Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

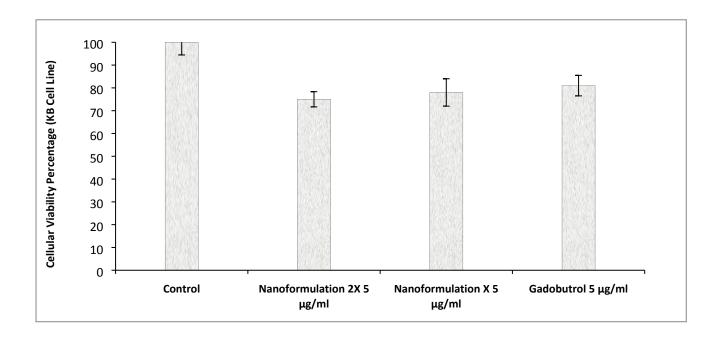
Cellular uptake, imaging and pathotoxicological studies of Novel Gd [III]-DO3A-butrol Nano-Formulation

Elham Mohammadi, ¹Massoud Amanlou ², Seyed Esmaeil Sadat Ebrahimi², Morteza Pirali Hamedani², Abdolkarim Mahrooz ³, Bita Mehravi⁴, Baharak Abd Emami⁵, Mohammad Reza Aghasadeghi⁶, Ahmad Bitarafan-Rajabi⁷, Hamid Reza Pour Ali Akbar⁸, Mehdi Shafiee Ardestani⁹*,

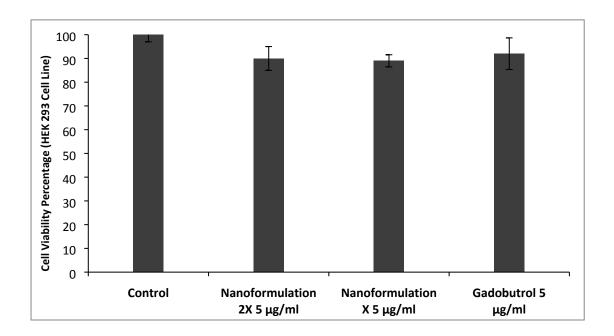
- 1-Department of biochemistry, Faculty of Biochemistry, Mazandaran University of Medical Sciences, Mazandaran Iran
- 2- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- 3- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- 4- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- 5-National Cell Bank, Pasteur institute of Iran, Tehran, Iran
- 6-Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- 7-Cardiovascular interventional research Centre; Department of Nuclear Medicine, Rajaei Cardiovasular, Medical & Research Center; Iran University of Medical Sciences, Tehran, Iran
- 8-Cardiovasular, Medical & Research Center; Radiology Department; Iran University of Medical Sciences, Tehran, Iran
- 9- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Running title (Novelty): Cellular uptake and imaging studies of Novel Gadobutrol-ALGD-G2

*Address correspondence to this author at the *Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, Tel/Fax:* +98-021-66953311

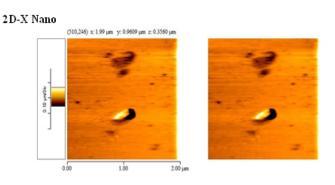

E-mail: shafieeardestani@gmail.com, shafieeardestani@sina.tums.ac.ir

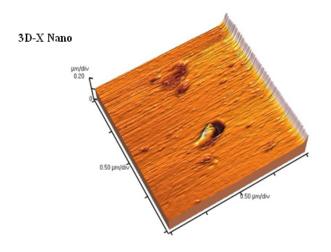
Supplementary Materials:


Cellular Toxicity Assay (MTT)

Based on the previously published literature $^{14-17}$ both tumor (MCF-7) and normal (HEK-293) cells lines, provided from National Cell Bank of Pasteur Institute of Iran, were cultured and exposed to the same concentration (5µg/ml) of the different nano-formulated contrast agent and gadobutrol for a period of 24 hrs and OD was obtained from ELISA reader at 570 nm respectively. The MCF-7 cellular exposures showed a mild significant p<0.05 cellular toxicity for Nano-formulation 2X as well as a not significant cellular toxicity p>0.05 for those of Nano-formulation X and gadobutrol. Furthermore, not any HEK-293 cellular toxicity was observed from the nano-formulations and gadobutrol exposures. (See original data at S-1_{a-b}) Briefly, gadobutrol was shown to be safe and insert both normal and cancer cell line but the gadobutrol nanoformulation was found safe on normal human kidney cell line (as a major toxicity target of gadolinium based contrast agent) and toxic on cancer cell lines.

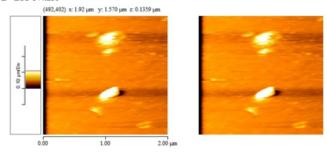
S-1_a: Results of the same concentration (5μg/ml) of the different nano-formulated contrast agent and gadobutrol for a period of 24 hrs on MCF-7 cell lines.


S- 1_b : Results of the same concentration (5µg/ml) of the different nano-formulated contrast agent and gadobutrol for a period of 24 hrs on MCF-7 cell lines. S- 1_a : Results of the same concentration (5µg/ml) of the different nano-formulated contrast agent and gadobutrol for a period of 24 hrs on HEK-293 cell lines.



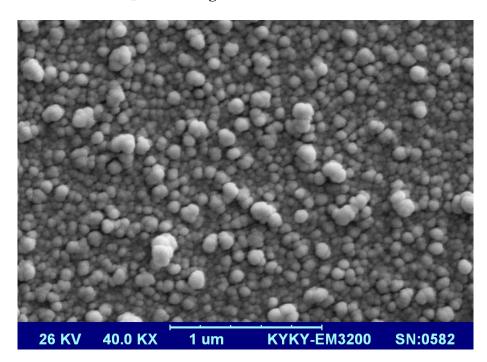
AFM Imaging

For morphology investigations of the proposed nano-formulations X and 2X Atomic Force Microscopy were employed and two and three dimensional images were obtained as demonstrated in $S\text{-}2_a$ and $S\text{-}2_b$.

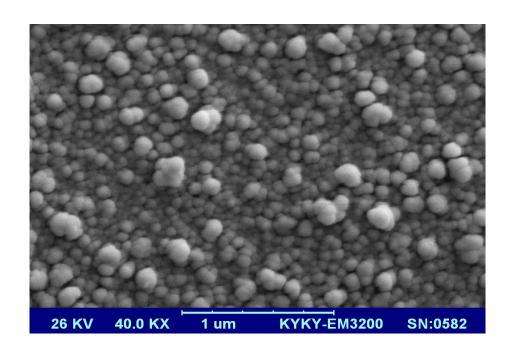

S-2_a: 2D and 3D AFM images of nanoformulation X.

S-2_b: 2D and 3D AFM images of nanoformulation 2X.

2D-2X Nano



3D-2X Nano


SEM Imaging

For more morphology investigations of the proposed nano-formulations X and 2X sizes, Single Electron Microscopy were used and images were obtained as demonstrated in S-3_a and S-3_b. Before preparation of imaging samples the formulations were rigorously sonicated to avoid any unwanted nanoparticle's aggregations. According to the results sizes obtained at a lower ranged (<200 nm) than observed by AFM or Zetasizer's data.

S-3a:SEM image of X nano-formulation

S-3_b: SEM image of 2X nano-formulation

