
Inverse Problems and Imaging doi:10.3934/ipi.xx.xx.xx

Volume X, No. 0X, 20xx, X–XX

GENERAL CONVERGENT EXPECTATION MAXIMIZATION

(EM)-TYPE ALGORITHMS FOR IMAGE RECONSTRUCTION

Ming Yan

Department of Mathematics

University of California, Los Angeles

Los Angeles, CA 90095, USA

Alex A.T. Bui

Department of Radiological Sciences

University of California, Los Angeles

Los Angeles, CA 90095, USA

Jason Cong

Department of Computer Sciences

University of California, Los Angeles

Los Angeles, CA 90095, USA

Luminita A. Vese

Department of Mathematics
University of California, Los Angeles

Los Angeles, CA 90095, USA

(Communicated by the associate editor name)

Abstract. Obtaining high quality images is very important in many areas of

applied sciences, such as medical imaging, optical microscopy, and astronomy.

Image reconstruction can be considered as solving the ill-posed and inverse
problem y = Ax+n, where x is the image to be reconstructed and n is the un-

known noise. In this paper, we propose general robust expectation maximiza-

tion (EM)-Type algorithms for image reconstruction. Both Poisson noise and
Gaussian noise types are considered. The EM-Type algorithms are performed

using iteratively EM (or SART for weighted Gaussian noise) and regularization

in the image domain. The convergence of these algorithms is proved in several
ways: EM with a priori information and alternating minimization methods.
To show the efficiency of EM-Type algorithms, the application in computerized

tomography reconstruction is chosen.

1. Introduction. Obtaining high quality images is very important in many areas
of applied science, such as medical imaging, optical microscopy, and astronomy.
For some applications such as positron-emission-tomography (PET) and computed
tomography (CT), analytical methods for image reconstruction are available. For in-
stance, filtered back projection (FBP) is the most commonly used method for image
reconstruction from CT by manufacturers of commercial imaging equipments [41].
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However, it is sensitive to noise and suffers from streak artifacts (star artifacts). An
alternative to this analytical reconstruction is the use of the iterative reconstruction
technique, which is quite different from FBP. The main advantages of the iterative
reconstruction technique over FBP are insensitivity to noise and flexibility [28].
The data can be collected over any set of lines, the projections do not have to be
distributed uniformly in angle, and the projections can be even incomplete (limited
angle). With the help of parallel computing and graphics processing units (GPUs),
even iterative methods can be solved very fast. Therefore, iterative methods be-
come more and more important, and we will focus on the iterative reconstruction
technique only.

The degradation model can be formulated as a linear inverse and ill-posed prob-
lem:

(1) y = Ax+ b+ n.

Here, y is the measured data (vector in RM in the discrete case). A is a compact
operator (matrix in RM×N in the discrete case). For all the applications we will
consider, the entries of A are nonnegative and A does not have full column rank. x
is the desired exact image (vector in RN in the discrete case). b is the background
emission and n is the noise (both are vectors in RM in the discrete case). We will
consider the case without background emission (b = 0) in this paper. Since the
matrix A does not have full column rank, the computation of x directly by finding
the inverse of A is not reasonable because (1) is ill-posed and n is unknown. Even
for the case without noise (n = 0), there are many solutions because A does not
have full column rank. When there is noise in the measured data (n 6= 0), finding
x is more difficult because of the unknown n. Therefore regularization techniques
are needed for solving these problems efficiently.

One powerful technique for applying regularization is the Bayesian model, and
a general Bayesian model for image reconstruction was proposed by Geman and
Geman [15], and Grenander [18]. The idea is to use a priori information about the
image x to be reconstructed. In the Bayesian approach, we assume that measured
data y is a realization of a multi-valued random variable, denoted by Y and the
image x is also considered as a realization of another multi-valued random variable,
denoted by X. Therefore, Bayes’ theorem gives us

(2) pX(x|y) =
pY (y|x)pX(x)

pY (y)
.

This is a conditional probability of having X = x given that y is the measured data.
After inserting the detected value y, we obtain a posterior probability distribution of
X. Then we can find x∗ such that pX(x|y) is maximized, as maximum a posteriori
(MAP) likelihood estimation.

In general, X is assigned a Gibbs random field, which is a random variable with
the following probability distribution

(3) pX(x) ∼ e−βJ(x),

where J(x) is a given energy function (J(x) can be non-convex), and β is a positive
parameter. There are many different choices for J(x) depending on the applica-
tions. Some examples are, for instance, quadratic penalization J(x) = ‖x‖22/2
[12, 34], quadratic gradient J(x) = ‖∇x‖22/2 [54], total variation J(x) = ‖|∇x|‖1,
and modified total variation [38, 40, 14, 6, 49, 51]. We also mention Good’s rough-
ness penalization J(x) = ‖|∇x|2/x‖1 [26] for a slightly different regularization. We
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assume here that ‖ · ‖1 and ‖ · ‖2 are the `1 and `2 norms respectively, and that ∇x
denotes the discrete gradient operator of an image x.

For the choices of probability densities pY (y|x), we can choose

(4) pY (y|x) ∼ e−‖Ax−y‖
2
2/(2σ

2)

in the case of additive Gaussian noise, and the minimization of the negative log-
likelihood function gives us the famous Tikhonov regularization method [46]

(5) minimize
x

1

2
‖Ax− y‖22 + βJ(x).

If the random variable Y of the detected values y follows a Poisson distribution
[31, 42] with an expectation value provided by Ax instead of Gaussian distribution,
we have

(6) yi ∼ Poisson{(Ax)i}, i.e., pY (y|x) ∼
∏
i

(Ax)yii
yi!

e−(Ax)i .

By minimizing the negative log-likelihood function, we obtain the following opti-
mization problem

(7) minimize
x≥0

∑
i

(
(Ax)i − yi log(Ax)i

)
+ βJ(x).

In this paper, we will focus on solving (5) and (7). It is easy to see that the
objective functions in (5) and (7) are convex if J(x) is a convex function. Addition-
ally, with suitably chosen regularization J(x), the objective functions are strictly
convex, and the solutions to these problems are unique. If J(x) = ‖|∇x|‖1, i.e,.
the regularization is the total variation, the well-posedness of the regularization
problems is shown in [1] and [6] for Gaussian and Poisson noise respectively. In this
paper, we also consider a more general case where J(x) is non-convex.

Relevant prior works are by Le et al. [31], Brune et al. [6, 7, 8], and Sidky et
al. [44]. Additionally, we refer to Jia et al. [23], Jung et al. [27], Setzer et al. [39],
Jafarpour et al. [22], Harmany et al. [19], Willet et al. [48], among other work. We
also refer to the Compressive Sensing Resources [55]. The difference of this work
from those will be discussed later.

The paper is organized as follows. In section 2, we will give a short introduction
of expectation maximization (EM) iteration, or Richardson-Lucy algorithm, used in
image reconstruction without background emission from the view of optimization.
In section 3, we will propose general EM-Type algorithms for image reconstruction
without background emission when the measured data is corrupted by Poisson noise.
This is based on the maximum a posteriori likelihood estimation and an EM step.
In this section, these EM-Type algorithms are shown to be equivalent to EM algo-
rithms with a priori information. In addition, these EM-Type algorithms are also
considered as alternating minimization methods for equivalent optimization prob-
lems, and the convergence results are obtained from both convex and non-convex
J(x). When the noise is weighted Gaussian noise, we also have the similar EM-
Type algorithms. Simultaneous algebraic reconstruction technique is shown to be
EM algorithm in section 4, and EM-Type algorithms for weighted Gaussian noise
are introduced in section 5. In section 5, we also show the convergence analysis of
EM-Type algorithms for weighted Gaussian noise via EM algorithms with a priori
information and alternating minimization methods. Some numerical experiments
on image reconstruction are given in section 6 to show the efficiency of the EM-Type
algorithms. We will end this work by a short conclusion section.
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2. Expectation Maximization (EM) Iteration. A maximum likelihood (ML)
method for image reconstruction based on Poisson data was introduced by Shepp
and Vardi [42] in 1982 for image reconstruction in emission tomography. In fact,
this algorithm was originally proposed by Richardson [37] in 1972 and Lucy [33] in
1974 for image deblurring in astronomy. The ML method is a method for solving
the special case of problem (7) without regularization term, i.e., J(x) is a constant,
which means we do not have any a priori information about the image. From
equation (6), for given measured data y, we have a function of x, the likelihood of
x, defined by pY (y|x). Then a ML estimation of the unknown image is defined as
any maximizer x∗ of pY (y|x).

By taking the negative log-likelihood, one obtains, up to an additive constant,

f0(x) =
∑
i

(
(Ax)i − yi log(Ax)i

)
,

and the problem is to minimize this function f0(x) on the nonnegative orthant,
because we have the constraint that the image x is nonnegative. In fact, we have

f(x) = DKL(y,Ax) :=
∑
i

(
yi log

yi
(Ax)i

+ (Ax)i − yi
)

= f0(x) + C,

where DKL(y,Ax) is the Kullback-Leibler (KL) divergence of Ax from y, and C
is a constant independent of x. The KL divergence is considered as a data-fidelity
function for Poisson data just like the standard least-square ‖Ax− y‖22 is the data-
fidelity function for additive Gaussian noise. DKL(y, ·) is convex, nonnegative and
coercive on the nonnegative orthant, so the minimizers exist and are global.

In order to find a minimizer of f(x) with the constraint xj ≥ 0 for all j, we can
solve the Karush-Kuhn-Tucker (KKT) conditions [30, 29],∑

i

(
Ai,j(1−

yi
(Ax)i

)

)
− sj = 0, j = 1, · · · , N,

sj ≥ 0, xj ≥ 0, j = 1, · · · , N,
sTx = 0,

where sj is the Lagrange multiplier corresponding to the constraint xj ≥ 0. By the
positivity of {xj}, {sj} and the complementary slackness condition sTx = 0, we
have sjxj = 0 for every j ∈ {1, · · · , N}. Multiplying by xj gives us∑

i

(
Ai,j(1−

yi
(Ax)i

)

)
xj = 0, j = 1, · · · , N.

Therefore, we have the following iteration scheme

(8) xk+1
j =

∑
i

(
Ai,j(

yi
(Axk)i

)
)

∑
i

Ai,j
xkj .

This is the well-known EM iteration or Richardson-Lucy algorithm in image recon-
struction, and an important property of it is that it preserves positivity. If xk is
positive, then xk+1 is also positive if A preserves positivity. It is also shown that
for each iteration,

∑
i

(Ax)i is fixed and equals
∑
i

yi. Since
∑
i

(Ax)i =
∑
j

(
∑
i

Ai,j)xj ,

the minimizer has a weighted l1 constraint.
Shepp and Vardi showed in [42] that this is equivalent to the EM algorithm

proposed by Dempster, Laird and Rubin [13]. To make it clear, EM iteration
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means the special EM method used in image reconstruction, while EM algorithm
means the general EM algorithm for solving missing data problems.

3. EM-Type Algorithms for Poisson data. The method shown in the last
section is also called maximum-likelihood expectation maximization (ML-EM) re-
construction, because it is a maximum likelihood approach without any Bayesian
assumption on the images. If additional a priori information about the image is
given, we have maximum a posteriori probability (MAP) approach [21, 32], which
is the case with regularization term J(x). Again we assume here that the detected
data is corrupted by Poisson noise, and the regularization problem is

minimize
x

EP (x) := βJ(x) +
∑
i

((Ax)i − yi log(Ax)i) ,

subject to xj ≥ 0, j = 1, · · · , N.
(9)

This is still a convex constraint optimization problem if J is convex and we can find
the optimal solution by solving the KKT conditions:

β∂J(x)j +
∑
i

(
Ai,j(1−

yi
(Ax)i

)

)
− sj = 0, j = 1, · · · , N,

sj ≥ 0, xj ≥ 0, j = 1, · · · , N,
sTx = 0.

Here sj is the Lagrangian multiplier corresponding to the constraint xj ≥ 0. By
the positivity of {xj}, {sj} and the complementary slackness condition sTx = 0,
we have sjxj = 0 for every j ∈ {1, · · · , N}. Thus we obtain

βxj∂J(x)j +
∑
i

(
Ai,j(1−

yi
(Ax)i

)

)
xj = 0, j = 1, · · · , N,

or equivalently

β
xj∑

i

Ai,j
∂J(x)j + xj −

∑
i

(
Ai,j(

yi
(Ax)i

)
)

∑
i

Ai,j
xj = 0, j = 1, · · · , N.

Notice that the last term on the left hand side is an EM step (8). After plugging
the EM step into the equation, we obtain

(10) β
xj∑

i

Ai,j
∂J(x)j + xj − xEMj = 0, j = 1, · · · , N,

which is the optimality condition for the following optimization problem

(11) minimize
x

EP1 (x, xEM ) := βJ(x) +
∑
j

(
∑
i

Ai,j)
(
xj − xEMj log xj

)
.

Therefore we propose the general EM-Type algorithms in Algorithm 1. The
initial guess x0 can be any positive initial image, and ε, chosen for the stopping
criteria, is a small constant. Num Iter is the maximum number of iterations. If
J(x) is constant, the second step is just xk = xk−

1
2 and this is exactly the ML-

EM from the previous section. When J(x) is not constant, we have to solve an
optimization problem at each iteration. In general, the problem can not be solved
analytically, and we have to use iterative methods to solve it. However, in practice,
we do not have to solve it exactly to the steady state, just a few iterations are
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sufficient. We will show that the algorithm will also converge without solving it
exactly.

Algorithm 1 Proposed EM-Type algorithms.

Input: x0, ε
for k = 0 : Num Iter do

xk+ 1
2 = EM(xk) using (8),

xk+1 = argmin
x

EP1 (x, xk+ 1
2 ) by solving (11),

if ‖xk+1 − xk‖/‖xk‖ < ε then
Break,

end if
end for

There are several other methods for solving this problem using EM iteration,
we mention two of them and show the differences with our method. One of the
methods is a modified EM iteration [17, 35] which is

xk+1
j =

∑
i

(
Ai,j(

yi
(Axk)i

)
)

∑
i

Ai,j + β∂J(xk)j
xkj .

This can be considered as solving a modified version of (10):

β
xj∑

i

Ai,j
∂J(xk)j + xj − xEMj = 0, j = 1, · · · , N.

The convergence is given only when β is small [17]. It is easy to notice that when
β is large, xj will be negative for some j’s and the projection onto the non-negative
cone is needed. In this case, there is no convergence result.

Another algorithm is also a two stage method, and the difference is in the second
stage [6, 8, 7]. Instead of solving (10) directly, which is a weighted Poisson denoising
problem, a semi-implicit scheme is developed and it becomes a problem of weighted
Gaussian denoising. The semi-implicit scheme is

β
xkj∑

i

Ai,j
∂J(x)j + xj − xEMj = 0, j = 1, · · · , N.

However, there is no convergence for this algorithm and the convergence provided
in [6] is for the following damped version:

(12) β
xkj∑

i

Ai,j
∂J(x)j + xj − (wxEMj + (1− w)xkj ) = 0, j = 1, · · · , N.

There is a bound on w for each iteration to show the convergence of damped al-
gorithm [6], and the bound is difficult to find. In the following, we will show the
convergence of our algorithm without any assumptions on β and additional param-
eters. It will converge to a global minimum for convex J(x) and a subsequence will
converge to a local minimum for non-convex J(x).
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3.1. Equivalence to EM Algorithms with a priori Information. In this
subsection, the EM-Type algorithms are shown to be equivalent to EM algorithms
with a priori information. The EM algorithm is a general approach for maximizing a
posterior distribution when some of the data is missing [13]. It is an iterative method
which alternates between expectation (E) steps and maximization (M) steps. For
image reconstruction, we assume that the missing data is the latent variables {zij},
describing the intensity of pixel (or voxel) j observed by detector i. It is introduced
as a realization of a multi-valued random variable Z, and for each (i, j) pair, zij
follows a Poisson distribution with expected value Ai,jxj . Then the observed data
is yi =

∑
j

zij , because the summation of two Poisson distributed random variables

also follows a Poisson distribution, whose expected value is the summation of the
two expected values.

The original E-step is to find the expectation of the log-likelihood given the
present variables xk:

Q(x|xk) = Ez|xk,y log p(x, z|y).

Then, the M-step is to choose xk+1 to maximize the expected log-likelihood Q(x|xk)
found in the E-step:

xk+1 = argmax
x

Ez|xk,y log p(x, z|y) = argmax
x

Ez|xk,y log(p(y, z|x)p(x))

= argmax
x

Ez|xk,y

∑
ij

(zij log(Ai,jxj)−Ai,jxj)− βJ(x)

= argmin
x

∑
ij

(Ai,jxj − Ez|xk,yzij log(Ai,jxj)) + βJ(x).

(13)

From (13), what we need before solving it is just {Ez|xk,yzij}. Therefore we can

compute the expectation of missing data {zij} given present xk and the condition
yi =

∑
j

zij , denoting this as an E-step. Because for fixed i, {zij} are Poisson

variables with mean {Ai,jxkj } and
∑
j

zij = yi, the conditional distribution of zij

is the binomial distribution

(
yi,

Ai,jx
k
j

(Axk)i

)
. Thus we can find the expectation of zij

with all these conditions by the following E-step

(14) zk+1
ij = Ez|xk,yzij =

Ai,jx
k
j yi

(Axk)i
.

After obtaining the expectation for all zij , we can solve the M-step (13).
We will show that EM-Type algorithms are exactly the described EM algorithms

with a priori information. Recalling the definition of xEM , we have

xEMj =

∑
i

zk+1
ij∑

i

Ai,j
.

Therefore, the M-step is equivalent to

xk+1 = argmin
x

∑
ij

(Ai,jxj − zk+1
ij log(Ai,jxj)) + βJ(x)

= argmin
x

∑
j

(
∑
i

Ai,j)(xj − xEMj log(xj)) + βJ(x).
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We have shown that EM-Type algorithms are EM algorithms with a priori informa-
tion. The convergence of EM-Type algorithms is shown in the next subsection from
the equivalence of EM-Type algorithms with alternating minimization methods for
equivalent problems.

3.2. EM-Type Algorithms are Alternating Minimization Methods. In this
section, we will show that these algorithms can also be derived from alternating min-
imization methods of other problems with variables x and z. The new optimization
problems are

minimize
x,z

EP (x, z) :=
∑
ij

(
zij log

zij
Ai,jxj

+Ai,jxj − zij
)

+ βJ(x),

subject to
∑
j

zij = yi, i = 1, · · · ,M,

zij ≥ 0, i = 1, · · · ,M, j = 1, · · · , N.

(15)

Here EP is used again to define the new function. EP (·) means the negative log-
likelihood function of x, while EP (·, ·) means the new function of x and z defined
in new optimization problems. x ≥ 0 is implicitly included in the formula.

Having initial guess x0, z0 of x and z, the iteration for k = 0, 1, · · · is as follows:

zk+1 = argmin
z

EP (xk, z), subject to
∑
j

zij = yi,

xk+1 = argmin
x

EP (x, zk+1).

Firstly, in order to obtain zk+1, we fix x = xk and easily derive

(16) zk+1
ij =

Ai,jx
k
j yi

(Axk)i
.

After finding zk+1, let z = zk+1 fixed and update x, then we have

xk+1 = argmin
x

∑
ij

(
Ai,jxj + zk+1

ij log
zk+1
ij

Ai,jxj

)
+ βJ(x)

= argmin
x

∑
ij

(
Ai,jxj − zk+1

ij log(Ai,jxj)
)

+ βJ(x),

which is the M-Step (13) in section 3.1. Thus EM-Type algorithms for (9) are
alternating minimization methods for problem (15). The equivalence of problems
(9) and (15) is provided in the following theorem.

Theorem 3.1. If (x∗, z∗) is a local minimum of problem (15), then x∗ is also a
local minimum of (9). If x∗ is a local minimum of (9), then we can find z∗ from
(16) and (x∗, z∗) is a local minimum of problem (15).

Proof. If (x∗, z∗) is a local minimum of problem (15), we can find δ > 0 so that
for all (x, z) such that ‖(x − x∗, z − z∗)‖ < δ and

∑
j zij = yi, zij ≥ 0, the expres-

sion EP (x, z) ≥ EP (x∗, z∗) holds. Let us assume that x∗ is not a local minimum
of problem (9), then there exist a sequence xk such that limk→∞ xk = x∗ and
EP (xk) < EP (x∗). Let zk+1 be chosen from (16) for corresponding xk and we have
EP (xk, zk+1) = EP (xk) < EP (x∗) = EP (x∗, z∗), and limk→∞ zk = z∗. This is a
contradiction with that (x∗, z∗) is a local minimum of (15).

Inverse Problems and Imaging Volume X, No. X (20xx), X–XX
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In another way, if x∗ is a local minimum of (9), there exist a δ > 0 such that
for all x such that ‖x − x∗‖ ≤ δ and x ≥ 0, we have EP (x) ≥ EP (x∗). If we
choose (x, z) such that ‖(x − x∗, z − z∗)‖ < δ and

∑
j zij = yi, then we have

EP (x, z) ≥ EP (x) ≥ EP (x∗) = EP (x∗, z∗). Thus (x∗, z∗) is a local minimum of
problem (15).

From the equivalence of EM-Type algorithm with alternating minimization meth-
ods, we know that the function value is decreasing. Next, we will show that if J(x)
is convex, (xk, zk) will converge to a global minimum of problem (15), and if J(x) is
non-convex, a subsequence of {(xk, zk)} will converge to a local minimum of prob-
lem (15). Before that, we show two lemmas which are used in the proof of the
convergence results.

For s > 0, t ≥ 0, let us define dP (s, t) = t log t
s + s− t, assuming that 0 log 0 = 0

and log 0 = −∞. In addition Z is defined as Z := {z : zij ≥ 0,
∑
j zij = yi}. We

will have the following lemmas:

Lemma 3.2. For all p > 0, s > 0, t ≥ 0, we have

(17) dP (s, t)− dP (p, t) + dP (p, s) = log
s

p
(s− t).

Proof.

dP (s, t)− dP (p, t) + dP (p, s)

=t log
t

s
+ s− t−

(
t log

t

p
+ p− t

)
+

(
s log

s

p
+ p− s

)
= log

s

p
(s− t).

Lemma 3.3. For all p > 0, q ≥ 0, s > 0, t ≥ 0, we have

(18) dP (s, t)− dP (p, t) + dP (q, t)− p− q
p

(s− p) ≥ 0.

Proof. Since dP (s, t) is convex for {(s, t) : s > 0, t ≥ 0}, we have

ddP ((s, t), (p, q))

:=dP (s, t)− dP (p, q)−∇pdP (p, q)(s− p)−∇qdP (p, q)(t− q)

=dP (s, t)− dP (p, q)−
(
−q
p

+ 1

)
(s− p)− log

q

p
(t− q)

=dP (s, t)− dP (p, q)− p− q
p

(s− p)− dP (p, t) + dP (q, t) + dP (p, q).

(19)

The last equality comes form Lemma 3.2. Since dP (s, t) is convex, the result follows
because ddP ((s, t), (p, q)) ≥ 0.

In order to show the convergence for general J(x), we will need the following
assumption on J(x).

Assumption 1. J(x) is lower semicontinuity, bounded below, and there exists
δ > 0 for any given z̄ ∈ Z and any local minimum point x̄ of EP (x, z̄), such that
for all x satisfying ‖x− x̄‖ ≤ δ, the following inequality holds:

βJ(x) ≥ βJ(x̄)−
∑
ij

Ai,j x̄j − z̄ij
Ai,j x̄j

Ai,j(xj − x̄j)−
∑
ij

ddP ((Ai,jxj , zij), (Ai,j x̄j , z̄ij)),

Inverse Problems and Imaging Volume X, No. X (20xx), X–XX
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where z ∈ Z.

Remark 1. For convex J(x), we have a stronger statement

(20) βJ(x) ≥ βJ(x̄)− 〈∂xJ(x̄), x− x̄〉 = βJ(x̄)−
∑
ij

Ai,j x̄j − z̄ij
Ai,j x̄j

Ai,j(xj − x̄j).

The equality comes from the optimality condition for x̄.

With Assumption 1, we have the following theorem which will provide an alter-
native way to determine the local optimality.

Theorem 3.4. If there exists (x̄, z̄) such that z̄ = argmin z E
P (x̄, z) and x̄ is a

local minimum point of EP (x, z̄). Then (x̄, z̄) is a local minimum of problem (15).

Proof. Since x̄ is a local minimum point of EP (x, z̄), there exists δ > 0 such that
for all x satisfying ‖x− x̄‖ ≤ δ, we have, from Assumption 1, that

βJ(x)

≥βJ(x̄)−
∑
ij

Ai,j x̄j − z̄ij
Ai,j x̄j

Ai,j(xj − x̄j)−
∑
ij

ddP ((Ai,jxj , zij), (Ai,j x̄j , z̄ij))

=βJ(x̄) +
∑
ij

dP (Ai,j x̄j , z̄ij)−
∑
ij

dP (Ai,jxj , zij) +
∑
ij

log
z̄ij

Ai,j x̄j
(zij − z̄ij)

=βJ(x̄) +
∑
ij

dP (Ai,j x̄j , z̄ij)−
∑
ij

dP (Ai,jxj , zij),

for all z ∈ Z. The first equality comes from (19), and the second equality holds
because for any z ∈ Z, we have∑

ij

log
z̄ij

Ai,j x̄j
(zij − z̄ij) =

∑
i

log
yi

(Ax̄)i

∑
j

(zij − z̄ij) = 0.

Therefore, we have

EP (x, z) = βJ(x) +
∑
ij

dP (Ai,jxj , zij) ≥ βJ(x̄) +
∑
ij

dP (Ai,j x̄j , z̄ij) = EP (x̄, z̄)

for all x satisfying ‖x − x̄‖ ≤ δ and z ∈ Z, which means that (x̄, z̄) is a local
minimum of problem (15).

Remark 2. In fact, (x̄, z̄) being a local minimum of problem (15) requires that
there exist a constant δ > 0 such that for all x satisfying ‖x− x̄‖ ≤ δ, the following
inequality holds:

βJ(x) ≥ βJ(x̄)−
∑
ij

Ai,j x̄j − z̄ij
Ai,j x̄j

Ai,j(xj − x̄j)−
∑
ij

ddP ((Ai,jxj , zij), (Ai,j x̄j , z̄ij)),

where z ∈ Z. Therefore, it is reasonable to make the assumptions on J(x).

Theorem 3.5. The algorithm will converge to a global minimum of problem (15)
for convex J(x), and there exists a subsequence which converges to a local minimum
of problem (15) for non-convex J(x).
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General convergent EM-Type algorithms 11

Proof. From previous theorem, we have to show that it converges to (x∗, z∗) with
z∗ = argmin z E

P (x∗, z) and x∗ being a local minimum point of EP (x, z∗).∑
ij

dP (Ai,jxj , zij) +
∑
ij

dP (zkij , zij)

(18)
=
∑
ij

dP (Ai,jx
k
j , zij) +

∑
ij

zkij −Ai,jxkj
Ai,jxkj

(
Ai,jx

k
j −Ai,jxj

)
+ ddP ((Ai,jxj , zij), (Ai,jx

k
j , z

k
ij))

(17)
=
∑
ij

dP (zk+1
ij , zij) +

∑
ij

dP (Ai,jx
k
j , z

k+1
ij ) +

∑
ij

log
Ai,jx

k
j

zk+1
ij

(zk+1
ij − zij)

+
∑
ij

zkij −Ai,jxkj
Ai,jxkj

(
Ai,jx

k
j −Ai,jxj

)
+ ddP ((Ai,jxj , zij), (Ai,jx

k
j , z

k
ij))

=
∑
ij

dP (zk+1
ij , zij) +

∑
ij

dP (Ai,jx
k
j , z

k+1
ij ) + βJ(xk)− βJ(x)

+
∑
ij

zkij −Ai,jxkj
Ai,jxkj

(
Ai,jx

k
j −Ai,jxj

)
+ βJ(x)− βJ(xk)

+ ddP ((Ai,jxj , zij), (Ai,jx
k
j , z

k
ij))

≥
∑
ij

dP (zk+1
ij , zij) +

∑
ij

dP (Ai,jx
k
j , z

k+1
ij ) + βJ(xk)− βJ(x).

(21)

The last inequality comes from Assumption 1, and it holds only for x close to xk.
Therefore, we have

∑
ij d

P (zkij , zij)−
∑
ij d

P (zk+1
ij , zij) ≥ EP (xk, zk+1)−EP (x, z).

Since J(x) is bounded below and dP (+∞, z) = +∞, xk is bounded and there exists
a subsequence denoted by {xok} converging to x∗. Let z∗ = argmin z E

P (x∗, z).
Then we have limk→∞ zok+1 = z∗ and EP (x∗, z∗) ≤ limk→∞EP (xok , zok+1) ≤
EP (xok , zok+1). Since EP (xk, zk+1) is decreasing, we have EP (x∗, z∗) < EP (xk, zk)
and limk→∞EP (xk, zk) = EP (x∗, z∗). From (21), dP (zkij , z

∗
ij) is monotone decreas-

ing and {zok} is bounded, there exists a subsequence converging to z̄, and we
still denote it by {zok} for simplicity. Since EP (x∗, z̄) ≤ limk→∞EP (xok , zok) =
EP (x∗, z∗), we have z̄ = z∗. Next, we will show that x∗ is a local minimum point
of EP (x, z∗). From Assumption 1 we have

βJ(x) ≥βJ(xok)−
∑
ij

Ai,jx
ok
j − z

ok
ij

Ai,jx
ok
j

Ai,j(xj − xokj )

−
∑
ij

ddP ((Ai,jxj , z
ok
ij ), (Ai,jx

ok
j , z

ok
ij ))

=βJ(xok)−
∑
ij

dP (Ai,jxj , z
ok
ij ) +

∑
ij

dP (Ai,jx
ok
j , z

ok
ij ).

Let k → ∞ we have βJ(x) +
∑
ij d

P (Ai,jxj , z
∗
ij) ≥ βJ(x∗) +

∑
ij d

P (Ai,jx
∗
j , z
∗
ij),

which means that x∗ is a local minimum of EP (x, z∗) and (x∗, z∗) is a local mini-
mum.

If J(x) is convex, we can choose (x, z) in (21) to be a global minimum (x̄, z̄),
and we have that dP (zkij , z̄ij) is monotone decreasing. Thus z is bounded and for
each convergent subsequence of zok with limk→∞ zok = z̃, we can find xok and
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12 Ming Yan, Alex A.T. Bui, Jason Cong and Luminita A. Vese

limk→∞ xok = x̃, with x̃ being a minimum point of EP (x, z̃). We have EP (x̃, z̃) ≤
limk→∞EP (xok , zok) = EP (x̄, z̄). Thus (x̃, z̃) is also a global minimum. Therefore,
limk→∞ zk = z∗, and let x∗ = argmin xE

P (x, z∗) satisfying limk→∞ xk = x∗. The
resulting (x∗, z∗) is a global minimum of problem (15).

Remark 3. Even if the second step is not solved exactly, we have EP (xk+1) <
EP (xk) if EP (xk+1, zk+1) < EP (xk, zk+1). In fact it is impossible to solve the
second step exactly in many cases, and we have to approximately solve it using
iterative methods.

Remark 4. The relations between these algorithms are shown in Figure 1. EM-
Type algorithm is a special EM-algorithm with a priori information, and EM iter-
ation is a special case of EM-Type algorithm without J(x).

EM-algorithm

EM-Type algorithm

EM iteration

Figure 1. Relations between the algorithms.

4. Simultaneous Algebraic Reconstruction Technique (SART) is EM.
Among all the iterative reconstruction algorithms, there are two important classes.
One is EM from statistical assumptions mentioned above, and the other is algebraic
reconstruction technique (ART)-Type algorithms [16, 20]. Simultaneous algebraic
reconstruction technique (SART) [3, 4], as a refinement of ART, is used widely
[5, 36, 52] and the convergence analysis of SART is well studied by Jiang and
Wang [25, 24], Wang and Zheng [47], Censor and Elfving [9], and Yan [50]. In this
section, we will show that SART is also an EM algorithm, building the connection
between these two classes.

From the convergence analysis of SART in [50], SART is also an algorithm for
solving a maximum likelihood problem

(22) pY (y|x) =
∏
i

1√
2πwi

e
− (yi−(Ax)i)

2

2wi ,

where wi =
∑
j

Ai,j . Similarly, we assume that the missing data {zij} follow normal

distributions with expected values {Ai,jxj} and variances {Ai,j} respectively. The
original E-step is to find the expectation of the log-likelihood given the present
variables xk and the constraints yi =

∑
j

zij . It is easy to derive that under the

constraints, {zij} are still realizations of normally distributed random variables, but

with different expected values {Ai,jxj+
Ai,j(yi−(Ax)i)

wi
} and variances {Ai,j(wi−Ai,j)

wi
}

respectively.
In this section, we consider the special case without regularization function, i.e.,

there is no a priori information about the image to be reconstructed. The M-step
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is to maximize the expected value of the log-likelihood function,

Ez|xk,y log p(y, z|x) = −Ez|xk,y

∑
ij

(zij −Ai,jxj)2

2Ai,j
+ C

= −
∑
ij

(Ez|xk,yzij −Ai,jxj)2

2Ai,j
+ C,

where C is a constant independent of x and z. Therefore, for the E-step we have
to just find the expected value of zij given xk and the constraints, which is

zk+1
ij = Ai,jx

k
j +

Ai,j(yi − (Axk)i)

wi
.

For the M-step, we find xk+1 by maximizing p(y, zk+1|x) with respect to x, which
has an analytical solution

(23) xk+1
j =

∑
i

zk+1
ij∑

i

Ai,j
= xkj +

1∑
i

Ai,j

∑
i

Ai,j(yi − (Axk)i)

wi
.

This is the original SART algorithm proposed by Andersen [3].
From the convergence analysis of SART in [50], the result of SART depends on

the initialization x0 for both noiseless and noisy cases when A is underdetermined.

Remark 5. SART is just one example of Landweber-like schemes for solving sys-
tems of linear equations. By changing the variance of yi and zij , different schemes
can be proposed. For other Landweber-like schemes such as component averaging
in [9, 10], they can also be derived from the EM algorithm similarly by choosing
different variances. Furthermore, new schemes can be derived by choosing different
variances.

5. EM-Type Algorithms for Gaussian Noise. It is shown in the last section
that SART is an EM algorithm based on weighted Gaussian assumption for the
problem without regularization. Without regularization, the original problem is
ill-posed, and the result will depend on the initialization x0. In this section, we will
consider the regularized problem

(24) minimize
x

EG(x) := βJ(x) +
∑
i

((Ax)i − yi)2

2wi
,

and derive EM-Type algorithms with Gaussian noise assumption for solving it. The
E-step is the same as in the case without regularization,

(25) zk+1
ij = Ai,jx

k
j +

Ai,j(yi − (Axk)i)

wi
.

However, the M-step is different because we have a priori information on the image x
to be reconstructed. The new M-step is to solve the following optimization problems

(26) minimize
x

∑
ij

(zk+1
ij −Ai,jxj)2

2Ai,j
+ βJ(x),
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14 Ming Yan, Alex A.T. Bui, Jason Cong and Luminita A. Vese

which is equivalent to

minimize
x

1

2

∑
j

(
∑
i

Ai,j)(xj −

∑
i

zk+1
ij∑

i

Ai,j
)2 + βJ(x).

From the SART iteration (23) in the last section, we can define

(27) xSART = xkj +
1∑

i

Ai,j

∑
i

Ai,j(yi − (Axk)i)

wi
.

and have

(28) xk+1 = argmin
x

EG1 (x, xSART ) :=
1

2

∑
j

(
∑
i

Ai,j)(xj − xSARTj )2 + βJ(x).

Therefore, the proposed EM-Type algorithms for image reconstruction with Gauss-
ian noise are as follows.

Algorithm 2 Proposed EM-Type algorithms for Gaussian noise.

Input: x0, ε,
for k = 0 : Num Iter do

xk+ 1
2 = SART (xk) using (27)

xk+1 = argmin EG1 (x, xk+ 1
2 ) by solving (28)

if ‖xk+1 − xk‖/‖xk‖ < ε then
Break,

end if
end for

The initial guess x0 can be any initial image and ε, chosen for the stopping
criteria, is very small. Num Iter is the maximum number of iterations. When
J(x) is not constant, we have to solve an optimization problem for each iteration.
The convergence analysis of these algorithms can be shown similarly as for the case
with Poisson noise, which is described in the following subsection.

5.1. EM-Type Algorithms are Alternating Minimization Methods. Same
as the algorithms for Poisson data, the algorithms can also be derived from an
alternating minimization method of other problems with variables x and z. The
new problems are

minimize
x,z

EG(x, z) :=
∑
ij

(zij −Ai,jxj)2

2Ai,j
+ βJ(x),

subject to
∑
j

zij = yi, i = 1, · · ·M.
(29)

Here EG is used again to define the new function. EG(·) means the negative log-
likelihood function of x, while EG(·, ·) means the new function of x and z defined
in new optimization problems. The iteration is as follows:

zk+1 = argmin
z

E(xk, z), subject to
∑
j

zij = yi.

xk+1 = argmin
x

E(x, zk+1).
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General convergent EM-Type algorithms 15

First, let us fix x = xk and update z. It is easy to derive

zk+1
ij = Ai,jx

k
j +

Ai,j
wi

(
yi − (Axk)i

)
.

Then, by fixing z = zk+1 and updating x, we have

xk+1 = argmin
x

∑
ij

(zij −Ai,jxj)2

2Ai,j
+ βJ(x)

= argmin
x

1

2

∑
j

(
∑
i

Ai,j)(xj −

∑
i

zij

2
∑
i

Ai,j
)2 + βJ(x).

If J(x) is convex, problem (29) is convex, and we can find the minimizer with
respect to z for fixed x first and obtain a function of x as follows,∑

i

((Ax)i − yi)2

2wi
+ βJ(x),

which is also convex and equals EG(x). Therefore EM-Type algorithms will con-
verge to the solution of (24).

The convergence can be shown similarly with small changes in the definition of
dP (s, t), for weighed Gaussian noise, we can define dG(s, t) = 1

2 (s− t)2. In addition
Z is defined as Z := {z : zij = 0 if Ai,j = 0,

∑
j zij = yi}. The corresponding

lemmas are provided without proof.

Lemma 5.1. For all p, s, t ∈ R, we have

dG(s, t)− dG(p, t) + dG(p, s) = (s− p)(s− t).

Lemma 5.2. For all p, q, s, t ∈ R, we have

ddG((s, t), (p, q)) := dG(s, t)− dG(p, t) + dG(q, t)− (p− q)(s− p) ≥ 0.

As for the Poisson noise case, we have the following assumption on J(x).

Assumption 2. J(x) is lower semicontinuity, bounded below, and there exists
δ > 0 for any given z̄ ∈ Z and any local minimum point x̄ of EG(x, z̄), such that
for all x satisfying ‖x− x̄‖ ≤ δ, the following inequality holds:

βJ(x) ≥βJ(x̄)−
∑
ij

1

Ai,j
(Ai,j x̄j − z̄ij)Ai,j(xj − x̄j)

−
∑
ij

1

Ai,j
ddG((Ai,jxj , zij), (Ai,j x̄j , z̄ij)),

where z ∈ Z.

Remark 6. For convex J(x), we have a stronger statement

βJ(x) ≥ βJ(x̄)− 〈∂xJ(x̄), x− x̄〉 = βJ(x̄)−
∑
ij

1

Ai,j
(Ai,j x̄j − z̄ij)Ai,j(xj − x̄j).

The equality comes from the optimality condition for x̄.

With this assumption, we have the following theorem which will provide an
alternative way to determine the local optimality. The proof is similar to the case
of Poisson noise and we omit it here.
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Theorem 5.3. If there exists (x̄, z̄) such that z̄ = argmin z E
G(x̄, z) and x̄ is a

local minimum point of EG(x, z̄). Then (x̄, z̄) is a local minimum of problem (29).

The convergence result is similar and we put it here without proof.

Theorem 5.4. The algorithm will converge to a global minimum of problem (29)
for convex J(x), and there exists a subsequence which converges to a local minimum
of problem (29) for non-convex J(x).

5.2. Relaxation. In practice, some authors use a relaxation of SART reconstruc-
tion, which is

xk+1
j = xkj +

w∑
i

Ai,j

∑
i

Ai,j(yi − (Axk)i)

wi
,

with a relaxant coefficient w. The convergence of this relaxation is shown in [25,
24, 50] for any w ∈ (0, 2). Inspired by this strategy, we have a relaxation of the
EM-Type algorithms for image reconstruction with Gaussian noise. The EM-step
is the relaxed SART with relaxant coefficient w:

x
k+ 1

2
j = xkj +

w∑
i

Ai,j

∑
i

Ai,j(yi − (Axk)i)

wi
.

The corresponding regularization step is

xk+1 = argmin
x

1

2

∑
j

(
∑
i

Ai,j)(xj − x
k+ 1

2
j )2 + wβJ(x).

When w = 1, we have already discussed the convergence in the previous subsections
by EM algorithms with a priori information and alternating minimization methods.
For w 6= 1, we will show the convergence of the relaxed EM-Type algorithms for
w ∈ (0, 1) by alternating minimization methods.

We will show that the relaxed EM-Type algorithms are equivalent to solving the
unconstrained problems

(30) minimize
x,z

EGR (x, z) :=
∑
ij

(zij −Ai,jxj)2

2Ai,j
+ γ

∑
i

(
∑
j zij − yi)2

2wi
+ wβJ(x),

where γ = w
1−w , by alternating minimization between x and z. First, fix x = xk,

we can solve the problem of z only, and the analytical solution is

(31) zk+1
ij = Ai,jx

k
j +

γ

1 + γ

Ai,j
wi

(
yi − (Axk)i

)
= Ai,jx

k
j + w

Ai,j
wi

(
yi − (Axk)i

)
.

Then let z = zk+1 fixed, and we can find xk+1 by solving

minimize
x

∑
ij

(zij −Ai,jxj)2

2Ai,j
+ wβJ(x)

=
1

2

∑
j

(
∑
i

Ai,j)(xj −

∑
i

zij∑
i

Ai,j
)2 + wβJ(x) + C,

where C is a constant independent of x. Having zk+1 from (31), we can calculate∑
i

zk+1
ij∑

i

Ai,j
= xkj +

w∑
i

Ai,j

∑
i

Ai,j(yi − (Axk)i)

wi
= x

k+ 1
2

j .
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Therefore this relaxed EM-Type algorithm is an alternating minimization method.
We will show next that the result of this relaxed EM-Type algorithm is the solution
to (24).

Because the objective function EGR (x, z) in (30) is convex if J(x) is convex, we
can first minimize the function with respect to z with x fixed. Then the problem
becomes

minimize
x

γ

1 + γ

∑
i

((Ax)i − yi)2

2wi
+ wβJ(x)

= w
∑
i

((Ax)i − yi)2

2wi
+ wβJ(x).

We have shown in this subsection that the relaxed EM-Type algorithm will also
converge to the solution of the original problem (24) when α ∈ (0, 1].

6. Numerical Experiments. As mentioned in the introduction, the main focus
of this paper is the convergence result of EM-Type algorithms, and some of the
numerical experiments in this section have been included in [49, 51]. The newly
added experiment is using of a non-convex J(x). In addition, this algorithm has
been implemented in different hardwares and the speedups can be found in [11].

In this section, several numerical experiments are provided to show the efficiency
of EM-Type algorithms. Though these EM-Type algorithms can be used in many
applications, we choose Computed Tomography (CT) image reconstruction as our
application in this work. CT is a medical imaging method which utilizes X-ray
equipment to produce a two dimensional (or three dimensional) image of the inside
of an object from a large series of one dimensional (or two dimensional) X-ray
images taken along a single axis of rotation [20]. In CT reconstruction, the operator
A is the discrete Radon transform, and the discrete version of A is constructed by
Siddon’s algorithm [43, 53]. The problem is to reconstruct the image from the
measurements, which is equivalent to solve Ax = b. Poisson noise is assumed [45]
and two regularizations are used: the total variation (TV), and an approximation
to a non-convex Mumford-Shah TV-like version.

6.1. CT Reconstruction using EM+TV (2D). At first, we illustrate one method
(EM+TV) on a simple synthetic object (two dimensional Shepp-Logan phantom),
see Figure 2.

Original x

Figure 2. 2D Shepp-Logan phantom

The most common method used in commercial CT (computerized tomography) is
the filtered back projection (FBP), which can be implemented in a straight forward
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way and it can be computed rapidly. However, FBP has limitations due to the
presence of streak artifacts and the noise enhancement, which is inherent in the
reconstruction. Furthermore, in order to obtain an accurate image, many views
are taken. Algorithms that can perform accurate image reconstruction from fewer
views are very important in reducing patient radiation dose and speeding up scans.
Optimization based methods, including EM+TV, can reconstruct an image from
fewer views, but require more computing time. However, with the development of
graphics processing units (GPUs), the computing time has reduced greatly and this
kind of techniques becomes more and more important.

In the following experiment, we will compare the reconstruction results obtained
by EM+TV with those obtained by filtered back projection. Firstly we obtain the
measurements using Siddon’s algorithm. We consider both the noise-free and noisy
cases. For the FBP method, we present results using 36 views (every 10 degrees;
for each view there are 301 measurements), 180 views, and 360 views. In order to
show that we can reduce the number of views by using EM+TV, we only use 36
views for the proposed method. The results are shown in Figure 3. We notice the
much improved results obtained with EM+TV using only 36 views, by comparison
with FBP using 36, 180 or even 360 views. To solve the regularization step, we use
semi-implicit scheme for some iterations [49].

Noise-free case
FBP 36 views FBP 180 views FBP 360 views EM+TV 36 views

RMSE = 50.8394 RMSE = 14.1995 RMSE = 12.6068 RMSE = 2.3789

Noisy case
FBP 36 views FBP 180 views FBP 360 views EM+TV 36 views

RMSE = 51.1003 RMSE = 14.3698 RMSE = 12.7039 RMSE = 3.0868

Figure 3. Top from left to right: reconstruction result in the
noise-free case using FBP with 36, 180 and 360 views, and result
using EM+TV with 36 views. Bottom from left to right: recon-
struction result in the noisy case using FBP with 36, 180 and 360
views, and result using EM+TV with 36 views. The root mean
square errors are also given.
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6.2. CT Reconstruction using EM+MSTV (2D). Instead of TV regulariza-
tion, we will show the results using a modified TV-like regularization, which is called
Mumford-Shah TV (MSTV) [40]. This regularization is

J(x, v) =

∫
Ω

v2|∇x|+ α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
,

which has two variables x and v, and Ω is the image domain. In the continuous
case, it is shown by Alicandro et al. [2] that J(x, v) will Γ-converge to∫

Ω\K
|∇x|+ α

∫
K

|x+ − x−|
1 + |x+ − x−|

dH1 + |Dcx|(Ω),

where x+ and x− denote the image values on two sides of the edge set K, H1 is
the one-dimensional Hausdorff measure and Dcx is the Cantor part of the measure-
valued derivative Dx.

The comparisons between EM+TV and EM+MSTV in both noise-free and noisy
cases are shown in Figure 4. From the results, we can see that with MSTV, the
reconstructed images will be better than with TV only, visually and according to
the root-mean-squared-error (RMSE).

TV without noise MSTV without noise TV with noise MSTV with noise

RMSE = 2.33 RMSE = 1.58 RMSE = 3.33 RMSE = 2.27
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Figure 4. Comparisons of TV regularization and MSTV regular-
ization for both without and with noise cases. Top row: recon-
structed images by these two methods in both cases. Bottom row:
differences (errors) between the reconstructed images and original
phantom image. The RMSEs and differences show that MSTV can
provide better results than TV only.

6.3. CT Reconstruction using EM+TV (3D). In this experiment, we will
show the reconstruction results using EM+TV for a three dimensional phantom
image. The image chosen is the 128 × 128 × 128 Shepp-Logan phantom, and the
sinogram data is obtained from 36 views. The result is compared with the one
obtained using the EM step only in Figure 5.
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original EM+TV (RMSE=3.7759) EM (RMSE=31.9020)

z-direction

x-direction

y-direction

Figure 5. Reconstruction results in three dimensions in the noise-
free case. First column: two-dimensional views of the original
three-dimensional Shepp-Logan phantom. Middle column: two-
dimensional views of reconstruction results obtained using EM+TV
algorithm. Last column: two-dimensional views of reconstruction
results obtained using EM iteration. The root mean square errors
are also given.

7. Conclusion. In this paper, we proposed general robust EM-Type algorithms for
image reconstruction without background emission. Both Poisson noise and Gauss-
ian noise are considered. The EM-Type algorithms are performed using iteratively
EM (or SART for weighted Gaussian noise) and regularization in the image domain.
The convergence of these algorithms is proved in several ways: EM with a priori
information and alternating minimization methods. To show the efficiency of EM-
Type algorithms, the application in CT computerized tomography reconstruction is
chosen. We compared EM+TV and EM+MSTV for 2D CT reconstruction. Both
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methods can give us good results by using undersampled data comparing to the
filtered back projection. Results from EM+MSTV have sharper edges than those
from EM+TV. Also EM+TV is used for 3D CT reconstruction and the performance
is better than using EM only (without regularization term) for undersampled data.
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