
GEE for Longitudinal Data - Chapter 8

• GEE: generalized estimating equations (Liang & Zeger, 1986;
Zeger & Liang, 1986)

• extension of GLM to longitudinal data analysis using
quasi-likelihood estimation

• method is semi-parametric

– estimating equations are derived without full specification
of the joint distribution of a subject’s obs (i.e., yi)

• instead, specification of

– likelihood for the (univariate) marginal distributions of yij

– “working” correlation matrix for the vector of repeated
observations from each subject
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GEE Overview

• GEEs have consistent and asymptotically normal solutions,
even with mis-specification of the correlation structure

• Avoids need for multivariate distributions by only assuming a
functional form for the marginal distribution at each
timepoint (i.e., yij)

• The covariance structure is treated as a nuisance

• Relies on the independence across subjects to estimate
consistently the variance of the regression coefficients (even
when the assumed correlation structure is incorrect)
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GEE Method outline

1. Relate the marginal reponse µij = E(yij) to a linear
combination of the covariates

g(µij) = x′
ijβ

• yij is the response for subject i at time j

• xij is a p × 1 vector of covariates

• β is a p × 1 vector of unknown regression coefficients

• g(·) is the link function

2. Describe the variance of yij as a function of the mean

V (yij) = v(µij)φ

• φ is a possibly unknown scale parameter

• v(·) is a known variance function
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Link and Variance Functions

• Normally-distributed response

g(µij) = µij “Identity link”

v(µij) = 1

V (yij) = φ

• Binary response (Bernoulli)

g(µij) = log[µij/(1 − µij)] “Logit link”

v(µij) = µij(1 − µij)

φ = 1

• Poisson response

g(µij) = log(µij) “Log link”

v(µij) = µij

φ = 1
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Gee Method outline

3. Choose the form of a n × n “working” correlation matrix Ri
for each yi

• the (j, j′) element of Ri is the known, hypothesized, or
estimated correlation between yij and yij′

• This working correlation matrix Ri may depend on a vector
of unknown parameters α, which is assumed to be the same
for all subjects

• Although this correlation matrix can differ from subject to
subject, we usually use a working correlation matrix Ri ≈
average dependence among the repeated observations over
subjects

aside: not well-suited to irregular measurements across time
because time is treated categorically
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Comments on “working” correlation matrix

• should choose form of R to be consistent with empirical
correlations

• GEE method yields consistent estimates of regression
coefficients β and their variances (thus, standard errors), even
with mis-specification of the structure of the covariance matrix

• Loss of efficiency from an incorrect choice of R is lessened as
the number of subjects gets large

From O’Muircheartaigh & Francis (1981) Statistics: A Dictionary of Terms
and Ideas

• “an estimator (of some population parameter) based on a sample of size N
will be consistent if its value gets closer and closer to the true value of the
parameter as N increases”

• “... the best test procedure (i.e., the efficient test) will be that with the
smallest type II error (or largest power)”
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Working Correlation Structures

• Exchangeable: Rjj′ = ρ, all of the correlations are equal

• AR(1): Rjj′ = ρ|j−j′|

• Stationary m-dependent (Toeplitz):

Rjj′ =





ρ|j−j′| if j − j′ ≤ m

0 if j − j′ > m

• Unspecified (or unstructured) Rjj′ = ρjj′

– estimate all n(n − 1)/2 correlations of R

– most efficient, but most useful when there are relatively few
timepoints (with many timepoints, estimation of the
n(n − 1)/2 correlations is not parsimonious)

– missing data complicates estimation of R
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GEE Estimation

• Define Ai = n × n diagonal matrix with V (µij) as the jth
diagonal element

• Define Ri(α) = n × n “working” correlation matrix (of the
n repeated measures)

Working variance–covariance matrix for yi equals

V (α) = φA
1/2
i Ri(α)A

1/2
i

For normally distributed outcomes, V (α) = φRi(α)
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GEE estimator of β is the solution of
N∑

i=1
D′

i [V (α̂)]−1 (yi − µi) = 0,

where α̂ is a consistent estimate of α and Di = ∂µi/∂β

e.g., normal case, µi = Xiβ , Di = Xi , and V (α̂) = φ̂Ri(α̂)
N∑

i=1
X′

i [Ri(α̂)]−1 (yi − Xiβ) = 0,

β̂ =


N∑

i=1
X ′

i [Ri(α̂)]−1 Xi




−1 

N∑

i=1
X′

i [Ri(α̂)]−1 yi




⇒ akin to weighted least-squares (WLS) estimator

⇒ more generally, because solution only depends on the mean
and variance of y, these are quasi-likelihood estimates
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GEE solution

Iterate between the quasi-likelihood solution for β and a robust
method for estimating α as a function of β

1. Given estimates of Ri(α) and φ, calculate estimates of β
using iteratively reweighted LS

2. Given estimates of β, obtain estimates of α and φ. For this,
calculate Pearson (or standardized) residuals

rij = (yij − µ̂ij)/
√√√√[V (α̂)]jj

and use these residuals to consistently estimate α and φ
(Liang & Zeger, 1986, present estimators for several different
working correlation structures)
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Inference

V (β̂): square root of diagonal elements yield std errors for β̂

GEE provides two versions of these (with V̂ i denoting Vi(α̂))

1. Naive or “model-based”

V (β̂) =


N∑

i
D′

iV̂
−1
i Di




−1

2. Robust or “empirical”

V (β̂) = M−1
0 M 1M

−1
0 ,

M0 =
N∑

i
D′

iV̂
−1
i Di

M1 =
N∑

i
D′

iV̂
−1
i (yi − µ̂i)(yi − µ̂i)

′ V̂
−1
i Di

12



• notice, if V̂ i = (yi − µ̂i)(yi − µ̂i)
′ then the two are equal

(this occurs only if the true correlation structure is correctly
modeled)

• In the more general case, the robust or “sandwich” estimator
provides a consistent estimator of V (β̂) even if the working
correlation structure Ri(α) is not the true correlation of yi
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GEE vs MRM

• GEE not concerned with V (yi)

• GEE yields both robust and model-based std errors for β̂;
MRM, in common use, only provides model-based

• GEE solution for all kinds of outcomes; MRM needs to be
derived for each

• For non-normal outcomes, GEE provides population-averaged
(or marginal) estimates of β , whereas MRM yields
subject-specific (or conditional) estimates

• GEE assumption regarding missing data is more stringent
(MCAR) than MRM (which assumes MAR)
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Example 8.1: Using the NIMH Schizophrenia dataset, this
handout has PROC GENMOD code and output from several
GEE analyses varying the working correlation structure.
(SAS code and output)

http://tigger.uic.edu/ hedeker/schizgee.txt
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GEE Example: Smoking Cessation across Time
Gruder, Mermelstein et al., (1993) JCCP

• 489 subjects measured across 4 timepoints following an
intervention designed to help them quit smoking

• Subjects were randomized to one of three conditions

– control, self-help manuals

– tx1, manuals plus group meetings (i.e., discussion)

– tx2, manuals plus enhanced group meetings (i.e., social
support)

• Some subjects randomized to tx1 or tx2 never showed up to
any meetings following the phone call informing them of
where the meetings would take place

• dependent variable: smoking status at particular timepoint
was assessed via phone interviews

16



In Gruder et al., , four groups were formed for the analysis:

1. Control: randomized to the control condition

2. No-show: randomized to receive a group treatment, but never
showed up to the group meetings

3. tx1: randomized to and received group meetings

4. tx2: randomized to and received enhanced group meetings

and these four groups were compared using Helmert contrasts:

Group H1 H2 H3
Control −1 0 0
No-show 1/3 −1 0

tx1 1/3 1/2 −1
tx2 1/3 1/2 1

17



Interpretation of Helmert Contrasts

H1 : test of whether randomization to group versus control
influenced subsequent cessation.

H2 : test of whether showing up to the group meetings
influenced subsequent cessation.

H3 : test of whether the type of meeting influenced cessation.

note: H1 is an experimental comparison, but H2 and H3 are
quasi-experimental

Examination of possible confounders: baseline analysis
revealed that groups differed in terms of race (w vs nw), so race
was included in subsequent analyses involving group
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Table 8.1 Point Prevalence Rates (N) of Abstinence over
Time by Group

End-of-Program 6 months 12 months 24 months
Group (T1) (T2) (T3) (T4)
No Contact Control 17.4 7.2 18.5 18.2

(109) (97) (92) (77)

No Shows 26.8 18.9 18.6 18.7
(190) (175) (161) (139)

Discussion 33.7 14.6 16.3 22.9
( 86) ( 82) ( 80) ( 70)

Social Support 49.0 20.0 24.0 25.6
(104) (100) ( 96) ( 86)
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Table 8.2 Correlation of Smoking Abstinence (y/n) Across
Time

T1 T2 T3 T4
T1 1.00 0.33 0.29 0.26
T2 0.33 1.00 0.48 0.34
T3 0.29 0.48 1.00 0.49
T4 0.26 0.34 0.49 1.00

Working Correlation choice:

• exchangeable does not appear like a good choice since the
correlations are not approximately equal

• neither the AR(1) nor the m-dependent structures appear
reasonable because the correlations within a time lag vary

• unspecified appears to be the most reasonable choice
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GEE models - binary outcome, logit, R = UN, T = 0, 1, 2, 4

Model 1

ηij = β0 + β1Tj + β2T
2
j + β3H1i + β4H2i + β5H3i + β6Racei

Model 2

ηij = β0 + β1Tj + β2T
2
j + β3H1i + β4H2i + β5H3i + β6Racei

+ β7(H1i × Tj) + β8(H2i × Tj) + β9(H3i × Tj)

Model 3

ηij = β0 + β1Tj + β2T
2
j + β3H1i + β4H2i + β5H3i + β6Racei

+ β7(H1i × Tj) + β8(H2i × Tj) + β9(H3i × Tj)

+ β10(H1i × T 2
j ) + β11(H2i × T 2

j ) + β12(H3i × T 2
j )
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Table 8.3 Smoking Status (0, Smoking; 1, Not Smoking) Across Time
(N = 489) — GEE Logistic Parameter Estimates (Est.), Standard Errors
(SE), and p-Values

Model 1 Model 2 Model 3
Parameter Est. SE p < Est. SE p < Est. SE p <
Intercept β0 −.999 .112 .001 −1.015 .116 .001 −1.010 .117 .001
T β1 −.633 .126 .001 −.619 .127 .001 −.631 .131 .001
T 2 β2 .132 .029 .001 .132 .029 .001 .135 .030 .001
H1 β3 .583 .170 .001 .765 .207 .001 .869 .226 .001
H2 β4 .288 .121 .018 .334 .138 .012 .435 .151 .004
H3 β5 .202 .119 .091 .269 .138 .051 .274 .149 .066
Race β6 .358 .200 .074 .353 .200 .078 .354 .200 .077
H1 × T β7 −.142 .072 .048 −.509 .236 .031
H2 × T β8 −.035 .051 .495 −.389 .187 .037
H3 × T β9 −.050 .053 .346 −.051 .200 .800
H1 × T 2 β10 .087 .052 .096
H2 × T 2 β11 .086 .043 .044
H3 × T 2 β12 .000 .046 .995
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Single- and Multi-Parameter Wald Tests

1. Single-parameter test, e.g., H0 : β1 = 0

z = β̂1/ŝe(β̂1) or X2
1 = β̂1

2
/V̂ (β̂1)

2. Linear combination of parameters, e.g., H0 : β1 + β2 = 0

for this, suppose β′ = [β̂0 β̂1 β̂2] and define c = [0 1 1]

X2
1 =


cβ̂



′ 

c V̂ (β̂) c′


−1 

cβ̂



Notice, 1. (H0 : β1 = 0) is a special case where c = [0 1 0]

3. Multi-parameter test, e.g., H0 : β1 = β2 = 0

C =




0 1 0
0 0 1


 X2

2 =

Cβ̂



′ 

C V̂ (β̂) C ′−1 
Cβ̂




23



Comparing models 1 and 3, models with and without the
group by time effects, the null hypothesis is

H0 = β7 = β8 = β9 = β10 = β11 = β12 = 0

C =




0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1




• X2
6 = 10.98, p = .09

• Also, several of the individual group by time parameter tests are significant

• observed abstinence rates indicate large post-intervention group differences
that are not maintained over time

⇒ model 3 is preferred to model 1
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Comparing models 2 and 3, models with and without the
group by quadratic time effects, the null hypothesis is

H0 = β10 = β11 = β12 = 0

C =




0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1




• X2
3 = 5.91, p = .12

• but, individual H1 × T 2 interaction (β̂10 = .0870, p < .096)
and individual H2 × T 2 interaction (β̂11 = .0855, p < .044)

• some evidence for model 3, though, strictly speaking, not quite
at the .05 level in terms of the multi-parameter Wald test
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Interpretations based on Model 3
H1

• randomization to group increases abstinence at
post-intervention (β̂3 = .869, p < .001)

• this benefit goes away across time (β̂7 = −.509, p < .031,

β̂10 = .087, p < .096)

Estimated odds ratio at post-intervention

OR = exp[4/3(.869)] = 3.19

(multiply by 4/3 because this equals the difference between the
control and treatment groups in the coding of the H1 contrast)

Asymptotic 95% confidence interval for this odds ratio

exp[4/3(.869) ± 1.96 × 4/3(.226)] = (1.76, 5.75)
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H2

• going to groups increases abstinence at post-intervention
(β̂4 = .435, p < .004)

• this benefit goes away across time (β̂8 = −.389, p < .037,

β̂11 = .086, p < .044)

Estimated odds ratio at post-intervention

OR = exp[3/2(.435)] = 1.92

(multiply by 3/2 because this equals the difference between those
not attending and those attending groups in the coding of the H2
contrast)

Asymptotic 95% confidence interval for this odds ratio

exp[3/2(.435) ± 1.96 × 3/2(.151)] = (1.23, 2.99)
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H3

• marginally significant benefit of enhanced groups at
post-intervention (β̂5 = .274, p < .066)

• this does not significantly vary across time
(β̂9 = −.051, p < .80, β̂12 = .0003, p < .95)

Estimated odds ratio at post-intervention

OR = exp[2(.274)] = 1.73

(multiply by 2 because this equals the difference between the
enhanced and regular groups in the coding of the H3 contrast)

Asymptotic 95% confidence interval for this odds ratio

exp[2(.274) ± 1.96 × 2(.149)] = (.96, 3.10)
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Determination of group difference at any timepoint

Model 3

ηij = β0 + β1Tj + β2T
2
j + β3H1i + β4H2i + β5H3i + β6Racei

+ β7(H1i × Tj) + β8(H2i × Tj) + β9(H3i × Tj)

+ β10(H1i × T 2
j ) + β11(H2i × T 2

j ) + β12(H3i × T 2
j )

Ĥ1 = β̂3 + (T × β̂7) + (T 2 × β̂10)

e.g., T = 4,

Ĥ1 = .869 + (4 ×−.509) + (16 × .087) = .227

is this a signficant difference?
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H0 : β3 + (4 × β7) + (16 × β10) = 0

⇒ Wald test for linear combination of parameters

c =
[

0 0 0 1 0 0 0 4 0 0 16 0 0
]

X2
1 = .90 for this H1 contrast at the final timepoint

Similarly, X2
1 = 1.79 and .17, respectively for H2 and H3

contrasts at last timepoint

⇒ No significant group differences by the end of the study
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Model 3 - Estimated Abstinence Rates

End-of- 6 12 24
Program months months months

Group (T1) (T2) (T3) (T4)
No Contact Control .146 .137 .140 .186
No Shows .263 .204 .176 .194
Discussion .319 .184 .140 .227
Social Support .456 .266 .192 .260

obtained as group by time averages of p̂ij = 1
1+exp(−η̂ij)

where
η̂ij = β̂0 + β̂1Tj + β̂2T

2
j + β̂3H1i + β̂4H2i + β̂5H3i + β̂6Racei

+ β̂7(H1i × Tj) + β̂8(H2i × Tj) + β̂9(H3i × Tj)

+ β̂10(H1i × T 2
j ) + β̂11(H2i × T 2

j ) + β̂12(H3i × T 2
j )
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Figure 8.1 Observed point prevalence abstinence rates and estimated
probabilities of abstinence across time
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Example 8.2: PROC GENMOD code and output from
analysis of Robin Mermelstein’s smoking cessation study
dataset. This handout illustrates GEE modeling of a
dichotomous outcome. Includes CONTRAST statements to
perform linear combination and multi-parameter Wald tests,
and OBSTATS to yield estimated probabilities for each
observation (SAS code and output)

http://www.uic.edu/classes/bstt/bstt513/robingeb Ctime.txt
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Another GEE example and comparisons with MRM
chapters 8 and 9

Consider the Reisby data and the question of drug plasma levels
and clinical response to depression; define

Response = 0 (HDRS > 15) or 1 (HDRS ≤ 15)

DMI = 0 (ln dmi below median) or 1 (ln dmi above median)

Response
DMI 0 1

0 73 52
1 43 82

⇒ OR = 2.68
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Reisby data - analysis of dichotomized HDRS

1. Logistic regression (inappropriate model; for comparison)

log




P (Respij = 1)

1 − P (Respij = 1)


 = β0 + β1DMIij

2. GEE logistic regression with exchangeable structure

log




P (Respij = 1)

1 − P (Respij = 1)


 = β0 + β1DMIij

3. Random-intercepts logistic regression

log




P (Respij = 1)

1 − P (Respij = 1)


 = β0 + β1DMIij + συθi

i = 1, . . . , 66 subjects; j = 1, . . . , ni observations per subject (max ni = 4)
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Logistic Regression of dichotomized HDRS - ML ests (std errors)

model term ordinary LR GEE exchange Random Int
intercept β0 -.339 -.397 -.661

(.182) (.231) (.407)

exp(β0) .712 .672 .516

DMIβ1 .985 1.092 1.842
(.262) (.319) (.508)

exp(β1) 2.68 2.98 6.31

subject sd συ 2.004
(.415)

ICC .55

2 log L 330.66 293.85

36



Marginal Models for Longitudinal Data

• Regression of response on x is modeled separately from
within-subject correlation

• Model the marginal expectation: E(yij) = fn(x)

• Marginal expectation = average response over the
sub-population that shares a commone value of x

• Marginal expectation is what is modeled in a cross-sectional
study
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Assumptions of Marginal Model for Longitudinal
Data

1. Marginal expectation of the response E(yij) = µij depends
on xij through link function g(µij)

e.g., logit link for binary responses

2. Marginal variance depends on marginal mean:
V (yij) = V (µij)φ, with V as a known variance function (e.g.,
µij(1 − µij) for binary) and φ is a scale parameter

3. Correlation between yij and yij′ is a function of the marginal
means and/or parameters α

⇒ Marginal regression coefficients have the same interpretation
as coefficients from a cross-sectional analysis
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Logistic GEE as marginal model - Reisby example

1. Marginal expectation specification: logit link

log




µij

1 − µij


 = log




P (Respij = 1)

1 − P (Respij = 1)


 = β0 + β1DMIij

2. Variance specification for binary data: V (yij) = µij(1 − µij)
and φ = 1 (in usual case)

3. Correlation between yij and yij′ is exchangeable, AR(1),
m-dependent, UN
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• exp β0 = ratio of the frequencies of response to non-response
(i.e., odds of response) among the sub-population (of
observations) with below average DMI

• exp β1 = odds of response among above average DMI
observations divided by the odds among below average DMI
observations

exp β1 = ratio of population frequencies ⇒
“population-averaged”
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Random-intercepts logistic regression

log




Pr(Yij = 1 | θi)

1 − Pr(Yij = 1 | θi)


 = x′

ijβ + συθi

or

g[Pr(Yij = 1 | θi)] = x′
ijβ + συθi

which yields

Pr(Yij = 1 | θi) = g−1[x′
ijβ + συθi]

where g is the logit link function and g−1 is its inverse function
(i.e., logistic cdf)
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Taking the expectation, E(Yij | θi) = g−1[x′
ijβ + συθi]

so µij = E(Yij) = E[E(Yij | θi)] =
∫

θ g−1[x′
ijβ + συθi]f(θ) dθ

When g is a nonlinear function, like logit, and if we assume that

g(µij) = x′
ijβ + συθi

it is usually not true that g(µij) = x′
ijβ

unless θi = 0 for all i subjects, or g is the identity link (i.e., the
normal regression model for y)

⇒ same reason why the log of the mean of a series of values does
not, in general, equal the mean of the log of those values (i.e.,
the log is a nonlinear function)
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Random-intercepts Model - Reisby example

• every subject has their own propensity for response (θi)

• the effect of DMI is the same for every subject (β1)

• covariance among the repeated obs is explicity modeled

• β0 = log odds of response for a typical subject with
DMI = 0 and θi = 0

• β1 = log odds ratio of response when a subject is high on
DMI relative to when that same subject is not

– On average, how a subject’s resp prob depends on DMI

– Strictly speaking, it’s not really the “same subject,” but
“subjects with the same value of θi”

• συ represents the degree of heterogeneity across subjects in
the probability of response, not attributable to DMI
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• Most useful when the objective is to make inference about
subjects rather than the population average

• Interest in heterogeneity of subjects
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Random-intercepts model with time-invariant
covariate

log




Pr(Yij = 1 | θi)

1 − Pr(Yij = 1 | θi)


 = β0 + β1xi + συθi

where, say, xi = 0 for controls and xi = 1 for treated patients

• β0 = log odds of response for a control subject with θi = 0

• β1 = log odds ratio of response when a subject is “treated”
relative to when that same subject (or more precisely, subjects
with the same θi) is “control”

In some sense, interpretation of β1 goes beyond the observed data

⇒ marginal interpretation is often preferred for time-invariant
covariates

45



Interpretation of regression coefficients

mixed models β represent the effects of the explanatory
variables on a subject’s chance of response (subject-specific)

marginal models β represent the effects of the explanatory
variables on the population average (population-averaged)

Odds Ratio

mixed models describes the ratio of a subject’s odds

marginal models describes the ratio of the population odds

Neuhaus et al., 1991

• if σ2
υ > 0 ⇒ |βss| > |βpa|

• discrepancy increases as σ2
υ increases (unless, in trivial case,

βss = 0, then βpa = 0)
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Marginal and Random-int LR in terms of latent y

Marginal Logistic Regression

yij = x′
ijβpa + εij εij ∼ L(0, π2/3) → V (yij) = π2/3

Random-intercepts Logistic Regression

yij = x′
ijβss + υi + εij

υi ∼ N(0, σ2
υ) εij ∼ L(0, π2/3) → V (yij) = π2/3 + σ2

υ

⇒ suggests that to equate

βpa ≈ βss/

√√√√√√√√√

π2/3 + σ2
υ

π2/3
= βss/

√√√√√√√
3

π2σ
2
υ + 1

Zeger et al., 1988 suggests a slightly larger denominator

βpa ≈ βss/

√√√√√√√√√




16

15




2 3

π2σ
2
υ + 1
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HDRS response probability by DMI median cut
subjects with varying DMI values over time (N = 20)

θ ◦ DMI=0 × DMI=1

P (Respij = 1|θi) = 1/[1 + exp(−(−.66 + 1.84DMIij + 2.00θi))]

From GEE: P̂DMI=0 = .40 P̂DMI=1 = .67
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HDRS response probability by DMI median cut
subjects with consistent DMI values over time
(low DMI N = 24; high DMI N = 22)

θ ◦ DMI=0 × DMI=1

P (Respij = 1|θi) = 1/[1 + exp(−(−.66 + 1.84DMIij + 2.00θi))]

From GEE: P̂DMI=0 = .40 P̂DMI=1 = .67
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Example 8.3: PROC IML code and output showing how to
get the marginalized probability estimates from GEE and
NLMIXED analysis for a random-intercepts model, including
using quadrature for the latter (SAS code and output)

http://www.uic.edu/classes/bstt/bstt513/ReisGEEfit.txt
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