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Stresses in Spur Gears

• Consider worst case 

• Contact Force (Wt) at top of tooth yields bending moment

• Similar to a cantilever beam

• Wr force not as important (axial load)

• Highest bending stress at 

root,  pt. a

2

6
 = =

tM W l

I c Ft

F is the face width,

and t is the tooth width

Lewis Equation for estimating bending stresses in gear teeth



4

Cantilever Beam Model of Bending Stress in Gear Tooth

2

6
 = =

tM W l

I c Ft
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Ft F t l F t l
 = = =

Fig. 14–1

Rearranging terms

Using geometry, similar triangles
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Developing the Lewis Equation for estimating bending stresses 
in gear teeth, continued

( )2
3

tW p

F xp
 =

2 (3 )=y x p

tW

Fpy
 = (14 -1)

y is called the Lewis form factor
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Lewis Equation 1

 =
tW

Fpy
(14 -1)

 = =p P y Y

Lewis Equation  =
tW P

FY
(14 - 2)

Lewis Form Factor
2

3
=

xP
Y (14 - 3)
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Values of Lewis Form Factor Y

Number of Teeth Y Number of Teeth Y

12 0.245 28 0.353

13 0.261 30 0.359

14 0.277 34 0.371

15 0.290 38 0.384

16 0.296 43 0.397

17 0.303 50 0.409

18 0.309 60 0.422

19 0.314 75 0.435

20 0.322 100 0.447

21 0.328 150 0.460

22 0.331 300 0.472

24 0.337 400 0.480

26 0.346 Rack 0.485

Table 14–2
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Dynamic Effects 1

Effective load increases as velocity increases.

Velocity factor Kv accounts for this.

With pitch-line velocity V in feet per minute,

600
(cast iron, cast profile)

600

+
=v

V
K (14 - 4 )a

1200
(cut or milled profile)

1200

+
=v

V
K (14 - 4 )b

50
(hobbed or shaped profile)

50

+
=v

V
K (14 - 5 )a

78
(shaved or ground profile)

78

+
=v

V
K (14 - 5 )b
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Dynamic Effects 2

With pitch-line velocity V in meters per second,

3.05
(cast iron, cast profile)

3.05

+
=v

V
K (14 - 6 )a

6.1
(cut or milled profile)

6.1

+
=v

V
K (14 - 6 )b

3.56
(hobbed or shaped profile)

3.56

+
=v

V
K (14 - 6 )c

5.56
(shaved or ground profile)

5.56

+
=v

V
K (14 - 6 )d
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Lewis Equation 2

The Lewis equation including velocity factor.

• U.S. Customary version.

 =
t

vK W P

FY
(14 - 7)

• Metric version.

 =
t

vK W

FmY
(14 - 8)

Acceptable for general estimation of stresses in gear teeth.

Forms basis for AGMA method, which is preferred approach.



11

Generally Selecting Gears, Follow the Manufacturer’s Guide

Let’s look at the Boston Gear Catalog:

https://www.bostongear.com/products/open-gearing/stock-gears/spur-gears/spur-gears

In particular the Rotary Drive Products catalog from Boston Gear

https://www.bostongear.com/-/media/Files/Literature/Brand/boston-gear/catalogs/p-1930-bg.ashx

2 Important Sections: 

1) Standard products & Selection Guide

2) Engineering data

https://www.bostongear.com/products/open-gearing/stock-gears/spur-gears/spur-gears
https://www.bostongear.com/-/media/Files/Literature/Brand/boston-gear/catalogs/p-1930-bg.ashx
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Spur Gears Standard Product Data:  pg 17-62

• All the different gears (materials, P, dimensions, etc.)

• Selection procedure & hints

• Horsepower ratings
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Gear Selection Procedure
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Horsepower ratings
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Spur Gears: Engineering Data, Section I, pg 306-

Basics of Gears (involute profile, pressure angles, diametral 

pitch,…)
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Spur Gears: Engineering Data, Section I, pg 306-

Formulas
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Spur Gears: Engineering Data 
Lewis Formula

Good for determining

F, for your application
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Other important catalog data

Couplings

Engineering formulas (horsepower, pitch line speed, etc.)

Application classifications for determining service factors
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Example 14–1 (1)

A stock spur gear is available having a diametral pitch of 8 teeth/in, a 1
21 -in face,

16 teeth, and a pressure angle of 20° with full-depth teeth. The material is AISI 1020 steel 

in as-rolled condition. Use a design factor of nd = 3 to rate the horsepower output of the 

gear corresponding to a speed of 1200 rev/m and moderate applications.

Solution

The term moderate applications seems to imply that the gear can be rated by using the 

yield strength as a criterion of failure. From Table A–20, we find Sut = 55 kpsi and Sy = 30 

kpsi. A design factor of 3 means that the allowable bending stress is 30/3 = 10 kpsi. The 

pitch diameter is d = N/P = 16/8 = 2 in, so the pitch-line velocity is.

(2)1200
628ft min

12 12

dn
V

 
= = =

The velocity factor from Equation (14–4b) is found to be. 

1200 1200 628
1.52

1200 1200

+ +
= = =v

V
K
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Example 14–1 (2)

Table 14–2 gives the form factor as Y = 0.296 for 16 teeth. We now 

arrange and substitute in Equation (14–7) as follows: 

all 1.5(0.296)10 000
365lbf

1.52(8)

t

v

FY
W

K P


= = =

The horsepower that can be transmitted is.

365(628)
6.95hp

33 000 33 000

tW V
hp = = = Answer

It is important to emphasize that this is a rough estimate, and 

that this approach must not be used for important applications. The 

example is intended to help you understand some of the 

fundamentals that will be involved in the AGMA approach.
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Example 14–2 (1)

Estimate the horsepower rating of the gear in the previous example based on 

obtaining an infinite life in bending. 

Solution

The rotating-beam endurance limit is estimated from Equation (6–10), 

0.5 0.5(55) 27.5 kpsi= = =e utS S

To obtain the surface finish Marin factor ka we refer to Table 6–3 for machined 

surface, finding a = 2.00 and b = −0.217. Then Eq. (6–18) gives the surface 

finish Marin factor ka as.

0.2172.00(55) 0.838−= = =b

a utk aS

The next step is to estimate the size factor kb. From Table 13–1, the sum of the 

addendum and dedendum is.

1 1.25 1 1.25
0.281 in

8 8
= + = + =l

P P
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Example 14–2 (2)

The tooth thickness t in Figure 14–1b is given in Sec. 14–1 [Equation (b)] as t = 

(4lx)1/2 when x = 3Y/(2P) from Equation (14–3). Therefore, since from Example 

14–1 Y = 0.296 and P = 8,

3 3(0.296)
0.0555 in

2 2(8)
= = =

Y
x

P
then

1 2 1 2(4 ) [4(0.281)0.0555] 0.250 in= = =t lx

We have recognized the tooth as a cantilever beam of rectangular cross section, so 

the equivalent rotating-beam diameter must be obtained from Equation (6–24): 
1 2 1 2 1 20.808( ) 0.808( ) 0.808[1.5(0.250)] 0.495 in= = = =ed hb Ft

Then, Equation (6–19) gives kb as.
0.107 0.107

0.495
0.948

0.30 0.30

e
b

d
k

− −
   

= = =     

The load factor kc from Equation (6–25) is unity. With no information given 

concerning temperature and reliability we will set kd = ke = 1.



23

Example 14–2 (3)

In general, a gear tooth is subjected only to one-way bending. Exceptions include 

idler gears and gears used in reversing mechanisms. We will account for one-way 

bending by establishing a miscellaneous-effects Marin factor kf . 

For one-way bending the steady and alternating stress components are σa = σm = σ/2 

where σ is the largest repeatedly applied bending stress as given in Equation (14–7). If a 

material exhibited a Goodman failure locus, 

1
 

+ =


a m

e utS S

Since σa and σm are equal for one-way bending, we substitute σa for σm and solve the 

preceding equation for σa, giving.




=
+

e ut
a

e ut

S S

S S

Now replace σa with σ/2, and in the denominator replace S′e with 0.5Sut to obtain.

2 2
1.33

0.5 0.5 1


 
= = = 

+ +

e ut e
e

ut ut

S S S
S

S S



24

Example 14–2 (4)

Now defining a miscellaneous Marin factor kf = σ/S′e = 1.33S′e/S′e = 1.33. 

Similarly, if we were to use a Gerber fatigue locus,
2

1
  

+ =   

a m

e utS S

Setting σa = σm and solving the quadratic in σa gives.

2 2

2

4
1 1

2


 
= − + + 

  

ut e
a

e ut

S S

S S

Setting σa = σ/2, Sut = S′e/0.5 gives.

2

2
1 1 4(0.5) 1.66

0.5


  = − + + = 
 

e
e

S
S

and kf = σ/S′e = 1.66. Since a Gerber locus runs in and among fatigue data and 

Goodman does not, we will use kf = 1.66. The Marin equation for the fully 

corrected endurance strength is.

0.838(0.948)(1)(1)(1)1.66(27.5) 36.3 kpsi

= 

= =

e a b c d e f eS k k k k k k S
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Example 14–2 (5)

For stress, we will first determine the fatigue stress-concentration factor Kf. For a 20° full-

depth tooth the radius of the root fillet is denoted rf, with a typically proportioned value of

0.300 0.300
0.0375 in

8
= = =fr

P

From Figure A–15–6

0.0375
0.15

0.250

frr

d t
= = =

Since D/d = ∞, we approximate with D/d = 3, giving Kt = 1.68. From Figure 6–26, q = 

0.62. From Equation (6–32), 

Kf = 1 + (0.62)(1.68 − 1) = 1.42 

For a design factor of nd = 3, as used in Example 14–1, applied to the load or strength, the 

maximum bending stress is. 

max all
e

f

d

S
K

n
 = =

all

36.3
8.52 kpsi

1.42(3)

e

f d

S

K n
 = = =



26

Example 14–2 (6)

The transmitted load Wt is.

all 1.5(0.296)8520
311 lbf

1.52(8)

t

v

FY
W

K P


= = =

and the power is, with V = 628 ft/min from Example 14–1, 

311(628)
5.9 hp

33 000 33 000

tW V
hp = = =

Again, it should be emphasized that these results should be 

accepted only as preliminary estimates to alert you to the nature of 

bending in gear teeth.


