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Abstract—1In this paper we discuss an approach to the study of orbits of actions of semisimple Lie
groups in their irreducible complex representations,which is based on differential invariants on the
one hand, and on geometry of reductive homogeneous spaces on the other hand. According to the
Borel—Weil—Bott theorem, every irreducible representation of semisimple Lie group is isomorphic
to the action of this group on the module of holomorphic sections of some one—dimensional bundle
over homogeneous space. Using this, we give a complete description of the structure of the field of
differential invariants for this action and obtain a criterion which separates regular orbits.
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1. INTRODUCTION

Problem of studying the orbit space /G for an action G : 2 of a group G on a space £ is one
the most important problems, which has a lot of different applications in many areas (representation
theory, geometry, differential equations, etc.). Most of examples of this problem can be separated into
the following cases:

e () is a smooth manifold and G is a Lie group (geometric situation);

e () is an algebraic manifold and G is an algebraic Lie group, acting algebraically on € (algebraic
situation).

In the first case it was proved by J.L. Koszul and R. Palais, that if the action G : € is proper and free,
then the orbit space /G is smooth manifold and 2 — Q/G is a principal G-bundle. Moreover, G-orbits
are separated by smooth invariants.

In this paper we consider the second case of algebraic action. This case has very long and interesting
history. Namely, if the group G is semi-simple, €2 is a vector space and the action G : Q is algebraic and
linear, it was proved by D. Hilbert that the orbit space €2/G is an algebraic manifold and regular G-orbits
are separated by polynomial invariants. Also he proved that if G is reductive, then regular G-orbits are
also separated by polynomial invariants and the space of closed G-orbits is the spectrum of polynomial
invariant ring.

In 1960-th D. Mumfiord generalized Hilbert’s results and created his geometrical invariant theory
(see [13]). Mumiord applied his theory to solution of so-called module space problem: he described
module spaces of algebraic curves, Abel manifolds, vector bundles on curves, etc. These results made it
possible to reinterpret basic methods and problems in invariant theory and stimulate a lot of new works
in this area.
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In his famous talk on the Second mathematical Congress in Paris Hilbert formulated 23 great
problems for the XX century. His 14th problem states, that polynomial invariant ring is finitely generated
for every algebraic group G (and hence regular G-orbits are separated by polynomial invariants).

In 1954 Nagata constructed the counterexample to Hilbert 14th problem. Nagata group G has
dimension 18 and it linearly acts on vector space V. Further this counterexample was simplified by
Steinberg.

On the other hand, the classical result of M. Rosenlicht [16] claims, that the regular G-orbits of
algebraic action of algebraic group G on an algebraic manifold are separated by rational invariants in
opposite to polynomial ones.

There is no effective way to calculate rational invariants, and the algorithm for calculation of
polynomial invariants works very slow. This observation makes it very difficult to use Hilbert and
Rosenlicht theorems even in very simple problems.

This paperis a survey of our results [3]—[6] on applications and on using rational differential invariants
in order to solve the problem of orbit separation.

Firstly, we reformulate algebraic problems under consideration as a problem on solutions of a suitable
differential equation.

Secondly, we use rational differential invariants instead of algebraic ones. It allows us to use the Lie—
Tresse theorem (see[11]) which gives constructive and effective way to find the field of rational differential
invariants. The combination of the Lie—Tresse [11] theorem and the Rosenlicht [16] theorem shows that
the field separates regular orbits.

Now let us discuss three examples.

1.1. Binary Forms

Let V;, = S™(C?)* be the space of binary forms of degree n over the field C. Consider an action of
the group GLg(C) on the space V;, such that the subgroup SLy(C) C GLy(C) acts by linear coordinate
transformations, and center C* C GLy(C) acts by the homotheties f +— Af, where f € V,, and A € C*.

This problem is closely connected with other classification problems in invariant theory such that
the classification problem for the action of projective group PGLy(C) on the projective line and with
the classification of hyperelliptic curves of genus g (see [18]). The SLy(C)-invariant algebras B,, :=
C[V,]3%2(© of binary forms of degree n < 8 are known so far (see [8, 9, 2]).

The case n = 3 was solved by Bool in 1841. Namely, if

Vs = {az?® + 2bxy + cy? : a,b,c € C},
then
By = C | (ad — be)® — 4 (ac — 1) (bd — 2 .

The first nontrivial case n = 4 was solved by Bool, Cayley and Eisenstein in 1841—1850 and initiated
the classical invariant theory (note that the problem of classification of binary forms of degree 4 is closely
related to the cross ratio of the four projective points on projective line, and to the j-invariant of elliptic
curve; see [18]).

I{Vy = {ax® + 3bx2y + 3cxy? + dy> : a,b,c,d € C}, then By = C[I, J], where

a b c
I=ae—4bd+32, J=1p ¢ dl-

cde

The case n =5 was studied by Cayley. In this case the invariant algebra is generated by four
homogeneous polynomials of degrees 4, 8, 12 and 18, which satisfy a homogeneous relation of degree
36 (note that the invariant of degree 18 consists of more than 800 monomials). There is also one syzygy
between these invariants: I,Ig + 813119 — 21713115 — 72141513, — 43213, + 313, — 16135 = 0. Note
that the equation f(x,1) = 0, where f € V, is solvable in radicals if and only if I;g(f) = 0. The cases
n = 6, 7, 8 were studied by Gordan, Shioda, Dixmier and Lazard. The explicit form of generators of the
invariant algebra for n = 7 were found by Bedratyuk in 2007 only (see [2]).

In 1982 V. Kac proved, that the number of basic polynomial invariants grows exponentially with
degree n, so it is impossible to calculate these invariants with the help of computer for sufficiently big n.
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1.2. Ternary Forms

In the case, when n = 2, the invariant algebra is ireely generated by the Hessian of ternary form.

The case, when n = 3, was studied by Weierstrass. In this case the invariant algebra is equal to
C[S; T], where the invariants S and T respectively have degrees 4 and 6 (see[18, 8]).

Rational GL3(C)-invariant j = S3/T? is called j-invariant of ternary cubic form, and two non-
singular forms of degree 3 are GL3(C)-equivalent if and only if their j-invariants coincide.

[t is known that any non-singular ternary form f of degree 3 is equivalent to the Weierstrass normal
form y?z + 23 + px2? + q23, where p = S(f) and ¢ = T(f). It is also known (see [18]) that any elliptic
curve is isomorphic to the curve X (f) = {f = 0} ¢ CP? for some ternary form f of degree 3 and two

elliptic curves X (f) and X (f) are projectively isomorphic if and only if the ternary forms f and f are
GL3(C)-equivalent.

In the case, when n = 4, it is known that the invariant algebra contains invariants I3, Ig, Ig, I12, 15,
Iig, I7, where the indices of invariants show their degrees. It is worth to note that Emmy Noether found
more than 300 concomitants (see [8]). But it is unknown if they generate the invariant algebra or not.

1.3. p-Forms

In the case of any p and n = 2, the algebra of polynomial invariants is freely generated by one
polynomial, namely, by the Hessian of the form. In the case of p = 4 and n = 3, the algebra of invariants
is C[A, B,C, D, E, F], where the basis invariants have degrees 8, 16, 24, 32, 40, 100, respectively,
F? € C|A, B,C, D, E], and the invariants A, B, C, D and E are algebraically independent (see [8]).

2. BASIC IDEAS OF A NEW APPROACH

In this paper we suggest a new approach to these classical problems based on ideas of differential
geometry, jet spaces and differential invariants.

First of all, every algebraic action G : © can be linearized in the following sense. According to
Sumihiro’s linearization theorem, each algebraic G-manifold 2 can be embedded into a G-invariant
submanifold in an irreducible finite-dimensional G-module V. So, it is enough to study invariants of the
action of group G in its irreducible representation.

Let G be a connected semisimple complex Lie group, and let py: G — GL(V) be its irreducible
representation with highest weight A\ (see [10]). First, let us fix a Borel subgroup B in group G
and consider homogeneous complex flag manifold M := G/B. Then, consider the action B : G of
Borel group B on G by the right shifts: g — gb~!, where ¢ € G and b € B. Finally, let us define the
bundle product F := G x5 C = G x C/ ~, where the equivalence relation ~ is defined by the following:
(g,¢) ~ (gb~ 1, xa(b)c), and where x, € X(T) is the character corresponding to the highest weight X of
the maximal torus T C B.

We introduce one-dimensional bundle 7: E — M, 7(g,c) = gB. Holomorphic sections of
this bundle are just holomorphic functions f: G — C, which satisfy the relation f(gb) = xx(b)f(g), for
allge Gandb € B.

Group G acts in bundle 7* by left shifts. This action prolongs to the action on the space of
holomorphic sections of bundle 7*: g(£)(¢') = f(g~'¢").

According to the Borel—Weil—Bott theorem (see, for example, [7]), if A is a dominant weight of
the group G, then this action is isomorphic to the representation py. Therefore, the study of orbits of
irreducible representations of semisimple complex Lie groups with the highest weight X is equivalent to
the study of the orbits of these actions on the space of holomorphic sections of bundle 7.

Let us illustrate this idea in case G = SLy(C) (see also [3]). It is known (see, for example, [10,
15]), that the dominant weights of the group SLy(C) are A = G, where « is the positive root of the
Lie algebra sl3(C) and n > 0 is a non-negative integer. The Borel group B = Bo(C) consists of upper
triangular matrices, and the character ) acts on B in the following way:

a b n
X\ =a .
0 a!
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Then M = SLy/By ~ CP!.

If we denote the homogeneous coordinates on M by (z : y), then the holomorphic sections of bundle
7 are just the homogeneous polynomials of degree n in variables z and y. Thus, the study of invariants
of representations of group SLy(C) is reduced to the classification SLy(C)-orbits of binary forms. This
case was considered in [3], where binary forms were considered as solutions of the Euler differential

equation. Let us recall the main results.

3. CLASSIFICATION OF BINARY FORMS

In this section we consider the GLy(C)-action on the space V,, of binary forms.

Let C? be the plane with the coordinates (x,y). Denote by J*C? spaces of k-jets of analytical
functions with canonical coordinates z, y, u, uio, uo1, .... The group GL2(C) acts on the space
of analytic functions C*°(C?) in following way. Namely, the subgroup SLy(C) C GLy(C) acts by
linear coordinate transformations, and the center C* € GLy(C) acts by the homotheties f — A\ f, where
f € Vi, and A € C*. This action prolongs to actions in the k-jet spaces J*C2.

Recall that the space V,, of binary forms of degree n is identified with the space of smooth solutions
of the Euler equation zu, + yu, = nu. The corresponding algebraic manifold £ C JLC? is given by the
equation xujg + yugr = nu.

By a differential invariant of order & of binary form we mean a GLg(C)-invariant function on the
manifold £ which is polynomial in u, and u .

In a similar way one defines an invariant derivation as a linear combination of total derivatives
V= A% + B% (where A, B € C*®(J>C?) and %, d% are the total derivatives), which is invariant
with respect to the prolonged action of the group GLy(C).

Note that for such derivations functions V(I) are differential invariants (generally, of order higher than
the order of I) for any differential invariant 1. This observation allows us to construct new differential
invariants from known ones by differentiations only.

Theorem 1. The algebra of differential invariants of the GLy(C)-action on the manifold £(>)

is freely generated by the differential invariant H := %22_“%1 and the invariant derivation
V=4nd _ wod

u dx u dy’

Remark. The numerator fy, fyy — f:%y of the restriction H(f) is the Hessian of the form f. It is well-
known (see [18]) that the Hessian is a covariant of form f. It is easy to see that the numerators of all
differential invariants V¥ H are covariants. Hence, we can construct new covariants using the invariant
derivation V.

Now consider the invariants I = H, I = VH and I3 = V2H. The restrictions of these invariants
to the graph L‘} C J*C? of a form f € V,, are homogeneous polynomials in z and y. Then they are
algebraically dependent and F'(I1(f), I2(f), I3(f)) = 0 for some irreducible polynomial F'. Let us order
the variables Ij, by the requirement that I; < I < I3 and assume that the polynomial F" has the minimal
degree with respect to this order and is defined up to non zero scalar.

Definition. We say that a binary form f € V;, is regular, if (21113 — 313)(f) # 0.

Theorem 2. Let fy, fo € V, be binary forms and Fy, F» be the corresponding dependencies
between the invariants Iy,. Then the forms fi and fo are GLy(C)-equivalent if and only if Fy = Fb.

Remarks. 1. It can be proved that the singularity condition (211 I3 — 312)(f) = 0 is equivalent to the
condition that the form f € V,, has no more than two roots without taking multiplicity, or that the form
f is equivalent to the form x*y"~* for some k < n, or that the orbit of form f has the dimension less
than 4.

2. It is obvious that the ratios of coefficients of the polynomial F' are rational algebraic invariants.
Moreover, they separate regular orbits of binary forms. Hence (see[18]) they generate the field of rational
invariants. So we obtain a method to calculate generators of rational invariant field for binary forms of
arbitrary degree.
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Fig. 1. Graph of the function F(1,£&1,&) = 0 for the form f(x,y) = zy(x + y)(—2x + ), where & = I3 /I and
& = I3/13.

Examples. 1. Consider the forms
filw,y) =ay(x+y)(—2z+y) and folz,y) =zy(z +y)(—3z +y).
The corresponding dependencies between invariants Iy, are
Fy(Iy, Is, I3) = 308715 — (1234815 4 1646417)1,12
— (8003 — 75481315 — 2332811 I3 — 155521%),
Fy(Iy, Iy, Is) = 1977315 — (7909213 + 105456171, I3
— (980013 — 202921515 — 9331211 I3 — 622081%).

Then Fy # F5 and theforms f; and f2 do not belong to the same orbit. From the point of view of classical
invariant theory, the orbits of binary forms of degree 4 are determined by the j-invariant (see [18]). In
our case the j-invariant of the first form equals 343/36 and of the second one — 133 /144.

2. Consider the forms
filz,y) =ay(x +y)(—x+y) and folz,y) = zy(z +y)(2z + y).
The corresponding dependencies between the invariants I are
Fy(I, Iy, I3) = Fy(Ih, Iy, I3) = 313 — 61,13 — 813.
Therefore, these forms belong to the same orbit. In this case the j-invariants of forms are equal to 27/4.
3. Consider the forms
fi(z,y) =29 — 25 +y10 and  fo(z,y) = 22% (25 + ¢°).
The corresponding dependencies between invariants Iy, are
Fi(1,&, &) = 1565515579392¢, — 1464571772928¢; — 544563247104¢, &5 + 329450323968£3
+ 1401504528006 £3 — 78246750061 €5 + 207664515328¢7 — 130753566000£7 &,
— 44018323200¢5 + 1173701250¢5 + 1391569403904 + 3642269062567,
Fy(1,&1,&) = —729482240&5 — 2019584001 — 69766200&; &5 — 244800000£3
+ 2647102567 — 27378000&5 — 724451328,

where &1 := I2/I} and & := I3/I?. Then F} # F, and the forms f; and f» do not belong to the same
orbit.
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4. The results obtained above may be generalized on space of rational binary forms. Let us consider
the form

(z +y)(z + 2y)
(. —y)(z—2y)

f(z,y) =y

Then one has
F(1,£&,&) = 154229410578567349395511050245261% — 694032347603553072279799726085 &,
+ 2891801448348137801165832192&,4€12 — 5563218291023901370764754944085 3¢, >
+ 176855155262362779207749074944065 26, * — 9838367766016191158656627113984&5€,°
+ 30845882115713469879102210048¢,* + 6558766130960968855606863593472¢; 5
+ 8148627609559524732432072572928¢, & — 2141112434058460368562244026368¢; ”
+ 7530732938406608857202688¢,® — 384842775202908363970841935872¢, 8
— 47071176263543356680830976&2” + 3331766141585362047762432¢5 10
+ 240983454029011483430486016£25¢; — 136673243790348732281735086088,°¢,2
+ 179471560000206825234030919680&5%¢13 — 4155128085571020552877690060802 3¢,
+ 253859862561286373869983694848¢52¢1° + 16008549302790136580054447554568 &1
+ 1010209174972661988360153464832¢, €17 — 1351285292406540377215991808¢57 ¢,
+ 6464391879609645678578368512£55¢12 — 9446763785768711010083930112¢,°¢,°
— 38409533367857934359153356800, ¢, % + 2919023849788087932617856122888,3¢,°
— 8112808684998989871866 798407688, 2¢1% + 93664025067989500710617088&5 53¢,
+ 3553162418701488231677952085 712 — 4154329385482237434699909120¢, 8¢,
+ 153766637296759559895182622726,°6,% — 24070240434064339153717026816852¢,°
+ 9178054653241 763835617640448653£,5 + 26031176812719833069813760&, ¢,
— 153050307987937513189613760&,5¢,2 + 368761639995304206203713536&5 76,3
— 1328951619623517097285509128,°¢,% — 2675820515400504918717552, 10¢,
+ 15327123363127582026796865 %612 + 56913001673194783425945665 1
+ 14553484508474084880243¢5 12

4. CLASSIFICATION OF p-FORMS

Classification of homogeneous p-forms with respect to the linear action of group GL,(C) can be
provided in a way similar to the case of binary forms. Namely, let us consider the space CP with
coordinates 1, ..., z, and the k-jet space J*CP with canonical coordinates (1,...,2p,u,ur). The
homogeneous p-forms of degree n are solutions of the Euler equation € = {3°?_; z;u; = nu} C J'CP

4.1. Invariants Horizontal Forms

Before constructing differential invariants and invariant differentiations, we specify a set of invariant
tensors for the action of the group GL,,(C) on the Euler equation.

Uo (dx)a-

u ol

Theorem 3. The horizontal symmetric forms Qi = Zlolék given on the space J*CP are
GL,(C)-invariant for all k > 1.
Remark. We refer to the forms Q. as invariant k-forms. Note that these forms are invariant for the

linear action of arbitrary group G.
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Fig. 2. Graph of the function F(1, &1, &) = 0 for the form f(z,y) = ' — 2%y® + ', where &, = I3 /I3 and & =
I3/1%.

10 -5 \O0 5 A0 15
| &1

Fig. 3. Graph of the function F(1,&1,&2) = 0 for the form f(z,y) = 22y (2 + y°), where & = I3/I{ and & =
I3/13.

4.2 Invariant Derivatives

Now we will describe a basis of invariant differentiations. Recall that, by an infinite jet, we
mean a sequence {f;} of k-jets projected onto each other, i.e., such that 71 4 (0k41) = 0k, Where
Tea1k: JEE — J¥ is a natural projection. Geometrically, each (k + 1)-jet 6511 can be represented
in the form of a k-jet ), and an R-plane L(fj11) C Ty, J* (see[1]).

A tangent vector in the space J> of infinite jets is a sequence of pairs {(8j, vx)}, where 8, € J* and
vk € L(0k11), projected onto each other. If this sequence begins with a kq-jet, then we say that & is the
order of the tangent vector.

The tangent space T to an infinite jet {0} of order kq is the R-plane L(0,+1) at the point 6x,. The
tangent vectors are elements of the induced bundle 74, := 7 (), where 7: TCP — CP is the tangent
bundle of CP. By a vector field on the space of infinite jets of order ky we understand a section of the
bundle 7,. Now, take an infinite jet {6} of order ko and let T denote the tangent space of this jet. All
further considerations are in the space T

Note that the invariant k-forms @ can be regarded as symmetric k-forms on the space T. We
assume that the quadric Q2 is non-degenerate on 7T'.
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Fig. 4. Graph of the function F(1,&1,&2) = 0 for the form f(z,y) = xy%, where & = I3/I¥ and & =

I3/1%.

For each tensor v, let v* denote the tensor dual with respect to Q2. By (v, wx) we denote the
convolution of tensors. Consider the radial differentiation

T —zp:x-i eT
_izl “dx; '

2

[t is invariant and determines the decomposition of the space T" into the direct sum (r) @& U of subspaces
orthogonal with respect to Q2. In what follows, all considerations are in the subspace U.

Take the tensor Q5 € SQ(U) dual to Q2 and consider a vector V1 € U dual to the tensor obtained by
pairing Q3 and @3, that is, V1 = (Q3, Q%)*. Consider also the linear operator D: U — U which sends
each vector v to the vector dual to the convolution of cubic @3 with the symmetric product of V1 and v,
i.e., defined by D: v +— ({Q3,V1),v)*. Wealso set V; := D=1V,

Note that the vectors V; depend on a point in space of 3-jets and are linearly independent in a Zariski
open subset of the fiber of the projection &5 — &s.

Varying the point in the space of 3-jets, we obtain the set of differentiations V1, Vi, ..., V,,_1.

Theorem 4. Dijferentiations r, V1, ..., V,_1 are invariant and form a basis in the space of
invariant differentiations.

Finally, we are ready to describe the entire field of rational invariants.

Note that the values of k-forms @, on the set of k invariant differentiations are differential invariants.
Let I, := Q3(Vay, Vay, Vag ), Where a := (a1, ag, a3) is an unordered set of indices, i.e., consider the
coefficients!) of form Q3 in the invariant basis {r, V1,... ,Vp_1}.

Theorem 5. The field of differential invariants of an action of group GL,(C) on manifold Ex
is generated by the differential invariant H of order 2, by the differential invariants I, of order 3
and by the invariant differentiations V1, ..., Vy_1. Moreover, this field is algebraically generated
by the invariant H and by the derivatives of the form V°1,. It separates the GL,(C)-orbits of jets
of maximal dimension.

Finally, we apply Theorem 3 in order to describe explicitly the GL,(C)-orbits of homogeneous p-
forms with nonzero Hessian. For this purpose, consider the fourth-order differential invariants H, I,
V1, . Theirrestrictions to the graph L;% of aform f with nonzero Hessian (this requirement is necessary,

DIt can be proved that all coefficients before r* vanish, and therefore, the differentiation r does not participate in the definition
of the invariants /.
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because otherwise, the denominators of some invariants vanish) are homogeneous rational functions in
the variables z1, ..., z, and determine the rational mapping

mpi €7 = CN wpla) = (H(1D), L([f12), Vila([f]2)

(here N is the number of the chosen invariants). Thus, there are algebraic dependencies between these
restrictions. We denote the set of such dependencies by Dy and the closure of image of mapping m¢ by
X . We reler to Dy as the ideal of dependencies of the p-form f.

Theorem 6. 1. Forms f and fwith nonzero Hessian are GL,(C)-equivalent if and only if
X;= X5
f

2. Forms f and fwith nonzero Hessian are GL,(C)-equivalent if and only if their ideals of
dependencies coincide: Dy = Dj.

4.3. Examples: Ideal Dependencies for Ternary Forms

Example. Consider f(z,y,2) = (z +y + 2)(z* + y* + 2%). Then the ideal of dependencies Dy looks
as follows (here I := Iy 1 1), J := I(11,2), K = L(129), L= I(322), V= Vi and ¢ := V).
Dy =(VI,VJ,VK,VL,~50JL + 189K?* + 51 KSL — 45L?,
HL +1IL —15JK + J4L,
123HK — 4HSL — 3IK + 4I5L — 302,
22051 L% — 30303J K L + 1814JLSL + 12K6L? + 46L3,
13231 KL — 84ILSL — 4810J° L 4 7149 K6 L — 452.J5L°,
40H JSL + 3051 L — 49231 JK + 3341J5L + 115440K — 64000 L,
5512 L — 8731 JK + 541.J5L + 40J% + 16752K — 8965 L,
484512 L2 — 731671 JK L + 47261 JLSL + 40J%6L? + 1038960K L — 51200LJ L,
122009601 JL? 4 33195991 K LOL + 11537831 L6L? — 22658370.J% LS L
+ 2551506 L3 — 19256546402,
—185IJL + 6IKSL + 2I6L? + 2835J2 K — 210J%5L — 3360L,
85050H 0 L% — 2099201 J L + 1789771 KL + 5020915 L2 — 468510J25 L + 33131280L,
18450 H?0L + 18695 H IS L — 138990 H J? + 64261° K — 1631°6 L — 29801.J% — 1210320.],
21577512 KL — 17851° LOL — 2034901.J% L + 23101 J5L* — 91697840.J L
+ 136288536 K 6L — 86169285 L>
—281601%J L% + 473461 K LOL — 31181°LSL? + 4201 J? L6 L — 63797912851 L
+ 87737639535J K L — 5275532430 L6L — 137781000 L3,
3280H2J% + 450H 5L — 3280HIJ? + 15313 K + I36L — 1101%J?
+ 118080H J — 262401.J — 1889280,
926013 L3 — 12733212 JK L? + 765612 JL?5L + 20I° L6L3 + 171933451 K L?
+ 56596251 L2 L — 62467470.J> L2 — 287550J LOL? + 145805 L%).

The dependencies become much more simple in the variables £ = —5761/H, n = —32JH/3, {; =
—16H3K /27, (o = 8HOL/81, (3 = —(VJ)?/9216 H, {4 = —3962711310336(V K )? H? (which are ho-
mogeneous of degree 0).

Example. Consider the form f(z,y, 2) = 22yz. Then the dependencies look as follows: Fy(£,n) =

E—In+12, Fo(n,¢1) =3n+9C —4, F3(n,(2) =3C —n. All other dependencies are also linear.
Hence, in this case the manifold X is a 2-dimensional plane (in coordinates &, ..., (4).
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Example. Consider the form f(z,y, z) = z* 4+ (zy)?. The dependencies look as follows:
Fi(&n,G) = (—2€% 4 32¢ — 128)G: % + (—2561 + 20 + 8¢
+167° 4 8n¢ — n€*)C1 + 8° — 1280% — 876 + 1,

Fy(€,m,Co) = (463 4 T68¢ — 2048 — 96£2) (o2 + (4n°€ + 15360> — 9612 + < — 961 — 83 + 128n¢
+ 12862 — 8nE% — 40967y + 384n° — 24n°¢ + 128n%¢ + &t — 2048n% — 247,
F5(&,m,C3) = (64 + 192 + 1024) (32 + (2566 — 12° + 224n* — 768n° — 64¢% + 5121 — 10887°¢
— 384n€2 4 22413¢ — 166n* — n?€3 + 16n€3 + 960262 — TPE? + 8192)C3 + 16384 + 3¢ + 321°
+ 64n€3 4 640n* + 36013E2 — 3328n%¢ + 208¢nt + 64net — 16n2¢* + 70413 ¢ — 2563
— 102472 — 48n°¢ + In°E2 + 6n*e3 — 25601 — 80n3¢3 + 252n%€3 — 112n*¢? + 32012,
Fy(€,m,Cq) = (—2566° — 491521 + 49152¢ — 262144 + 12288n¢ — 768n2) (4% + (131072 + ¢t
+ 7681° — 307203 — 8192n* + 3264n3¢% — 4096n¢ — 102472¢ — 4096€2 + 307260 + €90 — 16€°n
+ 320n€* 4 81921 — 961%E* — 1126473¢ — 256133 + 6465 — 20483 — 192°€ + 12°¢2
+ 1673 + 147207 ¢ — 6144n*¢? — 384n*€?) ¢y — 6413¢* + 2560n° + 1024732 4 80n°¢3 + 16n*¢*
— 1638477 — 7041°¢ — 3601°¢% — 252013 4 256m2€3 — 320162 — 2081°¢ + 48n7¢ — ¢t
—9n7€% 4+ 3328¢nt — 64n3¢3 — 320" — 64005 + 1120562 — 615¢3.

The other dependencies are much more complicated, and we do not write them.

5. DEFINITIONS AND NOTATIONS

Now we suggest another approach to the study of invariants of irreducible representations for
semisimple Lie groups based on the Borel—Weil—Bott theorem. Namely, we consider jet space of the
section of bundle 7%, then we describe the differential invariant field of the G-action on the jets of sections
and, finally, obtain the criterion, which separates G-orbits of the regular sections of bundle 7.

In this section we introduce basic notations and recall necessary definitions.

5.1. Compact Real Form

To study invariants of the group G on the module of holomorphic sections of bundle 7, we use the
following trick.

Let K be the compact real form of the group G (see [18]), € be its Lie algebra and T":= K N B be
its maximal torus. Then M ~ K /T, E ~ K xr C, and holomorphic sections of 7 E — M can be
considered as functions f: K — Csuch that f(kt) = xa(¢)f(k) forallk € K andt e T.

[t follows from the unitary trick (see, for example, [18]) that the rational differential G-invariants
coincide with the rational differential K-invariants. Hence, we shall study the invariants of K-action on
the module of holomorphic sections.

5.2. Decomposition of Lie Algebras € and m
Note that the torus t defines the decomposition of algebra €:
t=toPt.=t atat, m= P I,
acd acd
where
L= @ ¢k, I, =%t dt_,,

acedy

and m is the tangent space to manifold M at T, &, & are the root system and the sets of posi-
tive/negative roots.
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5.3. Jet Bundles

Here we introduce some notations and definitions connected with jet bundles and differential
invariants. For more details see[1, 11].

Let us consider the bundle 7* which corresponds to highest weight A. By J*(7*) we denote
the k-jet space of holomorphic sections of the bundle 7*. Canonical projections will be denoted as
w,i"k_l: JE(r) — JE=L(r) and 7 J¥ (7)) — M. Let also J°(7*) = lim J¥(7*) be the infinite
jet space.

The action of the group K on the sections of the bundle 7* canonically prolongs to the action on all
jet spaces J*¥ () and on Jo° (7).

Definition (see also [11]). A rational function .J on the k-jet space J* () is called a differential
invariant of the K-action of order < k if J is invariant under the prolonged action of the group K on
the space J*(7).

Similarly, a total derivation V: C®(J>®(7})) — C°(J>(n*)) is called invariant if it commutes
with the prolonged action of the group K. We will consider only invariant derivations with rational
components.

Remark. Recall that, according to the results of paper [11], the field of differential invariants of
algebraic K -actions is finitely generated over invariant derivations, i.e., each differential invariant can be
represented as a rational function of invariant derivations of a finite number of basic differential invariants.

Our aim is to describe the field of differential invariants of the action of the group K on the space
J*° (), i.e., to find the set of basic invariants and invariant derivations, which generate the entire field.

6. DECOMPOSITION OF JET BUNDLES
6.1. Invariant Connections

In this section we describe the so-called Nomizu and Wang invariant connections. These
connections will be used in the next section for construction of invariant tensors.

Let s be the Killing form on the group K. The restriction of the Killing form to the Lie algebra t of
the torus T is non-degenerate. Hence, there exists an orthogonal decomposition of the Lie algebra ¢
of the group K: ¢ = t®, m. Moreover, the subspace m is ad(t)-invariant: [m,t] C m. Therefore, M is
a reductive homogeneous space and 7 is a homogeneous vector bundle over reductive homogeneous
space (see[14, 17]). The decomposition ¢ = t & m defines an invariant torsion-free connection I on M
in the following way:

1
I'yY = 5 pro[X, Y],

where X, Y are vector fields on M and pr,, denotes the projection onto the subspace m. This connection
is called the Nomizu connection (see[14]).

There is also an invariant connection A in the bundle 7, which is defined as follows: da f = df — w) f
for all sections f, where wy, is an invariant differential 1-form on K such that wy [¢= A and wy |¢,.= 0.
This connection is called the Wang connection (see.[17]). Remark, that these two invariant connections
can be effectively calculated.
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6.2. Invariant Tensors

In this section we construct K -invariant tensors on the jet space J°(7*) (some more simple analogs
of these tensors were obtained in [5]).

The following short sequence of bundles

0—SPr*ert —» ) —» 71 —0,

where 7*: T*M — M is the cotangent bundle of the base M and SFr* is its k-th symmetric power,
is exact. Using the invariant connections I' and A, we now a construct K-invariant splitting of this

sequence. To this end we construct a differential operator 7 — S¥7* @ 7* of order k and with identity

symbol. First of all let us consider the case k = 1. Then the covariant differential da: 7 — 7 ® 7 is
our differential operator.

Now let k = 2. Then the tensor product of connections defines the operator
droa: TF @ = T* @ TF @ .
Let
diga = Symodrga: 77 ® ™ — S @ 71,

where Sym is the operator of symmetrization. In the same way, taking symmetric product we get the
operators

dign: ST @ T — SFrr @ .
Finally, we get the operator
O :=dpga © ... 0dpg oda: ™ — SFr* @

N

k—1

with identity symbol. This operator generates the morphism ¢, : 73 — Skr* @ 7 of jet bundles

(see [1]) and defines the decomposition of k-jet bundle 77,?:‘ into direct sum: 77,?:‘ = 77,?:‘_1 @ (SkT* ® 7).
Note that every transformation which preserves the connections I" and A (in particular, the action of our
group K), preserves the morphisms ¢;, and the corresponding decomposition of the bundle 71,;\.

Now let us consider the induced bundles 77 *(S*7* @ 7*) over J! (7). Liiting the operators da and

dpg to the induced bundle over J'(m), we obtain the total differentials c/l\sA: () — 771)‘+*1(7'* ®
A
) and

dion: m " (SET* @ ) = m) i (SFTr @ ).

Finally, we identify the morphisms of bundles ¢, : T — Skr* @ 7 with sections of the bundle

o *(S*r* @ ) over JE(r*) and put Qi := ¢5,. These sections can be also viewed as horizontal

symmetric k-forms on J* (7)) with values in 7.

Theorem 7. Symmetric tensors Qi are K-invariant for all k > 0. The following equalities

hold: Q1 = d}\Qo and Qi+1 = (fli@AQk, fork > 1. Each k-jet ) can be represented in the following
form: O = (Qo(0k), Q1(k), - .., Qr(Ok)).

6.3. Invariant Tensors on Differential Equations

Below we will use the invariant tensors @, for classification of holomorphic sections of the bundle
7. A section is holomorphic if and only if it satisfies the Cauchy—Riemann equations, therefore we will
classify solutions of this equation system. So we need to restrict invariant tensors @y on these equations.
Here we describe this restriction in a general situation, and after that we will apply it to our problem of
classification of holomorphic sections.
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Let £ = {&, c J*(x*) : k > 1} be a formally integrable system of differential equations (see [1]),
where &4 = S,gl) are prolongations. We assume that if the system & has order [, then &, = 77 for

all k < 1. The symbol of this system is denoted by g := {gp, € S¥lr* @ 7},

Definition. The system & is said to be concordant with connections {I', A}, if ¢s, ., (Ex) C gy for
all k.

If the system & is concordant with connections {T", A}, then the equations & can be decomposed
into the direct sum &, = @igk gi, and the above construction defines tensors )y, on &j.

Now we return to our problem of classification of holomorphic sections of the bundle 7*. Let £ :=
Ecr be the Cauchy—Riemann system. Then its symbols are g = SkTiO ® m, where 7% = Tio® 701
is the decomposition of cotangent bundle into holomorphic and anti-holomorphic parts defined by
the complex structure on the homogeneous space M. Note that the Cauchy—Riemann system €& is
concordant with connections {I', A}. Hence one can restrict invariant morphisms ¢, and tensors Qy,

to the equations &. The corresponding restrictions will be denoted by Qi.

6.4. Invariant Derivations
In this section we construct a basis of invariant derivations by using the invariant tensors Q.

Let us fix an infinite jet § € J>(7) and consider the Cartan space 7y = 7;1’0 ® ’2;0’1 (recall that the
Cartan plane is a subspace of TpJ*°(7}) generated by the plane tangent to the graphs L% of sections
at 0 such that 6 € LY). Then the value Qf at 0 is just a vector from the one-dimensional space 7 and
the value of each tensor Qf (here k > 1) can be presented as Qi = q,f ® Qg, where qf € Sk’T;LO is a
horizontal symmetric complex-valued k-form. We assume that Q§ # 0.

It follows from Theorem 7 that the forms ¢f satisfy the recurrent relation

% £ £ & ¢
POk = Qe1 T G - a1,

where c/l\ii is the total symmetric differential due to the Nomizu connection I".
Let us consider the decomposition of space m into the direct sum: m = @, II, of 1-dimensional
complex spaces. Let us project the invariant 1-form qfa to all planes II,. We get the set of invariant 1-

forms qfa, where a € ®. Assume that all of them are non-trivial. Then, taking the dual vectors to these

forms in each invariant plane II,, we obtain invariant vectors V; g on m, where ¢ = 1, ..., m := dim¢ M.
Finally, after variation of infinite jet €, we get the set of horizontal vector fields V1, ..., V,,.
Definition. We say that a 1-jet 6 is regular, if the vectors Q§(0) and V1 g, . .., V., ¢ are non-zero.

An arbitrary k-jet is said to be regular, if it projects on a regular 1-jet.

7. FIELD OF DIFFERENTIAL INVARIANTS
In this section we give a complete description for the field of differential invariants of the action of the
group K on the infinite jet space J>°(7*). First of all, we consider invariants of order 1 and 2.

7.1. Invariants of Order 1

Let {aq,...,aq} C ® be the set of simple roots (here I = rk ®). Define n, := (nq,...,n;), for each
root « € ®, where « = njag + -+ - + nyoy.

Let now 6, be a regular 1-jet and let 6y := wf‘70(91). The stabilizer of 0-jet 8 is the stabilizer of
the weight A in the torus 7. Hence, differential K -invariants of pure order 1 are just invariants of the
stabilizer-action on the fiber of wf:o over§yg. Eacht € T and o € ® induces an action of ¢, : I, — I, on
the plane I1,. Let ¢; := ¢q,, for simple roots ; (where i = 1,...,1). Thent, = t7* ... ¢t =: t"*. Recall
that, for each o € @, we denoted the projection of the invariant 1-form ¢¢ onto the invariant plane IT% by
0f o Thent(qf o) = """ qf 4.

Let I, := »(q1.0,q1.0). Then t(I,) = t*a=m) [, Therefore the functions Jy := I"* and J, :=
Io /1™, where I := 131 . .. I3, are differential invariants of order 1, for each o € @4, @ # ;. So, we
have found m — [ + 1 independent differential invariants of order 1. These invariants separate K -orbits
of regular 1-jets and generate the field of K-invariants of order 1.
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7.2. Invariants of Order 2
To obtain differential invariants of order 2 we write the quadric ¢§ in the invariant basis. Then

the coefficients Q;; := ¢5(V;, V;) are differential invariants of order 2. These invariants together with
invariants Jy, J, generate the field of K-invariants of order < 2 and separate regular orbits.

7.3. The Field of All Invariants

Finally, we are able to find the field of all differential invariants.

Theorem 8. The field of differential invariants of the action of group G is generated over field
C by the differential invariants Jy and J, of order 1, the differential invariants Q;; of order 2 and
the invariant derivations Vi, ..., V. This field separates K-orbits of regular jets.

Remark. Our construction of basic differential invariants (and of the whole field of invariants) is
universal and does not depend either on group G, or on its representation py. Moreover, this construction
is effective and makes it possible to calculate differential invariants and invariant derivations. On the
other hand, there are no methods for calculating fields of algebraic rational invariants for the actions
of semisimple groups in irreducible representations.

8. SEPARATION OF K-ORBITS OF THE REGULAR SECTIONS

In this section we provide a criterion for the separation of K -orbits of sections of the bundle 7*, and
hence of G-orbits of the irreducible representation py.
A

Let us consider an arbitrary holomorphic section s of the bundle 7*. The section s is said to

be regular, if the set Mg® := {x € M : [s)2 is regular} is dense in M. The restrictions of the basic

invariants Jy, J, and Q;; to the regular section s are holomorphic functions on Mg ™® and define the map
hs: M8 — CN, hg(x) = (Ja([s]2), Ja([s]2), Qij([s]2)),

where N := (m —1+1)+ (gl) is the number of the basic invariants Jy, J, and Q;;. Let Hy := Im(hy)
be the image of the map hs.

Theorem 9. Regular sections s and 3 of the bundle 7 are K -equivalent if and only if H, = Hs.
Remark. The results of this paper can be easily generalized to the case when the representation p) is
multiplicity free, i.e., py is a sum of irreducible representations with multiples 1.
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