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Abstract—In this paper we discuss an approach to the study of orbits of actions of semisimple Lie
groups in their irreducible complex representations,which is based on differential invariants on the
one hand, and on geometry of reductive homogeneous spaces on the other hand. According to the
Borel–Weil–Bott theorem, every irreducible representation of semisimple Lie group is isomorphic
to the action of this group on the module of holomorphic sections of some one–dimensional bundle
over homogeneous space. Using this, we give a complete description of the structure of the field of
differential invariants for this action and obtain a criterion which separates regular orbits.
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1. INTRODUCTION

Problem of studying the orbit space Ω/G for an action G : Ω of a group G on a space Ω is one
the most important problems, which has a lot of different applications in many areas (representation
theory, geometry, differential equations, etc.). Most of examples of this problem can be separated into
the following cases:

• Ω is a smooth manifold and G is a Lie group (geometric situation);

• Ω is an algebraic manifold and G is an algebraic Lie group, acting algebraically on Ω (algebraic
situation).

In the first case it was proved by J.L. Koszul and R. Palais, that if the action G : Ω is proper and free,
then the orbit space Ω/G is smooth manifold and Ω → Ω/G is a principal G-bundle. Moreover, G-orbits
are separated by smooth invariants.

In this paper we consider the second case of algebraic action. This case has very long and interesting
history. Namely, if the group G is semi-simple, Ω is a vector space and the action G : Ω is algebraic and
linear, it was proved by D. Hilbert that the orbit space Ω/G is an algebraic manifold and regular G-orbits
are separated by polynomial invariants. Also he proved that if G is reductive, then regular G-orbits are
also separated by polynomial invariants and the space of closed G-orbits is the spectrum of polynomial
invariant ring.

In 1960-th D. Mumford generalized Hilbert’s results and created his geometrical invariant theory
(see [13]). Mumford applied his theory to solution of so-called module space problem: he described
module spaces of algebraic curves, Abel manifolds, vector bundles on curves, etc. These results made it
possible to reinterpret basic methods and problems in invariant theory and stimulate a lot of new works
in this area.
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In his famous talk on the Second mathematical Congress in Paris Hilbert formulated 23 great
problems for the XX century. His 14th problem states, that polynomial invariant ring is finitely generated
for every algebraic group G (and hence regular G-orbits are separated by polynomial invariants).

In 1954 Nagata constructed the counterexample to Hilbert 14th problem. Nagata group G has
dimension 18 and it linearly acts on vector space V . Further this counterexample was simplified by
Steinberg.

On the other hand, the classical result of M. Rosenlicht [16] claims, that the regular G-orbits of
algebraic action of algebraic group G on an algebraic manifold are separated by rational invariants in
opposite to polynomial ones.

There is no effective way to calculate rational invariants, and the algorithm for calculation of
polynomial invariants works very slow. This observation makes it very difficult to use Hilbert and
Rosenlicht theorems even in very simple problems.

This paper is a survey of our results [3]–[6] on applications and on using rational differential invariants
in order to solve the problem of orbit separation.

Firstly, we reformulate algebraic problems under consideration as a problem on solutions of a suitable
differential equation.

Secondly, we use rational differential invariants instead of algebraic ones. It allows us to use the Lie–
Tresse theorem (see [11]) which gives constructive and effective way to find the field of rational differential
invariants. The combination of the Lie–Tresse [11] theorem and the Rosenlicht [16] theorem shows that
the field separates regular orbits.

Now let us discuss three examples.

1.1. Binary Forms
Let Vn = Sn(C2)∗ be the space of binary forms of degree n over the field C. Consider an action of

the group GL2(C) on the space Vn such that the subgroup SL2(C) ⊂ GL2(C) acts by linear coordinate
transformations, and center C

∗ ⊂ GL2(C) acts by the homotheties f �→ λf , where f ∈ Vn and λ ∈ C
∗.

This problem is closely connected with other classification problems in invariant theory such that
the classification problem for the action of projective group PGL2(C) on the projective line and with
the classification of hyperelliptic curves of genus g (see [18]). The SL2(C)-invariant algebras Bn :=
C[Vn]SL2(C) of binary forms of degree n � 8 are known so far (see [8, 9, 2]).

The case n = 3 was solved by Bool in 1841. Namely, if

V3 = {ax2 + 2bxy + cy2 : a, b, c ∈ C},
then

B3 = C

[
(ad − bc)2 − 4

(
ac − b2

) (
bd − c2

)]
.

The first nontrivial case n = 4 was solved by Bool, Cayley and Eisenstein in 1841–1850 and initiated
the classical invariant theory (note that the problem of classification of binary forms of degree 4 is closely
related to the cross ratio of the four projective points on projective line, and to the j-invariant of elliptic
curve; see [18]).

If V4 = {ax3 + 3bx2y + 3cxy2 + dy3 : a, b, c, d ∈ C}, then B4 = C[I, J ], where

I = ae − 4bd + 3c2, J =

∣∣∣∣∣∣∣∣∣

a b c

b c d

c d e

∣∣∣∣∣∣∣∣∣
.

The case n = 5 was studied by Cayley. In this case the invariant algebra is generated by four
homogeneous polynomials of degrees 4, 8, 12 and 18, which satisfy a homogeneous relation of degree
36 (note that the invariant of degree 18 consists of more than 800 monomials). There is also one syzygy
between these invariants: I4I

4
8 + 8I3

8I12 − 2I2
4I2

8I12 − 72I4I8I
2
12 − 432I3

12 + I3
4I2

12 − 16I2
18 = 0. Note

that the equation f(x, 1) = 0, where f ∈ V5, is solvable in radicals if and only if I18(f) = 0. The cases
n = 6, 7, 8 were studied by Gordan, Shioda, Dixmier and Lazard. The explicit form of generators of the
invariant algebra for n = 7 were found by Bedratyuk in 2007 only (see [2]).

In 1982 V. Kac proved, that the number of basic polynomial invariants grows exponentially with
degree n, so it is impossible to calculate these invariants with the help of computer for sufficiently big n.
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1.2. Ternary Forms
In the case, when n = 2, the invariant algebra is freely generated by the Hessian of ternary form.
The case, when n = 3, was studied by Weierstrass. In this case the invariant algebra is equal to

C[S;T ], where the invariants S and T respectively have degrees 4 and 6 (see [18, 8]).
Rational GL3(C)-invariant j = S3/T 2 is called j-invariant of ternary cubic form, and two non-

singular forms of degree 3 are GL3(C)-equivalent if and only if their j-invariants coincide.
It is known that any non-singular ternary form f of degree 3 is equivalent to the Weierstrass normal

form y2z + x3 + pxz2 + qz3, where p = S(f) and q = T (f). It is also known (see [18]) that any elliptic
curve is isomorphic to the curve X(f) = {f = 0} ⊂ CP 2 for some ternary form f of degree 3 and two
elliptic curves X(f) and X(f̃ ) are projectively isomorphic if and only if the ternary forms f and f̃ are
GL3(C)-equivalent.

In the case, when n = 4, it is known that the invariant algebra contains invariants I3, I6, I9, I12, I15,
I18, I27, where the indices of invariants show their degrees. It is worth to note that Emmy Noether found
more than 300 concomitants (see [8]). But it is unknown if they generate the invariant algebra or not.

1.3. p-Forms
In the case of any p and n = 2, the algebra of polynomial invariants is freely generated by one

polynomial, namely, by the Hessian of the form. In the case of p = 4 and n = 3, the algebra of invariants
is C[A,B,C,D,E, F ], where the basis invariants have degrees 8, 16, 24, 32, 40, 100, respectively,
F 2 ∈ C[A,B,C,D,E], and the invariants A, B, C, D and E are algebraically independent (see [8]).

2. BASIC IDEAS OF A NEW APPROACH
In this paper we suggest a new approach to these classical problems based on ideas of differential

geometry, jet spaces and differential invariants.
First of all, every algebraic action G : Ω can be linearized in the following sense. According to

Sumihiro’s linearization theorem, each algebraic G-manifold Ω can be embedded into a G-invariant
submanifold in an irreducible finite-dimensional G-module V . So, it is enough to study invariants of the
action of group G in its irreducible representation.

Let G be a connected semisimple complex Lie group, and let ρλ : G → GL(V ) be its irreducible
representation with highest weight λ (see [10]). First, let us fix a Borel subgroup B in group G
and consider homogeneous complex flag manifold M := G/B. Then, consider the action B : G of
Borel group B on G by the right shifts: g �→ gb−1, where g ∈ G and b ∈ B. Finally, let us define the
bundle product E := G×B C = G× C/ ∼, where the equivalence relation ∼ is defined by the following:
(g, c) ∼ (gb−1, χλ(b)c), and where χλ ∈ X(T ) is the character corresponding to the highest weight λ of
the maximal torus T ⊂ B.

We introduce one-dimensional bundle πλ : E → M, πλ(g, c) = gB. Holomorphic sections of
this bundle are just holomorphic functions f : G → C, which satisfy the relation f(gb) = χλ(b)f(g), for
all g ∈ G and b ∈ B.

Group G acts in bundle πλ by left shifts. This action prolongs to the action on the space of
holomorphic sections of bundle πλ: g(f)(g′) = f(g−1g′).

According to the Borel–Weil–Bott theorem (see, for example, [7]), if λ is a dominant weight of
the group G, then this action is isomorphic to the representation ρλ. Therefore, the study of orbits of
irreducible representations of semisimple complex Lie groups with the highest weight λ is equivalent to
the study of the orbits of these actions on the space of holomorphic sections of bundle πλ.

Let us illustrate this idea in case G = SL2(C) (see also [3]). It is known (see, for example, [10,
15]), that the dominant weights of the group SL2(C) are λ = n

2 α, where α is the positive root of the
Lie algebra sl2(C) and n � 0 is a non-negative integer. The Borel group B = B2(C) consists of upper
triangular matrices, and the character χλ acts on B in the following way:

χλ

⎛
⎝a b

0 a−1

⎞
⎠ = an.
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Then M = SL2/B2 � CP 1.
If we denote the homogeneous coordinates on M by (x : y), then the holomorphic sections of bundle

πλ are just the homogeneous polynomials of degree n in variables x and y. Thus, the study of invariants
of representations of group SL2(C) is reduced to the classification SL2(C)-orbits of binary forms. This
case was considered in [3], where binary forms were considered as solutions of the Euler differential
equation. Let us recall the main results.

3. CLASSIFICATION OF BINARY FORMS

In this section we consider the GL2(C)-action on the space Vn of binary forms.

Let C2 be the plane with the coordinates (x, y). Denote by JkC2 spaces of k-jets of analytical
functions with canonical coordinates x, y, u, u10, u01, . . .. The group GL2(C) acts on the space
of analytic functions C∞(C2) in following way. Namely, the subgroup SL2(C) ⊂ GL2(C) acts by
linear coordinate transformations, and the center C∗ ⊂ GL2(C) acts by the homotheties f �→ λf , where
f ∈ Vn and λ ∈ C

∗. This action prolongs to actions in the k-jet spaces Jk
C

2.
Recall that the space Vn of binary forms of degree n is identified with the space of smooth solutions

of the Euler equation xux + yuy = nu. The corresponding algebraic manifold E ⊂ J1C2 is given by the
equation xu10 + yu01 = nu.

By a differential invariant of order k of binary form we mean a GL2(C)-invariant function on the
manifold E(k), which is polynomial in uσ and u−1.

In a similar way one defines an invariant derivation as a linear combination of total derivatives
∇ = A d

dx + B d
dy (where A, B ∈ C∞(J∞

C
2) and d

dx , d
dy are the total derivatives), which is invariant

with respect to the prolonged action of the group GL2(C).
Note that for such derivations functions ∇(I) are differential invariants (generally, of order higher than

the order of I) for any differential invariant I. This observation allows us to construct new differential
invariants from known ones by differentiations only.

Theorem 1. The algebra of differential invariants of the GL2(C)-action on the manifold E(∞)

is freely generated by the differential invariant H := u20u02−u2
11

u2 and the invariant derivation
∇ = u01

u
d
dx − u10

u
d
dy .

Remark. The numerator fxxfyy − f2
xy of the restriction H(f) is the Hessian of the form f . It is well-

known (see [18]) that the Hessian is a covariant of form f . It is easy to see that the numerators of all
differential invariants ∇kH are covariants. Hence, we can construct new covariants using the invariant
derivation ∇.

Now consider the invariants I1 = H , I2 = ∇H and I3 = ∇2H . The restrictions of these invariants
to the graph L4

f ⊂ J4
C

2 of a form f ∈ Vn are homogeneous polynomials in x and y. Then they are
algebraically dependent and F (I1(f), I2(f), I3(f)) = 0 for some irreducible polynomial F . Let us order
the variables Ik by the requirement that I1 ≺ I2 ≺ I3 and assume that the polynomial F has the minimal
degree with respect to this order and is defined up to non zero scalar.

Definition. We say that a binary form f ∈ Vn is regular, if (2I1I3 − 3I2
2 )(f) 
= 0.

Theorem 2. Let f1, f2 ∈ Vn be binary forms and F1, F2 be the corresponding dependencies
between the invariants Ik. Then the forms f1 and f2 are GL2(C)-equivalent if and only if F1 = F2.

Remarks. 1. It can be proved that the singularity condition (2I1I3 − 3I2
2 )(f) = 0 is equivalent to the

condition that the form f ∈ Vn has no more than two roots without taking multiplicity, or that the form
f is equivalent to the form xkyn−k for some k � n, or that the orbit of form f has the dimension less
than 4.

2. It is obvious that the ratios of coefficients of the polynomial F are rational algebraic invariants.
Moreover, they separate regular orbits of binary forms. Hence (see [18]) they generate the field of rational
invariants. So we obtain a method to calculate generators of rational invariant field for binary forms of
arbitrary degree.
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Fig. 1. Graph of the function F (1, ξ1, ξ2) = 0 for the form f(x, y) = xy(x + y)(−2x + y), where ξ1 = I2
2/I3

1 and
ξ2 = I3/I2

1 .

Examples. 1. Consider the forms

f1(x, y) = xy(x + y)(−2x + y) and f2(x, y) = xy(x + y)(−3x + y).

The corresponding dependencies between invariants Ik are

F1(I1, I2, I3) = 3087I4
2 − (12348I3 + 16464I2

1 )I1I
2
2

− (800I3
3 − 7548I2

2 I2
3 − 23328I4

1 I3 − 15552I6
1 ),

F2(I1, I2, I3) = 19773I4
2 − (79092I3 + 105456I2

1 )I1I
2
2

− (9800I3
3 − 20292I2

2 I2
3 − 93312I4

1 I3 − 62208I6
1 ).

Then F1 
= F2 and the forms f1 and f2 do not belong to the same orbit. From the point of view of classical
invariant theory, the orbits of binary forms of degree 4 are determined by the j-invariant (see [18]). In
our case the j-invariant of the first form equals 343/36 and of the second one – 133/144.

2. Consider the forms

f1(x, y) = xy(x + y)(−x + y) and f2(x, y) = xy(x + y)(2x + y).

The corresponding dependencies between the invariants Ik are

F1(I1, I2, I3) = F2(I1, I2, I3) = 3I2
2 − 6I1I3 − 8I3

1 .

Therefore, these forms belong to the same orbit. In this case the j-invariants of forms are equal to 27/4.

3. Consider the forms

f1(x, y) = x10 − x5y5 + y10 and f2(x, y) = x2y2(x6 + y6).

The corresponding dependencies between invariants Ik are

F1(1, ξ1, ξ2) = 1565515579392ξ2 − 1464571772928ξ1 − 544563247104ξ1ξ2 + 329450323968ξ2
2

+ 140150452800ξ1ξ2
2 − 782467500ξ1ξ

3
2 + 207664515328ξ2

1 − 130753566000ξ2
1 ξ2

− 44018323200ξ3
2 + 1173701250ξ4

2 + 1391569403904 + 36422690625ξ3
1 ,

F2(1, ξ1, ξ2) = −729482240ξ2 − 201958400ξ1 − 69766200ξ1ξ2 − 244800000ξ2
2

+ 26471025ξ2
1 − 27378000ξ3

2 − 724451328,

where ξ1 := I2
2/I3

1 and ξ2 := I3/I
2
1 . Then F1 
= F2 and the forms f1 and f2 do not belong to the same

orbit.
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4. The results obtained above may be generalized on space of rational binary forms. Let us consider
the form

f(x, y) = xy
(x + y)(x + 2y)
(x − y)(x − 2y)

.

Then one has

F (1, ξ1, ξ2) = 15422941057856734939551105024ξ2
2ξ1

3 − 69403234760355307227979972608ξ2ξ1
4

+ 2891801448348137801165832192ξ2
4ξ1

2 − 55632182910239013707647549440ξ2
3ξ1

3

+ 1768551552623627792077490749440ξ2
2ξ1

4 − 9838367766016191158656627113984ξ2ξ1
5

+ 30845882115713469879102210048ξ1
4 + 6558766130960968855606863593472ξ1

5

+ 8148627609559524732432072572928ξ1
6 − 2141112434058460368562244026368ξ1

7

+ 7530732938406608857202688ξ2
8 − 384842775202908363970841935872ξ1

8

− 47071176263543356680830976ξ2
9 + 3331766141585362047762432ξ2

10

+ 240983454029011483430486016ξ2
6ξ1 − 13667324379034873228173508608ξ2

5ξ1
2

+ 179471560000206825234030919680ξ2
4ξ1

3 − 415512808557102055287769006080ξ2
3ξ1

4

+ 253859862561286373869983694848ξ2
2ξ1

5 + 1600854930279013658005444755456ξ2ξ1
6

+ 1010209174972661988360153464832ξ2ξ1
7 − 1351285292406540377215991808ξ2

7ξ1

+ 6464391879609645678578368512ξ2
6ξ1

2 − 9446763785768711010083930112ξ2
5ξ1

3

− 38409533367857934359153356800ξ2
4ξ1

4 + 291902384978808793261785612288ξ2
3ξ1

5

− 811280868499898987186679840768ξ2
2ξ1

6 + 93664025067989500710617088ξ2
8ξ1

+ 35531624187014882316779520ξ2
7ξ1

2 − 4154329385482237434699909120ξ2
6ξ1

3

+ 15376663729675955989518262272ξ2
5ξ1

4 − 24070240434064339153717026816ξ2
4ξ1

5

+ 9178054653241763835617640448ξ2
3ξ1

6 + 26031176812719833069813760ξ2
9ξ1

− 153050307987937513189613760ξ2
8ξ1

2 + 368761639995304206203713536ξ2
7ξ1

3

− 132895161962351709728550912ξ2
6ξ1

4 − 2675820515400504918717552ξ2
10ξ1

+ 153271233631275820267968ξ2
9ξ1

2 + 569130016731947834259456ξ2
11

+ 14553484508474084880243ξ2
12.

4. CLASSIFICATION OF p-FORMS

Classification of homogeneous p-forms with respect to the linear action of group GLp(C) can be
provided in a way similar to the case of binary forms. Namely, let us consider the space C

p with
coordinates x1, . . ., xp and the k-jet space Jk

C
p with canonical coordinates (x1, . . . , xp, u, uσ). The

homogeneous p-forms of degree n are solutions of the Euler equation E = {
∑p

i=1 xiui = nu} ⊂ J1
C

p

(here, ui = u0...1...1 – 1 occupies the i-th position).

4.1. Invariants Horizontal Forms

Before constructing differential invariants and invariant differentiations, we specify a set of invariant
tensors for the action of the group GLp(C) on the Euler equation.

Theorem 3. The horizontal symmetric forms Qk =
∑

|σ|�k
uσ
u

(dx)σ

σ! given on the space Jk
C

p are
GLp(C)-invariant for all k � 1.

Remark. We refer to the forms Qk as invariant k-forms. Note that these forms are invariant for the
linear action of arbitrary group G.
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Fig. 2. Graph of the function F (1, ξ1, ξ2) = 0 for the form f(x, y) = x10 − x5y5 + y10, where ξ1 = I2
2/I3

1 and ξ2 =

I3/I2
1 .
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Fig. 3. Graph of the function F (1, ξ1, ξ2) = 0 for the form f(x, y) = x2y2(x6 + y6), where ξ1 = I2
2/I3

1 and ξ2 =

I3/I2
1 .

4.2. Invariant Derivatives

Now we will describe a basis of invariant differentiations. Recall that, by an infinite jet, we
mean a sequence {θk} of k-jets projected onto each other, i.e., such that πk+1,k(θk+1) = θk, where
πk+1,k : Jk+1 → Jk is a natural projection. Geometrically, each (k + 1)-jet θk+1 can be represented
in the form of a k-jet θk and an R-plane L(θk+1) ⊂ Tθk

Jk (see [1]).

A tangent vector in the space J∞ of infinite jets is a sequence of pairs {(θk, vk)}, where θk ∈ Jk and
vk ∈ L(θk+1), projected onto each other. If this sequence begins with a k0-jet, then we say that k0 is the
order of the tangent vector.

The tangent space T to an infinite jet {θk} of order k0 is the R-plane L(θk0+1) at the point θk0 . The
tangent vectors are elements of the induced bundle τk0 := π∗

k0
(τ), where τ : TC

p → C
p is the tangent

bundle of C
p. By a vector field on the space of infinite jets of order k0 we understand a section of the

bundle τk0 . Now, take an infinite jet {θk} of order k0 and let T denote the tangent space of this jet. All
further considerations are in the space T .

Note that the invariant k-forms Qk can be regarded as symmetric k-forms on the space T . We
assume that the quadric Q2 is non-degenerate on T .
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Fig. 4. Graph of the function F (1, ξ1, ξ2) = 0 for the form f(x, y) = xy (x+y)(x+2y)
(x−y)(x−2y)

, where ξ1 = I2
2/I3

1 and ξ2 =

I3/I2
1 .

For each tensor v, let v∗ denote the tensor dual with respect to Q2. By 〈v,w∗〉 we denote the
convolution of tensors. Consider the radial differentiation

r =
p∑

i=1

xi
d

dxi
∈ T.

It is invariant and determines the decomposition of the space T into the direct sum 〈r〉 ⊕U of subspaces
orthogonal with respect to Q2. In what follows, all considerations are in the subspace U .

Take the tensor Q∗
2 ∈ S2(U) dual to Q2 and consider a vector ∇1 ∈ U dual to the tensor obtained by

pairing Q3 and Q∗
2, that is, ∇1 = 〈Q3, Q

∗
2〉∗. Consider also the linear operator D : U → U which sends

each vector v to the vector dual to the convolution of cubic Q3 with the symmetric product of ∇1 and v,
i.e., defined by D : v �→ 〈〈Q3,∇1〉, v〉∗. We also set ∇i := Di−1∇1.

Note that the vectors ∇i depend on a point in space of 3-jets and are linearly independent in a Zariski
open subset of the fiber of the projection E3 → E2.

Varying the point in the space of 3-jets, we obtain the set of differentiations ∇1, ∇2, . . ., ∇p−1.

Theorem 4. Differentiations r, ∇1, . . ., ∇p−1 are invariant and form a basis in the space of
invariant differentiations.

Finally, we are ready to describe the entire field of rational invariants.

Note that the values of k-forms Qk on the set of k invariant differentiations are differential invariants.
Let Iα := Q3(∇α1 ,∇α2 ,∇α3), where α := (α1, α2, α3) is an unordered set of indices, i.e., consider the
coefficients1) of form Q3 in the invariant basis {r,∇1, . . . ,∇p−1}.

Theorem 5. The field of differential invariants of an action of group GLp(C) on manifold E∞
is generated by the differential invariant H of order 2, by the differential invariants Iα of order 3
and by the invariant differentiations ∇1, . . ., ∇p−1. Moreover, this field is algebraically generated
by the invariant H and by the derivatives of the form ∇σIα. It separates the GLp(C)-orbits of jets
of maximal dimension.

Finally, we apply Theorem 3 in order to describe explicitly the GLp(C)-orbits of homogeneous p-
forms with nonzero Hessian. For this purpose, consider the fourth-order differential invariants H , Iα,
∇jIα. Their restrictions to the graph L4

f of a form f with nonzero Hessian (this requirement is necessary,

1)It can be proved that all coefficients before r∗ vanish, and therefore, the differentiation r does not participate in the definition
of the invariants Iα.
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because otherwise, the denominators of some invariants vanish) are homogeneous rational functions in
the variables x1, . . ., xp and determine the rational mapping

πf : C
p → C

N , πf (a) = (H([f ]4a), Iα([f ]4a),∇jIα([f ]4a))

(here N is the number of the chosen invariants). Thus, there are algebraic dependencies between these
restrictions. We denote the set of such dependencies by Df and the closure of image of mapping πf by
Xf . We refer to Df as the ideal of dependencies of the p-form f .

Theorem 6. 1. Forms f and f̃ with nonzero Hessian are GLp(C)-equivalent if and only if
Xf = X

f̃
.

2. Forms f and f̃ with nonzero Hessian are GLp(C)-equivalent if and only if their ideals of
dependencies coincide: Df = D

f̃
.

4.3. Examples: Ideal Dependencies for Ternary Forms

Example. Consider f(x, y, z) = (x + y + z)(x2 + y2 + z2). Then the ideal of dependencies Df looks
as follows (here I := I(1,1,1), J := I(1,1,2), K := I(1,2,2), L := I(2,2,2), ∇ := ∇1 and δ := ∇2):

Df = 〈∇I,∇J,∇K,∇L,−50JL + 189K2 + 51KδL − 4δL2,

HL + IL − 15JK + JδL,

123HK − 4HδL − 3IK + 4IδL − 30J2,

2205IL2 − 30303JKL + 1814JLδL + 12KδL2 + 4δL3,

1323IKL − 84ILδL − 4810J2L + 7149JKδL − 452JδL2,

40HJδL + 305I2L − 4923IJK + 334IJδL + 115440K − 6400δL,

55I2L − 873IJK + 54IJδL + 40J3 + 16752K − 896δL,

4845I2L2 − 73167IJKL + 4726IJLδL + 40J2δL2 + 1038960KL − 51200LδL,

12200960IJL2 + 3319599IKLδL + 1153783ILδL2 − 22658370J2LδL

+ 255150JδL3 − 1925654640L2 ,

−185IJL + 6IKδL + 2IδL2 + 2835J2K − 210J2δL − 3360L,

85050HδL2 − 209920IJL + 178977IKδL + 50209IδL2 − 468510J2δL + 33131280L,

18450H2δL + 18695HIδL − 138990HJ2 + 6426I2K − 163I2δL − 2980IJ2 − 1210320J,

215775I2KL − 1785I2LδL − 203490IJ2L + 2310IJδL2 − 91697840JL

+ 136288536KδL − 8616928δL2

−28160I2JL2 + 47346I2KLδL − 3118I2LδL2 + 420IJ2LδL − 6379791285IL2

+ 87737639535JKL − 5275532430JLδL − 13778100δL3,

3280H2J2 + 450HI2δL − 3280HIJ2 + 153I3K + I3δL − 110I2J2

+ 118080HJ − 26240IJ − 1889280,

9260I3L3 − 127332I2JKL2 + 7656I2JL2δL + 20I2LδL3 + 17193345IKL2

+ 5659625IL2δL − 62467470J2L2 − 287550JLδL2 + 14580δL4〉.
The dependencies become much more simple in the variables ξ = −576I/H , η = −32JH/3, ζ1 =
−16H3K/27, ζ2 = 8H5L/81, ζ3 = −(∇J)2/9216H , ζ4 = −3962711310336(∇K)2H3 (which are ho-
mogeneous of degree 0).

Example. Consider the form f(x, y, z) = x2yz. Then the dependencies look as follows: F1(ξ, η) =
ξ − 9η + 12, F2(η, ζ1) = 3η + 9ζ1 − 4, F3(η, ζ2) = 3ζ2 − η. All other dependencies are also linear.
Hence, in this case the manifold Xf is a 2-dimensional plane (in coordinates ξ, . . ., ζ4).
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Example. Consider the form f̃(x, y, z) = z4 + (xy)2. The dependencies look as follows:

F̃1(ξ, η, ζ1) = (−2ξ2 + 32ξ − 128)ζ1
2 + (−256η + 2η2ξ + 8ξ2

+ 16η2 + 8ηξ − ηξ2)ζ1 + 8η3 − 128η2 − 8η2ξ + η3ξ,

F̃2(ξ, η, ζ2) = (4ξ3 + 768ξ − 2048 − 96ξ2)ζ2
2 + (4η3ξ + 1536η2 − 96η2ξ + ηξ3 − 96η3 − 8ξ3 + 128ηξ

+ 128ξ2 − 8ηξ2 − 4096η)ζ2 + 384η3 − 24η3ξ + 128η2ξ + ξη4 − 2048η2 − 24η4,

F̃3(ξ, η, ζ3) = (64ξ + 192η + 1024)ζ3
2 + (256ξ − 12η5 + 224η4 − 768η3 − 64ξ3 + 512η − 1088η2ξ

− 384ηξ2 + 224η3ξ − 16ξη4 − η2ξ3 + 16ηξ3 + 96η2ξ2 − 7η3ξ2 + 8192)ζ3 + 16384 + η3ξ4 + 32η5

+ 64ηξ3 + 640η4 + 360η3ξ2 − 3328η2ξ + 208ξη4 + 64ηξ4 − 16η2ξ4 + 704η3ξ − 256ξ3

− 1024ηξ2 − 48η5ξ + 9η5ξ2 + 6η4ξ3 − 2560η3 − 80η3ξ3 + 252η2ξ3 − 112η4ξ2 + 320η2ξ2,

F̃4(ξ, η, ζ4) = (−256ξ3 − 49152η + 49152ξ − 262144 + 12288ηξ − 768ηξ2)ζ4
2 + (131072η + 7η3ξ4

+ 768η5 − 3072ηξ3 − 8192η4 + 3264η3ξ2 − 4096ηξ − 1024η2ξ − 4096ξ2 + 3072ξη4 + ξ5η2 − 16ξ5η

+ 320ηξ4 + 8192η2 − 96η2ξ4 − 11264η3ξ − 256η3ξ3 + 64ξ5 − 2048η3 − 192η5ξ + 12η5ξ2

+ 16η4ξ3 + 1472η2ξ3 − 6144η2ξ2 − 384η4ξ2)ζ4 − 64η3ξ4 + 2560η5 + 1024η3ξ2 + 80η5ξ3 + 16η4ξ4

− 16384η2 − 704η5ξ − 360η5ξ2 − 252η4ξ3 + 256η2ξ3 − 320η4ξ2 − 208η6ξ + 48η7ξ − η5ξ4

− 9η7ξ2 + 3328ξη4 − 64η3ξ3 − 32η7 − 640η6 + 112η6ξ2 − 6η6ξ3.

The other dependencies are much more complicated, and we do not write them.

5. DEFINITIONS AND NOTATIONS

Now we suggest another approach to the study of invariants of irreducible representations for
semisimple Lie groups based on the Borel–Weil–Bott theorem. Namely, we consider jet space of the
section of bundle πλ, then we describe the differential invariant field of the G-action on the jets of sections
and, finally, obtain the criterion, which separates G-orbits of the regular sections of bundle πλ.

In this section we introduce basic notations and recall necessary definitions.

5.1. Compact Real Form

To study invariants of the group G on the module of holomorphic sections of bundle πλ, we use the
following trick.

Let K be the compact real form of the group G (see [18]), k be its Lie algebra and T := K ∩ B be
its maximal torus. Then M � K/T , E � K ×T C, and holomorphic sections of πλ : E → M can be
considered as functions f : K → C such that f(kt) = χλ(t)f(k) for all k ∈ K and t ∈ T .

It follows from the unitary trick (see, for example, [18]) that the rational differential G-invariants
coincide with the rational differential K-invariants. Hence, we shall study the invariants of K-action on
the module of holomorphic sections.

5.2. Decomposition of Lie Algebras k and m

Note that the torus t defines the decomposition of algebra k:

k = t ⊕
⊕
α∈Φ

kα = k− ⊕ t ⊕ k+, m =
⊕

α∈Φ+

Πα,

where

k± :=
⊕

α∈Φ±

kα, Πα := kα ⊕ k−α,

and m is the tangent space to manifold M at T , Φ, Φ± are the root system and the sets of posi-
tive/negative roots.
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5.3. Jet Bundles

Here we introduce some notations and definitions connected with jet bundles and differential
invariants. For more details see [1, 11].

Let us consider the bundle πλ which corresponds to highest weight λ. By Jk(πλ) we denote
the k-jet space of holomorphic sections of the bundle πλ. Canonical projections will be denoted as
πλ

k,k−1 : Jk(πλ) → Jk−1(πλ) and πλ
k : Jk(πλ) → M . Let also J∞(πλ) = lim←− Jk(πλ) be the infinite

jet space.

The action of the group K on the sections of the bundle πλ canonically prolongs to the action on all
jet spaces Jk(πλ) and on J∞(πλ).

Definition (see also [11]). A rational function J on the k-jet space Jk(πλ) is called a differential
invariant of the K-action of order � k if J is invariant under the prolonged action of the group K on
the space Jk(πλ).

Similarly, a total derivation ∇ : C∞(J∞(πλ)) → C∞(J∞(πλ)) is called invariant if it commutes
with the prolonged action of the group K. We will consider only invariant derivations with rational
components.

Remark. Recall that, according to the results of paper [11], the field of differential invariants of
algebraic K-actions is finitely generated over invariant derivations, i.e., each differential invariant can be
represented as a rational function of invariant derivations of a finite number of basic differential invariants.

Our aim is to describe the field of differential invariants of the action of the group K on the space
J∞(πλ), i.e., to find the set of basic invariants and invariant derivations, which generate the entire field.

6. DECOMPOSITION OF JET BUNDLES

6.1. Invariant Connections

In this section we describe the so-called Nomizu and Wang invariant connections. These
connections will be used in the next section for construction of invariant tensors.

Let κ be the Killing form on the group K. The restriction of the Killing form to the Lie algebra t of
the torus T is non-degenerate. Hence, there exists an orthogonal decomposition of the Lie algebra k

of the group K: k = t ⊕⊥ m. Moreover, the subspace m is ad(t)-invariant: [m, t] ⊆ m. Therefore, M is
a reductive homogeneous space and πλ is a homogeneous vector bundle over reductive homogeneous
space (see [14, 17]). The decomposition k = t⊕⊥ m defines an invariant torsion-free connection Γ on M
in the following way:

ΓXY =
1
2
· prm[X,Y ],

where X, Y are vector fields on M and prm denotes the projection onto the subspace m. This connection
is called the Nomizu connection (see [14]).

There is also an invariant connection Δ in the bundle πλ, which is defined as follows: dΔf = df −ωλf
for all sections f , where ωλ is an invariant differential 1-form on K such that ωλ |t= λ and ωλ |k±= 0.
This connection is called the Wang connection (see. [17]). Remark, that these two invariant connections
can be effectively calculated.
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6.2. Invariant Tensors

In this section we construct K-invariant tensors on the jet space J∞(πλ) (some more simple analogs
of these tensors were obtained in [5]).

The following short sequence of bundles

0 → Skτ∗ ⊗ πλ → πλ
k → πλ

k−1 → 0,

where τ∗ : T ∗M → M is the cotangent bundle of the base M and Skτ∗ is its k-th symmetric power,
is exact. Using the invariant connections Γ and Δ, we now a construct K-invariant splitting of this
sequence. To this end we construct a differential operator πλ → Skτ∗ ⊗ πλ of order k and with identity
symbol. First of all let us consider the case k = 1. Then the covariant differential dΔ : πλ → τ∗ ⊗ πλ is
our differential operator.

Now let k = 2. Then the tensor product of connections defines the operator

dΓ⊗Δ : τ∗ ⊗ πλ → τ∗ ⊗ τ∗ ⊗ πλ.

Let

ds
Γ⊗Δ := Sym ◦ dΓ⊗Δ : τ∗ ⊗ πλ → S2τ∗ ⊗ πλ,

where Sym is the operator of symmetrization. In the same way, taking symmetric product we get the
operators

ds
Γ⊗Δ : Sk−1τ∗ ⊗ πλ → Skτ∗ ⊗ πλ.

Finally, we get the operator

δk := ds
Γ⊗Δ ◦ . . . ◦ ds

Γ⊗Δ︸ ︷︷ ︸
k−1

◦dΔ : πλ → Skτ∗ ⊗ πλ

with identity symbol. This operator generates the morphism φδk
: πλ

k → Skτ∗ ⊗ πλ of jet bundles
(see [1]) and defines the decomposition of k-jet bundle πλ

k into direct sum: πλ
k = πλ

k−1 ⊕ (Skτ∗ ⊗ πλ).
Note that every transformation which preserves the connections Γ and Δ (in particular, the action of our
group K), preserves the morphisms φδk

and the corresponding decomposition of the bundle πλ
k .

Now let us consider the induced bundles πλ ∗
l (Skτ∗ ⊗ πλ) over J l(πλ). Lifting the operators dΔ and

ds
Γ⊗Δ to the induced bundle over J l(πλ), we obtain the total differentials d̂s

Δ : πλ ∗
l (πλ) → πλ ∗

l+1(τ
∗ ⊗

πλ) and

d̂s
Γ⊗Δ : πλ ∗

l (Skτ∗ ⊗ πλ) → πλ ∗
l+1(Sk+1τ∗ ⊗ πλ).

Finally, we identify the morphisms of bundles φδk
: πλ

k → Skτ∗ ⊗ πλ with sections of the bundle
πλ ∗

k (Skτ∗ ⊗ πλ) over Jk(πλ) and put Qk := φδk
. These sections can be also viewed as horizontal

symmetric k-forms on Jk(πλ
k ) with values in πλ.

Theorem 7. Symmetric tensors Qk are K-invariant for all k � 0. The following equalities
hold: Q1 = d̂s

ΔQ0 and Qk+1 = d̂s
Γ⊗ΔQk, for k � 1. Each k-jet θk can be represented in the following

form: θk = (Q0(θk), Q1(θk), . . . , Qk(θk)).

6.3. Invariant Tensors on Differential Equations

Below we will use the invariant tensors Qk for classification of holomorphic sections of the bundle
πλ. A section is holomorphic if and only if it satisfies the Cauchy–Riemann equations, therefore we will
classify solutions of this equation system. So we need to restrict invariant tensors Qk on these equations.
Here we describe this restriction in a general situation, and after that we will apply it to our problem of
classification of holomorphic sections.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 37 No. 1 2016



48 BIBIKOV, LYCHAGIN

Let E = {Ek ⊂ Jk(πλ) : k � 1} be a formally integrable system of differential equations (see [1]),

where Ek+1 := E(1)
k are prolongations. We assume that if the system E has order l, then Ek = πλ

k for
all k < l. The symbol of this system is denoted by g := {gk ⊂ Sk+lτ∗ ⊗ πλ}.

Definition. The system E is said to be concordant with connections {Γ,Δ}, if φδk+l
(Ek) ⊆ gk for

all k.
If the system E is concordant with connections {Γ,Δ}, then the equations Ek can be decomposed

into the direct sum Ek =
⊕

i�k gi, and the above construction defines tensors Qk on Ek.

Now we return to our problem of classification of holomorphic sections of the bundle πλ. Let E :=
ECR be the Cauchy–Riemann system. Then its symbols are gk = Skτ∗

1,0 ⊗ πλ, where τ∗ = τ∗
1,0 ⊕ τ∗

0,1

is the decomposition of cotangent bundle into holomorphic and anti-holomorphic parts defined by
the complex structure on the homogeneous space M . Note that the Cauchy–Riemann system E is
concordant with connections {Γ,Δ}. Hence one can restrict invariant morphisms φδk

and tensors Qk

to the equations Ek. The corresponding restrictions will be denoted by QE
k .

6.4. Invariant Derivations
In this section we construct a basis of invariant derivations by using the invariant tensors QE

k .
Let us fix an infinite jet θ ∈ J∞(πλ) and consider the Cartan space Tθ = T 1,0

θ ⊕ T 0,1
θ (recall that the

Cartan plane is a subspace of TθJ
∞(πλ) generated by the plane tangent to the graphs L∞

f of sections

at θ such that θ ∈ L∞
f ). Then the value QE

0 at θ is just a vector from the one-dimensional space πλ and

the value of each tensor QE
k (here k � 1) can be presented as QE

k = qEk ⊗ QE
0 , where qEk ∈ SkT ∗1,0

θ is a
horizontal symmetric complex-valued k-form. We assume that QE

0 
= 0.
It follows from Theorem 7 that the forms qEk satisfy the recurrent relation

d̂s
ΓqEk = qEk+1 + qEk · qE1 ,

where d̂s
Γ is the total symmetric differential due to the Nomizu connection Γ.

Let us consider the decomposition of space m into the direct sum: m =
⊕

α>0 Πα of 1-dimensional
complex spaces. Let us project the invariant 1-form qE1,θ to all planes Πα. We get the set of invariant 1-

forms qE1,α, where α ∈ Φ+. Assume that all of them are non-trivial. Then, taking the dual vectors to these
forms in each invariant plane Πα, we obtain invariant vectors ∇i,θ on m, where i = 1, . . ., m := dimC M .
Finally, after variation of infinite jet θ, we get the set of horizontal vector fields ∇1, . . ., ∇m.

Definition. We say that a 1-jet θ is regular, if the vectors QE
0 (θ) and ∇1,θ, . . ., ∇m,θ are non-zero.

An arbitrary k-jet is said to be regular, if it projects on a regular 1-jet.

7. FIELD OF DIFFERENTIAL INVARIANTS
In this section we give a complete description for the field of differential invariants of the action of the

group K on the infinite jet space J∞(πλ). First of all, we consider invariants of order 1 and 2.

7.1. Invariants of Order 1
Let {α1, . . . , αl} ⊂ Φ be the set of simple roots (here l = rk Φ). Define nα := (n1, . . . , nl), for each

root α ∈ Φ, where α = n1α1 + · · · + nlαl.
Let now θ1 be a regular 1-jet and let θ0 := πλ

1,0(θ1). The stabilizer of 0-jet θ0 is the stabilizer of
the weight λ in the torus T . Hence, differential K-invariants of pure order 1 are just invariants of the
stabilizer-action on the fiber of πλ

1,0 over θ0. Each t ∈ T and α ∈ Φ induces an action of tα : Πα → Πα on
the plane Πα. Let ti := tαi , for simple roots αi (where i = 1, . . . , l). Then tα = tn1

1 . . . tnl
l =: tnα . Recall

that, for each α ∈ Φ, we denoted the projection of the invariant 1-form qE1 onto the invariant plane Π∗
α by

qE1,α. Then t(qE1,α) = tnα−nλqE1,α.

Let Iα := κ(q1,α, q1,α). Then t(Iα) = t2(nα−nλ)Iα. Therefore the functions Jλ := Inλ and Jα :=
Iα/Inα , where Inα := In1

α1
. . . Inl

αl
, are differential invariants of order 1, for each α ∈ Φ+, α 
= αi. So, we

have found m − l + 1 independent differential invariants of order 1. These invariants separate K-orbits
of regular 1-jets and generate the field of K-invariants of order 1.
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7.2. Invariants of Order 2
To obtain differential invariants of order 2 we write the quadric qE2 in the invariant basis. Then

the coefficients Qij := qE2 (∇i,∇j) are differential invariants of order 2. These invariants together with
invariants Jλ, Jα generate the field of K-invariants of order � 2 and separate regular orbits.

7.3. The Field of All Invariants
Finally, we are able to find the field of all differential invariants.
Theorem 8. The field of differential invariants of the action of group G is generated over field

C by the differential invariants Jλ and Jα of order 1, the differential invariants Qij of order 2 and
the invariant derivations ∇1, . . ., ∇m. This field separates K-orbits of regular jets.

Remark. Our construction of basic differential invariants (and of the whole field of invariants) is
universal and does not depend either on group G, or on its representation ρλ. Moreover, this construction
is effective and makes it possible to calculate differential invariants and invariant derivations. On the
other hand, there are no methods for calculating fields of algebraic rational invariants for the actions
of semisimple groups in irreducible representations.

8. SEPARATION OF K-ORBITS OF THE REGULAR SECTIONS

In this section we provide a criterion for the separation of K-orbits of sections of the bundle πλ, and
hence of G-orbits of the irreducible representation ρλ.

Let us consider an arbitrary holomorphic section s of the bundle πλ. The section s is said to
be regular, if the set M

reg
s := {x ∈ M : [s]2x is regular} is dense in M . The restrictions of the basic

invariants Jλ, Jα and Qij to the regular section s are holomorphic functions on M
reg
s and define the map

hs : M reg
s → C

N , hs(x) = (Jλ([s]2x), Jα([s]2x),Qij([s]2x)),

where N := (m − l + 1) +
(m

2

)
is the number of the basic invariants Jλ, Jα and Qij . Let Hs := Im(hs)

be the image of the map hs.
Theorem 9. Regular sections s and s̃ of the bundle πλ are K-equivalent if and only if Hs = Hs̃.
Remark. The results of this paper can be easily generalized to the case when the representation ρλ is

multiplicity free, i.e., ρλ is a sum of irreducible representations with multiples 1.
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