your answer.
\qquad
\qquad
Wavelength = \qquad m
(ii) Some of the microwaves transmitted by the speed gun are absorbed by the ball.

What effect will the absorbed microwaves have on the ball?
\qquad
\qquad

Lesson 12 - Ultrasound and Infrasound

Starter - watch the revision video on you tube - ultrasound gcse physics
https://www.youtube.com/watch?v=I1F6h9skFXU
Make notes as you watch.

Main - Task 1 Ultrasound - Complete the following questions based on the information in the video

1. What is the definition of ultrasound.
2. What is the threshold in Hertz of ultrasound
3. Between what, do ultrasound waves reflect?
4. How do you calculate the distance between the probe and the kidney?
5. Why is ultrasound safer than x-ray?
6. Which structures can be imaged?
7. How is ultrasound used in industrial settings?
8. What is the equation used to determine distance using ultrasound
9. What is the speed of ultrasound in water?
10. Copy the worked example on how to use the equation.
11.Why do you need to dived the distance calculated by 2 to get the correct answer?
11. What would the distance to the sea bed be if the time taken is $\mathbf{5}$ seconds (show your working out)

Task 2 - Infrasound - watch the you tube video
https://www.youtube.com/watch?v=AqVJ4b5tkwo

1. Complete a labelled diagram showing the internal structure of the Earth
2. Describe how are seismic waves are recorded?
3. What is the cause of p and s waves?
4. What type of waves are p waves and what materials can they pass through?
5. What types of waves are s waves?
6. Which wave type is the fastest?
7. Why can't s-waves travel through the Earth's internal structures?
8. Explain what is meant by the s-wave shadow.
9. Explain how P-wave shadow zones are formed.
10.Why do scientists think there is a solid inner core?

Plenary - Complete the past paper question and use the mark scheme to mark your work.

Q1.
P-waves and S-waves are two types of seismic wave caused by earthquakes.
(a) Which one of the statements about P-waves and S-waves is correct?

Tick one box.

P-waves and S-waves are transverse.

P -waves and S -waves are longitudinal.

P-waves are transverse and S-waves are longitudinal.

P-waves are longitudinal and S-waves are transverse.

Seismometers on the Earth's surface record the vibrations caused by seismic waves.
Figure 1 shows the vibration recorded by a seismometer for one P-wave.
Figure 1

(b) Calculate the frequency of the P -wave shown in Figure 1.
\qquad
\qquad
Frequency = \qquad Hz
(c) Write down the equation which links frequency, wavelength and wave speed.
\qquad
(d) The P-wave shown in Figure 1 is travelling at $7200 \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the P-wave.

Wavelength = \qquad m
(e) Explain why the study of seismic waves provides evidence for the structure of the Earth's core.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 2 shows a simple seismometer made by a student.
Figure 2

To test that the seismometer works, the student pushes the bar magnet into the coil and then releases the bar magnet.
(f) Why does the movement of the bar magnet induce a potential difference across the coil?
\qquad
\qquad
(g) Why is the induced potential difference across the coil alternating?
\qquad
\qquad
(h) Figure 3 shows how the potential difference induced across the coil varies after the bar magnet has been released.

Figure 3

Which statement describes the movement of the magnet when the induced potential difference is zero?

Tick one box.

Accelerating upwards.

Constant speed upwards. \square

Decelerating downwards. \square

Stationary. \square
(i) The seismometer cannot detect small vibrations.

Suggest two changes to the design of the seismometer that would make it more sensitive to small vibrations.

1. \qquad
\qquad
2. \qquad
\qquad

Q1.

(a) P-waves are longitudinal and S-waves are transverse
(b) 0.4
(c) wave speed $=$ frequency \times wavelength

$$
\text { allow } v=f \lambda
$$

(d) $7200=0.4 \times$ wavelength
wavelength $=\frac{7200}{0.4}$
wavelength = 18000 (m)
allow up to full marks for ecf using their answer to part (b)
a method shown as
$7200 \times 2.5=18000$
scores 0 marks
an answer 18000 scores 3 marks
(e) because S-waves cannot travel through a liquid
and S-waves do not travel through the (outer) core allow some (seismic) waves cannot travel through a liquid and do not go through the core for 1 mark
(f) magnetic field around the coil changes or
the magnetic field (lines) cut by the coil
allow the generator effect
(g) because the magnet changes direction
(h) stationary
(i) any two from:

- stronger magnetic field
allow stronger magnet
allow heavier magnet
bigger magnet is insufficient
- more turns on the
bigger coil is insufficient do not accept more coils of wire
- turns pushed closer together
- spring with a lower spring constant
allow less stiff spring
allow weaker spring
do not accept add an iron core
[13

