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Introduction to the second edition

The foundations of modern economic general equilibrium theory are contained
in a surprisingly short list of references. For primary sources, it is sufficient to
master Arrow and Debreu (1954), Arrow (1951), Arrow (1953), and Debreu and
Scarf (1963). An even shorter list is comprehensive; Debreu (1959) and Debreu
and Scarf (1963) cover the topic admirably. Why should anyone write (or read!)
a secondary source, a textbook? Because, unfortunately, this body of material is
extremely difficult for most students to read and comprehend. Professor Hahn
described Debreu’s (1959) book as “very short, but it may well take as long to
read as many works three times as long. This is not due to faulty exposition but
to the demands rigorous analysis makes on the reader. It is to be hoped that no
one will be put off by this, for the . . . return . . . is very high indeed” (Hahn [1961]).
Unfortunately, in teaching economic theory we find that many capable students are
indeed put off by the mathematical abstraction of the above works. What theorists
regard as elegantly terse expression, students may find inaccessible formality. The
focus of this textbook is to overcome this barrier and to make this body of work
accessible to a wider audience of advanced undergraduate and graduate students in
economics.

This book presents the theory of general economic equilibrium incrementally,
from elementary to more sophisticated treatments. Part A (Chapters 1 through
5) presents an elementary introduction. Chapters 2 and 3 present a nontechnical
introduction to the Robinson Crusoe and Edgeworth box models of general equi-
librium and Pareto efficiency using differential calculus. Chapter 4 goes over the
2 × 2 × 2 (two commodities, two households, two factors) model using differential
calculus, including the marginal equivalence results typical of the classical welfare
economics. Chapter 5 briefly presents an introduction to the use of the Brouwer
Fixed-Point Theorem to prove the existence of general equilibrium.

Part B (Chapters 6 through 9) introduces the mathematics used throughout
the rest of the book: analysis and convexity in RN , separation theorems, the

xv
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Shapley-Folkman Theorem, and the Brouwer Fixed-Point Theorem (including a
combinatorial proof of the Brouwer Theorem on the simplex). Although it is not a
substitute for a course in real analysis, Part B does provide a useful summary and
presents the mathematical issues important to economic theory that are sometimes
omitted from a real analysis course.

Like all scientific theories, the theory of general economic equilibrium is a
family of “if–then” statements: “If the world looks like this family of assumptions,
then here’s what the outcome will be.” The unifying view of firms and households
throughout microeconomic theory is to characterize their behavior as maximization
of a criterion function (profit or utility) subject to constraint.

A technical issue that persistently arises is the possibility that those maxima
may not exist if constraint sets are unbounded (a budget constraint where some
prices are nil or a technology constraint where outputs are limited only by available
inputs). When the price of a desirable good is zero, there may be no well-defined
value for the demand function at those prices, since the quantity demanded will
be arbitrarily large. Nevertheless, it is important that we be able to deal with
free goods (zero prices). The classic means of dealing with this issue (Arrow and
Debreu [1954]) is to recognize that attainable outputs of the economy are bounded.
It is then possible to impose the modeler’s bounds on individual firms’ supplies
and households’ demands (bounds slightly larger than the bounds naturally arising
from the limited production possibilities of the real economy). The economy with
modeler-bounded individual opportunities has well-defined maxima for firms and
households.

This approach to solving the problem of ill-defined maxima appears completely
wrongheaded! The concept of decentralized market allocation using the price sys-
tem is that prices (not the economic modeler) should communicate scarcity and
resource constraints to firms and households. Here is the strategy of proof:

Find a general equilibrium in the model of the economy where firms and households are
subject to the modeler’s bounds.

In equilibrium, the bounds are not binding constraints. The bounds can be deleted and the
equilibrium prices of the bounded economy are equilibrium prices of the original economy
described without the modeler’s bound on individual firm and household behavior.

Part C (Chapters 11 through 14) presents the special case where technology really
is bounded. Here, the bounds are not exogenously imposed by the modeler but are
supposed to represent the underlying technology. Chapter 11 introduces most of
the theory of the firm used throughout the book. Chapter 12 introduces most of the
theory of the household (consumer), including derivation of a continuous utility
function from the household preference ordering. Chapters 13 and 14 develop
Walras’s Law and the existence of general equilibrium.
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Part D (Chapters 15 to 18) generalizes the results of Part C to the case of
unbounded technology. We prove in Chapter 15 that the set of attainable outputs
is bounded, using the assumptions of convexity, irreversibility, and no free lunch
(no output without input). In Chapters 15 and 16, the modeler’s bound on the
opportunity sets of firms and households is introduced as a bound tight enough that
maximizing behavior is well defined but loose enough that all attainable outputs are
(strictly) included in their opportunity sets. Chapter 17 restates Walras’s Law in this
setting. Chapter 18 presents a proof of the existence of general equilibrium in the
artificially bounded economy created in Chapters 15 and 16. That economy is an
example of the bounded model of Part C, so the existence of general equilibrium in
the artificially bounded economy is merely an application of the existence theorem
of Chapter 14 (using the mathematician’s trick of reducing the current problem to
one previously solved). But an equilibrium is necessarily attainable; the constraint
that firm and household behavior lie in the bounded set is not binding in equilibrium.
The artificial constraint of modeler-bounded opportunity sets can be removed, and
the prices and allocations constitute a general equilibrium for the unconstrained
economy. That is the existence of general equilibrium result of Chapter 18.

Chapter 19 (Part E) presents the classic First and Second Fundamental Theorems
of Welfare Economics, which describe the relationship of general equilibrium to
efficient allocation. Chapter 20 presents the reinterpretation of the model in terms
of allocation over time and uncertainty using futures and contingent commodities.

Part F (Chapters 21 and 22) presents the theory of the core of a market economy,
the modern counterpart to the Edgeworth box. This includes, in Chapter 22, proof
of the classic result that in a large economy individual economic agents have
no significant bargaining power, so that a competitive price-taking allocation is
sustainable (core convergence). The treatment in Chapter 22 includes the proof of
core convergence, using both Debreu-Scarf–style replication of the economy and
the Anderson-style treatment using the Shapley-Folkman Theorem.

Throughout Chapters 11 through 18, we use strict convexity of tastes and tech-
nology to ensure point-valued demands and supplies. That treatment excludes the
set-valued supply-and-demand behavior that can arise from perfect substitutes in
consumption or from linear production technologies. In Part G (Chapters 23 to 25),
we generalize those results to the case of set-valued demands and supplies. Chapter
23 introduces the mathematics of correspondences: point-to-set mappings. Partic-
ularly important in this setting are the continuity concepts and the Kakutani Fixed-
Point Theorem. Chapter 24 presents the economic model of firms, households, the
market economy, and general equilibrium with (upper hemi-)continuous, convex,
set-valued supply and demand. Chapter 25 introduces the approximate equilib-
rium results associated with bounded scale economies (U-shaped cost curves) and
preferences for concentrated consumption. The U-shaped cost curve model is a
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staple of undegraduate economics, but the more advanced student of general equi-
librium is often led to believe that the general equilibrium theory cannot treat this
conventional case; Chapter 25 bridges that gap.

The careful reader will note that the preceding outline includes four developments
of demand, supply, excess demand, and existence of general equilibrium. Repetition
aids comprehension, but isn’t that overdoing it? For advanced undergraduates in
economics, typically the answer is “no.” They generally benefit from seeing the
ideas developed in a simple and then a more complex context. For advanced
graduate students in economic theory, the answer is probably “yes.” These students
will want to avoid some repetition to achieve the most complete and general
treatment of these classic issues.

How should the reader/student make use of this material without wasting time
and attention?

A typical one-semester advanced undergraduate course in mathematical general
equilibrium theory would include Chapters 1 through 14 and Chapter 19. A two-
semester course would cover the whole book in order, with the possible omission
of Part G. A several-week segment on general equilibrium in the graduate core
microeconomic theory course would include Chapters 11 to 14 and 19 through 22.
A one-semester graduate introduction to general equilibrium theory would include
Chapters 10 through 25.

What portions of the book can be omitted without loss of continuity? Which
parts are essential?

Part A introduces Robinson Crusoe and the Edgeworth box; it is intended to
introduce the concepts of general equilibrium and Pareto efficiency in a simple
tractable context. The well-prepared student can skip this material without loss of
continuity.

Proofs are provided for most of the mathematical results in the pure mathematics
chapters (6 through 9, and 23). The proofs are there because mathematical theory
necessarily involves the understanding and development of mathematical results.
Nevertheless, the student can – without loss of continuity – skip the proofs in
these chapters; only an understanding of the definitions and results is essential.
Conversely, the student unfamiliar with real analysis will want to supplement the
material in Part B with a sound text in real analysis such as Bartle (1976), Bartle
and Sherbert (1992), Bryant (1990), or Rudin (1976). Excellent treatments focusing
on mathematics for economic theory include Carter (2001); Corbae, Stinchcombe,
and Zeman (2009); and Ok (2007).

Chapters 11 and 12, which introduce the firm and the household, cannot easily
be omitted.

Chapters 13 and 14 present Walras’s Law and equilibrium in the market economy
with bounded technology. The substance of these chapters is repeated in Chapters 17
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and 18 in the setting of an economy with unbounded production technology. The
student who loathes repetition may wish to skip Chapters 13 and 14 and go on to
Chapters 15 through 18 (for the point-valued case) or to Chapters 23 and 24 (for
the most general and difficult, set-valued, case).

The student who has completed Part C can, without loss of continuity, skip Part D
(Chapters 15 to 18).

Welfare economics – the relationship of equilibrium to efficiency – is a corner-
stone of microeconomic theory that recurs throughout the book. Most readers will
want to complete Chapter 19. The notion of contingent commodities and Arrow
insurance contracts is central to theoretical finance and to applications of the
general equilibrium model in macroeconomics. Most readers will want to review
Chapter 20.

Parts E, F, and G are virtually independent of one another. They can be read in
any order or combination.

Notation

Vectors, coordinates. Most variables treated in this book are vectors in RN , real
N -dimensional space. For x ∈ RN , we will typically denote the coordinates of x

by subscripts. Thus,

x = (x1, x2, x3, . . . , xN−1, xN ).

We will generally designate ownership or affiliation by superscripts (with rare
exceptions). Thus, xi will be household i’s consumption vector and yj will be firm
j ’s production vector.

Vector inequalities. For two N -dimensional vectors, x and y ∈ RN , inequalities
can be read in the following ways: x ≥ y means that for all k = 1, 2, . . . , N ,
xk ≥ yk; the weak inequality holds coordinatewise. The expression x > y means
xk ≥ yk, k = 1, 2, . . . , N, but x �= y. x � y means that for all k = 1, 2, . . . , N ,
xk > yk; a strict inequality holds coordinatewise.





Preface to the second edition

Like the first edition of this work, the second edition begins with a celebration.
In 2005 at the University of California at Berkeley there was an enthusiastic
conference celebrating the life and work of our late colleague Gerard Debreu.
Professors, researchers, and students gathered literally from all over the world. For
three days and nights, papers were presented, reminiscences shared, testimonials
and tributes spoken. Gerard Debreu – half of the Arrow-Debreu team – had reshaped
our field and created the specialty we loved. Prof. Hugo Sonnenschein remarked:

The Arrow-Debreu model, as communicated in Theory of Value changed basic thinking,
and it quickly became the standard model of price theory. It is the “benchmark” model . . . it
was no longer “as it is” in Marshall, Hicks, and Samuelson; rather it became “as it is” in
Theory of Value.

That’s why the present volume appeared: to make Theory of Value more easily
accessible to a wide audience, because the Arrow-Debreu model is the standard of
the field. We who work the field should understand it well.

For the past decade, students and colleagues have remarked on the first edition
of this book: appreciating, criticizing, suggesting revisions and corrections.

It is a pleasure to acknowledge two distinctive contributions. Colleagues at
the University of Copenhagen have been extraordinarily helpful. Professor Peter
Sørensen and the late Professor Birgit Grodal both went over the entire volume,
making immensely useful suggestions and corrections. Professor Sørensen pre-
pared a very detailed richly scholarly thoughtful corrigendum, emphasizing math-
ematical precision and elegance.

Birgit prepared a large and varied family of notes, covering precision, mathemat-
ical elegance, and taste in presentation. During four decades, Birgit was a vibrant
presence and a frequent visitor in California. In this volume, her contributions to
clear and precise expression are a living presence. It is hard to believe that a woman
of such intensity is gone.

xxi
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I – and this volume’s readers – owe Peter and Birgit fulsome thanks.
Many friends, colleagues, and students have left their marks on the second edi-

tion. The students come from UC Berkeley, UC Santa Barbara, UC San Diego, and
European University Institute. These contributors include an anonymous referree,
Robert Anderson, Phillip Babcock, Michael Bacci, Blake Barton, Aislinn Bohren,
Marika Cabral, Tolga Cenesizoglu, Karim Chalak, Christopher Chambers, Qun
Del-Homme, Susana Ferreira Martinez, R. Garcia-Cobian Yonatan Harel, Khasha-
yar Khorasani, Young Do Kim, David Kovo, Troy Kravitz, Bernhard Lamel, David
Miller, George Monokroussos, William Nelson, Augusto Nieto Barthaburu, Thien
T. Nguyen, Tatsuyoshi Okimoto, Lindsay Oldenski, Luis Pinto, Adam Sanjurjo,
Greg Scott, Jason Shafrin, Joel Sobel, Steven Sumner, Leslie Wallace, and Jonathan
Weare. Readers of this volume benefit from their contributions. They and a gener-
ation of undergraduate and graduate students have refined this book.

Remaining errors are, of course, my own.

Ross M. Starr
La Jolla, California
November 2009



Preface to the first edition

In June 1993, a remarkable birthday party took place at CORE (Center for Oper-
ations Research and Econometrics) of the Université Catholique de Louvain in
Louvain-la-neuve, Belgium. The gathering celebrated the fortieth anniversary of
one of the great achievements of modern economic theory: the mathematical the-
ory of general economic equilibrium. For several days and nights, hundreds of
professors, researchers, and students from around the world presented papers,
discussions, and reminiscences of the specialty they had pursued for years. At
the center of the celebration were the modern founders of the field: Professors
Kenneth Arrow (Nobel laureate), Gerard Debreu (Nobel laureate), and Lionel
McKenzie.

This book presents the cause of that celebration, the field of mathematical general
equilibrium theory. The approach of the field is revolutionary: It fundamentally
changes your way of thinking. Once you see things this way, it is hard to conceive
of them otherwise.

This book reflects the experience of students at Yale University, University of
California at Davis, University of California at San Diego, and the Economics
Training Center of the People’s University of China (Renda) in Beijing. They
deserve my thanks for their patience, the stimulus they provided for this book,
and their contributions to it. A number of students and colleagues have reviewed
portions of the manuscript. I owe thanks to Manfred Nermuth for critical advice and
to Nelson Altamirano, Elena Bisagni, Peter Reinhard Hansen, Dong Heon Kim,
Bernhard Lamel, Martin Meurers, Elena Pesavento, and Heather Rose who helped
by catching typographical and technical errors. Cameron Odgers discovered more
substantial oversights. Remaining errors are my responsibility. Illustrations were
prepared by Nic Paget-Clarke.

It is a pleasure to acknowledge two very special debts. My wife Susan has lived
with this book as long as I have; she is an unfailing source of strength. My friend and

xxiii
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mentor Kenneth Arrow is the intellectual father of generations of students; it is an
honor to be counted among them. This volume is intended to further communicate
some of his contributions.

Ross M. Starr
La Jolla, California
June 1996



Table of notation

∀ “for all”
# denotes number of elements in a set
∃ “there exists”
� “such that” or “includes as an element”
< “less than”
= “equals”
> “greater than”
≤ “less than or equal to,” applies coordinatewise to vectors
� quasi-order symbol
�i preferred or indifferent by household i’s preferences
�i inferior or indifferent by household i’s preferences

i strictly preferred by household i’s preferences
≺i strictly inferior by household i’s preferences
∞ infinity, without bound
→ approaches as a limit
≥ “greater than or equal to,” applies coordinatewise to vectors
∂ partial derivative
·, · space holder for argument of a function
· raised dot, denotes product or scalar product
× denotes Cartesian product (when placed between the names of two sets)
�= is not equal to
≡ is identically (or by definition) equal to
|, || denotes length measure, written as |x| or ||x||
∩ set intersection
� capital Greek delta, denotes closed ball of radius C (space of possible excess

demands, Chapter 24)
∪ set union

xxv
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�⊂ is not a subset of
φ empty set, null set
� capital Greek phi, denotes price and quantity adjustment correspondence

from the set � × P into itself (Chapter 24)
�i set of preferred net trades for households of type i (Chapter 22)
� convex hull over all household types i of the sets �i , aggregate average

preferred net trade set (Chapter 22)
⊂,⊆ set inclusion, subset
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�∈ is not an element of
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πj (p) profits of firm j at prices p based on production technology Y j (Y j may
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π̃ j (p) profits of firm j at prices p based on (bounded) production technology

Yj orỸ
j

ρ price adjustment mapping from � to P (Chapter 24)
� capital Greek omega, sum over all households of the union of household

preferred net trade set and {0} (Chapter 22)
⇔ “if and only if,” denotes a necessary and sufficient condition∑

capital Greek sigma, denotes repeated summation
{} braces or curly brackets, denote a set or an algebraic quantity
[] bracket, denotes algebraic quantity
( ) parentheses, denotes algebraic quantity
+ plus sign, denotes scalar, vector, or set addition
− minus sign, denotes scalar, vector, or set subtraction
Ai(x) upper contour set, set of points in Xi preferred or indifferent to x

Bi(p) budget set of household i at prices p

B̃i(p) bounded budget set of household i at prices p

c large positive real number, chosen to exceed the Euclidean length of any
attainable production or consumption bundle, upper bound on length of
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j
,B̃

i
(p)

C very large positive real number, upper bound on length of elements in �,
strict upper bound on Euclidean length of excess demands in Z̃(p)

con(·) denotes convex hull
Di(p) demand function (or correspondence – Chapter 24) of household i eval-

uated at p

D̃i(p) bounded demand function (or correspondence – Chapter 24) of household
i at p
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f ( ) typical functional notation
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Gi(x) lower contour set, set of elements of Xi inferior or indifferent to x under

i’s preferences
h, i representative households, elements of H

H set of households (finite)
j representative firm, element of F

k representative commodity, k = 1, 2, . . . , N

M maximum over all commodities of the sum of the N largest household
initial endowments of each commodity (Chapter 22)

Mi(p) value of budget of household i at prices p in an economy with technology
sets Y j

M̃i(p) value of budget of household i at prices p in an economy with technology
sets Yj or Ỹ j

N number of commodities, finite positive integer
n running index on a sequence or commodities, n = 1, 2, 3, . . .

p price vector
P price space, unit simplex in RN

q running index on individuals in a replica economy (Chapter 22)
Q number of replications in a replica economy (Chapter 22)
R set of real numbers
RN real N-dimensional Euclidean space
RN

+ nonnegative quadrant (orthant) of RN

RN
++ strictly positive quadrant (orthant) of RN

RN
− nonpositive quadrant (orthant) of RN

S N-simplex
S, T representative sets
Sj (p) supply function (or correspondence – Chapter 24) of firm j based on

technology set Y j

S̃j (p) supply function (or correspondence – Chapter 24) of firm j based on
(bounded) technology set Yj or Ỹ j

ui() household i’s utility function
x representative commodity bundle
Xi household i’s possible consumption set
X aggregate possible consumption set, sum of sets Xi

Yj firm j ’s production technology in a model of bounded firm technology
sets (Chapters 11 to 14)

Y aggregate (sum of individual firm sets) technology set in a model of
bounded firm technology sets (Chapters 11 to 14)
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Y j firm j ’s technology set (may be unbounded; Chapters 15 to 18 and 24)
Y aggregate (possibly unbounded) technology set, sum of Y j s

Ỹ
j

firm j ’s artificially bounded technology set; intersection of Y j with a
closed ball of radius c (Chapters 15 to 18 and 24)

Ỹ aggregate artificially bounded technology set; sum ofỸ
j
s (Chapters 15 to

18 and 24)
Z(p) excess demand function (or correspondence – Chapter 24) of an

unbounded economy (Chapters 15 to 18 and 24)
Z̃(p) excess demand function (or correspondence – Chapter 24) of an economy

subject to exogenous or artificial bounds on demand and supply functions
and correspondences
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(P.II) 0 ∈ Yj for each j ∈ F .
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(C.III) Xi is convex.
(C.IV) (Non-Satiation) Let x ∈ Xi . Then there is y ∈ Xi so that y 
i x.
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(C.V) (Continuity) For every x◦ ∈ Xi , the sets

Ai(x◦) = {x | x ∈ Xi, x �i x◦}
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M̃i(p) > inf
x∈Xi∩{x||x|≤c}

p · x for all p ∈ P.
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Part A

General equilibrium theory: Getting acquainted

Chapter 1 begins to describe the concept of general equilibrium (simultaneous
price-guided clearing of several goods markets) and gives some of the colorful
history of its development over the nineteenth and twentieth centuries. Chapters 2
and 3 introduce two elegantly simple and insightful models of general equilibrium
that are simple enough to present in elementary classes and rich enough to provide
insights in advanced treatments:

� the Robinson Crusoe model, which emphasizes the interaction of the consump-
tion and production sides of the economy and

� the Edgeworth box, which investigates bargaining and equilibrium in the
exchange of commodities among consumers.

Chapters 4 and 5 include additional demonstrations:

� a characterization of the Pareto efficiency of general competitive equilibrium in
a 2 × 2 × 2 model (2 households, 2 outputs, 2 inputs) and

� a sample proof of existence of market general equilibrium, describing the struc-
ture of demand and supply functions needed to establish that prices can adjust
so that markets can clear.

1
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Concept and history of general equilibrium theory

1.1 Partial and general equilibrium: Development of the field

The typical student’s first exposure to an economic model consists of crossing
supply and demand curves on the blackboard. They lead to a surprisingly definite
result: Market prices are determined where the curves cross, at prices characterized
by supply equaling demand. This is not merely a mathematical equality but a
stationary position of a dynamic process – the price and quantity adjustments of the
market. This is partial equilibrium, the adjustment of prices so that supply equals
demand in a single market; the roles of other markets and prices are summarized
by the qualification “other things being equal.”

The conditions for finding a partial equilibrium are painfully simple. It is just
that the supply and demand curves should cross, on the axis if nowhere else. Let
pk be the market price of good k, Sk(pk) be the supply function, and Dk(pk) the
demand function. Equilibrium occurs at a price po

k where

Sk

(
po

k

) = Dk

(
po

k

)
, with po

k ≥ 0,

or

po
k = 0 if Sk

(
po

k

)
> Dk

(
po

k

)
.

In words, partial equilibrium occurs at a price so that supply equals demand, with
the exception of free goods that may be in excess supply at an equilibrium price
of zero. The notation here indicates that the market for good k is considered in
isolation – only the price of good k is shown to enter the supply and demand
functions for good k. This practice of isolating the market for each good separately
is known as partial equilibrium analysis. The phrase “other things being equal”
indicates that prices for all other goods are held fixed while considering the market
for good k. The partial equilibrium is a powerfully simple technique, allowing us

3
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a successful first pass at issues of equilibrium, efficiency, and comparative statics
(how prices may be expected to change with shifts in demand or supply).

What’s wrong with partial equilibrium analysis? An example may help; let’s try
the U.S. market for SUVs (sports utility vehicles) in 2005 to 2008. Early in 2005,
business prospects for the major U.S.-based automobile manufacturers (Chrysler,
Ford, and General Motors) looked promising. SUV sales (a high-profit line of
business) were robust. Then, midyear the firms reported deteriorating profits. The
credit-worthiness ratings on their publicly traded debt were cut to junk bond levels.
Their common stock share prices plunged. GM management was threatened with
a hostile takeover. GM and Ford cut prices to clear out inventory, making the
employee discount available to all customers. The news didn’t get any better in
2006 or 2007, and then in 2008 it got worse. A billionaire investor threatened a
takeover of Ford, then sold his stake in the company at an immense loss. GM and
Ford sought and received loan guarantees from the U.S. federal government. From
mid-2005 to mid-2008, an ownership share in GM fell in value by 75 percent; in
Ford, it fell by 80 percent.1

What went wrong? Did Chrysler, Ford, and GM make an unusual mistake in
2004? Was there a new failure of management? Did a catastrophe threaten their
manufacturing plants?

No. None of these adverse events took place. The SUV and automobile man-
ufacturing situation were tranquil during the first part of 2005. The action was
somewhere else: oil. The price of oil increased significantly in 2005–2008, hitting
new all-time highs (in nominal dollar terms). Oil is used to make gasoline; SUVs
use a lot of gasoline; demand for SUVs fell significantly. Automobile demand
shifted to fuel-efficient cars, predominantly from non–U.S.-based manufacturers.
The oil market trashed SUV sales and Chrysler, Ford, and GM profitability in
2005–2008.

Just looking at the market for SUVs wouldn’t give you a handle on the Chrysler,
Ford, and GM story for 2005–2008. You need to look at several markets at once:
oil, gasoline, and SUVs. Interactions across markets are essential to forecasting
and understanding economic activity. When we need to inquire into the interactions
between markets, we relax the assumption of “other things being equal” and look at
multiple markets simultaneously. Because there are distinctive interactions across
markets (e.g., among the price of oil, the price of gasoline, and the demand for
SUVs) it is important that the equilibrium concept include interactive simultaneous
determination of equilibrium prices across markets. The concept can then represent
a solution concept for the economy as a whole and not merely for a single market

1 Of course, by 2009 the news was even worse. Chrysler and GM were reorganized in bankruptcy, with the U.S.
federal government owning large portions of the companies (because no private investor would support their
unprofitable operations). But a large portion of those failures reflects a credit crisis – a topic beyond the scope
of this book.
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artificially isolated. That is the concept of general economic equilibrium. General
equilibrium for the economy consists of an array of prices for each good, where
simultaneously supply equals demand for each good, while taking account of the
interactions across markets. The prices of SUVs and of gasoline both adjust so
that demand and supply of SUVs and of gasoline are each equated. That is general
equilibrium; the equilibrium concept deals with all markets simultaneously and
their interactions, rather than a single market in isolation. The economy is in gen-
eral equilibrium when prices have fully adjusted so that supply equals demand in
all markets. Let the goods be k = 1, . . . , N . The demand and supply for good k

will depend on the price of good k and on many other prices, so we denote them
Dk(p1, p2, . . . , pN ) and Sk(p1, . . . , pN ). Prices po

1, p
o
2, . . . , p

o
N are said to consti-

tute general equilibrium prices if simultaneously each market is in equilibrium at
the stated prices. That is, for all k = 1, . . . , N ,

Dk

(
po

1, p
o
2, . . . , p

o
N

) = Sk

(
po

1, . . . , p
o
N

)
, po

k ≥ 0,

or

po
k = 0 for goods k such that Dk

(
po

1, . . . , p
o
N

)
< Sk

(
po

1, . . . , p
o
N

)
.

The distinction between general equilibrium and partial equilibrium is formally in
the arguments of the functions Dk and Sk. All prices enter the supply and demand
functions for good k, not merely the price of k. That’s what makes this a general
equilibrium. General equilibrium theory consists in studying these equilibria. In
the process we will develop fundamental abstract models of the economy and an
axiomatic method of analyzing them. Our most elementary model of general equi-
librium, developed in Chapter 2, considers the market equilibrium for a Robinson
Crusoe (one-person) economy. We investigate this example not because we actu-
ally expect a one-person economy to actively use a price system but because an
economy so simple lets us easily analyze its efficient allocations and see directly
the workings of the price system in all markets simultaneously. The balance of
this book is designed to present the next step – a full mathematical model of the
economy and its equilibrium price and allocation determination for all markets
simultaneously.

General equilibrium analysis has proved fundamental in modern economics in
describing the efficiency and stability of the market mechanism, in macroeconomic
analysis, and in providing the logical foundations of microeconomics. One of
the recurrent notions is to characterize the competitive market as decentralized.
The idea of decentralization is that the complex interactive economic system is
characterized by many independent decisionmakers who do not cooperate explicitly
with one another. Nevertheless, their actions turn out to be consistent with one
another because prices have adjusted for consistency and all the decision makers
respond (separately and independently) to prices that are common to all. The
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remarkable result is that this lightly coordinated (decentralized) system nevertheless
produces consistent and efficient allocation. This notion is investigated in the simple
models of Chapters 2, 3, and 4 and more fully in Chapter 19. General equilibrium
theory provides the basis for major innovations in modern economic theory and
for the full mathematically rigorous confirmation of long-held traditional views in
economics.

Why are economists interested in general equilibrium? The reason it is called
equilibrium is that we expect there are forces in the economy, supply and demand,
driving the system to this array of allocations and prices. That’s where we expect the
economy to end up or to move toward. Equilibrium is the descriptive and predictive
principle for the market economist. Further, the desirable efficiency properties of
a market economy depend on the economy being in general competitive equilib-
rium – or moving in that direction. The traditional major questions on equilibrium
include:

� existence – the study of conditions under which there is a solution to the equations
characterizing market clearing;

� uniqueness – whether there is only one family of prices that clears markets or
there are multiple (or infinite) solutions to the market clearing problem;

� stability – whether a price formation mechanism that raises prices of goods
in excess demand and reduces those in excess supply will converge to market
clearing prices;

� efficiency – welfare economics, the effectiveness of the resource utilization
implied at the equilibrium allocation; and

� bargaining – the relation of strategic bargaining solutions to passive price-taking
equilibrium.

The treatment in this book, like that of the field, will concentrate on existence,
efficiency, and bargaining in characterizing equilibrium.

We’ll develop two separate ideas: (1) Efficient allocation of resources consists of
technically efficient use of inputs to produce outputs and Pareto efficient allocation
of consumption across households, and (2) competitive market equilibrium is a
market clearing allocation guided by prices and firm and household optimization
subject to market prices. Then we’ll demonstrate a surprising result, the First
Fundamental Theorem of Welfare Economics: The market equilibrium allocation
is Pareto efficient.

Why is this surprising? The notion of market equilibrium is a very individualistic
concept – firms and households each separately do the best they can without
regard to others. Economists call this kind of decision making “decentralized.”
Pareto efficiency is a global concept. It takes account of all resources, tastes,
and technologies available. When we calculate a Pareto-efficient allocation, the
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calculation takes all of these into account in an optimization. Economists call
this viewpoint “centralized.” The First Fundamental Theorem says that selfish,
individually focused behavior in a market setting results in globally efficient use of
resources. That’s a surprise. The structure that allows this to happen is the market
price system. Prices (of outputs and inputs) are visible to all in the market. They
coordinate the individual activity. They apparently provide sufficient coordination
that individually optimizing plans become globally efficient.

1.2 The role of mathematics

For several generations, economic theory and applications have become increas-
ingly mathematical. The area of general equilibrium theory, necessarily abstract,
has led in that movement, using the relatively abstract mathematical techniques of
real analysis. The mathematics of N-dimensional space has turned out to be very
suitable for modeling the interactions of N different markets for N goods produced
by #F firms and consumed by #H households.

General equilibrium theory has been a particular leader in emphasizing the
axiomatic method, stating assumptions clearly and definitely in mathematical form
and deriving conclusions from them, making it explicitly an “if–then” exercise.
Economics is an area where reason and intuition, assumptions and conclusions,
tend to become confused and mix unpredictably. This is particularly true when
considering the whole economy at once, rather than a single market. A disciplinary
approach that emphasizes the logical development of ideas, clearly distinguishing
between assumptions and conclusions, is then most appropriate. Much of what
we know of the economy is based on simple, sometimes naive, intuition about
individual economic units – firms and households. There is often broad agreement
on the first principles governing their behavior, even when there is disagreement
regarding conclusions and policy. This leads to a bottom-up approach stressing the
construction of a model of the economy as a whole from agreed principles on firm
and household behavior.

Professor Debreu (1986) tells us

A consequence of the axiomatization of economic theory has been a greater clarity of
expression, one of the most significant gains that it has achieved. To that effect, axiom-
atization does more than making assumptions and conclusions explicit and exposing the
deductions linking them. The very definition of an economic concept is usually marred by
a substantial margin of ambiguity. An axiomatized theory substitutes for that ambiguous
concept a mathematical object that is subjected to definite rules of reasoning. Thus an
axiomatic theorist succeeds in communicating the meaning he intends to give to a primitive
concept because of the completely specified formal context in which he operates. The more
developed this context is, the richer it is in theorems and in other primitive concepts, the
smaller will be the margin of ambiguity in the intended interpretation.
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The axiomatic method allows the theorist to develop general results: Wherever
the assumptions are fulfilled, the conclusions will follow. That’s the power of
mathematical theory. Instead of working with examples and hoping that they gen-
eralize, the axiomatic approach states assumptions in general form and is rewarded
with results that are generally applicable. These are “if . . . then” statements. If the
assumptions are fulfilled, then the results follow.

Part of the underlying strategy of the theorist is a principle of parsimony; axioms
should assume as little as possible (consistent with leading to useful conclusions),
so that the applications can be as broad as possible. This approach has the colorful
name “Ockham’s Razor” after the medieval philosopher William of Ockham (1287–
1347). In writing out a theorem, the assumptions are stated at the start, and a
successful exposition will use – and need – all of the assumptions. Any assumption
excessively strong or unneeded to achieve the conclusion represents an unnecessary
restriction on the breadth of the result.

1.3 History of general equilibrium theory

Classical economists had a strong, if imprecise, notion of equilibrium. It repre-
sented the conditions that the economy centered on over time and returned to after
a disturbance. The best-known statement of how equilibrium is achieved is more
poetry than logic: Adam Smith’s notion of an “invisible hand” guiding the market
participants and the allocation mechanism. Nineteenth-century economists, includ-
ing Ricardo, Mill, Marx, and Jevons, all recognized a notion of stable equilibrium
tendencies in the economy and the importance of the interaction among markets
(general equilibrium) without formalizing these notions mathematically.

The supply and demand diagram generally presented for partial equilibrium
analysis is known as Marshallian, after the treatment of Alfred Marshall (1890),
who popularized it in the English-speaking literature. Nevertheless, priority in the
concept, its articulation, and mathematical presentation goes to Augustin Cournot
(1838). That the modern attribution fails to give full credit to Cournot probably
reflects the presentation of his ideas in two forms inaccessible to many readers:
mathematics and French.

Cournot and other nineteenth-century writers clearly understood that partial
equilibrium analysis presented a special case and that multiple market interac-
tions were the appropriate generalization. They did not, however, formulate a full
general equilibrium model. That exercise was first successfully undertaken by
Leon Walras, a French economist at the School of Lausanne, Switzerland. His ele-
gant comprehensive treatment appeared as Elements of Pure Economics (Elements
d’Economie Politique Pure) in 1874. Walras set the problem and principal research
agenda for all of twentieth-century mathematical general equilibrium theory. The



1.3 History of general equilibrium theory 9

Walrasian model represented the first full recognition of the general equilib-
rium concept in the literature. It clearly stated that, for N commodities, there
are N equations, Sk(p1, p2, . . . , pN ) = Dk(p1, p2, . . . , pN ), in the N unknowns
pn, n = 1, 2, · · · , N . Walras’s approach to proving existence consisted in counting
equations and unknowns to assure us that they were equal in number. If the equa-
tions were linear, independent, and otherwise unrestricted, this would constitute a
sufficient condition for existence of a solution. But the equations will typically be
nonlinear, and there are additional constraints on the system (in particular, non-
negativity requirements on quantities), so that equation counting will not typically
ensure the existence of a solution.

F. Y. Edgeworth2 presented the field with new concepts in bargaining and new
tools to analyze them in Mathematical Psychics (1881). The modern elaboration
of this inquiry takes place in Debreu and Scarf (1963) and is presented here in
Chapters 21 and 22.

The modern period in general equilibrium theory starts amid the intellectual
ferment and political instability of Vienna in the 1930s. The biweekly mathematics
seminar chaired by the mathematician Karl Menger (son of the economist Carl
Menger) included both the unemployed Hungarian mathematician Abraham Wald3

and Karl Schlesinger, a wealthy Viennese banker and gifted amateur economist.
To support Wald (who, in that period, was unemployable at the University of
Vienna because he was Jewish), Menger arranged a private position for him with
Schlesinger. Schlesinger introduced Wald to the problem of existence of general
economic equilibrium. Wald presented mathematical proofs of existence of general
equilibrium in a variety of models, each representing a special case of a general
equilibrium system [see Wald (1934–35, 1936, 1951)]. With the deterioration
of the political situation on the Continent, most of the seminar members subse-
quently emigrated to England and the United States, tragically with the exception
of Schlesinger, who apparently committed suicide during the Nazi Anschluss.

In the early 1950s, three American authors, Kenneth Arrow, Gerard Debreu,4

and Lionel McKenzie, entered the field. They worked at first separately and inde-
pendently; then Arrow and Debreu worked in collaboration. The papers of Arrow
and Debreu (1954) and McKenzie (1954) were presented to the 1952 meeting of

2 Edgeworth was by education a barrister (a lawyer specializing in advocacy in court), though he did not practice.
His pioneering work of pure economic theory, Mathematical Psychics, was published before he held any
academic position. He was appointed to a professorship at Kings College, London, in 1888, and in 1891 he
assumed the prestigious Drummond Chair at Oxford. In addition to his enduring work in economics, Edgeworth
is known for pioneering contributions to mathematical statistics.

3 Wald is often described inaccurately as Romanian, reflecting changes in the borders of the adjacent countries.
4 Debreu was then a French national on a fellowship at the Cowles Commission for Research in Economics at

the University of Chicago. The allocation decision for one fellowship between two leading French economic
theorists (Debreu and Marcel Boiteux) was based on the flip of a coin (administered by Maurice Allais).
Dr. Marcel Boiteux was subsequently a leader in French economics and chief economist for Electricité de
France.
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the Econometric Society. It was the recognition by McKenzie and by Arrow and
Debreu of the importance of using a fixed-point theorem that led to major progress
in this area. The use of a fixed-point theorem for demonstrating the existence of an
equilibrium [of a game] was pioneered by John Nash in 1950 (see Debreu, 1983).
Additional contributions to the field in this period include Arrow (1951), restating
the essential ideas of welfare economics in the language of general equilibrium
theory, and Arrow (1953) extending the concept of commodity to include alloca-
tion under uncertainty (treated here in Chapter 20). The body of work was then
summarized by Debreu (1959).

It is a commonplace in intermediate microeconomics that competitive price-
taking behavior is most appropriate to a setting where there is a large number
of buyers and sellers. Proving this result mathematically was the next major step
in the progress of the general equilibrium theory. This is the elaboration of the
Edgeworth bargaining model, culminating in the contribution of Debreu and Scarf
(1963). They demonstrated Edgeworth’s notion of equivalence, in a large economy,
of price-taking equilibrium and the outcome of multilateral group and individual
bargaining. The role of large numbers in a competitive economy is confirmed
mathematically (Chapters 21 and 22 of this book). Arrow and Debreu received
Nobel prizes in economics for their research in general equilibrium theory in
1972 and 1983, respectively. The class of general equilibrium economic models
presented in this book is often called the Arrow-Debreu model.

The theory of general economic equilibrium remains an active, productive,
demanding specialty of economic theory today. Each of the issues discussed in
this chapter has gone through rich elaboration over the past several decades. Fur-
ther research proceeds on allocation under uncertainty, general equilibrium models
in industrial organization, monetary economics, and macroeconomics. Neverthe-
less, presenting the model as it was achieved in the mid-1960s allows a clear
coherent and intuitive presentation with mathematics at the level of analysis in RN .
This is essentially the treatment presented in most advanced textbooks in economic
theory. The presentation of general equilibrium theory in this book is based on the
model of Arrow and Debreu (1954). The treatment of allocative efficiency (welfare
economics) is based on Arrow (1951). The notion of time reflects Hicks (1939).
The treatment of uncertainty is based on Debreu (1959) and Arrow (1953). The
treatment of bargaining and the core of a market economy is based on Debreu and
Scarf (1963) and on Anderson (1978).

1.4 Bibliographic note

An excellent history of economic thought, including the formulation of the Edge-
worth box and the general equilibrium theory of Walras, is available in Blaug
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(1968). Walras’s original – and still highly readable – exposition of the general
equilibrium system is in Walras (1874). Weintraub (1983) describes the modern
history of general equilibrium theory. Arrow (1989) provides a detailed discussion
of the Viennese period. Arrow (1968) and Arrow and Hahn (1971) provide an ana-
lytic treatment of the history of thought. Duffie and Sonnenschein (1989) discusses
in detail Kenneth Arrow’s central role in development of the theory.
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An elementary general equilibrium model:
The Robinson Crusoe economy

The simplest general economic equilibrium system we can consider consists of a
single household, usually named Robinson Crusoe. This one-person economy has
many of the usual problems of any economy: production and consumption choices.
The simple structure of the economy allows us fully to model a single centralized
family of efficient allocation decisions. We can then, somewhat artificially, decom-
pose the one-person economy into separate production and consumption sectors
interacting through a market mechanism. This is a common classroom exercise,
designed to illustrate the concepts of efficient allocation, general equilibrium, and
decentralization through a market mechanism. In the one-person economy it is
particularly easy to present the concept of efficient allocation. Because there is
only one agent, there is a unique maximand (the utility function of the lone house-
hold/person/agent). The efficiency concept is simply to maximize Robinson’s utility
subject to the available resources and technology. Problems of distribution among
individuals (regarding both considerations of efficiency and fairness) do not arise
because there is only one household.

The exercise we perform in the Robinson Crusoe model is to solve two appar-
ently quite separate problems and then show that they are nearly identical. First,
we will solve for an efficient allocation in the Robinson Crusoe economy. This is
a centralized solution concept because it treats the consumption and production
decision in a single unified fashion. That is, we find a production and consump-
tion plan that maximizes Robinson’s utility subject to the constraints of available
resources and technology. This maximization will result in a distinctive family of
equations characterizing the efficient allocation.

Then, we restate the problem of characterizing a competitive economy on Robin-
son’s island with a single firm, a single owner (Robinson) of the firm, a single
consumer (Robinson) buying from the firm, and a single worker (Robinson again)
employed by the firm. This is a decentralized solution concept because the firm and
household are supposed to make their decisions independently coordinated only

12
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by prices viewed in common. We assume that the firm, worker, and household all
act as price takers (despite the small number of agents). That is, they treat prices
parametrically, as variables that they have to deal with but cannot affect. The notion
of price taking is a representation of the competitive model; buyers and sellers are
thought to lack the bargaining power to individually affect prices, and they do not
form cartels to do so. This notion of individual strategic powerlessness is appropri-
ate in a large economy but is not a correct representation of Robinson’s personal
situation. Nevertheless, using the price-taking assumption here lets us investigate
the character of the price-taking equilibrium in a tractable simple model.

Robinson Crusoe is endowed with 168 labor-hours per week. On his island there
is only one production activity, harvesting oysters from an oyster bed, and only one
input to this production activity, Robinson’s labor. This simple specification allows
us to keep the exposition in two dimensions. Robinson faces a production function
for the output of oysters

q = F (L), (2.1)

where F is concave, L is the input of labor, and q is the output of oysters. On
the consumption side, denote Robinson’s consumption of oysters by c and his
consumption of leisure by R. Available leisure is determined by

R = 168 − L, (2.2)

and Robinson’s utility function is u(c, R). To assure that a well-defined maximum is
located at an interior tangency, we assume that u and F are concave and sufficiently
steep near the boundary. That is, we assume

F ′(·) > 0, F ′′(·) < 0,
∂u

∂R
> 0,

∂u

∂c
> 0,

∂2u

∂R2
< 0,

∂2u

∂c2
< 0,

∂2u

∂R∂c
> 0,

and that F ′(0) = +∞.
At first, we’ll treat Robinson, quite sensibly, as a single individual with a single

problem, getting the most from his situation. Our job then is to find a choice of
L and q consistent with the initial resource endowment of 168 hours per week
and available technology, F (·), that will maximize u(c, R), where c = F (L) = q,
subject to the resource constraint R = 168 − L. Because this is a single problem
summarizing all of the resource allocation decisions of this small economy, we will
call this the centralized allocation mechanism. The next step (to be taken later) will
be to break the problem down into two distinct parts, the consumption decision
(which we characterize as made by a household) and the production decision (which
we characterize as made by a firm). That constitutes the decentralized problem.
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Fig. 2.1. The Robinson Crusoe economy: Efficient allocation.

2.1 Centralized allocation

A diagrammatic treatment of the problem is presented in Figure 2.1. The horizontal
scale (abscissa) represents the labor/leisure opportunities and the vertical scale
(ordinate) represents the production level of oysters. Leisure runs left to right;
labor runs right to left. The curve HSMD is the production frontier representing
the possible technically efficient mixes available of leisure and oyster production.
We derive it simply by evaluating the production function F (·) at varying levels
of L. The curves I, II, and III are some of Robinson’s indifference curves, level
surfaces of u(·, ·) in R-c space. The efficient allocation is at the point M where
the production frontier reaches the highest level it can achieve on Robinson’s
indifference map. This is the point where utility is maximized subject to resource
endowment and production technology. Note that this is a point of tangency of the
indifference curve and the production frontier, indicating that they have the same
slope at the efficient point. The indifference curve and production frontier having
the same slope at the optimum means that the trade-off in production between
leisure and oysters is the same as the trade-off in consumption. The optimum is
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characterized as a position where the number of oysters that the technology requires
to be sacrificed to achieve an additional hour of leisure is the same as the number
of oysters willingly sacrificed in Robinson’s preferences for an additional hour of
leisure. Having treated the problem diagrammatically, now let’s solve the same
problem analytically.

Robinson seeks to maximize u subject to (2.1) and (2.2). Assuming an interior
solution, we can use calculus to characterize this maximum. We can restate the
problem as a maximization in one variable, the allocation of labor L between oyster
production and leisure:

u(c, R) = u(F (L), 168 − L). (2.3)

We now seek to choose L to maximize u:

max
L

u(F (L), 168 − L). (2.4)

The first-order condition for an extremum then is

d

dL
u(F (L), 168 − L) = 0. (2.5)

That is,

ucF
′ − uR = 0, (2.6)

where uc and uR denote partial derivatives. Hence, at an optimum – a utility
maximum subject to resource and technology constraint – we have

uR

uc

= − dq

dR
= F ′. (2.7)

Restating (2.7),

MRSR,c = − ∂c

∂R
|u=constant = uR

uc

= − dq

dR
= F ′ = MRTR,c.

Equations (2.5), (2.6), and (2.7) represent conditions evaluated at the optimizing
allocation, fulfilling (2.4). This family of properties is familiar from the geometric
treatment; it says that the slopes of the indifference curve and of the production
function are the same at the maximizing allocation. To describe the optimality of
this allocation, it is called Pareto efficient (after the economist Vilfredo Pareto).
This term means two things: that the allocation makes technically efficient use of
productive resources (labor) to produce output (that the input–output combination
is on the production frontier) and that the mix of outputs (oysters and leisure) is
the best possible among the achievable allocations in terms of achieving house-
hold utility. Equation (2.7), which shows the equality of slopes of the production
function and the indifference curve, is the principal characterization of an efficient
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allocation.1 The left-hand side of this expression, uR/uc, is the trade-off between
consumption of oysters and leisure at the efficient allocation – the marginal rate
of substitution of leisure for oysters, MRSR,c. The right-hand side is the marginal
product of labor in oyster harvesting. Because labor and leisure are converted into
one another at the constant rate of one for one, the marginal product of labor in
oyster harvesting is also the trade-off between leisure and oysters on the production
side – the marginal rate of transformation (MRTR,c = F ′) (also known as the rate
of product transformation, RPTR,c). Therefore, at the utility maximum subject to
technology and resource constraints,

MRSR,c = MRTR,q.

The equality of these marginal rates (and the implicit requirement that the allo-
cation be on the production frontier) is the principal characterization of a Pareto
efficient allocation of resources in the Robinson Crusoe model.

2.2 Decentralized allocation

Now, we would like to take this simple economy and see if we can achieve its
allocation decision using a market mechanism rather than the optimization already
described. Of course, we don’t really expect a shipwrecked oyster harvester to set
up a market, but this is so simple an economy that it lets us see directly the working
of the market mechanism.

Oyster harvesting, the production activity, then takes place in a firm that hires
labor (Robinson’s) and sells oysters. Its profits go to its owner (Robinson). As
a household, Robinson gets income from two sources, the profits he receives as
owner of the firm and his wage income from the labor he sells to the firm. There are
two markets to deal with, the labor market and the oyster market. Fix the price of
oysters at unity (one); this is known as letting oysters act as numeraire. The wage
rate w is expressed in oysters per labor-hour. Profits of the oyster harvesting firm
(expressed in oysters) are then

	 = F (L) − wL = q − wL, (2.8)

where q is oyster supply and L is labor demanded.
Robinson is the sole owner of the oyster harvester, so he includes profits of the

oyster firm as part of his income. A simplifying convention is to treat Robinson’s
labor income as the value of all of his labor. This amounts to the (awkward) usage
that he sells all of his labor on the market and then buys most of it back as leisure.

1 The conditions in (2.7) are known as first-order necessary conditions for an interior maximum. Combined with
the concavity properties assumed for F (·) and u(·) (second-order conditions), they ensure a utility maximum
subject to constraint.
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Fig. 2.2. The Robinson Crusoe economy: Equilibrium and disequilibrium.

This convention is harmless and simplifies the exposition.2 Robinson’s income Y

can be treated as the value of his labor endowment plus his profits 	:

Y = w · 168 + 	. (2.9)

As a consumer, Robinson spends Y on the purchase of oysters c and on the
(re)purchase of leisure R, giving the budget constraint on household expenditure:

Y = wR + c. (2.10)

As a household, Robinson is a price taker; he regards w parametrically (as a fixed
value that he cannot affect by bargaining). As the passive owner of the oyster
harvesting firm, he is also a profit taker; he treats 	 parametrically.

Figure 2.2 illustrates the price and allocation problem in the Robinson Crusoe
market economy. This is the same as Figure 2.1, with the addition of a budget and
profit line. The horizontal axis represents the allocation of endowment between

2 The more familiar treatment would be to take the household income to be profits plus the wages of labor. We
can demonstrate that this treatment is equivalent. The equation c = w · (168 − R) + 	 implies c + w · R =
w · 168 + 	 = Y .
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leisure R, left to right, and labor L, right to left. The vertical axis represents oyster
output q and oyster consumption c. The curve HSMD represents q = F (L): oyster
output as a function of labor expended. The firm recognizes that its profits can be
expressed as

	 = q − wL, (2.11)

a line in L-q space. Rearranging terms for a fixed value of profits 	′, the line

q = 	′ + wL (2.12)

is known as an isoprofit line; each point (L, q) on the line represents a mix of q

and L consistent with the level of profit, 	′. Lines of this form can be visualized as
a parallel family in L-q space. As a profit maximizer, the firm tries to achieve the
highest profit possible consistent with available technology; thus, we can think of
it choosing to produce at the point (L, q) that is on the highest isoprofit line (that
is, has the highest profit level) consistent with production technology (that is, on
the production function). At wage rate w, for profit maximization, the firm chooses
(L, q) on the highest isoprofit line:

	o = q − wL = F (L) − wL, (2.13)

consistent with the production frontier defined by q = F (L). Using calculus to
maximize 	 subject to given w, we find at the maximum 	o, qo, Lo that

d	

dL
= F ′ − w = 0, and so F ′(Lo) = w, (2.14)

which is the familiar condition that the wage rate equal the marginal value product
of labor.

Because we’re focusing consideration on R-c (equivalently R-q) space, we can
restate an isoprofit line as

	′ = q − wL = q − w(168 − R) = q + wR − w168 = constant.

This expression describes a family of parallel lines downward sloping (why down-
ward?) in R-q space. The profit maximizing position is illustrated in Figure 2.2
at the points M and S. We consider the firm here as a price taker in the output
(oyster) and input (labor) markets. Given those prices (unity for oysters, w for labor)
the firm chooses labor input at a level Lo that maximizes profits given the firm’s
technology characterized by the production function F (L). Based on the infor-
mation the firm receives from the market (wage rate w, output price 1), it replies
to the market with a demand for labor in the amount Lo and an offer of oysters in
the quantity qo. Further, it sends a dividend notice to shareholders of profits in the
amount 	o.
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The consumer then faces the budget constraint

wR + c = Y = 	o + 168w. (2.15)

The household treats the right-hand side of this equation parametrically – as fixed
and given. The left-hand side includes the decision variables R and c that the
household can choose to maximize utility. The household faces the problem:

Choose c, R to maximize u(c, R) subject to wR + c = Y. (2.16)

We have then that R = (Y − c)/w. We can restate the household’s problem as
choosing c (and implicitly choosing R) to

maximize u

(
c,

Y − c

w

)
(2.17)

without additional constraint (assuming an interior solution). We have then

du

dc
= ∂u

∂c
− 1

w

∂u

∂R
= 0 (2.18)

as the characterization of the optimizing mix of c and R. But this means

∂u

∂R

∂u

∂c

= w. (2.19)

We can restate (2.19) more completely as

− ∂c

∂R
|u=constant = MRSR,c = uR

uc
=

∂u

∂R

∂u

∂c

= w.

The necessary condition for optimizing utility subject to budget constraint is that the
marginal rate of substitution of leisure for oysters (the left-hand side expressions)
should equal the wage rate (right-hand side). The household acts in this market as a
price taker and a profit taker. Given the wage rate w, oyster price 1, and the profits
received 	o, the household knows its income and chooses leisure R and oyster
purchases c to maximize u(c, R) subject to budget constraint. Based on w, 1, and
	o, communicated by the market, the household responds with c and R.

For each wage rate w, we can show that the household budget constraint and
the firm’s chosen isoprofit line coincide. Equation (2.8) at maximum profit 	o

describes the line of slope −w through (R, q) = (0, 	o + 168 · w). Equation (2.9)
at 	 = 	o combined with (2.10) gives

wR + c = 168w + 	o (2.20)
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or

c = w(168 − R) + 	o, (2.21)

which is the equation of the line with slope −w through (R, q) = (168, 	o).
Because R = 168 − L, this is the same line as derived by (2.8). This means that
Robinson the consumer can afford to buy the oysters produced by the harvesting
firm at any prevailing wage. Equations (2.20) and (2.21) are accounting identities
but are very useful. They say that the value of firm output at market prices is paid
to factors of production (Robinson’s labor) and to the firm’s owners (Robinson) as
profit. Hence, Robinson’s income is precisely sufficient to buy the firm’s output
(plus repurchase his endowment). This is not an equilibrium condition; it holds at
any allocation. It follows from the requirement that the household budget include
the firm profits. This means that any change in wage rate shows up in two offsetting
places in the household budget constraint so that – at any wage rate – the budget is
adequate to purchase the production of the firm.

We can now establish a classic result, Walras’s Law.3 It says that at any prevailing
prices (in or out of equilibrium) the value – at those prices – of the outstanding
excess demands and supplies sums to zero. From (2.8), (2.9), and (2.10), we have

Y = w · 168 + 	 = 168w + q − wL = wR + c. (2.22)

Subtracting the center expression from the right-hand side we have

0 = w[R + L − 168] + (c − q), (2.23)

where w is the wage rate in oysters per hour, L is labor demanded, R is leisure
demanded, q = F (L) is oyster supply, and c is oyster demand. This is Walras’s
Law. Note the decentralization of the decision process here: The firm chooses L and
q; the household chooses c and R. Only in equilibrium will the separate decisions
be consistent with one another. Consistency requires q = c and R = 168 − L.
Nevertheless, the separate decisions are linked through the budget constraint (2.22),
allowing us to infer the Walras’s Law (2.23). There are a few points to note about
(2.23). It is not an equilibrium condition because it is true both in and out of
equilibrium. It does summarize two observations, (1) that household income is
sufficient to purchase total economic output and (2) that in an economy of scarcity,
all income will be spent. One implication of Walras’s Law is that in an economy
with N goods (N = 2 in this example), whenever there is market equilibrium for
N − 1 goods, the N th market clears as well.

The market is in equilibrium if supply equals demand in the two markets, oysters
and labor/leisure. The supply of oysters and the demand for labor is determined by

3 Named for the French economist (at the school of Lausanne, Switzerland), Leon Walras.
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the firm choosing a level of output q and input L to maximize 	 subject to given
w. Demand for oysters and the demand for leisure is determined by the household
choosing c and R to maximize u(·, ·) subject to the budget constraint (2.14). It is
the job of the wage rate w to adjust so that supply and demand are equated in the
two markets.

In practice, of course, the quantity of oysters consumed in the economy can-
not exceed the quantity produced by the firm, and the firm’s labor input cannot
exceed the labor provided by the household. The firm and household allocations
are necessarily interdependent, but their decisions are taken separately. The equi-
librium choice of wage rate w allows the market to decentralize (treat separately
and independently) the firm and household decisions. It is the job of prices, the
wage rate w, to provide incentives so that the separate independent decisions are
nevertheless consistent. In a large economy, with many firms, many households,
and many goods, decentralization of the allocation process strengthens the alloca-
tion mechanism by reducing the immense complexity of an interdependent system
to many smaller simpler optimizations.

We have already argued that the budget and chosen isoprofit line coincide (equa-
tions 2.20, 2.21). An equilibrium in the market will be characterized by a wage
rate w so that c = q and L = 168 − R. When that happens, the separate household
and firm decisions will be consistent with one another, the markets will clear, and
equilibrium will be determined. In Figure 2.2, point M represents the equilibrium
allocation. The wage rate wo, chosen so that−wo is the slope of the budget/isoprofit
line KMP, is the equilibrium wage rate. At M , the separate supply and demand deci-
sions coincide. Though taken independently, they are consistent with one another.
They have been successfully coordinated by the adjustment of the prevailing price,
the wage rate w, equating supply and demand. Further, we can see that the alloca-
tion M is Pareto efficient because it occurs on the highest indifference curve that
intersects the production function, that is, the highest technically feasible indiffer-
ence curve. We have the following equilibrium quantities, which can be found on
the diagram:

KMP = equilibrium budget/isoprofit line,
OF = equilibrium oyster output/demand,
OB = equilibrium leisure demand,
DB = equilibrium labor demand,
UP = equilibrium wage bill, and
PD = equilibrium profit.

The idea of equilibrium becomes clearer when we consider the corresponding
disequilibrium. Suppose we have not found an equilibrium wage rate, and we would
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like to try out the wage w′ as a candidate. In Figure 2.2, let JSNQ represent the
budget/isoprofit line at wage rate w′. Then we have

OG = planned supply of oysters,
OE = planned demand for oysters,
EG = excess supply of oysters,
DA = planned demand for labor,
DC = planned supply of labor,
AC = excess demand for labor,
DQ = planned profit of firm,
VQ = planned wage bill of firm, and
TQ = planned labor income of household.

Because supply and demand in the two markets differ, this is a disequilibrium.
Because there is an excess demand for labor, we expect the wage rate to increase
to allow the labor market (and the oyster market) to clear.

We can now prove analytically the existence of a market clearing wage rate in the
Robinson Crusoe model. To do so we will use a standard theorem in real analysis,
the Intermediate Value Theorem:

Intermediate Value Theorem Let [a, b] be a closed interval in R and f a con-
tinuous real-valued function on [a, b] so that f (a) < f (b). Then, for any real c so
that f (a) < c < f (b), there is x ∈ (a, b) so that f (x) = c.

To apply the Intermediate Value Theorem, we will assume some properties about
the supply and demand behavior coming from the maximization of u(·, ·) subject
to (2.15) and the maximization of 	 subject to F (·) and w. We need continuity and
some properties of excess demand and supply at extreme values of w.

We make the following assumptions:

(1) For w = 0, we have R = 168; that is, no labor is voluntarily supplied when the
wage rate is nil. Supposing F ′ > 0, then at w = 0, labor will be demanded and
so L > 0.

(2) For a sufficiently large w, call it w, we have L → 0, but R � 168. That is,
for a high enough wage rate, very little labor will be demanded but substantial
amounts of labor will be willingly supplied.

(3) Labor and leisure demand and oyster supply and demand are continuous func-
tions of w and Y .

Definition Market equilibrium. Market equilibrium consists of a wage rate wo

such that at wo, q = c and L = 168 − R, where q and L are determined by
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firm profit-maximizing decisions and c and R are determined by household utility
maximization.

We can now use the Intermediate Value Theorem to show that there exists an
equilibrium wage rate wo. Denote leisure demand at w by R(w) and labor demand
at w, by L(w). Then, under the assumptions above we have:

(a) R(w) and L(w) are continuous.
(b) For w = 0, R(0) = 168 and L(0) > 0.
(c) For w large (w = w), R(w) < 168 and L(w) → 0.

Denote the excess demand for labor/leisure as ZR(w) = R(w) + L(w) − 168. We
have ZR(0) > 0 and ZR(w) < 0, where ZR(w) is continuous. By the Intermediate
Value Theorem, we can find wo; w > wo > 0 so that ZR(wo) = 0. Walras’s Law
then implies that at wo, q = c. This establishes wo as the general equilibrium wage
rate.

This is a major result. We have established the existence of a general competitive
equilibrium in the Robinson Crusoe model. The principal assumptions used are
continuity of demand and supply behavior and the limiting behavior of demand
and supply at extreme values of w. Walras’s Law is essential, embodying the
assumption that the budget constraint (2.22) is fulfilled as an equality.

2.3 Pareto efficiency of the competitive equilibrium allocation: First
Fundamental Theorem of Welfare Economics

Now that we have established the existence of the competitive equilibrium in this
model, we would like to show that the equilibrium is Pareto efficient.

To demonstrate Pareto efficiency, first we characterize trade-offs between goods
in consumption and production in equilibrium. Profit maximization for equilib-
rium wage rate wo requires wo = F ′(Lo). Utility maximization subject to budget
constraint requires (at market-clearing wo corresponding to leisure demand Ro)

uR(co, Ro)

uc(co, Ro)
= wo, (2.24)

where Ro and co are utility optimizing leisure and consumption levels subject to
budget constraint. However, at market clearing, Ro = 168 − Lo and co = F (Lo).
By (2.13), F ′(Lo) = wo. Hence,

F ′ = uR

uc

, (2.25)

which is the first-order condition for Pareto efficiency, equation (2.7), already estab-
lished. Therefore, the equilibrium allocation in the Robinson Crusoe economy is
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Pareto efficient. This is a distinctive and powerful result, known as the First Fun-
damental Theorem of Welfare Economics: A competitive equilibrium allocation is
Pareto efficient. It says that we can find an efficient allocation through a decen-
tralized market process using only the price mechanism as a coordinating device.
Prices, here the wage rate w, adjust to equate the demand and supply sides of
the market. Robinson’s single problem – getting the highest utility from available
production opportunities – can be decomposed (decentralized) as two related prob-
lems, profit maximization for the firm and utility maximization subject to budget
constraint for the household.

2.4 Bibliographic note

For an excellent treatment of the Robinson Crusoe economy, see Cornwall (1979).

Exercises

Exercises 2.1–2.3 deal with the Robinson Crusoe economy described as follows:
Robinson Crusoe is endowed with 168 labor-hours per week. There is a production
function for the output of oysters

q = F (L), (2.26)

where L is labor applied to oyster harvesting. Robinson’s leisure, R, is determined
by

R = 168 − L. (2.27)

His utility function is u(c, R), where c is Robinson’s consumption of oysters.
Let production be organized in a firm, and let consumption and labor supply

decisions occur in the household. Let oysters act as numeraire (monetary unit),
with their price fixed at unity. The wage rate w is expressed in oysters per labor-
hour. Planned profits of the oyster harvesting firm then are

	 = F (Ld) − wLd = qs − wLd, (2.28)

where qs is oyster supply and Ld is labor demanded. Robinson is the sole owner
of the oyster harvester. His income Y may most easily be thought of as the value
of his labor endowment plus his profits:

Y = w · 168 + 	. (2.29)
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He spends his income Y on the (re)purchase of leisure R and on the purchase of
oysters c, giving the budget constraint

Y = wR + c. (2.30)

As a household, Robinson is a price taker; he regards w parametrically. He is also
a profit taker; he treats 	 parametrically. Given his income from (2.29) and his
budget constraint (2.30), he chooses c and R to maximize u(c, R) subject to (2.30).
At wage rate w, the firm chooses the production plan giving the highest profit

	o = F (Ld) − wLd

consistent with the production function. The consumer then faces the budget
constraint wR + c = Y = 	o + 168w. Each budget-isoprofit line has slope −w.
Walras’s Law results from subtracting the right-hand side of this expression from
the left. It can be stated as

0 = w(R + Ld − 168) + (c − qs), (2.31)

where w is the wage rate in oysters per labor-hour, Ld is labor demanded, R is
leisure demanded, qs = F (Ld) is oyster supply, and c is oyster demand.

2.1 Define fully a general competitive equilibrium. What does equilibrium
require for w? What is required of c, R, q, and L? Clearly describe firm
behavior, household behavior, and market-clearing conditions.

2.2 Suppose w is set at a disequilibrium level. Then Ld + R �= 168 and
qs �= c.
(a) Does the Walras’s Law (2.31) hold at the disequilibrium w? Why or

why not?
(b) At the disequilibrium wage rate w, the firm’s plans for its profits cannot

be fulfilled. Does this affect the household budget at w?
(c) Suppose at the disequilibrium wage rate w, Ld > 168 − R. How would

you expect w to adjust?
2.3 Suppose the economy achieves a wage rate wo that gives the economy a

general competitive equilibrium, as defined in Exercise 2.1.
(a) Show that the equilibrium allocation is identical to the solution of the

problem: Choose c and R to maximize u(c, R), where c = q, subject
to (2.26) and (2.27).

(b) What can you then conclude about the allocative efficiency of the market
mechanism?

(c) The comparison in part (a) is sometimes described as comparing cen-
tralized and decentralized allocation mechanisms. Explain this inter-
pretation.
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2.4 Consider a simple Robinson Crusoe economy. There is an initial endow-
ment of one day of endowed time, T , per day of calendar time. There
is no leisure. Time can be used to produce guavas, x, or oysters, y. Let
T X denote the time devoted to guavas and T Y denote the time devoted to
oysters (the superscripts denote distribution, not raising to a power; they
are not exponents). The production function of guavas is

x =
√

T X, (2.32)

and that of oysters is

y =
√

T Y . (2.33)

The resource constraint is characterized as

T X + T Y = 1. (2.34)

We can summarize these relations as

x2 + y2 = 1; x ≥ 0, y ≥ 0 (2.35)

or

y = (1 − x2)1/2; x ≥ 0, y ≥ 0. (2.36)

Preferences are characterized by the utility function

U (x, y) = x·y. (2.37)

Find the Pareto-efficient allocation for this economy. Explain your method.
(You may find it convenient to solve for x, y that maximize U 2 [U squared]
instead of U .)

What are equilibrium prices that will support the efficient allocation as
an equilibrium? (You can set one price arbitrarily at unity as numeraire.)
Demonstrate your result.

2.5 In the conventional partial equilibrium model of markets, demand and
supply functions are defined in the following way:

Firms and households are price takers. They treat prices as parameters that they
cannot affect and formulate their demand and supply plans supposing they can
buy or sell all they wish at the quoted price. The value of the supply function at
price p is the quantity firms and households will willingly supply to the market at
that price. The value of the demand function at price p is the quantity firms and
households will demand from the market at that price.
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Note that the supply and demand intentions of firms and households can
be fulfilled only in market clearing equilibrium.
(a) Consider the budget constraint of the household in a Robinson Crusoe

market economy, equations (2.9) and (2.10). Note that the expected
profits and expected sales of endowment can be achieved only in market
equilibrium. Why is this true?

(b) Walras’s Law (2.23) results from (2.9) and (2.10). The model is written
so that Walras’s Law is fulfilled both in and out of equilibrium. How
can this formulation be consistent? Relate it to the assumptions the
household and firm use in determining their partial equilibrium demand
and supply functions.

(c) Refer now to the proof of existence of market equilibrium in the Robin-
son Crusoe economy in section 2.2. How is Walras’s Law useful in
demonstrating the existence of general equilibrium prices?

2.6 Think of a Robinson Crusoe (one-household) economy with competitive
markets in output. There is no labor or other inputs to production. There
are two goods: fish, supplied in the quantity x, and wood, supplied in the
quantity y. There is a single firm producing the two outputs according to
the production frontier described by

x2 + y2 = 100, x, y ≥ 0. (2.38)

Profits of the firm, 	, are Robinson’s only source of income. The firm sells
fish for a price px and wood for the price py; px, py ≥ 0. Because there
are no inputs to production, the full value of output is profit:

	 = pxx + pyy. (2.39)

A little calculus tells us that along the production frontier defined by (2.39)

MRTx,y = −(dy/dx) = (x/y). (2.40)

So, the first-order condition for profit maximization is to fulfill (2.39) and
(px/py) = (x/y). This is more intuitive than it looks. It says that when the
price of x is high, the firm skews production toward more x.

Robinson’s household income, then, is

Y = 	. (2.41)

His demand for fish is denoted f , and of wood is denoted w. The household
budget constraint then is

Y = pxf + pyw. (2.42)
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Robinson has a utility function u(f, w). The function u is defined for f ,
w ≥ 0; u is strictly increasing in f, w.
(a) Describe Robinson’s consumption decision. You do not need to solve

for numerical values of f, w (there is insufficient information provided).
(b) Describe the firm’s supply decision. You do not need to solve for

numerical values of x, y.
(c) Combine equations (2.39), (2.41), (2.42) to demonstrate Walras’s

Law:

0 = px(f − x) + py(w − y). (2.43)

(d) Describe (2.43) in words. How does Robinson’s income compare to the
value of the economy’s output? If prices have adjusted so that supply
equals demand in the market for wood, will supply equal demand on
the fish market too?

(e) Describe a general competitive equilibrium. What does equilibrium
require for px and py? You do not need to solve for numerical values
of f, w, x, y.

Questions 2.6 and 2.7 are based on the following model:

Consider a simple Robinson Crusoe (one-household) economy. There is no labor
or inputs to production. There are two goods, guavas, supplied in the quantity
x, and scallops, supplied in quantity y. There is a single firm producing the two
outputs according to the production frontier described by

x2 + y2 = 100, x, y ≥ 0. (2.44)

Profits of the firm, 	, are Robinson’s only source of income. The firm sells guavas
for a price px and scallops for the price py ; px, py ≥ 0:

	 = pxx + pyy. (2.45)

Robinson’s household income then is

Y = 	. (2.46)

His consumption of guavas is denoted g and of scallops is denoted s. The household
budget constraint then is

Y = pxg + pys. (2.47)

Robinson has a utility function u(g, s). A choice of outputs (x0, y0) is said to be
Pareto efficient if u(x0, y0) is a maximum of u subject to (2.44).
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2.7 Assuming the usual optimizing behavior:
(a) What variables does the firm choose? Which variable does the firm act

to maximize? What is the constraint on its maximization (an equation
number is sufficient)?

(b) What variables does the household choose? Which variable above does
the household act to maximize? What is the constraint on its maximiza-
tion (an equation number is sufficient)?

2.8 Suppose prices adjust so that the choices in Problem 2.7 result in a general
equilibrium. The price system in equilibrium is said to “decentralize the
efficient allocation.” What does “decentralize” mean in this statement?

2.9 This problem deals with a Robinson Crusoe economy with two factors and
two commodities.

Let there be two factors, land denoted T and labor denoted L. The
resource endowment of T is T o; the resource endowment of L is Lo. Let
there be two goods, x and y. Robinson has a utility function u(x, y). The
prevailing wage rate of labor is w, and the rental rate on land is r.

Good x is produced in a single firm by the production function
f (Lx, T x) = x, where Lx is L used to produce x, T x is T used to pro-
duce x. Assume f (Lx, T x) ≥ 0 for Lx ≥ 0, T x ≥ 0; f (0, 0) = 0.

Good y is produced in a single firm by the production function
g(Ly, T y) = y where Ly is L used to produce y and T y is T used to
produce y. Let g(Ly, T y) ≥ 0 for Ly ≥ 0, T y ≥ 0; g(0, 0) = 0.

The price of good x is px . The price of good y is py . Profits
of firm x are 	x = pxf (Lx, T x) − wLx − rT x . Profits of firm y are
	y = pyg(Ly, T y) − wLy − rT y . Robinson’s income then is wL + rT +
	x + 	y.

Assume f, g, u, to be strictly concave, differentiable. Assume all solu-
tions are interior solutions. Subscripts denote partial derivatives. An
efficient allocation in the economy is characterized by maximizing the
Lagrangian, V with Lagrange multipliers a, b, c, d:

V = u(x, y) + a(x − f (Lx, T x)) + b(y − g(Ly, T y))

+ c(Lo − Lx − Ly) + d(T o − T x − T y).

(a) Differentiate V with respect to x, y, Lx, Ly, T x, T y to characterize
first-order conditions for a Pareto-efficient allocation of consumption
and factors.

(b) Show that Pareto efficiency requires that marginal rates of technical
substitution of L for T are the same for both firms. That is, Pareto
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efficiency requires gL/gT = fL/fT . Explain in words what this expres-
sion means.

(c) The production frontier consists of those x and y combinations that effi-
ciently and fully utilize Lo and T o in producing x and y. The marginal
rate of transformation of x for y, MRTx,y is defined as −(dy/dx)
along this frontier. MRTx,y is the additional y available from effi-
ciently reallocating inputs of T and L to producing y while sacrific-
ing one unit of x. Demonstrate that, at a Pareto-efficient allocation,
MRTx,y = gL/fL = gT /fT , the marginal rate of transformation of x
for y equals the ratio of marginal products. Explain (in words) why
gL/fL or gT /fT represents the marginal rate of transformation.

(d) Show that Pareto efficiency requires that the marginal rate of substitu-
tion of x for y be the marginal rate of transformation. That is, Pareto
efficiency requires that ux/uy = gL/fL = gT /fT .

(e) First-order conditions for profit maximization and for utility maximiza-
tion subject to budget constraint are

w = pxfL = pygL; r = pxfL = pygT ; px/py = ux/uy.

These conditions will be fulfilled in a competitive equilibrium. Show
that these equilibrium conditions lead to fulfillment of the efficiency
conditions above.
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The Edgeworth box

The Robinson Crusoe model in Chapter 2 describes the price system of a simple
economy as a means of making efficient decentralized choices. That model focuses
on the relationship of the production side of the market to the consumption side.
The market in equilibrium allocates resources between competing productive uses
(consumption and leisure) so as to use the available production technology to
efficiently satisfy consumer demands. It is a model of the decentralized market
arranging the allocation of resources in production to satisfy households. Another
aspect of efficient allocation is to arrange efficient allocation of goods among
consumers. Efficient allocation of resources requires both an efficient mix of outputs
and an efficient allocation among consumers. In this section, we’ll ignore the
production decision and concentrate on the interpersonal allocation of a fixed mix
of available goods. The production and consumption sides are considered together
in Chapter 4.

The modeling technique we will use for this allocation decision is the brilliant
and brilliantly simple device due to F. Y. Edgeworth, known as the Edgeworth
box. Suppose we have fixed positive quantities of two goods, X and Y , and two
households, 1 and 2. We would like to know how to allocate the fixed supplies of X

and Y between the two households. Three allocation schemes will be developed:
efficient allocation, a bilateral bargaining allocation, and a market equilibrium
allocation. We will demonstrate the following classic results: Bargaining and market
equilibrium lead to efficient allocations, and the market equilibrium allocation is
among the bargaining allocations.

To get started, household 1 is endowed with X
1

of good X and Y
1

of good Y . It
has utility function U 1(X1, Y 1), where X1 is 1’s consumption of good X and Y 1 is
1’s consumption of good Y . Household 2 is endowed with X

2
of good X and Y

2
of

good Y . Its utility function is U 2(X2, Y 2), where X2 is 2’s consumption of good X

and Y 2 is 2’s consumption of good Y . The problem facing households 1 and 2 is how

31
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Fig. 3.1. The Edgeworth box.

to divide the endowment of goods X and Y between them. The resource constraint

says that X1 + X2 = X
1 + X

2 ≡ X and Y 1 + Y 2 = Y
1 + Y

2 ≡ Y . Within these
limits, how will 1 and 2 divide X and Y between them?

3.1 Geometry of the Edgeworth box

The first part of Edgeworth’s contribution to this problem provides us with a
compelling geometric representation, depicted in Figure 3.1. Form a rectangle with
horizontal side of length X and vertical side of length Y . If we cleverly label this
rectangle, we can represent any allocation of X and Y between 1 and 2 by a point
in the box. Let the lower left corner of the box represent the origin in a quadrant
representing 1’s consumption and the upper right corner represent the origin in
a quadrant showing 2’s consumption. Any point in the box can then represent a
division of X and Y between 1 and 2. Choose a point (X, Y ) in the box. Draw a
vertical line through (X, Y ) perpendicular to the horizontal sides and a horizontal
line through (X, Y ) perpendicular to the vertical sides. The perpendiculars divide
the sides in two parts. The distance from 1’s origin to the intersection of the
perpendicular with the horizontal side represents 1’s consumption of X; the distance
from 1’s origin to the intersection with the perpendicular on the vertical side
represents 1’s consumption of Y . The distance from 2’s origin to the intersection
of the perpendicular with the horizontal side represents 2’s consumption of X; the
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Fig. 3.2. The Edgeworth box: Bargaining and allocation.

distance from 2’s origin to the intersection with the perpendicular on the vertical side
represents 2’s consumption of Y . Each point in the box represents a choice of X1 and

X2, Y 1 and Y 2 so that X1 + X2 = X
1 + X

2 ≡ X and Y 1 + Y 2 = Y
1 + Y

2 ≡ Y .
Household 1’s consumption increases as the allocation point moves in a northeast
direction; 2’s increases as the allocation point moves in a southwest direction.

Now we need to represent 1’s and 2’s preferences. Starting from 1’s origin,
we can portray 1’s indifference curves (level surfaces of the utility function U 1)
on its consumption space. We give the indifference curves their usual convex to
the origin shape representing convex preferences (diminishing marginal rate of
substitution) or equivalently a (quasi-) concave utility function. We can do the
same for 2. Household 2’s representation will look a bit strange because we are
depicting 2’s situation upside down. These arrays of indifference curves are shown
in Figure 3.1. Each point in the box represents an allocation of the fixed totals of X

and Y between households 1 and 2. Increasing satisfaction levels for 1 are indicated
to the northeast, whereas for 2 they are to the southwest.

Recall that an indifference curve represents a family of possible consumption
plans that have the same utility. They are equally satisfactory in utility terms.
The slope of an indifference curve represents the rate at which the household
will willingly give up one good in exchange for the other without loss of utility.
The absolute value of the slope is the household’s MRSX,Y , the marginal rate of
substitution of X for Y .

Now let’s take a closer look at possible reallocations (Figure 3.2). Our starting

point is the endowment, (X
1
, Y

1
), (X

2
, Y

2
), which we denote E (for endowment).

Starting from the endowment, movements northwest into the lens-shaped area
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bounded by the indifference curves I 1 and I 2 improve the utility levels of both
1 and 2. Movement in this direction means that household 1 gives up X, which

he values very little at (X
1
, Y

1
), in exchange for Y , which he values quite highly.

Obviously, household 2 makes the opposite exchange for the opposite reason. Both
are made better off by moving to what each regards as a more desirable balance
between X and Y . The slope of 1’s indifference curve at point E represents the
rate at which household 1 is willing to exchange good Y for good X at that point.
That 1’s and 2’s slopes differ (their indifference curves intersect at E rather than
coincide) means that their respective rates of exchange differ. That means that
there’s room for a deal; there is a possible mutually advantageous trade for 1 and 2.
Consider the path of possible trades depicted in Figure 3.2. From the endowment
point E, we consider a sequence of moves to the northwest to positions A, B, and
C. Starting from E, we note that the indifference curves for 1 and 2 intersect. Their
slopes differ. Households 1 and 2 have different MRSX,Y values. Their marginal
valuations of the two goods differ. Consequently, a mutually advantageous deal can
be made. Suppose 1 and 2 meet to trade. They agree to trade from the endowment
point E to A. Why do they agree? The move to A moves both 1 and 2 to higher
indifference curves on their respective indifference maps. They are both made
better off.

The move to A does not, however, completely exhaust the possibilities for
mutually advantageous trades. At A, 1’s and 2’s indifference curves still intersect,
indicating differing personal rates of exchange (marginal rate of substitution, MRS)
of X for Y . There is still room for a deal. Once again 1 and 2 get together to discuss
a possible trade. They agree to trade to B. The move to B makes both better off
again. Point B’s geometry is distinctive. It’s a point of tangency for 1’s and 2’s
respective indifference curves. The slopes of the curves coincide. That means that
the rate at which 1 will willingly trade X for Y is the same as the rate at which 2 will
willingly trade. Their indifference curves no longer intersect; they are tangent at
point B. Continuing from B, can 1 and 2 still find room for a mutually advantageous
deal? How about continuing in the same direction to C? That move makes them
both worse off. Along this path, it looks like B is the best they can do. Point B is a
bargaining solution to the bilateral allocation problem.

Point B has a distinctive property that we would like to formalize. The allocation
B is said to be efficient or Pareto efficient. We will say an allocation is Pareto
efficient if all of the opportunities for mutually desirable reallocations have been
fully used. The allocation is Pareto efficient if there is no available reallocation
that can improve the utility level of one household while not reducing the utility
of any household. Positions E, A, and C are Pareto inefficient. Mutually desirable
reallocations are available from them. Point B is Pareto efficient. From B there
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are no further mutually beneficial reallocations available. Further moves to the
northeast would make 1 better off and to the southwest would make 2 better off,
but there are no further moves that can make both better off. Although this may
sound discouraging, it is actually good news. It means that, at B, households
1 and 2 have made very effective use of their endowment of X and Y . Pareto
efficiency of an allocation is a desirable property. It indicates that the resources are
being effectively used; they are not being wasted. Pareto efficiency is one of the
defining properties of the bilateral bargaining solution. The other defining property
is individual rationality. Households 1 and 2 will agree to move to B only if they
are each made better off (or no worse off) by the move from E to B. So, B must
lie on 1’s indifference map above I 1 and on 2’s indifference map above I 2.

3.2 Calculating an efficient allocation

Tangency of 1’s and 2’s indifference curves is the geometric characterization of
the Pareto-efficient allocations. We should be able to prove that mathematically
as well. We defined a Pareto-efficient allocation by the property that there are no
further available mutually advantageous reallocations. One way of formalizing this
statement mathematically is to say that a Pareto-efficient allocation (Xo1, Y o1),
(Xo2, Y o2) is characterized as maximizing U 1(X1, Y 1) subject to U 2(X2, Y 2) =
U 2(Xo2, Y o2) ≡ Uo2 and subject to the resource constraints

X1 + X2 = X
1 + X

2 ≡ X

and

Y 1 + Y 2 = Y
1 + Y

2 ≡ Y .

We can restate the material balance constraints to simplify the problem:

X2 = X − X1,

Y 2 = Y − Y 1.

The convenient way to solve this problem is to use the technique of Lagrange. We
form the expression, L, known as the Lagrangian:

L ≡ U 1(X1, Y 1) + λ[U 2(X − X1, Y − Y 1) − Uo2].
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To solve the maximization problem subject to constraint, we now solve the
unconstrained problem of maximizing L with regard to the choice of X1, Y 1,
and λ. We have

∂L

∂X1
= ∂U 1

∂X1
− λ

∂U 2

∂X2
= 0,

∂L

∂Y 1
= ∂U 1

∂Y 1
− λ

∂U 2

∂Y 2
= 0,

∂L

∂λ
= U2(X2, Y 2) − Uo2 = 0.

This gives us the condition

∂U 1

∂X1

∂U 1

∂Y 1

=

∂U 2

∂X2

∂U 2

∂Y 2

or, equivalently,

MRS1
X,Y = − ∂Y 1

∂X1

∣∣∣∣
U 1=constant

= − ∂Y 2

∂X2

∣∣∣∣
U 2=constant.

= MRS2
X,Y .

The problem we solved is to characterize a Pareto-efficient allocation in the Edge-
worth box. The concluding equation says that the mathematical characterization of
efficiency is that the slope of 2’s indifference curve at an efficient allocation will
equal the slope of 1’s indifference curve. The slope of the indifference curve is the
rate of exchange at which the trader will willingly trade Y for X without loss of
utility. Efficient allocations are characterized by all households experiencing the
same MRSX,Y , the same trade-off between the goods.

This result then gives us a clear characterization of the efficient allocations in
the Edgeworth box. They occur at those points where the slopes of 1’s and 2’s
indifference curves coincide, the points of tangency of the two curves. The set
of these points then is the set of Pareto-efficient allocations in the box. Those
Pareto-efficient points lying in the lens-shaped area between the two indifference
curves through the initial endowment point are particularly important. They are the
individually rational Pareto-efficient points, the points that voluntary bargaining
from the endowment to efficient allocation should achieve. This set is sufficiently
important that it has its own name; it is known as the contract curve. The rationale
behind this name is that as 1 and 2 trade, voluntary trading to mutually improving
allocations will lead to a position on the contract curve. The Pareto-efficient set
and the contract curve are illustrated in Figure 3.3.
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Fig. 3.3. The Edgeworth box: Efficient allocation and the contract curve.

3.3 A competitive market solution in the Edgeworth box

Though direct bargaining among individuals may appear a sensible allocative
procedure when there are only two persons, it would be cumbersome in a large
economy. The alternative is a market price system. How would the price system
work in this simple example? The solution concept here is the competitive equilib-
rium: Prices adjust so that supply equals demand in all markets. Let px be the price
of X and py be the price of Y . Each household will choose its most desirable mix
of X and Y to consume subject to budget constraint. Household 1’s problem is

Choose X1, Y 1 to maximize U 1(X1, Y 1)

subject to pxX1 + pyY 1 = pxX
1 + pyY

1
. (B1)

Expression (B1) states 1’s budget constraint: The value at prevailing prices of 1’s
purchases is limited by the value at those prices of household 1’s endowment. The
budget constraint is a straight line passing through the endowment point (X

1
, Y

1
)

with slope −(px/py).
To characterize the solution to 1’s utility optimization subject to budget con-

straint, assuming an interior maximum, we can restate the problem as:

Choose X1 to maximize U 1

(
X1,

B1

py
− px

py
X1

)
.
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To characterize the solution, set dU 1/dX1 equal to 0. We have

dU 1

dX1
= ∂U 1

∂X1
− px

py

∂U1

∂Y 1
= 0.

Therefore, at the utility optimum subject to budget constraint we have

MRS1
X,Y =

∂U 1

∂X1

∂U 1

∂Y 1

= px

py
.

Household 2 faces the same utility optimization problem with the superscript 2
replacing the 1’s above. Hence 2’s utility optimizing demands for X and Y , denoted
X2 and Y 2, will be characterized by

MRS2
X,Y =

∂U 2

∂X2

∂U 2

∂Y 2

= px

py
.

The Walrasian auctioneer receives the demands of 1 and 2 and adjusts prices so
that supply and demand for X and for Y are equated. The auctioneer adjusts prices
to equilibrium prices p∗x and p∗y so that

X∗1 + X∗2 = X
1 + X

2 ≡ X

and

Y ∗1 + Y ∗2 = Y
1 + Y

2 ≡ Y ,

where the asterisks denote individually optimizing chosen values. That is, X∗1 and
Y ∗1 are 1’s utility maximizing mix of X and Y at prices p∗x and p∗y and similarly
for X∗2 and Y ∗2. Most importantly, these choices clear the market.

Because the endowment point, E, in the Edgeworth box represents the endow-
ments of each household (viewed in mirror image), the households face a common
budget line (although the value of their respective budgets will of course differ).
Figure 3.4 presents the problem facing the Walrasian auctioneer: disequilibrium
prices. Out of equilibrium, the demands of the households add up to an excess
of one of the goods and leave a surplus of the other. It is the auctioneer’s job
to adjust prices to bring them into balance. Of course, we don’t really believe in
an auctioneer representing the price formation mechanism of the economy; this
fictional construct serves to mimic the decentralized price formation process of the
competitive market. We suppose that this price formation mechanism leads to a
market-clearing equilibrium allocation. Figure 3.5 presents the market equilibrium
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Fig. 3.4. The Edgeworth box: Disequilibrium.

of the Edgeworth box. The separate decisions of 1 and 2 lead them to the same
point, the competitive equilibrium allocation, denoted CE in the figure.

Note the geometry of CE in Figure 3.5. Household 1’s and 2’s indifference curves
through CE are each tangent to the budget line (indicating utility maximization
subject to budget constraint) at CE and tangent to each other. We have

MRS1
X,Y = − ∂Y 1

∂X1

∣∣∣∣
U 1=U1∗

=

∂U 1

∂X1

∂U 1

∂Y 1

= px

py
=

∂U 2

∂X2

∂U 2

∂Y 2

= − ∂Y 2

∂X2

∣∣∣∣
U 2=U 2∗

= MRS2
X,Y

E

CE

Fig. 3.5. The Edgeworth box: General equilibrium.
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(where the asterisk denotes optimizing levels). This expression tells us that, at the
competitive equilibrium, households 1 and 2 have been separatelyguided by prices –
the same prices facing both households – to adjust their consumption so that the
rates at which they willingly trade good Y for good X,−(∂Y 1/∂X1), −(∂Y 2/∂X2),
are equated to one another. They are each separately set equal to the (same)
prevailing price ratio by utility maximization. This means that the necessary
conditions for a Pareto-efficient allocation are fulfilled at CE.

That’s the bottom line. The set of Pareto-efficient allocations in the Edgeworth
box is the set of tangencies of household 1’s and 2’s indifference curves. The con-
tract curve is the subset of Pareto-efficient allocations bounded by the indifference
curves through the endowment point, that is, the individually rational (individually
preferable to endowment) efficient points. Bargaining will get 1 and 2 to the contract
curve through a succession of mutually beneficial trades. The price system will also
get the traders to the contract curve, to a Pareto-efficient allocation. The competitive
equilibrium allocation is on the contract curve. The competitive market equilibrium
is Pareto efficient. Both bargaining and the competitive market equilibrium get us
to a Pareto-efficient allocation. What is there especially to recommend the price
system? Why do economists so extol the virtues of markets and prices? The price
system decentralizes the allocation decision. The answer lies in the comparative
simplicity of the price system and its adaptability to large economies. Edgeworth
box–style bilateral bargaining makes sense for a small number of isolated individ-
uals. That same kind of bargaining would be completely unmanageable in a large
economy. A price system can expand to a large economy with little increase in
complexity. The reason for the adaptability of the price system is that it allows each
economic unit (each household) to perform most of the necessary decision making
separately. In contrast, the bargaining that proceeds in the Edgeworth box means
that all traders enter interactively in deciding the quantity of each good going to
each household.

3.4 Bibliographic note

An excellent history of economic thought, including the formulation of the Edge-
worth box and the general equilibrium theory of Walras, is available in Blaug
(1968). The Edgeworth box was originally developed in Edgeworth (1881) and is
fully expounded in Newman (1965).

Exercises

Problems 3.1, 3.2, and 3.3 work with a two-person pure exchange economy
(an Edgeworth box). Let there be two households with different endowments.
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Superscripts are used to denote the names of the households. There are two com-
modities, x and y. For simplicity, let the two households each have the same tastes
(same form of the utility function).

Household 1 is characterized as u1(x1, y1) = x1y1, with endowment r1 = (8, 0).
Note that 1’s MRS at (x1, y1) can be characterized (assuming positive values of
x1, y1) as

MRS1
xy =

∂u1

∂x

∂u1

∂y

= y1

x1
.

Household 2 is characterized as u2(x2, y2) = x2y2, with endowment r2 = (2, 10).
(The superscripts are household names, not powers) Note that 2’s MRS at (x2, y2)
can be characterized (assuming positive values of x2, y2) as

MRS2
xy =

∂u2

∂x

∂u2

∂y

= y2

x2
.

Recall that when a household optimizes utility subject to budget constraint at prices
(px, py) it chooses x, y so that

MRSxy = px

py

and so that pxx + pyy = the household’s budget = value of household endowment
at (px, py).

A competitive equilibrium consists of prices p◦ = (p◦
x, p

◦
y) and allocation

(x◦1, y◦1), (x◦2, y◦2) so that

i. Household 1’s consumption plan (x◦1, y◦1) maximizes u1(x, y) subject to
household 1’s budget constraint, p◦

xx + p◦
yy = 8p◦

x ; and similarly
ii. Household 2’s consumption plan (x◦2, y◦2) maximizes 2’s utility subject to 2’s

budget, p◦
xx + p◦

yy = 2p◦
x + 10p◦

y; and
iii. Markets clear: (x◦1, y◦1) + (x◦2, y◦2) = (8, 0) + (2, 10) = (10, 10).

Let prices be (px, py) = ( 1
2 , 1

2 ). Then household 1’s utility maximizing plan subject
to budget constraint is (x◦1, y◦1) = (4, 4), and household 2’s utility maximizing
plan subject to budget constraint is (x◦2, y◦2) = (6, 6).

3.1 Is the price vector (p◦
x, p

◦
y) = ( 1

2 ,
1
2 ) a competitive equilibrium? Explain.

3.2 Demonstrate that, at the allocation (x◦1, y◦1) = (4, 4), (x◦2, y◦2) = (6, 6),
we have MRS1

xy = MRS2
xy . This is sufficient to show that the allocation is

Pareto efficient.
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3.3 When the price system finds prices that clear the market, (iii) above, the
prices are said to “decentralize” the equilibrium allocation. Explain this
notion of “decentralize” or “decentralization.”

3.4 Consider a two-person pure exchange (Edgeworth box) economy with a
price system. Households are i = 1, 2. Their endowments are r1 = (r1

1 , r1
2 )

and r2 = (r2
1 , r2

2 ), where superscripts denote households and subscripts
denote commodities. Prices are p ∈ R2

++, p >> 0; that is, we suppose
prices are strictly positive. Demand functions for the households are
Di(p) ∈ R2

+, for i = 1, 2.
(a) Set up the utility maximization problem subject to budget constraint for

a household. Assume the household fulfills its budget constraint with
equality.

(b) Show that for all price vectors p ∈ R2
++, p >> 0, the value of excess

demands evaluated at prices p must be nil. That is, show that

p ·
(∑

i=1,2

Di(p) −
∑
i=1,2

ri

)
= 0.

This is Walras’s Law.
(c) Suppose prices for good 1 have adjusted so that the market for good 1

clears. That is, we have p◦ = (p◦
1, p

◦
2) >> 0 so that∑

i=1,2

Di
1(p◦) = r1

1 + r2
1 .

Show that the market for good 2 then also clears at p◦.
3.5 Consider an Edgeworth box (two households, A and B, two goods, x and y).

Household A is characterized as:

Endowment = (10, 0), ten units of x and zero of y;
UA(xA, yA) = xA + 4yA; A likes y four times as much as A likes x.

Household B is characterized as:

Endowment = (0, 10), ten units of y and zero of x;
UB(xB, yB) = 5xB + yB ; B likes x five times as much as B likes y.

For both households, the two goods are perfect substitutes with MRS’s
respectively of (1/4) and 5.
(a) Draw an Edgeworth box for this economy. Show the endowment point,

contract curve, competitive equilibrium (a), and the set of Pareto-
efficient points. Because of the linear preferences, the Pareto-efficient
set will not be a locus of smooth tangencies – don’t bother differen-
tiating anything. Show that (xA, yA) = (0, 10), (xB, yB) = (10, 0) is a
competitive equilibrium.
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(b) Some writers would argue that the contract curve for this economy is
equivalent to the set of competitive equilibria. That is, any individually
rational Pareto-efficient point in this Edgeworth box can be supported
as a competitive equilibrium.

These “competitive equilibrium” allocations would include those of
the form

(xA, yA), 2.5 < yA ≤ 10, xA = 0; (xB, yB), xB = 10, yB = 10 − yA.

Explain the reasoning for this argument (Hint: Think inside the box).
The assertion is false. Explain why it is mistaken (Hint: Think outside
the box).



4

Integrating production and multiple consumption
decisions: A 2 × 2 × 2 model

Now we need to take one further step, to bring the production decision and the
interpersonal allocation decision together. The Edgeworth box model, presented in
Chapter 3, treats efficient allocation of consumption among households but doesn’t
treat production. The Robinson Crusoe model, developed in Chapter 2, treats
efficient choice of production outputs but doesn’t treat consumption allocation
between households. Neither treats explicitly the efficient allocation of inputs
to production. We’ll integrate all of these disparate elements in this chapter, by
introducing a 2 factor × 2 commodity × 2 household general equilibrium model.

The Robinson Crusoe model treated the consumption/production interaction
with only one household. We can now combine the Robinson Crusoe production
decision with the Edgeworth box consumption allocation to portray the produc-
tion/interpersonal allocation decision at one shot. The joint equilibrium of produc-
tion and interpersonal allocation is depicted in Figure 4.1. For each price ratio, the
production sector chooses the profit-maximizing output mix. The Edgeworth box
then depicts the allocation of these outputs between households. The budget line
in the box shows how households react to prevailing prices. The figure shows the
production decision as profit maximization subject to prevailing prices, technology,
and resources, just as in the Robinson Crusoe model. The slopes of the isoprofit line
and of the budget line are identical. The consumption allocation decision takes the
output produced (the decision made according to profit maximization) and allocates
it between the households using the price system as in the Edgeworth box model.
In a price equilibrium, the decisions of households and the production sector will
coincide: Combined household consumptions at prevailing prices will equal output
of the production sector. The defining properties of the equilibrium are

� Production and consumption plans are each separately optimized at the prevailing
prices – the same prices facing all firms and households.

44
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Y

XO X

Y
(X,Y)

Fig. 4.1. A two-good economy: General equilibrium in production and distribution.

� Markets clear; supply equals demand. There is a single consistent point chosen
in the Edgeworth box. The dimensions of the box are set to reflect the production
decision. Consumption decisions are consistent with one another and with the
output produced, precisely exhausting available goods.

The allocation is Pareto efficient. The defining properties of Pareto efficiency –
assuming an interior solution with differentiable production and utility functions
– are

� The production sector is technically efficient; each firm is producing maximal
output from its inputs, and there is no reallocation of inputs among firms that
would result in a higher output of some goods without a reduction in output of
others. (In the Robinson Crusoe example in Chapter 2, with a single firm and a
single input, we do not see the full complexity of production efficiency.)

� The MRS, the trade-off in consumption between goods, is the same for all house-
holds. This is ensured by the competitive equilibrium because in equilibrium
each household sets its MRS equal to the common price ratio. Equating MRSs
results in locating the consumption plan at a point on the contract curve.

� The MRS equals the MRT: The trade-off in output choice is the same on both the
production and consumption sides. This property holds in competitive equilib-
rium because both the firm and the households face the same equilibrium prices.
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It shows up in the figure as two lines having the same slope equal to the price
ratio. The budget line in the Edgeworth box and the isoprofit line tangent to the
production choice have the same slope equal to the price ratio (times −1).

In a general economic equilibrium, the price system communicates sufficient
information to allow producers and consumers to coordinate their separate pro-
duction and consumption decisions. Prices adjust to bring supply and demand into
balance. Because all firms and households face the same prices, they are all exposed
to the same trade-offs in production and consumption that lead to a Pareto-efficient
allocation.

4.1 A 2 × 2 × 2 model

Let there be two factors, land denoted T and labor denoted L. Let there be two
goods, x and y. Let there be two households, 1 and 2. Household 1’s endowment
of L is L1, 2’s is L2; L1 + L2 = Lo. Household 1’s endowment of T is T 1, 2’s is
T 2; T 1 + T 2 = T o. The prevailing wage rate of labor is w, and the rental rate on
land is r .

Good x is produced in a single firm by the production function f (Lx, T x) = x,
where Lx is L used to produce x, T x is T used to produce x. Let f (Lx, T x) ≥ 0 for
Lx ≥ 0, T x ≥ 0; f (0, 0) = 0. Good y is produced in a single firm by the production
function g(Ly, T y) = y, where Ly is L used to produce y, and T y is T used to
produce y. Let g(Ly, T y) ≥ 0 for Ly ≥ 0, T y ≥ 0; g(0, 0) = 0. The price of good
x is px . The price of good y is py . Profits of firm x are 	x = pxf (Lx, T x) −
wLx − rT x . Profits of firm y are 	y = pyg(Ly, T y) − wLy − rT y . Household
1’s share of firm x is α1x , and his share of firm y is α1y . Household 2’s share of
firm x is α2x , and her share of firm y is α2y . Then α1x + α2x = 1; α1y + α2y = 1.

Household 1’s income then is I 1 = wL1 + rT 1 + α1x	x + α1y	y .
Household 2’s income then is I 2 = wL2 + rT 2 + α2x	x + α2y	y .
Household 1’s consumption of x is x1, and his consumption of y is y1. Household

1’s utility function is u1(x1, y1). Household 2’s consumption of x is x2, and her
consumption of y is y2. Household 2’s utility function is u2(x2, y2).

Assume f , g, u1, and u2 to be strictly concave, differentiable. Assume all
solutions are interior. Subscripts denote partial derivatives.

4.2 Technical efficiency

The first notion we’d like to develop is technical efficiency, economic efficiency on
the production side. The allocation of land and labor to the production of x and y

should make full effective use of T and L. If there’s room for increasing output of
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x without reducing output of y – perhaps by moving more labor into the production
of y and more land into x – those opportunities should be fully utilized. When all
opportunities for increasing output of either good – without reducing output of the
other – have been fully used, the allocation of inputs to production is technically
efficient.

The production possibility set can be described as

PPS = {(x, y)|x, y ≥ 0; T x, T y, Lx, Ly ≥ 0; T x + T y ≤ T o;

Lx + Ly ≤ Lo; x ≤ f (Lx, T y); y ≤ g(Ly, T y)}.

The production frontier, in (x, y) space, consists of those (x, y) combinations
that efficiently and fully utilize Lo and T o in producing x and y. It is described as
the set: E = {(x ′, y ′)|x ′ = f (Lx, T x), y ′ = g(Ly, T y),

(1) Lx + Ly = Lo; Lx, Ly ≥ 0;
(2) T x + T y = T o; T x, T y ≥ 0

Lx, Ly, T x, T y are chosen to maximize f (Lx, T x) subject to (1) and (2) and sub-
ject to y ′ = g(Ly, T y)}.

Describing technical efficiency, choose Lx , T x to maximize f (Lx, T x) subject
to g(Lo − Lx, T o − T x) = yo for arbitrary attainable yo. Assume differentiability,
concavity, and an interior solution. Then we consider the Lagrangian (denoted “Q”
for clarity – to avoid another letter L)

Q = f (Lx, T x) − λ(g(Lo − Lx, T o − T x) − yo). First-order conditions for
optimizing Q are

∂Q

∂Lx
= fL + λgL = 0,

(where the subscripts refer to partial derivatives); then

∂Q

∂Tx
= fT + λgT = 0.

Rearranging terms we have

∂f

∂L
/

∂f

∂T
= fL/fT = ∂g

∂L
/
∂g

∂T
= gL/gT = dTx

dLx
|f=constant = dTy

dLy
|g=constant.

That is, the technically efficient mix of inputs is characterized as those input
mixes where the marginal rate of technical substitution between L and T is equated
across production activities. For an interpretation of this condition in an input space
Edgeworth box, see Exercise 4.9 at the end of this chapter.
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4.3 Pareto efficiency

Definition (Pareto efficiency) An allocation x∗1, y∗1, x∗2, y∗2 is said to be Pareto
efficient if it is attainable (an element of PPS), (x∗1, y∗1) maximizes u1(x, y) subject
to (1), (2), and

(3) x1 + x2 = f (Lx, T x), and
(4) y1 + y2 = g(Ly, T y),

and subject to u(x2, y2) = u2(x∗2, y∗2).

We’ll write out the Lagrangian characterizing the maximization in the definition
of Pareto efficiency. We’ll show that Pareto efficiency requires that marginal rates
of substitution of x for y be the same for both households. That is, Pareto efficiency
requires

[∂u1/∂x1]

[∂u1/∂y1]
= [∂u2/∂x2]

[∂u2/∂y2]

(the superscripts denote household names, not second derivatives). This is just the
familiar condition from the Edgeworth box, equating marginal rates of substitution
among households as a condition for Pareto efficiency.

To describe a Pareto-efficient allocation, we will ask how to maximize u1(x1, y1)
subject to resource and technology constraints and subject to a fixed level
of u2(x2, y2). That is, we want to choose x1, y1, Lx, Ly, T x, T y to maximize
u1(x1, y1) subject to u2(x2, y2) = u2o and subject to Lx + Ly = Lo, T x + T y =
T o, x1 + x2 = f (Lx, T x), y1 + y2 = g(Ly, T y).

This problem leads to the (world’s biggest) Lagrangian,

H = u1(x1, y1) + λ[u2(x2, y2) − u2o]

+μ[y1 + y2 − g(Ly, T y)] + ν[x1 + x2 − f (Lx, T x)]

+ η[T x + T y − T o] + ε[Lx + Ly − Lo].

(Recall that subscripts denote partial derivatives.) First-order conditions for the
Lagrangian are

∂H

∂x1
= u1

x + ν = 0,

∂H

∂y1
= u1

y + μ = 0

∂H

∂x2
= λu2

x + ν = 0,
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∂H

∂y2
= λu2

y + μ = 0

∂H

∂Lx
= −νfL − ε = 0,

∂H

∂Ly
= −μgL − ε = 0

∂H

∂Tx
= −νfT − η = 0,

∂H

∂Ty
= −μgT − η = 0.

The first-order conditions for the Lagrangian lead to

u1
x = −ν, u1

y = −μ,

u2
x = −ν/λ, u2

y = −μ/λ,

which imply

u1
x

u1
y

= ν

μ
= u2

x

u2
y

,

demonstrating that equality of MRSs is a necessary condition for Pareto efficiency.
Now we’ll demonstrate that Pareto efficiency requires that marginal rates of

technical substitution of L for T be the same for both firms. That is, Pareto
efficiency requires technical efficiency, characterized by gL/gT = fL/fT . These
expressions represent the (absolute value) of the slopes of the isoquants in the
Edgeworth Box for inputs (why?).

The first-order conditions for the Lagrangian lead to

νfL = ε = μgL,

νfT = η = μgT .

Hence, dividing through the upper expression by the lower, a necessary condition
for technical efficiency and Pareto efficiency is fL/fT = ε/η = gL/gT . We have
then

fL/fT = gL/gT = −dT

dL
|f=constant = −dT

dL
|g=constant ,

which represents the absolute value of the slope of the isoquant at the efficient
points – the tangencies in the Edgeworth box for inputs.
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Now we’d like to demonstrate that Pareto efficiency requires that the common
marginal rate of substitution equal the marginal rate of transformation (this is
familiar from the Robinson Crusoe model). That is, we want to show that Pareto
efficiency requires that

u1
x

u1
y

= u2
x

u2
y

= gL

fL

= gT

fT

.

The expression gL/fL (or gT /fT ) is the marginal rate of transformation of x for y.
(Can you explain why?)

To demonstrate this point, rearranging the terms in the preceding paragraph we
have

gL

fL

= ν

μ
= gT

fT

.

But from the results above, u1
x/u

1
y = ν/μ = u2

x/u
2
y as well, so

u1
x

u1
y

= ν

μ
= u2

x

u2
y

= gL

fL

= ν

μ
= gT

fT

.

Then we have gL/fL = ∂y
∂Ly /

∂x
∂Lx = − dy

dx |Lx+Ly=Lo , and similarly for gT /fT .
But this is the restatement and generalization of the results demonstrated sep-

arately for the Robinson Crusoe economy and for the Edgeworth box. Pareto
efficiency is characterized by equality of MRSxys across individuals and equality
of the MRSxy to the MRTxy . That is, restating and expanding the previous result

MRTxy = gL/fL = ∂y

∂Ly
/

∂x

∂Lx
= −dy

dx
|Lx+Ly=Lo

= u1
x/u

1
y = MRS1

xy = u2
x/u

2
y = MRS2

xy,

MRTxy = gT /fT = ∂y

∂Ty
/

∂x

∂Tx
= −dy

dx
|T x+T y=T o

= u1
x/u

1
y = MRS1

xy = u2
x/u

2
y = MRS2

xy.

4.4 First Fundamental Theorem of Welfare Economics:
Competitive equilibrium is Pareto efficient

We’ve already presented a family of necessary conditions for technical and Pareto
efficiency in the 2 × 2 × 2 economy. Now we’d like to confirm that the conditions
are fulfilled in competitive general equilibrium (assuming the equilibrium exists
and is an interior solution).

Let’s describe px, py, w, r, Lx, Ly, T x, T y, x1, y1, x2, y2 that would constitute
a general competitive equilibrium for the 2 × 2 × 2 economy. Markets clear.



4.4 First Fundamental Theorem of Welfare Economics 51

Demands optimize utility subject to budget constraint at prevailing output and
factor prices. Supplies optimize profits subject to technology at prevailing output
and factor prices. The first-order conditions are

[∂u1/∂x1]

[∂u1/∂y1]
= px

py
= [∂u2/∂x2]

[∂u2/∂y2]
,

that is, marginal rates of substitution are equated to price ratios, and

pxfL = w = pygL,

pxfT = r = pygT .

That is, the marginal value product of factor inputs equals the factor prices.
The value of the marginal product of land equals the rental rate on land. The
value at prevailing prices of the marginal product of labor equals the wage rate.
These equalities are fulfilled in the production of both goods. Though the goods
are produced and sold separately, they share their factor markets, facing the same
rental rates and wage rates.

Now we’ve characterized the first-order conditions for a market equilibrium.
We’ll come to a surprising conclusion. Market equilibrium allocation is Pareto
efficient. The optimization of utilities and profits by households and firms combined
with the common output and factor prices facing them (communicating the common
scarcity facing all of the economy) is enough to provide Pareto-efficient allocation.

Competitive equilibrium is characterized by

px/py = u1
x/u

1
y, by utility maximization;

px/py = u2
x/u

2
y, by utility maximization.

px = w/fL = r/fT , by profit maximization;

py = w/gL = r/gT by profit maximization.

But then it follows that u1
x/u

1
y = u2

x/u
2
y = gL/fL = gT /fT . And it follows that

gL/gT = w/r , and fL/fT = w/r . But then it follows that gL/gT = fL/fT .
Thus, u1

x/u
1
y = u2

x/u
2
y = gL/fL = gT /fT and gL/gT = fL/fT . That is, common

marginal rates of substitution in consumption are equated to the marginal rate of
transformation at an allocation where output is technically efficient (where firms
have common marginal rates of technical substitution between inputs). This is
the First Fundamental Theorem of Welfare Economics; a competitive equilibrium
allocation is Pareto efficient.

The competitive market allocation mechanism, where household and firm deci-
sions are made independently of one another, is said to be decentralized. Consump-
tion and production are strongly dependent on one another – no one can consume
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goods that have not been supplied. Nevertheless, the decisions can be taken inde-
pendently, coordinated by the price system (in equilibrium) so that the resulting
decisions are consistent with one another.

Exercises

Problems 4.1 through 4.6 deal with a Robinson Crusoe (single-household) economy
with two factors of production and two commodities. Let there be two factors, land
denoted T and labor denoted L. The resource endowment of T is T 0; the resource
endowment of L is L0. Let there be two goods, x and y. Robinson has a utility
function u(x, y). There is no utility from leisure. The prevailing wage rate of labor
is w, and the rental rate on land is r .

Good x is produced in a single firm by the production function f (Lx, T x) = x,
where Lx is L used to produce x, T x is T used to produce x. f (Lx, T x) ≥ 0 for
Lx ≥ 0, T x ≥ 0; f (0, 0) = 0.

Good y is produced in a single firm by the production function g(Ly, T y) = y

where Ly is L used to produce y, T y is T used to produce y. G(Ly, T y) ≥ 0 for
Ly ≥ 0, T y ≥ 0; g(0, 0) = 0.

The price of good x is px . The price of good y is py . Profits of firm x

are 	x = pxf (Lx, T x) − wLx − rT x . Profits of firm y are 	y = pyf (Ly, T y) −
wLy − rT y .

Robinson’s income then is wL + rT + 	x + 	y .
Assume f, g, u, to be strictly concave, differentiable. Assume all solutions are

interior solutions. Subscripts denote partial derivatives. That is, ux = (∂u/∂x) =
marginal utility of x, . . . , fL = (∂f/∂L) = marginal product of labor in x, . . . .

The production frontier consists of those x − y combinations that efficiently
and fully utilize L0 and T 0 in producing x and y. The marginal rate of transformation
of x for y, MRTx,y is defined as −(dy/dx) along this frontier. MRTx,y is the
additional y available from efficiently reallocating inputs of T and L to producing
y while sacrificing one unit of x. At a technically efficient (efficient in allocation
of inputs on the production side) allocation, we have

−(dy/dx) = MRTx,y = (∂y/∂Ly)/(∂x/∂Lx) = gL/fL.

The marginal rate of transformation of x for y equals the ratio of marginal
products. A (Pareto) efficient allocation in the economy is characterized by maxi-
mizing u(x, y) subject to the technology and resource constraints. Thus a Pareto-
efficient allocation corresponds to values of x, y, Lx, Ly, T x, T y maximizing the
Lagrangian, �, with Lagrange multipliers a, b, c, d:

� = u(x, y) + a(x − f (Lx, T x)) + b(y − g(Ly, T y))

+ c(L0 − Lx − Ly) + d(T 0 − T x − T y). (4.1)
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Differentiating � with respect to x, y, Lx, Ly and setting the derivatives equal to
0, we have

ux + a = 0, (4.2)

uy + b = 0, (4.3)

−afL − c = 0, (4.4)

−bgL − c = 0. (4.5)

4.1 Show that Pareto efficiency requires that the marginal rate of substitution
of x for y be the marginal rate of transformation (as computed with respect
to L). That is, Pareto efficiency requires that

ux/uy = gL/fL. (4.6)

Hint: You can demonstrate (4.6) by combining (4.2), (4.3), (4.4), and (4.5)
appropriately.

4.2 Explain in words what (4.6) means. Why does it make sense as an efficiency
condition?

4.3 Differentiate � with respect to T x , T y to characterize first-order conditions
for a Pareto-efficient allocation of land.

4.4 Repeat problem 4.1 with respect to T . That is, show that Pareto efficiency
requires that ux/uy = gT /fT .

4.5 Show that Pareto efficiency requires that marginal rates of technical sub-
stitution of L for T are the same for both firms. That is, Pareto efficiency
requires gL/gT = fL/fT . Explain in words what this expression means.

4.6 First-order conditions for profit maximization and for utility maximization
subject to budget constraint are

w = pxfL = pxgL, (4.7)

r = pxfT = pygT , (4.8)

px/py = ux/uy. (4.9)

These conditions (4.7), (4.8), (4.9) will be fulfilled in a competitive equi-
librium. Show that these equilibrium conditions lead to fulfillment of the
efficiency conditions in problems 4.1, 4.3, 4.4, and 4.5.

Problems 4.7 and 4.8 are based on the following model. Consider the
production of goods x and y in a competitive economy with two factors
of production, land denoted T , and labor denoted L. Assume all functions
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are differentiable. Assume interior solutions (no boundary solutions). The
available supply of labor is L0. The available supply of land is T 0.

Good x is produced in a single firm, called firm x, by the production
function f (Lx, T x) = x, where Lx is L used to produce x, T x is T used
to produce x. Let f (Lx, T x) ≥ 0 for Lx ≥ 0, T x ≥ 0; f (0, 0) = 0.

Good y is produced in a single firm by the production function
g(Ly, T y) = y where Ly is L used to produce y and T y is T used to
produce y. Let g(Ly, T y) ≥ 0 for Ly ≥ 0, T y ≥ 0; g(0, 0) = 0.

The resource constraints of the economy are

Lx + Ly = L0,

T x + T y = T 0.

The allocation of L and T is said to be technically efficient if there is
no reallocation of L and T across firms that would increase the output
of y without reducing the output of x. Technical efficiency is a necessary
condition for Pareto efficiency. We’ll characterize technical efficiency as
maximizing the output of y for a given level of output of x. That is, choose
Ly, T y to maximize g(Ly, T y) subject to

f (Lx, T x) = X0,

Lx + Ly = L0,

T x + T y = T 0.

Restate the problem as choosing Ly, T y to maximize g(Ly, T y) subject
to f (L0 − Ly, T 0 − T y) = X0. The Lagrangian for this problem can be
stated as M = g(Ly, T y) − λ[f (L0 − Ly, T 0 − T y) − X0]. Differentiat-
ing M with respect to Ly and T y (letting subscripts denote partial deriva-
tives) and setting the result equal to 0, we have

∂M

∂Ly
= gL − λfL = 0, (4.10)

∂M

∂T y
− gT − λfT = 0. (4.11)

These are first-order conditions for technical efficiency in this model.
4.7 Firm x’s marginal rate of technical substitution of L for T is defined

as MRTSx
LT = fT

fL
. Show that technical efficiency requires that the firms’
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respective MRTSs be equated. That is, show that, at a technically efficient
allocation of T and L,

MRTSx
LT = fT

fL

= gT

gL

= MRTS
y

LT .

It is a well-established result that at a competitive equilibrium( r

w

)
= fT

fL

= gT

gL

,

where w is the wage rate on L and r is the rental rate on T . Thus, you
have just shown that a competitive equilibrium allocation is (or fulfills a
necessary condition for being) technically efficient.

4.8 Let a typical household utility function be u(x, y). Then let ux and uy

denote marginal utilities, partial derivatives of u with respect to x and y.
The marginal cost of x at a competitive equilibrium is (w/fL) = (r/fT ).
As usual in competitive equilibrium, price equals marginal cost. Let px be
the price of x and py be the price of y. We have px = (w/fL) = (r/fT ),
py = (w/gL) = (r/gT ). The marginal rate of transformation of x for y

(also known as the rate of product transformation of x for y) is (gL/fL) =
(gT /fT ). It represents the (absolute value of the) slope of the production
frontier – the additional volume of y that can be achieved by sacrificing
a unit of x. From Chapter 3 we have (ux/uy) = (px/py) in competitive
equilibrium. We established in Chapter 2 (in the special case where fL = 1;
you may assume that it generalizes) that a necessary condition for Pareto
efficiency is

gL

fL

= ux

uy

; (4.12)

the marginal rate of substitution equals the marginal rate of transformation.
Show that (4.12) is fulfilled in the competitive equilibrium of this model.
Thus you’ve shown that competitive equilibrium in a two-good economy
fulfills a necessary condition for Pareto efficiency.

4.9 We developed the notion of an Edgeworth box for the allocation of con-
sumption between two households in Chapter 3. We can use the same
approach to describe the allocation of inputs to production. Factors of pro-
duction are analogous to consumption goods in the (consumption) Edge-
worth box; output levels are analogous to household utilities; isoquants are
analogous to indifference curves.
Let there be two inputs to production, X and Y , endowed in the amounts
X and Y . They are to be allocated between the production of outputs 1 and
2, in the amounts X1, X2, Y 1, Y 2 subject to the constraints X1 + X2 = X,
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Y 1 + Y 2 = Y . They produce outputs 1 and 2 according to the production
functions

Q1 = F (X1, Y 1) = [X1Y 1]1/2, Q2 = G(X2, Y 2) = [X2Y 2]1/3.

The allocation of inputs to production is technically efficient if there is
no reallocation of inputs that would allow an increase in output of 1 or 2
without a reduction in output of the other.
(a) Draw the following diagrams and describe the efficient allocation of

inputs to production in the following way: Form an Edgeworth box with
sides of length X and Y . Let opposite corners of the box depict two
allocations, one with all resources going to produce 1 and the other with
all resources going to produce 2. Depict the isoquants of F and G in the
box. Find the locus of tangencies of the isoquants. This locus represents
the technically efficient allocation of resources to production. Explain
why.

(b) Let the factors sell for px and py , with each firm choosing its input
mix to minimize the cost of inputs for each level of output. Show that
a factor market equilibrium will lie on the locus of tangencies.

(c) The production possibility set (bounded by the production frontier) in
output (good 1–good 2) space is defined as

PPS =

⎧⎪⎨⎪⎩
(Q1, Q2)|Q1 ≤ F (X1, Y 1) = [X1Y 1]1/2

Q2 ≤ G(X2, Y 2) = [X2, Y 2]1/3

X1 + X2 = X, Y 1 + Y 2 = Y

⎫⎪⎬⎪⎭ .

Describe this set. What is the relationship of the production frontier to
the locus of isoquant tangencies in the Edgeworth box?

4.10 The allocation is technically efficient when inputs have been allocated so
that there is maximum output of y for each volume of x and vice versa. It
is generally assumed that technical efficiency is a necesary condition for
Pareto efficiency. Why?

4.11 The marginal rate of transformation (of x for y, also known as the rate of
product transformation) is the ratio – at an efficient allocation – at which
the economy can gain an additional unit of y by sacrificing a marginal unit
of x. At a technically efficient allocation,

MRTx,y = gL/fL = gT /fT .

(a) Do a dimensional analysis (that is, figure out the units in which the
marginal rate of transformation is measured – is it miles per hour of
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labor? acres per labor hour?) to show that these ratios are measured in
the right units.

(b) Explain in words why the expression gL/fT is the MRTx,y .
(c) Explain in words why it is an efficiency condition that gL/fL = gT /fT .

That is, if (assuming an interior solution) gL/fL �= gT /fT , how can
there be a reallocation that increases output of boxes x and y?
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Existence of general equilibrium in an economy
with an excess demand function

General equilibrium theory focuses on finding market equilibrium prices for all
goods at once. Because there are distinctive interactions across markets (for exam-
ple, between the prices of oil, gasoline, and the demand for SUVs) it is important
that the equilibrium concept include the simultaneous joint determination of equi-
librium prices. The concept can then represent a solution concept for the economy
as a whole and not merely for a single market that is artificially isolated. General
equilibrium for the economy consists of an array of prices for all goods, where
simultaneously supply equals demand for each good. The prices of SUVs and of
gasoline both adjust so that demand and supply of SUVs and of oil are each equated.

Let there be a finite number N of goods in the economy. Then a typical array of
prices could be represented by an N-dimensional vector such as

p = (p1, p2, p3, . . . , pN−1, pN ) = (3, 1, 5, . . . , 0.5, 10).

The first coordinate represents the price of the first good, the second the price of
the second good, and so forth until the N th coordinate represents the price of the
N th good. This expression says that the price of good 1 is three times the price
of good 2, that of good 3 is five times the price of good 2, ten times that of good
N − 1, and half that of good N .

We simplify the problem by considering an economy without taking account of
money or financial institutions. Only relative prices (price ratios) matter here, not
monetary prices. This is an assumption common in microeconomic modeling in
which the financial structure is ignored. There would be no difference in this model
between a situation where the wage rate is $1 per hour and a car costs $1,000 and
another where the wage rate is $15 and the same car costs $15,000.

Because only the relative prices matter, and not their numerical values, we can
choose to represent the array of prices in whatever numerical values are most con-
venient. We will do this by confining the price vectors to a particularly convenient
set known as the unit simplex. The unit simplex comprises a set of N-dimensional
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vectors fulfilling a simple restriction: Each coordinate of the vectors is nonnegative,
and together the N coordinates sum up to 1. We think of a point in the simplex
as representing an array of prices for the economy. There is no loss of generality
in this formulation. Any possible combination of (nonnegative) relative prices can
be represented in this way. To convince yourself of this, simply take any vector of
nonnegative prices you wish. Take the sum of the coordinates, and divide each term
in the vector by this quantity. The result is a vector in the unit simplex reflecting the
same relative prices as the original price vector. Hence, without loss of generality
we can confine attention to a price space characterized as the unit simplex.

Formally, our price space, the unit simplex in RN , is

P =
{

p | p ∈ RN, pi ≥ 0, i = 1, . . . , N,

N∑
i=1

pi = 1

}
. (5.1)

The unit simplex is a (generalized) triangle in N-space. For N = 2, it is a line
segment running from (1, 0) to (0, 1); for N = 3, it is the triangle with angles
(vertices) at (1, 0, 0), (0, 1, 0), and (0, 0, 1); for N = 4, it is a tetrahedron (a
three-sided pyramid with triangular sides and base) with vertices at (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1); and so forth in higher dimensions.

A household’s demand for consumption or a firm’s supply plans are represented
as an N-dimensional vector. Each of the commodities is represented by a coordi-
nate. We will suppose there is a finite set of households whose names are in the set
H . For each household i ∈ H , we define a demand function, Di(p), as a function
of the prevailing prices p ∈ P , that is, Di : P → RN

+ . There is a finite set of firms
whose names are in the set F , each with a supply function Sj (p), which also takes
its values in real N-dimensional Euclidean space: Sj : P → RN . The economy has
an initial endowment of resources r ∈ RN

+ that is also supplied to the economy.
We combine the individual demand and supply functions to get a market excess

demand function representing unfulfilled demands (as positive coordinates) and
unneeded supplies (as negative coordinates). The market excess demand function
is defined as

Z(p) =
∑
i∈H

Di(p) −
∑
j∈F

Sj (p) − r, (5.2)

Z : P → RN (5.3)

Each coordinate of the N-dimensional vector p represents the price of the good
corresponding to the coordinate. The price vector p is (p1, p2, p3, . . . , pN ), where
pk is the price of good k. Z(p) is an N-dimensional vector, each coordinate
representing the excess demand (or supply if the coordinate has a negative value)
of the good represented. Z(p) ≡ (Z1(p), Z2(p), Z3(p), . . . , ZN (p)), where Zk(p)
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is the excess demand for good k. When Zk(p), the excess demand for good k, is
negative, we will say that good k is in excess supply. We will assume the following
properties on Z(p):

Walras’s Law: For all p ∈ P,

p · Z(p) =
N∑

n=1

pn · Zn(p) =
∑
i∈H

p · Di(p) −
∑
j∈F

p · Sj (p) − p · r = 0.

The economic basis for Walras’s Law involves the assumption of scarcity and
the structure of household budget constraints. The value of aggregate household
expenditure is

∑
i∈H p · Di(p). The term

∑
j∈F p · Sj (p) + p · r is the value of

aggregate household income (value of firm profits plus the value of endowment).
The Walras Law says that expenditure equals income.

Continuity:

Z : P → RN, Z(p) is a continuous function for all p ∈ P.

That is, small changes in p result in small changes in Z(p).

Continuity of Z(p) reflects continuous behavior of household and firm demand
and supply as prices change. It includes the economic assumptions of diminish-
ing marginal rate of substitution (MRS) for households and diminishing marginal
product of inputs for firms.

We assume in this chapter that Z(p) is well defined and fulfills Walras’s Law and
Continuity. As mathematical theorists, part of our job is to derive these properties
from more elementary properties (so that we can be sure of their generality) and
to develop models and the mathematical structure needed to deal with the many
situations in which Z(p) is not well defined.1 In Chapters 11 through 18 and
23 to 25, we will use a formal axiomatic method: describing the economy as a
mathematical model, stating economic assumptions in formal mathematical form,
and finally deriving results like Walras’s Law and Continuity and the existence of
market equilibrium as the logical result of these more elementary assumptions.

The economy is said to be in equilibrium if prices in all markets adjust so that
for each good, supply equals demand. When supply equals demand, the excess
demand is zero. The exception to this is that some goods may be free and in excess
supply in equilibrium.2 Hence, we characterize equilibrium by the property that for

1 For example, when the price of a desirable good is zero, there may be no well-defined value for the demand
function at those prices (since the quantity demanded will be arbitrarily large). Nevertheless, it is important
that we be able to deal with free goods (zero prices).

2 Of course, a price of zero is hard to distinguish from no price at all. Goods that are free may not even be thought
of as property. Examples of free goods include rainwater, air, or access to the oceans for sailing.
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each good i, the excess demand for that good is zero (or in the case of free goods,
the excess demand may be negative – an excess supply – and the price is zero).

Definition The expression po ∈ P is said to be an equilibrium price vector if
Z(po) ≤ 0 (0 is the zero vector; the inequality applies coordinatewise) with po

k = 0
for k such that Zk(po) < 0. That is, po is an equilibrium price vector if supply equals
demand in all markets (with possible excess supply of free goods).

We will now state and prove the major result of this introduction, that under the
assumptions introduced above, Walras’s Law and Continuity, there is an equilibrium
in the economy. To do this, we will need one additional piece of mathematical
structure, the Brouwer Fixed-Point Theorem.

Theorem 5.1 (Brouwer Fixed-Point Theorem) Let f (·) be a continuous func-
tion, f : P → P . Then there is x∗ ∈ P so that f (x∗) = x∗.

The Brouwer Fixed-Point Theorem is a powerful mathematical result. We will
use it again in later chapters. It takes advantage of the distinctive structure of the
simplex. It says that if we have a continuous function that maps the simplex into
itself, then there exists some point on the simplex that is left unchanged in the
process. The unchanged point is the fixed point. We can now use this powerful
mathematical result to prove a powerful economic result – the existence of general
economic equilibrium.

Theorem 5.2 3 Let Walras’s Law and Continuity be fulfilled. Then there is p∗ ∈ P

so that p∗ is an equilibrium.

Proof The proof of the theorem is the mathematical analysis of an economic story.
We suppose prices to be set by an auctioneer. He calls out one price vector p, and
the market responds with an excess demand vector Z(p). Some goods will be in
excess supply at p, whereas others will be in excess demand. The auctioneer then
does the obvious. He raises the price of the goods in excess demand and reduces
the price of the goods in excess supply. But not too much of either change can be
made; prices must be kept on the simplex. How should he be sure to keep prices on
the simplex? First, the prices have to stay nonnegative. When he reduces a price,
he should be sure not to reduce it below zero. When he raises prices, he should
be sure that the new resulting price vector stays on the simplex. How can he do
this? He adjusts the new prices so that they sum up to one. Moreover, we would

3 Acknowledgment and thanks to John Roemer for help in simplifying the proof.
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like to use the Brouwer Fixed-Point Theorem on the price adjustment process;
so the auctioneer should make price adjustment a continuous function from the
simplex into itself. This leads us to the following price adjustment function T ,
which represents how the auctioneer manages prices.

Let T : P → P , where T (p) = (T1(p), T2(p), . . . , Tk(p), . . . , TN (p)). Tk(p) is
the adjusted price of good k, adjusted by the auctioneer trying to bring supply and
demand into balance. Let γ k > 0. The adjustment process of the kth price can be
represented as Tk(p), defined as follows:

Tk(p) ≡ max[0, pk + γ kZk(p)]
N∑

n=1

max[0, pn + γ nZn(p)]

. (5.4)

The function T is a price adjustment function. It raises the relative price of goods
in excess demand and reduces the price of goods in excess supply while keeping
the price vector on the simplex. The expression pk + γ kZk(p) represents the idea
that prices of goods in excess demand should be raised and those in excess supply
should be reduced. The operator max[0, ·] represents the idea that adjusted prices
should be nonnegative. The fractional form of T reminds us that after each price is
adjusted individually, they are then readjusted proportionally to stay on the simplex.
For T to be well defined, we must show that the denominator is nonzero, that is,

N∑
n=1

max[0, pn + γ nZn(p)] �= 0. (5.5)

We omit the formal demonstration of (5.5), noting only that it follows from Walras’s
Law. For the sum in the denominator to be zero or negative, all goods would have to
be in excess supply simultaneously, which is contrary to our notions of scarcity and –
it turns out – to Walras’s Law as well. Recall that Z(·) is a continuous function. The
operations of max[], sum, and division by a nonzero continuous function maintain
continuity. Hence, T (p) is a continuous function from the simplex into itself.

By the Brouwer Fixed-Point Theorem, there is p∗∈P so that T (p∗) = p∗.
Because T (·) is the auctioneer’s price adjustment function, this means that p∗

is a price at which the auctioneer stops adjusting. His price adjustment rule says
that once he has found p∗ the adjustment process stops.

Now we have to show that the auctioneer’s decision to stop adjusting the price
is really the right thing to do. That is, we’d like to show that p∗ is not just the
stopping point of the price adjustment process but that it actually does represent
general equilibrium prices for the economy. We therefore must show that at p∗ all
markets clear with the possible exception of a few with free goods in oversupply.
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Because T (p∗) = p∗, for each good k, Tk(p∗) = p∗
k . That is, for all k =

1, . . . , N ,

p∗
k = max[0, p∗

k + γ kZk(p∗)]
N∑

n=1

max[0, p∗
n + γ nZn(p∗)]

. (5.6)

Looking at the numerator in this expression, we can see that the equation will be
fulfilled either by

p∗
k = 0 (Case 1) (5.7)

or by

p∗
k = p∗

k + γ kZk(p∗)
N∑

n=1

max[0, p∗
n + γ nZn(p∗)]

> 0 (Case 2). (5.8)

Case 1 p∗
k = 0 =max[0, p∗

k +γ kZk(p∗)]. Hence, 0≥ p∗
k +γ kZk(p∗)= γ kZk(p∗)

and Zk(p∗) ≤ 0. This is the case of free goods with market clearing or with excess
supply in equilibrium.

Case 2 To avoid repeated messy notation, let

λ = 1
N∑

n=1

max[0, p∗
n + γ nZn(p∗)]

(5.9)

so that Tk(p∗) = λ(p∗
k + γ kZk(p∗)). Because p∗ is the fixed point of T we have

p∗
k = λ(p∗

k + γ kZk(p∗)) > 0. This expression is true for all k with p∗
k > 0, and λ is

the same for all k. Let’s perform some algebra on this expression. We first combine
terms in p∗

k ,

(1 − λ)p∗
k = λγ kZk(p∗); (5.10)

then multiply through by Zk(p∗) to get

(1 − λ)p∗
kZk(p∗) = λγ k(Zk(p∗))2 (5.11)

and now sum over all k in Case 2, obtaining

(1 − λ)
∑

k∈Case2

p∗
kZk(p∗) = λ

∑
k∈Case2

γ k(Zk(p∗))2. (5.12)
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Walras’s Law says

0 =
N∑

k=1

p∗
kZk(p∗) =

∑
k∈Case1

p∗
kZk(p∗) +

∑
k∈Case2

p∗
kZk(p∗). (5.13)

But for k ∈ Case 1, p∗
kZk(p∗) = 0, and so

0 =
∑

k∈Case1

p∗
kZk(p∗). (5.14)

Therefore, ∑
k∈Case2

p∗
kZk(p∗) = 0. (5.15)

Hence, from (5.11) we have

0 = (1 − λ) ·
∑

k∈Case2

p∗
kZk(p∗) = λ ·

∑
k∈Case2

γ k(Zk(p∗))2. (5.16)

Using Walras’s Law, we established that the left-hand side equals 0, but the right-
hand side can be zero only if Zk(p∗) = 0 for all k such that p∗

k > 0 (k in Case 2).
Thus, p∗ is an equilibrium. This concludes the proof. QED

The demonstration here is striking; it displays the essential economic and math-
ematical elements of the proof of the existence of general equilibrium. These are
the use of a fixed-point theorem, of Walras’s Law, and of the continuity of excess
demand. If the economy fulfills continuity and Walras’s Law, then we expect it to
have a general equilibrium. The mathematics that assures us of this result will be
a fixed-point theorem. Most of the rest of this book is devoted to developing, from
more fundamental economic and mathematical concepts, the tools and properties
demonstrated here.

5.1 Bibliographic note

The treatment in this chapter parallels Arrow-Hahn (1971), chapter 2.

Exercises

5.1 Consider the following example of supply and demand relations between
two markets. There are two goods, denoted 1 and 2, with prices p1 and
p2, supply functions S1(p1, p2) and S2(p1, p2), and demand functions
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D1(p1, p2) and D2(p1, p2). These are specified by the expressions

S1(p1, p2) = 3p1; D1(p1, p2) = 8 − 4p2 − p1; p2 ≤ 2

and

S2(p1, p2) = 5p2; D2(p1, p2) = 24 − 6p1 − p2; p1 ≤ 4.

The market for good 1 is said to be in equilibrium at prices (po
1, p

o
2) where

S1(po
1, p

o
2) = D1(po

1, p
o
2). The market for good 2 is said to be in equilibrium

at prices (p′
1, p

′
2) where S2(p′

1, p
′
2) = D2(p′

1, p
′
2). Demonstrate that each

market has an equilibrium when the other’s price is fixed. Show that,
nevertheless, no pair of prices exists for the two markets at which they are
both in equilibrium. Does this supply–demand system provide a counter
example to Theorem 5.2, the existence of general equilibrium prices?

5.2 Recall the intermediate value theorem:

Intermediate Value Theorem Let [a, b] be a closed interval in R, and let
h be a continuous real valued function on [a, b] so that h(a) < h(b). Then
for any real k so that h(a) < k < h(b) there is x ∈ [a, b] so that h(x) = k.

Consider a two-commodity economy with an excess demand function
Z(p). The price space is the unit simplex in R2. Let Z(p) be continuous
and bounded and fulfill Walras’s Law as an equality (p · Z(p) = 0) when
both prices are positive. The notation (0, 1) indicates the price vector with
the price of good 1 equal to 0; (1,0) indicates the price vector with the price
of good 1 equal to 1. Assume Z1(0, 1) > 0, Z1(1, 0) < 0, Z2(0, 1) < 0,
Z2(1, 0) > 0. Using the Intermediate Value Theorem, and without using
the Brouwer Fixed-Point Theorem, show that the economy has a general
equilibrium. That is, show that there is a price vector p∗ so that Z1(p∗) =
(Z1(p∗), Z2(p∗)) = (0, 0).

5.3 Walras’s Law can be stated as p · Z(p) = 0, where Z(p) is the N-
dimensional excess demand function.

Walras’s Law is sometimes interpreted as saying that if all markets but
one clear, then the remaining market must clear as well. Demonstrate this
result, assuming pn > 0 for all n = 1, 2, . . . , N.

5.4 The price space in a general equilibrium model is typically described as
the unit simplex in RN . What is the economic significance of this choice?
Would it apply equally well to a model with money?

5.5 Define P as the unit simplex in RN . The Brouwer Fixed-Point Theorem
can be stated as

Let f : P → P , f continuous. Then there is p∗ in P so that f (p∗) = p∗.
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This theorem is used to prove the existence of general competitive equilib-
rium. To allow for a more general price space, we might wish to allow the
price space to be RN

+ (the closed nonnegative quadrant of RN ) instead of
P . Would the Brouwer Fixed-Point Theorem apply equally well to RN

+?
Would a continuous mapping from RN

+ into RN
+ generally have a fixed

point?



Part B

Mathematics

Chapters 6 through 9 present a survey of all of the mathematics used in Chapters 10
through 22 – the mathematics needed to describe an economy with continuous
supply and demand functions. Many of the topics treated here are part of the usual
content of an introductory course on analysis in RN : sets, limits, convergence,
open and closed sets, and continuous functions. In addition, there are topics that
often are not prominent in the course on real analysis that turn out to be central
to mathematical economics: convexity, separation theorems, fixed-point theorems,
the Shapley-Folkman Theorem. This part assumes the student is familiar with the
notation and concepts of analytic geometry. It is not a substitute for a course in real
analysis (to which the student is strongly recommended).

Prof. Debreu (1986) reminds us of the distinctive usefulness of Euclidean N-
dimensional space:

[Economics’s] central concepts, commodity and price, are quantified in a unique manner,
as soon as units of measurement are chosen. Thus for an economy with a finite number of
commodities, the action of an economic agent is described by listing his input, or his output,
of each commodity. Once a sign convention distinguishing inputs from outputs is made, the
action of an agent is represented by a point in the commodity space, a finite-dimensional
real vector space. Similarly the prices in the economy are represented by a point in the
price space, the real vector space dual of the commodity space. The rich mathematical
structure of those two spaces provides an ideal basis for the development of a large part of
economic theory. Finite dimensional commodity and price spaces can be, and usually are,
identified and treated as a Euclidean space. The stage is thus set for geometric intuition
to take a lead role in economic analysis. That role is manifest in the figures that abound
in the economics literature, and some of the great theorists have substituted virtuosity in
reasoning on diagrams for the use of mathematical form. As for mathematical economists,
geometric insight into the commodity–price space has often provided the key to the solution
of problems in economic theory.
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In Part G, we generalize this treatment to include set-valued supplies and
demands (as might arise for a firm with a linear production technology or a
household with perfect substitution in its preferences). Chapter 23 (in Part G)
presents the concepts and techniques treating the point to set mappings used in
Chapter 24.



6

Logic and set theory

Let us review some basic elements of set theory:

Logical inference In mathematical logic the word implies means “leads to the
logical inference that” and can be represented by the symbol of the double shaft
arrow, ⇒. This represents a strong causal relation.

Definition of a set We think of a set as a group or collection, defined by the items
in the collection. A typical set might consist of all UCSD freshmen, all surfers in
Southern California (there is obviously some overlap here), or the positive integers
between 1 and 10. We might call a set by another name, such as a collection, a
family, a class, an aggregate, or an ensemble. We use the notation of a pair of

braces, { }, to denote a set. We can use a description of elements of the set to
define the set. Thus, the entity denoted {x | x has property P } is the set of all things
with property P (whatever that is). The set of positive integers between 1 and 10
can be expressed then as {1, 2, . . . , 9, 10} or, equivalently, as {x | x is an integer,
1 ≤ x ≤ 10}.

Elements of a set The elements of a set are the things in the collection. If x is an
element of the set A, we write x ∈ A. If, on the contrary, x is not an element of A,
we write x �∈ A. We distinguish between an element of the set A and the set itself.
Thus, x and the set consisting of x are distinct; x �= {x}, but x ∈ {x}. We use φ to
denote the empty set (≡ null set), the set with no elements.

Subsets We are interested in set inclusion. If A and B are sets and every element of
A is an element of B, then we say that A is a subset of B. We denote this relationship
as A ⊂ B or A ⊆ B (less commonly, B ⊃ A). We will use the inclusion symbols,
⊂ and ⊆, interchangeably to denote the subset relationship. Every nonempty set
has at least two subsets, itself and the empty set (A ⊂ A and φ ⊂ A).
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Set equality If the sets A and B have precisely the same elements, they are equal,
and we write A = B. For sets A and B, A = B if and only if x ∈ A implies x ∈ B

and y ∈ B implies y ∈ A. From this definition of set equality and the definition
of subsets immediately preceding, it follows that A = B if and only if A ⊂ B and
B ⊂ A.

Set union We may wish to combine the elements of two or more distinct sets into
a combined set known as the union of the original sets. The operation union is
denoted ∪. The union of the sets A and B is denoted A ∪ B. A ∪ B = {x | x ∈ A

or x ∈ B} (the mathematician’s use of or includes “or both”). We can take the
union over a family of sets (for example, ∪50

j=1Aj ).

Set intersection We sometimes wish to consider the set of those elements that
are common to two distinct sets. This is known as the intersection of the two
sets, denoted by the symbol ∩. Formally, the intersection of the sets A and B is
A ∩ B = {x | x ∈ A and x ∈ B}. If A and B have no elements in common then
their intersection is the null set, A ∩ B = φ, and A and B are said to be disjoint.
Just as we can take multiple unions, so we can take multiple intersections, asking
what are the elements in common to a large family of sets, for example, ∩N

i=1Ai .
We now have enough structure on set operations to demonstrate some relations

among them.

Theorem 6.1 Let A, B, and C be sets, then

(a) A ∩ A = A, A ∪ A = A (idempotency)
(b) A ∩ B = B ∩ A, A ∪ B = B ∪ A (commutativity)
(c) A ∩ (B ∩ C) = (A ∩ B) ∩ C (associativity)

A ∪ (B ∪ C) = (A ∪ B) ∪ C

(d) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (distributivity)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Proof Exercise 6.3. QED

Complementation (set subtraction) We are sometimes interested in identifying
those elements of one set, A, that are not elements of a second set, B. This set is
known as A minus B or the complement of B in A. The operation of complementa-
tion is denoted by the backslash symbol, \. Formally, A\B = {x | x ∈ A, x �∈ B}.
If A is understood, without explicitly specifying it, we may unambiguously refer to
A\B as “B complement.” This will occur, for example, if A is the whole space; in
that case B complement consists of the elements of the whole space not included
in B.
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Cartesian product It is sometimes very useful to be able to discuss the set of
combinations of elements, one from each of two or more sets, while retaining the
identity of the original sets. For two sets, we do this by forming the set of ordered
pairs whose first element is from the first of the sets and whose second element
is from the other. This is known as Cartesian multiplication, and its result is a
Cartesian product. We denote the operation of taking a Cartesian product by a
multiplication symbol, ×, and denote an ordered pair by the symbol (·, ·). Thus, the
Cartesian product of sets A and B is denoted A × B = {(x, y) | x ∈ A, y ∈ B}.

The order of elements in the ordered pair (x, y) is essential. If x �= y, then
(x, y) �= (y, x).

Example 6.1 Let A = B = [0, 1] = {x | x is a real number, 0 ≤ x ≤ 1}, then A ×
B is the unit square.

Example 6.2 Let A be the set of all given names and B the set of all surnames.
Then A × B is the set of all possible first and last name combinations, and a typical
element of A × B, (a, b), is a possible entry in the list of individual names.

We can take multiple products, for example, 	K
i=1Ai = A1 × A2 × · · · × AK .

For our purposes, the Cartesian product is used most commonly to describe the set
of possible commodity bundles: the set of possible consumption and production
plans. We will typically say there are N possible commodities. We describe the
quantity of a particular commodity then by a real number, that is, by a positive
or negative real number. We denote the set of real numbers by R. A possible
commodity combination, a mix of the N different goods, can thus be described
by listing the quantity of each of the N different goods in the combination. The
amount of any single good will be denoted by an element of R. Hence, the amounts
in a combination of the N goods can be denoted by an element of RN , an N-
dimensional vector, which is an element of the N-fold Cartesian product of R with
itself. RN = R × R × R × · · · × R, where the product is taken N times.

The order of elements in the ordered N-tuple (x, y, . . .) is essential. If x �= y,
then (x, y, . . .) �= (y, x, . . .).

6.1 Quasi-orderings

As we develop our ideas about the theory of the household (equivalently, the
consumer) we will want to have a systematic notion of tastes or preferences. This is
sometimes summarized in a utility function, but traditionally in general equilibrium
theory we try to start from a more fundamental notion of tastes, represented as a
simple ordering of household preferences. A theory of the utility function is then
derived from this primitive notion of the preference ordering.
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By a binary relation we mean some characteristic that ties together two things,
for example:

a is the brother of b,
c is to the left of d,
e is bigger than f ,
g is preferred to h,
i is equal to j .

We can denote a binary relation by some sign between the characters; for example,
aβb could represent “a is the brother of b.” In defining a relation, we must also
define the domain on which it is defined.

A number of other definitions that will be helpful are presented next.

Reflexivity Let R denote a binary relation on S. The relation R is said to be
reflexive if for all x ∈ S, xRx. The relation is reflexive if all elements in the
domain of the relation bear that relation to themselves. For example, the equality
relation (=) is reflexive.

Transitivity The binary relation R is said to be transitive if xRy and yRz implies
xRz. For example, the equality relation is transitive, as is the greater than relation
(>) on the set of real numbers R.

Quasi-orderings A binary relation that is reflexive and transitive is called a pre-
order or quasi-order. We can use any convenient notation to denote a quasi-ordering.
The generic quasi-ordering symbol is �. A typical quasi-ordering is the greater
than or equal to relation, ≥, on the set of real numbers R.

Complete relations The relation R on S is said to be complete if for every x, y ∈
S, xRy or yRx, or both. The relation is complete on S if it is defined in one
direction or the other (or both) for all pairs of elements of S. The relation R is
complete if it is well defined on every pair of elements in S.

Upper bound of a quasi-ordering Let S be quasi-ordered by �. Let X ⊂ S.
Then y ∈ S is said to be an upper bound for X if for each x ∈ X, y � x. Let
Y = {y | y � x for all x ∈ X}. If there is y ′ ∈ Y so that y � y ′ for all y ∈ Y , then
y ′ is said to be X’s least upper bound.

Note: It is a property of the real numbers R quasi-ordered by ≥ that whenever
X ⊂ R has an upper bound, X has a least upper bound.
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Upper contour set of � Let S be quasi-ordered by �. Starting from a point y ∈ S,
we can describe the set of points superior or equivalent to y under �, y’s upper
contour set: A(y) = {x | x ∈ S, x � y}.

Similarly, we can describe y’s lower contour set under �, the set of values
inferior or equivalent to y under �: G(y) = {x | x ∈ S, y � x}.

In the case where � is a preference ordering, we are familiar with representing
the ordering by its indifference curves. The indifference curve through y would be
represented as

{x | x ∈ S, x � y and y � x} = A(y) ∩ G(y).

6.2 Functions

We typically think of mathematical functions as relationships between one class
of values and another. For example, the temperature function might give the tem-
perature as a function of the latitude and longitude of a location. In economic
applications we usually think of demand and supply functions as a relationship
between prices and quantities of goods.

Definition of a function Let A and B be sets. To each element x ∈ A we associate
some single element y ∈ B, and we write y = f (x), f : A → B, where f denotes
the function. A is the domain of the function, B is its range, and f is a function
mapping from A to B. Alternatively, we may say that f is a subset of A × B such
that for each x ∈ A there is one and only one y ∈ B so that (x, y) ∈ f . This subset
is also known as the graph of f .

Note that for some y ∈ B there may be no x ∈ A such that y = f (x). Conversely,
if for every y ∈ B there is x ∈ A such that y = f (x), then we say f maps A onto B.

The inverse of the function f is denoted f−1; f −1 : B → A. The expression
f −1 is defined as f −1(y) = {x | x ∈ A, y = f (x)}. If f −1(y) has no more than
one element for all y ∈ B, then we say that f is one-to-one.

6.3 Bibliographic note

Chapter 1 of Debreu (1959) provides an excellent concise survey of the mathemat-
ical results presented here and in Chapter 23.

Exercises

6.1 Let A and B be sets. Prove that A = B if and only if A ⊂ B and B ⊂ A.
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6.2 Recall Theorem 6.1. Let A, B, and C be sets, then
(a) A ∩ A = A, A ∪ A = A (idempotency)
(b) A ∩ B = B ∩ A, A ∪ B = B ∪ A (commutativity)
(c) A ∩ (B ∩ C) = (A ∩ B) ∩ C (associativity)

A ∪ (B ∪ C) = (A ∪ B) ∪ C

(d) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (distributivity)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Draw a diagram depicting Theorem 6.1.
6.3 Prove Theorem 6.1.
6.4 Give two examples of a reflexive relation and two examples of an irreflexive

relation.
6.5 Give two examples of a transitive relation and two examples of an intran-

sitive relation.
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RN : Real N-dimensional Euclidean space

Most of the sets, functions, and relations we will deal with are represented in real
N-dimensional Euclidean space. The space is the N-fold Cartesian product of the
real line, R, with itself, using the Euclidean metric (a measure of distance between
points of the set). N is taken to be a (finite) positive integer. We typically take
N as the number of commodities in the economy. We are familiar with R2 as the
plane of the blackboard or the page and R3 as the conventional view of three-
dimensional space. Visualizing RN for large N may take rather more imagination
but the mathematical principles of working in this space are the same as in R2 or R3.

Definition of R Our understanding of RN starts with our understanding of R.
R is the space of real numbers, positive and negative: the rationals, irrationals,
and integers. It is the real line consisting of all finite (positive and negative) real
numbers.

There is no limit to how large an element of R can be; there is no limit how
negative (that is, large in absolute value but of negative sign) an element of R
can be. We describe this property by saying there are elements of R “arbitrarily
large” or “arbitrarily negative.” Nevertheless, ±∞ are not elements of R; rather,
that notation describes the process of moving through elements that are arbitrarily
large or negative. Addition, subtraction, multiplication, and division are useful
operations on R and, of course, retain their familiar properties.

We denote a closed interval in R as [a, b] ≡ {x | x ∈ R, a ≤ x ≤ b}. The reals,
R, are said to be complete, that is, between any two distinct reals there is another
real. This is formalized as the nested intervals property:

Consider a sequence of closed intervals in R, [xν, yν] with xν<yν and [xν+1, yν+1] ⊆
[xν, yν], ν = 1, 2, 3, . . . . Then there is z ∈ R so that z is an element of all of the inter-
vals in the sequence of intervals, z ∈ ∩∞

ν=1[xν, yν]. This is the nested intervals property,
representing the completeness of R.

75



76 RN : Real N-dimensional Euclidean space

2

10

x=(x
1
,x

2
)

x
1

x
2

Fig. 7.1. A vector in R2.

RN is the N-fold Cartesian product of R. The typical element of RN , x ∈ RN ,
is an N -tuple of real numbers and will be denoted x = (x1, x2, . . . , xN ), where
xi is the ith coordinate of x. We can depict x as a point (or vector) in RN . In
some applications, the notion of x as a vector emphasizes direction and magni-
tude. We define the ith projection of x, or the projection of x on the ith axis, as
(0, 0, . . . , xi, 0, . . . , 0), where the entry xi occurs in the ith coordinate. Equiva-
lently, the projection of x on the ith axis is the vector on the axis that results from
dropping a perpendicular to the axis from x. See Figure 7.1.

Algebra of elements of RN We need to have well-defined, well-behaved concepts
of addition and subtraction in RN . We will define addition coordinatewise. Thus
we define x + y = (x1 + y1, x2 + y2, . . . , xN + yN ). We can depict the addition
of x and y graphically as the parallel movement of the vector y to the end of the
vector x, forming a parallelogram whose extreme point is x + y. See Figure 7.2.

The identity element under addition is the origin: the vector whose coordinates
are all zero, traditionally denoted by the character 0.

We define vector subtraction by way of vector addition. Let y ∈ RN , and let −y

be the vector consisting of y with each of its coordinates multiplied by −1. Then
we define x − y ≡ x + (−y).

We will sometimes wish to multiply an element of RN , a vector, by an element of
R, a scalar. We define multiplication by a scalar in the obvious consistent fashion.
Let

t ∈ R, x ∈ RN, then tx ≡ (tx1, tx2, . . . , txN ).

We define the dot product (or scalar product) of two elements of RN as the sum
of the products of the corresponding coordinates. Let x, y ∈ RN ; then we define
the dot product of x and y as x · y ≡∑N

i=1 xiyi . The economic application of the
dot product is usually to evaluate an economic action at prevailing prices. Thus, if
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Fig. 7.2. Vector addition.

p ∈ RN is a price vector and y ∈ RN is an economic action, then p · y is the value
of the action y at prices p.

Norm in RN It is very convenient to have a measure of distance and length in
RN . Our concept of length comes from Euclidean geometry. It is measured by the
root of the sum of the squared coordinates of a vector. We will define the length
of a vector as the distance of the vector from the origin, 0. The distance between
two vectors is the length of the difference (subtraction) between them. Let x ∈ RN .
Then, we say the length of x is

|x| ≡ ||x|| ≡ √
x · x ≡

√√√√ N∑
i=1

x2
i .

Let x, y ∈ RN . Then the distance between the two points x and y is ||x − y||. That
is, |x − y| = √∑

i(xi − yi)2. Note a few properties of this measure of distance
that certainly represent a reasonable concept of distance: The distance between
two points of RN is always nonnegative; ||x − y|| ≥ 0 all x, y ∈ RN ; and the
distance between two points of RN is zero if and only if the points are identical
(that is, |x − y| = 0 if and only if x = y).

Now that we have a concept of distance, we have a corresponding concept of
closeness. This leads to a most important concept in analysis: limiting behavior.
We can characterize whether a sequence of points is getting close to another point
(approaching a limit).

Limits of sequences We define a sequence in R as an ordered collection of real
numbers. The elements of the sequence are numbered (indexed) by the positive
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integers, typically denoted by the index i or ν (nu, the Greek n). We are inter-
ested only in infinite sequences, so i or ν take on the values 1, 2, 3, . . . and
so on, indefinitely. The notion of their running on indefinitely will be denoted
ν = 1, 2, 3, . . . . The limiting behavior of a sequence turns out to be a very powerful
concept.

For example, consider the sequence xν, ν = 1, 2, 3, . . . , where xν is defined
to have the value 1/ν. That is, the sequence xν runs 1, 1/2, 1/3, 1/4, 1/5, . . . .
It is clear that the sequence xν is getting consistently closer to 0 as ν becomes
larger. In the standard terminology, xν approaches 0 as a limit or, equivalently,
xν → 0.

Formalizing this concept in R, let xν ∈ R, ν = 1, 2, . . . . We say that xν → xo if
for any ε > 0 there is a positive integer q(ε) (we use the functional notation to denote
that q(ε) necessarily depends on ε) so that for all q ′ > q(ε), |xq ′ − xo| < ε. That
is, we say that xν approaches xo as a limit if we can always successfully perform
the following exercise: Form a perimeter of radius ε about xo, the proposed limiting
value of the sequence xν . Choose an index far enough out in the list of indices, ν,
and call it q(ε). The choice of q(ε) depends on ε. For smaller values of ε, we may
need to go farther out in the sequence, so q(ε) will be larger. For all index values
ν greater than q(ε), check to see whether xν is within ε of the proposed limit xo.
If so, then the sequence is said to approach xo as a limit. The idea is that for any
radius ε > 0, no matter how small, if we go far enough out in the sequence, all of
the elements of the sequence beyond that point will be within ε of the limit. If that
is the case, then the sequence is said to approach the limit.

We have formalized the notion of a sequence of values approaching a limit in
R. Now we do the same in RN . We define a sequence of points in RN to con-
verge to a limit in RN if each of the coordinate sequences converges. This is
a typical mathematical procedure reducing the analysis to a previously treated
case. Let xν ∈ RN, ν = 1, 2, . . . . We say that xν → xo if for each coordinate
n = 1, 2, . . . , N, xν

n → xo
n .

Theorem 7.1, immediately following, tells us that the identical definition and
procedure for describing convergence of a sequence in R will work equally well in
RN . That is, we can take a radius of size ε about the proposed limit point and see
whether sufficiently far out in the sequence all points of the sequence are contained
within a ball of radius ε centered at the proposed limit. If so, we have the limiting
behavior that is sought.

Theorem 7.1 Let xν ∈ RN, ν = 1, 2, . . . . Then xν → xo if and only if for any
ε > 0 there is q(ε) such that for all q ′ > q(ε), |xq ′ − xo| < ε.

Proof Exercise 7.1. QED
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Now that we have developed the notion of the limit of a sequence, we can generalize
it to the concept of a cluster point (or accumulation point). If we have a set or
sequence S in RN so that there is an infinite sequence (or subsequence) in S

approaching x◦ as a limit, then x◦ is a cluster point or accumulation point of S. It is
not quite correct to describe x◦ as a limit point (after all, there may be many cluster
points and S may not converge meaningfully to any one), but it can be approached
as a limit by a sequence of points in S.

Open sets We will now define open and closed subsets of RN . These concepts will
prove to be extremely useful in describing our concepts of continuous functions
and formalizing the idea of “closeness” of sets of points to each other. A set O
is said to be open if, starting at any point of O, O contains all nearby points.
More formally, centered at any point x◦ ∈ O, draw a ball of radius ε > 0. If O is
open, then for positive ε sufficiently small, the ball will be contained entirely in O.
Formally,

Let X ⊂ RN . X is said to be open if for every x ∈ X there is an ε > 0 so that
|x − y| < ε implies y ∈ X.

A typical example of an open set in R is an open interval, (a, b) = {x | x ∈ R,

a < x < b}. For any point in (a, b) there is a small positive radius so that all the
values in R within that radius are included in (a, b). Note: φ and RN are open.

The notion of an open set is taken with reference to the space RN . It is occa-
sionally useful to characterize openness relative to another, smaller, subspace. Let
S ⊆ RN,S �= ∅, and let O ⊆ S. O is said to be open in S if for every x ∈ O there
is ε > 0 sufficiently small so that |x − y| < ε and y ∈ S implies y ∈ O. That is,
O is open in S if every sufficiently small open ball centered in O has the same
intersection with S as with O. This is precisely the definition open in RN with S
standing in for RN . Thus we say that B ≡ {(x, y, z)|z = 0, x2 + y2 < 10} is open
in S ≡ {(x, y, z) ∈ R3|z = 0}, even though B is not open in R3.

Closed sets It is very useful to know when the limiting value of a sequence of points
in a set is itself in the set. This issue arises naturally in economics because economic
behavior is characterized by optimization – taking maximum or minimum values.
It is important to know then whether the extremum is part of the opportunity set.
For example, suppose we are trying to choose a point x in the closed interval
[a, b] = {x | x ∈ R, 0 ≤ a ≤ x ≤ b} to maximize x2. The choice would clearly be
x = b. The maximum exists and is a member of the set [a, b]. Now consider the
same problem where the opportunity set is the open interval (a, b) = {x | x ∈ R,

0 ≤ a < x < b}. In this case, there is no maximum in the opportunity set because
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b �∈ (a, b). Maximizing behavior appears not to be well defined. The bottom line is
that it is very convenient for us to have a characterization specifying when limits
of points in a set will be included in the set. This is the concept of closedness.

We define a closed set in RN as a set that includes the limit points of any sequence
of points in the set. A set is closed if it contains all of its cluster points. Formally:

Let X ⊂ RN . X is said to be closed if for every sequence xν, ν = 1, 2, 3, . . . ,

satisfying

(i) xν ∈ X and
(ii) xν → xo,

it follows that xo ∈ X.

Note: Closed and open are not precisely antonyms among sets. Both φ and RN

are closed, as well as open.
We now define the closure of a set. Take any set X in RN . The closure of X is the

smallest closed set containing X, that is, the set of X and all of its cluster points.
Formally, let X ⊆ RN . Then we define the closure of X, denoted X, as

X = {y | there is xν ∈ X, ν = 1, 2, 3, . . . , so that xν → y}.

Theorem 7.2 Let X ⊂ RN . X is closed if RN\X is open.

Proof Exercise 7.4. QED

Theorem 7.3

(1) X ⊂ X.

(2) X = X if and only if X is closed.

Proof Trivial. QED

Bounded sets Boundedness is another characteristic that some subsets of RN

possess, that proves useful in economic applications. As before, consider a simple
optimization problem, finding the value of x in an opportunity set that maximizes
x2. We know from our examples above that it helps if the opportunity set is closed.
Is that enough? No, we will need the opportunity set to be nonempty; there is no
maximizer of x2 in φ, the empty set. Is that all? Suppose the opportunity set is all of
the reals, R. Is there a choice of x ∈ R that achieves a maximum value of x2? No.
For any value of x chosen, there is a larger one elsewhere in R that gives a higher
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value of x2. Once again the issue is the availability of a limiting value, which is
where boundedness comes in. We will say that a subset of RN is bounded if it can
be contained inside a cube of finite size. Define the set

K(k) = {x | x ∈ RN, |xi| ≤ k, i = 1, 2, . . . , N}

to be the cube of side 2k (centered at the origin).

Let X ⊂ RN . X is said to be bounded if there is k ∈ R so that X ⊂ K(k).

Compact sets As the previous examples suggested, when we look for well-defined
maximizing behavior, it will be useful if our opportunity sets are both closed and
bounded. That leads to the definition of compactness:

Let X ⊂ RN . X is said to be compact if X is closed and bounded.

Finite subcover property An open cover of a set X consists of a family of sets A
so that each A ∈ A is open and X ⊂⋃

A∈A A. It is a property of compact sets that
if X ⊆ RN is compact, then every open cover of X contains a finite subcover. That
is, let X ⊆ RN be compact and let A be an open cover of X. Then there is B ⊆ A,
so that B includes only a finite number of elements and X ⊂⋃

B∈B B.

Boundary, interior, and the like Let X ⊂ RN . The interior of X is {y | y ∈ X,
there is ε > 0 so that |x − y| < ε implies x ∈ X}. The interior of X is the biggest
open set contained in X.

Boundary X ≡ X\interior X. The boundary of X is its outer edge, its closure
minus its interior.

Connectedness We say that S, S ⊆ T ⊆ RN , is “closed in T ” if S includes all of
its cluster points that are themselves in T . Thus, for example, every nonempty set
S is closed in S. Similarly, the half open interval in R, (0, 1], which is trivially not
a closed set in R, is closed in the half-open interval (0, 10]. A set S ⊆ RN is said
to be connected if it cannot be expressed as the union of two disjoint nonempty
subsets that are themselves closed in S. RN is connected. Hence, the only two
disjoint closed sets whose union is RN are RN and φ.

Set summation in RN Let A and B be subsets of RN . That is, A ⊆ RN, B ⊆ RN .
Then we define A + B as

A + B ≡ {x | x = a + b, a ∈ A, b ∈ B}.
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Thus, for example, if A is the line segment in R2 between (0,0) and (1,0) and B

is the line segment between (0,0) and (0,1), then A + B would be the square with
corners (0,0), (1,0), (0,1), and (1,1).

The Bolzano-Weierstrass Theorem; completeness of RN We stated without
proof above that the reals, R, are complete. That is, between any two distinct reals,
there is another real number. We can now generalize this property to RN .

Theorem 7.4 (Cantor Intersection Theorem) By an interval in RN , we mean a
set I of the form

I = {(x1, x2, . . . , xN )|a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . ,

aN ≤ xN ≤ bN, ai, bi ∈ R}.
Consider a sequence of nonempty closed intervals Ik such that

I1 ⊇ I2 ⊇ I3 ⊇ . . . ⊇ Ik ⊇ . . . .

Then there is a point in RN contained in all the intervals.

Proof The proof follows from the completeness of the reals, the nested intervals
property on R, and from compactness of Ik. QED

Subsequence Starting from the sequence xν we may select some infinite part of
xν as a subsequence. Thus a subsequence might consist of every third element of
xν or all of the odd-numbered elements of xν or the first, seventh, eighth, . . . , and
so forth elements of xν . The subsequence must itself be a sequence, that is, have
an infinite number of elements, and the sequential order of the elements in the
subsequence must be the same as in the original sequence, xν .

Corollary 7.1 (Bolzano-Weierstrass Theorem for sequences) Let xν, i = 1, 2,

3, . . . be a bounded sequence in RN . Then xν contains a convergent subsequence.

Proof (Exercise 7.6) There are two cases: Either xν assumes a finite number of
values or xν assumes an infinite number of values. QED

7.1 Continuous functions

The concept of continuity is essential to general equilibrium theory. We saw the
tip-off to its importance in Chapter 5, where we applied the Brouwer Fixed-Point
Theorem to prove the existence of equilibrium in the auctioneer’s price-setting
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problem. It was essential there that we be able to describe the price adjustment
procedure as continuous in prices. We used the property of the continuity of demand
and supply functions to show that the price adjustment process was a continuous
mapping from price space into itself. The idea of continuity of a function is that
there should be no jumps in the function values. Small changes in the argument, x,
in the domain should correspond to small changes in the function value, f (x).

Definition of continuity Let f : A → B, A ⊂ Rm, and B ⊂ Rp. Let ε and δ(ε) be
small positive real numbers; we use the functional notation δ(ε) to emphasize that
the choice of δ depends on the value of ε. The function f is said to be continuous
at a ∈ A if

(i) for every ε > 0 there is δ(ε) > 0 such that |x − a| < δ(ε) ⇒ |f (x) − f (a)| <

ε or, equivalently,
(ii) xν ∈ A, ν = 1, 2, . . . and xν → a implies f (xν) → f (a).

The function f is said to be continuous on A if f is continuous at all points a ∈ A.

It will be an exercise below to prove that (i) and (ii) are equivalent.
The essence of continuity is that nearby points in the domain be mapped into

nearby points in the range; there are no jumps. The definition in part (i) says that
for every targeted small variation of function values by which we wish to limit
values of the function, there is a corresponding small radius in the domain so that
if the independent variable is restricted to remain within that radius, the variation
in function values will remain within the desired limits. To see the power of this
definition, think of a discontinuous function, for example,

g(x) =
{−1 for x < 0
+1 for x ≥ 0.

The function g is discontinuous at 0. Set ε = 1/2. There is no δ > 0 so that when x

is restricted to a radius of δ about 0, g(x) will keep within a range of ε about g(0).
There will always be points in the δ-neighborhood where g(x) = −1, far more
than ε away from g(0). Hence the function g is not continuous. This is the kind of
behavior that the definition of continuity rules out. The equivalent definition, part
(ii), describes continuity as the property of f that the image under f of a convergent
sequence in the domain will be a convergent sequence of function values in the
range.

Theorem 7.5 Let f : A → B, where f is continuous on A. Let S ⊂ B, with S

closed. Then f −1(S) is closed in A.
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Proof Let xν ∈ f −1(S) and xν → xo and xo ∈ A. We must show that xo ∈ f −1(S).
Continuity of f implies that f (xν) → f (xo). f (xν) ∈ S and S is closed, so f (xo) ∈
S. Thus xo ∈ f −1(S). QED

Theorem 7.5 says that the inverse image of a closed set under a continuous mapping
is closed.

Theorem 7.6 Let f : A → B, where f is continuous. Let S ⊂ A, with S compact.
Then f (S) is compact.

Proof Closedness: Let yν ∈ f (S), ν = 1, 2, . . . , yν → yo. We must show that
yo ∈ f (S). There is xν ∈ S, f (xν) = yν . By compactness of S, there is a convergent
subsequence of xν . Take the subsequence and relabel, so that xν → xo; then xo ∈ S

by closedness of S. But continuity of f implies that f (xν) → f (xo) = yo, so
f (xo) = yo ∈ f (S) and f (S) is closed as required.

Boundedness: Choose some positive ε. For each x ∈ S, there is a positive δ

(δ’s value depending on both x and ε) so that if y ∈ S and |x − y| < δ, then
|f (x) − f (y)| < ε. For all x in S, consider the open ball centered at x with radius
δ. The value of δ may vary with x. This set of open balls covers S. But every
open cover of a compact set has a finite subcover, that is, that a finite subset of
these open balls covers S. But then the maximum variation in f (S) is ε times the
number of open balls in the finite subcover – a finite number. This completes the
proof. QED

Theorem 7.6 says that the image of a compact set under a continuous mapping is
compact.

The supremum of a set of real numbers (denoted sup) is the least upper bound
of the set under ≥, when this bound exists. For a bounded set of reals, the sup
will necessarily exist. It is equivalent to a maximum when the sup value is actually
achieved in the set. The infimum of a set of real numbers (denoted inf) is the greatest
lower bound of the set under ≥, when it exists. It is equivalent to a minimum when
the inf value is actually achieved in the set.

Corollary 7.2 Let f : A → R, where f is continuous, and S ⊂ A, S �= ∅, with S

compact. Then there are x̄, x∈S such that f (x̄) = sup{f (x) | x ∈ S} and f (x) =
inf{f (x) | x ∈ S}.

This corollary is the most useful single result for economic theory in the analysis
of continuous functions. It gives us a simple sufficient condition to identify when
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a function has a well-defined extremum (maximum or minimum). The corollary
says that two sufficient conditions allow us to say that a real-valued function f

achieves its maximum and minimum on a set S. Those conditions are that f be
continuous throughout S and that S be compact. As we develop the theory of the
firm and the theory of the household in the rest of this volume, much of our effort
will go into setting up the models so that we can characterize the opportunity
sets of firms and households as compact and their maximands as continuous real-
valued functions. That will allow us to apply Corollary 7.2 to achieve well-defined
optimizing behavior.

Let T , C, O ⊂ Rq ; let S ⊂ Rp, C closed in Rq, O open in Rq. Let C ≡
C ∩ T ,O′ ≡ O ∩ T . Then C is said to be “closed in T ,” and O′ is said to be “open
in T .”

Theorem 7.7 Let f : S → T . The following statements are equivalent:

1. f is continuous on S.

2. For every T ⊂ T , T closed in T , f −1(T ) ⊂ S, f −1(T ) is closed in S.
3. For every O′ ⊂ T , O′ open in T , f −1(O′) ⊂ S, f −1(O′) is open in S.

Proof Equivalence of item 2 and item 3 is trivial because f −1(T \T ) is equivalent to
f −1(O′) for suitably chosen T = T \O′. Equivalence of item 1 and item 3 follows
from the ε − δ definition of continuity. QED

Homogeneous functions Let f : Rp → Rq . The function f is said to be homoge-
neous of degree 0 if, for every scalar (real number) λ > 0, we have f (λx) = f (x).
f is said to be homogeneous of degree 1 if, for every scalar λ > 0, we have
f (λx) = λf (x).

7.2 Bibliographic note

Chapter 1 of Debreu (1959) provides an excellent concise survey of the mathemati-
cal results presented here and in Chapter 23. Standard texts in real analysis include
those by Bartle (1976), Bartle and Sherbert (1992), and Rudin (1976). Excellent
treatments focusing on mathematics for economic theory include Carter (2001);
Corbae, Stinchcombe, and Zeman (2009); and Ok (2007).

Exercises

7.1 Prove Theorem 7.1. Let xν ∈ RN, ν = 1, 2, . . . . Then xν → xo if and only
if, for any ε > 0, there is q(ε) such that for all q ′ > q(ε), |xq ′ − xo| < ε.
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7.2 Give two examples of open sets in R and two examples of open sets
in RN .

7.3 Give two examples of closed subsets of R and two examples of closed
subsets of RN .

7.4 Prove Theorem 7.2. Let X ⊂ RN . X is closed if RN\X is open.
7.5 Find a nonempty set in RN whose interior is empty. Find a nonempty set

in RN that is equal to its interior.
7.6 Prove the Bolzano-Weierstrass Theorem for sequences, the corollary to

Theorem 7.4: Let xν be a bounded sequence in RN . Then xν contains a
convergent subsequence. Suggestion: You get to use theorem 7.4 in your
proof. Case 1: xν assumes a finite number of values (though ν runs on
indefinitely). This is the easy case. Case 2: xν assumes an infinite number
of values (though it is contained in a bounded set). In this case, put a cube
around the bounded set. Partition each side of the cube in half, making 2N

subcubes. One (or more) of the subcubes will contain an infinite number
of elements of the sequence. Denote this cube I1. Repeat to define I2. Keep
on repeating. I1 ⊃ I2 ⊃ I2 ⊃ . . . . Apply Theorem 7.4.

7.7 Prove that forms (i) and (ii) of the definition of continuity of a function are
equivalent.

7.8 Show that the following sequences in R are convergent:
(i) xν = 3 + (− 1

10

)ν
, ν = 1, 2, 3, . . .

(ii)xν = 2
ν
+ 10−ν, ν = 1, 2, 3, . . . .

7.9 Show that the following sequence in R is not convergent:

xν = 3ν + (−1)ν3ν, ν = 1, 2, 3, . . . ,

but find a convergent subsequence.

Recall the following definitions, concerning subsets of RN :
� a set is “closed” if it contains all of its cluster points (limit points).
� a set is “open” if, for each point in the set, there is a small ball (neigh-

borhood) centered at the point, contained in the set.
� a set is “bounded” if it can be contained in a cube of finite size, centered

at the origin.
� a set is “compact” if it is both closed and bounded.

7.10 Is the following subset of R2 closed? open? bounded? compact? Explain
your answer. T = 45◦ line through the origin = {(x, y)|(x, y) ∈ R2,

x = y}.
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7.11 Is the following subset of R2 closed? open? bounded? compact? Explain
your answer. U = ball of radius 10 centered at the origin, not including its
boundary = {(x, y)|(x, y) ∈ R2, x2 + y2 < 100}.

7.12 Consider the following function from R into R: f (x) = x2. Is f continuous
at 0? Explain your answer (a nontechnical explanation is sufficient, you
don’t need to do an ε − δ proof).

7.13 Consider the following function from R into R: g(x) = 0 for −1 ≤ x ≤ 1;
g(x) = 1 for x < −1 and for x > 1. Is g continuous at x = −1? Explain
your answer. Is g continuous at x = 0? Explain your answer. (Nontechnical
explanations are sufficient.)

7.14 Let xν = (xν
1 , xν

2 ), ν = 1, 2, 3, . . ., be a sequence in R2. We have two
definitions available for xν → x0 :
(a) Definition 1: Let xi ∈ RN , i = 1, 2, . . . . We say that xi → x0 if for

each coordinate n = 1, 2, . . . , N , xi
n → x0

n;
(b) Definition 2 (from Theorem 7.1): Let xi ∈ RN , i = 1, 2, . . . . Then

xi → x0 if for any ε there is q(ε) such that for all qi > q(ε),
‖xqi − x0‖ < ε.

Show that if xν fulfills Definition 1 then it fulfills Definition 2 (this amounts
to proving in R2 half of the “if and only if” in Theorem 7.1; do not assume
Theorem 7.1).

7.15 Recall that we define Set Summation in RN as follows: Let A ⊆ RN ,
B ⊆ RN . Then

A + B ≡ {x|x = a + b, a ∈ A, b ∈ B} .
Let A, B ⊂ R2. Then,

A = {(x, y)|0 ≤ x ≤ 1, y = 0} , a closed interval on the x axis;

B = {(x, y)|1 ≤ x ≤ 2, 1 ≤ y ≤ 3} , a closed rectangle in the positive

quadrant.

Described mathematically A + B. That is, fill in the blank: A + B =
{(x, y)| · · · } .

7.16 Let A, B, C ⊂ R2. Then,

A = {
(x, y)|x2 + y2 < 2

}
, a ball of radius 2 centered at the origin;

B = {(x, y)|1 ≤ x ≤ 2, 1 ≤ y ≤ 3} , a rectangle in the positive quadrant;

C = {(x, y)|x + y = 3} , a line of slope −1 and intercept 3.

(a) Of the three sets, A, B, and C, which are closed?
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(b) Of the three sets, A, B, and C, which are open?
(c) Of the three sets, A, B, and C, which are bounded?
(d) Of the three sets, A, B, and C, which are compact?

7.17 Recall the Bolzano-Weierstrass Theorem for sequences: Let xi , i =
1, 2, 3, . . . be a bounded sequence in RN . Then xi contains a convergent
subsequence. Let

xν ∈ R, ν = 1, 2, 3, . . . . xν = (−1)ν + (
1

2
)ν.

(a) Is xν bounded? Explain.
(b) Is xν convergent? Explain.
(c) If your answer to part “b” is “yes,” find the limit. Explain
(d) If your answer to part “a” is “yes” and to part “b” is “no,” then find a

convergent subsequence and its limit. Demonstrate convergence.
7.18 Let A, B, C ⊂ R2, where

A = {
(x, y) |x2 + y2 < 10, 000

}
,

a ball of radius 100 centered at the origin. Note the weak inequality in the
definition of A; it means that A does not include its boundary.

B = {(x, y) |1 ≤ x ≤ 5, 3 ≤ y ≤ 20} ,
a rectangle in the positive quadrant. Note the weak inequality in the defi-
nition of B; it means that B includes its boundary.

C = {(x, y) |y = x + 20} ,
a line slope 1 and intercept 20.
(a) Of the three sets, A, B, and C, which are closed?
(b) Of the three sets, A, B, and C, which are open?
(c) Of the three sets, A, B, and C, which are bounded?
(d) Of the three sets, A, B, and C, which are compact?

7.19 Recall the Bolzano-Weierstrass Theorem for sequences: Let xi , i =
1, 2, 3, . . . be a bounded sequence in RN . Then xi contains a conver-
gent subsequence. Let xν ∈ R, ν = 1, 2, 3, . . . . xν = (−1)ν(10). That is,
xν = −10 for ν odd, and xν = 10 for ν even.
(a) Is xν bounded? Explain.
(b) Is xν convergent? Explain.
(c) If your answer to part b is “yes,” find the limit. Explain. If your answer to

part a is “yes” and to part b is “no,” then find a convergent subsequence
and its limit. Demonstrate convergence.
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7.20 Think of a vector of purchases of N goods as a point in RN , a =
(a1, a2, . . . , aN ) where a1 is the amount of good 1 purchased, a2 is the
amount of good 2 purchased, and so forth. Think of prices of the N goods
as represented by a point in RN p = (p1, p2, . . . , pn, . . . , pN ), where p1

is the price of good 1, p2 is the price of good 2, and so forth. Prof. Debreu
writes (paraphrasing slightly): “The value of an action a relative to the
price system p is

∑N
i=1 piai , the [dot] product p · a.” Briefly explain this

definition of the value of the purchase plan a = (a1, a2, . . . , aN ) relative to
prices p = (p1, p2, . . . , pn, . . . , pN ). What does it mean in words? Why
does it make sense? Your answer should run between ten and 100 words.

7.21 Consider each of the following functions of R to R. In each case state
whether the function is continuous at 0.
(a) f (x) = x + 10
(b) g(x) = −1 for x ≤ 0, g(x) = 1 for x > 0
(c) h(x) = x2

7.22 Recall the following definitions, concerning subsets of RN :
� a set is “closed” if it contains all of its cluster points (limit points).
� a set is “open” if, for each point in the set, there is a small ball (neigh-

borhood) centered at the point, contained in the set.
� a set is “bounded” if it can be contained in a cube of finite size, centered

at the origin.
� a set is “compact” if it is both closed and bounded.
(a) Is the following subset of R2 closed? open? bounded? compact? Explain

your answer.

T = 45◦ line through the origin = {(x, y)|(x, y) ∈ R2, x = y}.
(b) Is the following subset of R2 closed? open? bounded? compact? Explain

your answer.

U = ball of radius 10 centered at the origin, including its boundary

= {(x, y)|(x, y) ∈ R2, x2 + y2 ≤ 100}.
7.23 Let A, B ⊂ R. A = [−1, 12], the closed interval from −1 to 12. B =

[7, 18], the closed interval from 7 to 18.
(a) Describe A � B. Representing A � B as one or more intervals is

sufficient.
(b) Describe A � B. Representing A � B as one or more intervals is

sufficient.
(c) Describe A\B. Representing A\B as one or more intervals is sufficient.
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7.24 Let S ⊂ R2, S compact (closed and bounded). Let xν = (xν
1 , xν

2 ), ν =
1, 2, 3, . . . , be a sequence in S. xν ∈ S, all ν.
(a) Do you have enough information to tell if xν is a convergent sequence?

Explain or give an example illustrating your response.
(b) Do you have enough information to tell if xν has a convergent subse-

quence? Explain.
(c) Let x0 be a cluster point of xν . Is x0 an element of S? Explain.

7.25 Let A, B, C ⊂ R2.
A = {(x, y)|x2 + y2 < 100}, a ball of radius 10 centered at the origin
(note the strict inequality in the definition of A);
B = {(x, y)|1 < x < 5, 3 < y < 20}, a rectangle in the positive quadrant
(note the strong inequality in the definition of B);
C = {(x, y)|x + y = 10} a line of slope −1 and intercept 10.
(a) Of the three sets, A, B, and C, which are closed?
(b) Of the three sets, A, B, and C, which are open?
(c) Of the three sets, A, B, and C, which are bounded?
(d) Of the three sets, A, B, and C, which are compact?
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Convex sets, separation theorems,
and nonconvex sets in RN

Definition A set of points S in RN is said to be convex if the line segment between
any two points of the set is completely included in the set, that is, S is convex if
x, y ∈ S implies {z | z = αx + (1 − α)y, 0 ≤ α ≤ 1} ⊆ S.

S is said to be strictly convex if x, y ∈ S, x �= y, 0 < α < 1 implies αx +
(1 − α)y ∈ interior S.

The notion of convexity is that a set is convex if it is connected, has no holes on the
inside, and has no indentations on the boundary. Figure 8.1 displays convex and
nonconvex sets. A set is strictly convex if it is convex and has a continuous strict
curvature (no flat segments) on the boundary.

Properties of convex sets Let C1 and C2 be convex subsets of RN . Then

C1 ∩ C2 is convex,
C1 + C2 is convex,
C1 is convex.

Proof See Exercise 8.1. QED

The concept of convexity of a set in RN is essential in mathematical economic anal-
ysis. This reflects the importance of continuous point-valued optimizing behavior.
To understand the importance of convexity, consider for a moment what will hap-
pen when it is absent. Suppose widgets are consumed only in discrete lots of 100.
The insistence on discrete lots is a nonconvexity. Suppose a typical widget eater at
some prices to be indifferent between buying a lot of 100 and buying 0. He will
definitely not buy a fractional lot. At a low price, he will want to buy a lot of 100.
As prices increase, he will become indifferent at some price, say, at p∗, between
0 and 100. At still higher prices, he will demand 0. The demand curve has a gap

91
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Convex Sets:

(A Single Set)

Non-Convex Sets:

Fig. 8.1. Convex and nonconvex sets.

at p∗. Demand is set-valued (consisting of the two points 0 and 100) and appears
discontinuous1 at p∗. With a gap that big in the demand curve, it is clear that there
may be no intersection of supply and demand and hence no equilibrium. It is to
prevent this family of difficulties that we will focus on convexity (until Chapter 25
and the concluding sections of this chapter and Chapter 22).

Strict convexity typically will assure uniqueness (point-valuedness) of maxima.
Conversely, when opportunity sets or preferences are nonconvex (not convex), opti-
mizing behavior of firms or households may jump between discrete noncontiguous
points as prices vary.

8.1 Separation theorems

The Separating Hyperplane Theorem says that if we have two disjoint convex sets
in RN we can find a (hyper)plane between them so that one of the two sets is above
the plane and the other below. The plane separates the convex sets. Because the
plane is linear, it is defined by an equation that looks like a price system for N

commodities. The Bounding Hyperplane Theorem leads to a similar interpretation.
When the economy is described by the convex sets representing tastes (convex upper
contour sets) or technology, we can use the separation theorems to characterize an
efficient allocation as sustained by a price system. We’ll see this in Chapters 18
and 22.

1 The set-valued demand function in this case is upper hemi-continuous but not convex-valued. This is a concept
developed in Chapters 23, 24, and 25.
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All of the sets and vectors we treat here will be in RN . Let p ∈ RN, p �= 0.
Then we define a hyperplane with normal p and constant k to be a set of the form
H ≡ {x | x ∈ RN, p · x = k}, where k is a real number. Note that for any two
vectors, x and y in H, p · (x − y) = 0. p and (x − y) are said to be “orthogonal”;
that is, they are perpendicular to one another.

H divides RN into two subsets, the portion “above” H and the portion “below,”
as measured by the dot product of p with points of RN . The closed half space above
H is defined as the set {x | x ∈ RN, p · x ≥ k}. The closed half space below H is
defined as {x|x ∈ RN, p · x ≤ k}. H is said to be bounding for S ⊂ RN if S is a
subset of one of the two half spaces defined by H .

Lemma 8.1 Let K be a nonempty closed convex subset of RN , and let z ∈ RN,

z /∈ K . Then there is y ∈ K and p ∈ RN, p �= 0, so that p · z < k = p · y ≤ p · x
for all x ∈ K .

The lemma says that for a nonempty, closed, convex set K (not including the whole
space) there is a hyperplane separating K from a point outside the set.

Proof of Lemma 8.1 Choose y ∈ K as the closest point in K to z. That is, y

minimizes |x − z| for all x ∈ K (continuity of the Euclidean norm and closedness
of K ensure that a minimizer exists). Now we define p = y − z and k = p · y.

We must demonstrate that p · z < k and that p · x ≥ k for all x ∈ K . The first
of these follows directly: p · z = p · z − p · y + p · y = −p · p + p · y < k. Con-
sider x ∈ K . We must show that p · x ≥ k. Because K is convex, we know that every
point w on the line segment between x and y, w = αx + (1 − α)y, 1 ≥ α ≥ 0, is an
element of K . We will show that the proposition p · x < k leads to a contradiction.
w = y + α(x − y). Consider

|z − y|2 − |z − w|2 = |z − y|2 − |(z − y) − α(x − y)|2

= (z − y) · (z − y) − [(z − y) · (z − y) − 2α(z − y) · (x − y)

+α2(x − y) · (x − y)]

=−2αp · (x − y) − α2(x − y) · (x − y)

=−α[2p · (x − y) + α(x − y) · (x − y)].

Recall that p ·y = k. Suppose, contrary to hypothesis, that p ·x < k. Then p · (x −
y) = p · x − p · y < 0. Then, for α sufficiently small, |z − y|2 − |z − w|2 > 0 and
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K

z
Bounding Hyperplane 

A

B

p

Separating Hyperplane 

Fig. 8.2. Bounding and separating hyperplanes for convex sets.

hence |z − y| > |z − w|. But this is a contradiction. The point y was chosen as the
element of K closest to z. There can be no w in K closer to z than y.

The contradiction proves the lemma. QED

Theorem 8.1 (Bounding Hyperplane Theorem [Minkowski]) Let K be convex,
K ⊂ RN . There is a hyperplane H through z and bounding for K if z is not interior
to K .

Proof If z /∈ K , then the existence of H follows directly from the lemma. If z ∈
boundary K , then consider a sequence zν /∈ K, zν → z. Let pν be the corresponding
sequence of normals to the supporting hyperplane, chosen to have length unity.
The sequence is in a closed bounded set (the unit sphere). It thus has a convergent
subsequence, whose limit is the required normal. QED

Theorem 8.2 (Separating Hyperplane Theorem) Let A,B ⊂ RN ; let A and B

be nonempty, convex, and disjoint, that is, A ∩ B = φ. Then there is p ∈ RN, p �=
0, so that p · x ≥ p · y, for all x ∈ A, y ∈ B.

Proof Consider K = A − B. K is convex. Because A and B are disjoint, 0 �∈ K .
Then, by the lemma, there is p so that p · z ≥ p · 0 = 0 for all z ∈ K . If we let
z = x − y then p · x ≥ p · y. QED

The hyperplane with normal p is said to separate A and B. Bounding and separating
hyperplanes are presented in Figure 8.2.



8.2 The Shapley-Folkman Theorem 95

8.2 The Shapley-Folkman Theorem

Properties of convex sets are developed previously in this chapter and also in Chap-
ter 9. We’ll find throughout the rest of this book how useful the convexity property
is. However, not all economic relations can conveniently be described using convex
sets. Some relations (typically involving economies of scale or specialization in
consumption or production) are best described using nonconvex sets. There is a
remarkable family of results, the Shapley-Folkman Theorem, that tells us that the
sum of a large number of nonconvex sets – though still nonconvex – is approxi-
mately convex. The nonconvexities do not compound each other indefinitely.

The overwhelming majority of results in mathematical general equilibrium the-
ory follow from the study of convex sets (already discussed) and from the fixed
point theorems that apply in convex settings (Chapter 9). The results on nonconvex
sets that follow are a bit technical – the first-time reader may skip them. They
are useful in dealing with small scale economies and preferences for concentrated
consumption (Chapter 25) and for the most general proofs of convergence of the
core of an economy (Chapter 22, section 22.4).

8.2.1 Nonconvex sets and their convex hulls

A typical nonconvex set contains a hole or indentation.

Example 8.1 Consider V 1 ={x ∈ R2|3 ≤ |x| ≤ 10} . V 1 is a disk in R2 with a
hole in the center. The hole makes it nonconvex. Let V 2 ={x ∈ R2| |x| ≤ 10; x1 ≥
0 or x2 ≥ 0} . V 2 is the disk of radius 10 centered at the origin with the lower left
quadrant omitted. The indentation at the lower left makes V 2 nonconvex.

The convex hull of a set S will be the smallest convex set containing S. The
convex hull of S will be denoted con(S). We can define con(S), for S ⊂ RN , as
follows:

con(S) ≡ {x | x =
N∑

i=0

αixi, where xi ∈ S, αi ≥ 0 all i, and
N∑

i=0

αi = 1}

or equivalently as

con(S) ≡
⋂

S⊂ T ;T convex

T .

That is, con(S) is the smallest convex set in RN containing S.

Example 8.2 con(V 1) = {x ∈ R2||x| ≤ 10}, and con(V 2) = {x ∈ R2||x| ≤
10 for x1 ≥ 0 or x2 ≥ 0; for x1, x2 ≤ 0, x1 + x2 ≥ −10}. Taking the convex hull
of a set means filling in the holes just enough to make the amended set convex.



96 Convex sets, separation theorems, and nonconvex sets in RN

8.2.2 The Shapley-Folkman Lemma

Most economic analysis uses convex sets. We’d like a means to formalize the dis-
tinction between economic behavior characterized by convex sets versus nonconvex
sets. One way to represent this distinction is to look at the discrepancy between
a nonconvex set and its convex hull, con(S) \ S. This focus leads to the Shapley-
Folkman Theorem. We’ll now confine attention to compact sets. The theorem tells
us that the result of summing up a large number of compact nonconvex sets is an
approximately convex set. The theorem makes the approximation more precise.

Lemma 8.2 (Shapley-Folkman) Let S1, S2, S3, . . . ,Sm, be nonempty compact
subsets of RN . Let x ∈ con(S1 + S2 + S3 + · · · + Sm). Then for each i =
1, 2, . . . , m, there is yi ∈ con(Si) so that

∑m
i=1 yi = x and with at most N excep-

tions, yi ∈ Si . Equivalently: Let F be a finite family of nonempty compact sets
in RN , and let y ∈ con(

∑
S∈F S). Then there is a partition of F into two dis-

joint subfamilies F ′ and F ′′ with the number of elements in F ′ ≤ N so that
y ∈∑S∈F ′ con(S) +∑S∈F ′′ S.

To see how the lemma works, let’s take a simple example. Let’s start with ten
identical subsets of R2. Let Si = {(0, 0), (0, 1), (1, 0), (1, 1)} for i = 1, 2, . . . , 10.
Each of the sets Si consists of four points, the four corners of a square in R2 with one
corner at the origin and sides lying on the coordinate axes. Now consider con(S1 +
S2 + S3 + · · · + S10). con(S1 + S2 + S3 + · · · + S10) = {x|x ∈ R2, 0 ≤ x1, x2 ≤
10}. Choose a typical point in con(S1 + S2 + S3 + · · · + S10), say, x = (5.5, 5.7).
The lemma says that x can be represented as a sum of points in the convex hulls
of the original sets, con(S1), con(S2), . . . , con(S10). More important, the theo-
rem says that x can be represented in this way as a sum of points most (all
but two in R2) coming from the original sets S1, S2, S3, . . . S10, not from points
of their convex hulls that were not part of the original sets Si . In this exam-
ple, there are many choices of xi that will fulfill the theorem. For example,
let x1 = (0.5, 0) ∈ con(S1), x2 = (0, 0.7) ∈ con(S2), x3 = (1, 1) ∈ S3, x4 =
(1, 1) ∈ S4, x5 = (1, 1) ∈ S5, x6 = (1, 1) ∈ S6, x7 = (1, 1) ∈ S7, x8 = (0, 0) ∈ S8,
x9 = (0, 0) ∈ S9, x10 = (0, 0) ∈ S10. Then x =∑10

i=1 xi , all xi ∈ con(Si) and with
only two exceptions xi ∈ Si . This is just what the Shapley-Folkman Lemma asserts.

8.2.3 Measuring nonconvexity, the Shapley-Folkman Theorem

We now introduce a scalar measure of the size of a nonconvexity.

Definition The radius of a compact set S is defined as

rad(S) ≡ inf
x∈RN

sup
y∈S

|x − y|.

That is, rad(S) is the radius of the smallest closed ball containing S.
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Theorem 8.3 (Shapley-Folkman) Let F be a finite family of compact subsets S ⊂
RN and L > 0 so that rad(S) ≤ L for all S ∈ F . Then for any x ∈ con(

∑
S∈F S)

there is y ∈∑S∈F S so that |x − y| ≤ L
√

N .

The significance of the Shapley-Folkman theorem is that the sum of a large number
of compact nonconvex sets is approximately convex. We start with a family of sets
F whose elements S ∈ F are of rad(S), the measure of size, less than or equal to L.
The measure of the size of a nonconvexity suggested here is the distance between a
point of the convex hull and the nearest point of the underlying set. Adding a few sets
together may increase the size of the nonconvexity in the sum; but eventually the
radius of the nonconvexity is limited by an upper bound of L

√
N . As additional sets

are added, their nonconvexities do not compound one another; the nonconvexity of
the sum does not become progressively larger. The size of the holes or indentations
in the summation does not grow as additional summands are added. As additional
sets are added, the sum of the sets will typically become larger, but nonconvexities
in the sum are bounded above; they do not grow. Speaking imprecisely, we could
say that the sum becomes approximately convex (as a proportion of the size of the
sum) as the number of sets in the summation becomes large.

8.2.4 Corollary: A tighter bound

Definition We define the inner radius of S ⊂ RN as

r(S) ≡ supx∈con(S) infT⊂S;x∈con (T ) rad(T ).

Corollary 8.1 (Corollary to the Shapley-Folkman Theorem) Let F be a finite
family of compact subsets S ⊂ RN and L > 0 so that r(S) ≤ L for all S ∈ F .
Then, for any x ∈ con(

∑
S∈F S), there is y ∈∑S∈F S so that |x − y| ≤ L

√
N .

The corollary and its interpretation here are very similar to the Shapley-Folkman
Theorem. The theorem is stated in terms of the radius of spheres circumscribing
the summands. The corollary is stated in terms of the radius of spheres inscribed
in the nonconvexities of the summands. Again, the interpretation is that, after a
finite number of sets are added, the addition of more sets to the summation will not
increase the size of the nonconvexities while it increases the size of the summation.
Thus, as a proportion of the size of the sum, or the number of summands, the sum
of sets becomes approximately convex as the number of summands grows.

8.3 Bibliographic note

Chapter 1 of Debreu (1959) provides an excellent concise survey of the mathemat-
ical results presented in Chapters 6, 7, and 8 (with the exception of section 8.2)
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and in Chapter 23. Green and Heller (1981) provide a very thorough treat-
ment of convexity. Separation theorems are well expounded in Hildenbrand and
Kirman (1988). A complete statement of the Shapley-Folkman Lemma, Theorem,
and corollary together with their proofs is available in Arrow and Hahn (1971),
Appendix B. The Shapley-Folkman Theorem and proof, due to L. S. Shapley and
J. H. Folkman, was first published in Starr (1969).

Exercises

8.1 Demonstrate the following properties of convex sets in RN . Let A and B

be convex subsets of RN . Then A ∩ B is convex, A + B is convex, and A

is convex.
8.2 Consider a closed square (two-dimensional cube) in R2 with side [0, 2]:

C = [0, 2] × [0, 2] = {(x, y)|0 ≤ x ≤ 2, 0 ≤ y ≤ 2}.
Demonstrate that C is a convex set. That is, let (x1, y1) and (x2, y2) ∈ C.
Let 0 ≤ α ≤ 1. Let z = α(x1, y1) + (1 − α)(x2, y2). Show that z ∈ C.

8.3 Recall the Separating Hyperplane Theorem (Theorem 8.2):
Let A,B ⊂ RN , where A and B are nonempty convex sets, with disjoint
interiors. Then there is p ∈ RN, p �= 0, so that p · x ≥ p · y for all x ∈
A, y ∈ B.
(i) Show by (counter)example (a well-drawn figure is sufficient) that the

convexity of both A and B are typically required to ensure this result.
That is, show that if either of A or B is nonconvex then there may be
no separating hyperplane.

(ii) Let A,B ⊂ R2. Let A = {(x, y) | x2 + y2 ≤ 1}, the closed disk of
radius one centered at the origin, and let B = {(x, y) | (x − 2)2 + y2 ≤
1}, the closed disk of radius one centered at (2, 0). Show that A and
B fulfill the conditions of the Separating Hyperplane Theorem and
specify a separating hyperplane, including its normal.
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The Brouwer Fixed-Point Theorem

The Brouwer Fixed-Point Theorem is a profound and powerful result. It turns out
to be essential in proving the existence of general equilibrium. We have already
seen that it is convenient (in Chapter 5), but it can be shown to be indispensable
(Chapter 18).

The Brouwer Fixed-Point Theorem says that a continuous function from a com-
pact convex set into itself has a fixed point. There is at least one point that is left
unchanged by the mapping. Note that the convexity is essential. For example, the
fixed point property is not true (and the theorem is inapplicable) for a function map-
ping the circumference of a circle into itself. Indeed, typical of well-constructed
mathematical results, all of the assumptions are essential. The fixed-point property
will not hold for a discontinuous function or on an open or unbounded set.

In R, the Brouwer Fixed-Point Theorem takes a particularly simple form, equiv-
alent to the Intermediate Value Theorem. Let f map the closed interval [a, b] into
itself. Then the theorem is equivalent to the assertion that every continuous curve
y = f (x) from one side of the square [a, b] × [a, b] to the opposite side must
intersect the diagonal (the line y = x). See Figure 9.1.

Economic applications do not require that the economist know or understand
the proof of the Brouwer Theorem. Because a combinatorial proof can be pre-
sented in elementary (though necessarily complex) form and because it is not
generally included in introductory real analysis courses, it is presented in the
following discussion. Students who do not wish to follow the proof may skip,
without loss of continuity, to the statement of the Brouwer Fixed-Point Theorem,
Theorem 9.3.

We will prove the Brouwer Fixed-Point Theorem on a simplex (the simplest of
compact convex sets) in three steps:

(i) Prove Sperner’s Lemma.

99
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a bx*
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0

Fig. 9.1. The Brouwer Fixed-Point Theorem in R.

(ii) Use Sperner’s Lemma to prove the Knaster-Kuratowski-Mazurkeiwicz (KKM)
Theorem.

(iii) Use the KKM Theorem to prove the Brouwer Fixed-Point Theorem.1

Definition Let x1, x2, . . . , xN+1 be N + 1 points in RK, K ≥ N . Any N of
the points should be linearly independent.2 Then the N-simplex defined by
x1, . . . , xN+1 is the set S of convex combinations of x1, x2, . . . , xN+1:

S ≡
{
x | x =

N+1∑
i=1

λixi, λi ≥ 0,

N+1∑
i=1

λi = 1

}
.

For x ∈ S, λi in the sum defining x is said to be the ith barycentric coordinate of
x. The points x1, x2, x3, . . . , xN+1 are the vertices of S. The subscript i is the index
of the vertex xi . For given x ∈ S the set {xi | the ith barycentric coordinate of x, λi ,
is positive} is said to be the carrier of x.3 A face of the simplex is a simplex of
lower dimension on the exterior of the simplex. More formally, a typical face, F ,
of the simplex S is defined as

F ≡
{
x | x =

N+1∑
i=1

λixi, λk ≡ 0 for one k, λi ≥ 0,

N+1∑
i=1

λi = 1

}
.

1 Useful references include Tompkins (1964) and Burger (1963).
2 The points are linearly independent if none of them can be expressed as a linear combination of the others.
3 We are already familiar with the case in which S is the unit simplex in RN (from Chapter 5). In that case the

ith barycentric coordinate of a point in the simplex is simply its ith coordinate, and its carrier is simply the set
of vertices i so that the ith coordinate is positive.
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Fig. 9.2. An admissibly labeled simplicial subdivision of a simplex.

A simplicial subdivision of S is a finite family of simplices {Sj } so that (i) the
elements of {Sj } have disjoint interiors, (ii) if a vertex of Sj is an element of Sk then
that point is also a vertex of Sk, and (iii) ∪Sk = S. Note that for any ε > 0 we can
find a simplicial subdivision of S so that each subsimplex of the subdivision can
be contained in a sphere of radius ε. That is, there exist subdivisions of arbitrarily
fine mesh.

Let {Sj } be a simplicial subdivision of S. We will label each vertex of each
subsimplex with one of the numbers 1, 2, . . . , N + 1. A labeling is said to be
admissible if each vertex is labeled with the index of one of the elements of its
carrier. Note that each face of the N -simplex is an (N − 1)-simplex.

Theorem 9.1 (Sperner’s Lemma) Let {Sj } be a simplicial subdivision of the
N-simplex S. Label {Sj } by an admissible labeling. Then there is S◦ ∈ {Sj } so
that S◦ carries a complete set of labels (that is, there is a vertex of S◦ labeled 1,
another labeled 2, . . . , N + 1).

Figure 9.2 depicts an admissibly labeled simplicial subdivision of a 2-simplex.
Where is (are) the subsimplex(ices) carrying the full set of labels?

The proof of Sperner’s Lemma makes use of the principle of mathematical induc-
tion. This principle explains how to take an observation for a few positive integers
and generalize it to all integers, n = 1, 2, 3, . . . . First show that the proposition is
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(Exploded View)

1 2 11 2 1

1 2
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1 1 22 1 1 1 1 22 1 1

1

Fig. 9.3. Sperner’s Lemma for N = 1.

true for n = 1. Then show that the property that the proposition is true for a value
n logically implies that the proposition is true for the value n + 1 as well. The
principle of mathematical induction says that once these properties are established,
then the proposition is true for all positive integers.

Proof of Sperner’s Lemma It is convenient to prove the stronger result that the
number of subsimplices with a complete set of labels is an odd number. Because
zero is not odd, this result implies Sperner’s Lemma. The proof proceeds by
induction on N , the dimension of the simplex. The 1-simplex is a line segment,
and the simplicial subdivision cuts it into nonoverlapping contiguous subsegments.
The labels are 1 and 2. We will use an elementary counting argument to show that
there is an odd number of subsimplices (subsegments) carrying a full set of labels
(both labels 1 and 2). A typical admissibly labeled simplicial subdivision of the
1-simplex is shown in Figure 9.3.

Each vertex is labeled 1 or 2. One endpoint of the full segment is labeled 1
and the other labeled 2. Let there be a subsegments both of whose end points are
labeled 1 and b subsegments whose end points are labeled 1 and 2. That is, there
are b subsegments carrying a full set of labels. We need to prove that b is an odd
number.

The way the proof proceeds is to enumerate the subsegments and endpoints.
In particular, we will count up the endpoints labeled 1. First, we focus on the
endpoints; then we focus on the subsegments. This will give us a count of the
number of endpoints labeled 1 with the count performed in two distinct ways. We
will show that one count is necessarily odd; the other must be odd as well. This
will imply that b is odd.

Count up the labels marked 1, once for each subsegment on which it appears.
Each endpoint labeled 1 is counted once for each subsegment of which it is an
element. Then the total number of 1s counted is 2a + b. We think of a subsegment
endpoint as being interior if it is not an endpoint of the original segment. Note that
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each interior endpoint labeled 1 of a subsegment is counted twice, once for each
subsegment of which it is an element, and that each exterior endpoint labeled 1 is
counted once (there is precisely one such endpoint). Now we will use an alternative
counting procedure. Let c equal the number of interior endpoints labeled 1. Then
the number of endpoints labeled 1 (again counting each endpoint once for each
subsegment to which it is attached) is 1 + 2c. Thus,

1 + 2c = 2a + b.

But 1 + 2c is certainly odd. Hence, 2a + b is odd, and therefore b is odd. This
proves the lemma for the case for N = 1. Note that the 1-simplex in Figure 9.3
fulfills Sperner’s Lemma. Examining the exploded view of the 1-simplex in the
figure demonstrates how the counting argument takes place.

We now proceed by induction. Suppose for an (N − 1)-simplex, any admissibly
labeled simplicial subdivision of the (N − 1)-simplex contains an odd number of
subsimplices carrying a full set of labels. This is the inductive hypothesis. We
must show that this property (that every admissibly labeled simplicial subdivision
contains an odd number of subsimplices carrying a full set of labels) is then
necessarily true as well of an N -simplex. Consider an admissibly labeled simplicial
subdivision of an N -simplex. Note that each face of an N -simplex is an (N − 1)-
simplex. An admissibly labeled subdivision of a face of the N -simplex will have an
odd number of subsimplices carrying a full set of labels (of the face) by hypothesis.
Figure 9.2 shows a 2-simplex (a triangle) with an admissibly labeled simplicial
subdivision. Note that each face of the 2-simplex (side of the triangle) is a 1-simplex
(a line segment) with an admissibly labeled simplicial subdivision resulting from
the subdivision and labeling of the 2-simplex.

Let a be the number of elements (subsimplices) of the simplicial subdivision,
{Sj } of S, labeled with 1, . . . , N , but not labeled N+1. Then for each such element
there are two faces of the subsimplex (each face is an N − 1 simplex) whose vertices
are labeled 1, . . . , N . Therefore, the number of such faces (faces of simplices of
the subdivision, the simplices – and hence the faces – carrying the labels 1 to N ) is
2a. Let there be b subsimplices carrying all the labels, 1, . . . , N + 1. These each
have precisely one face with the labels 1, . . . , N . Thus the total number of faces
of subsimplices with the labels 1, . . . , N is 2a + b. Some of these subsimplicial
faces are interior to the main simplex, and some are on an exterior face of the
main simplex. (See Figure 9.2 for an illustration on the 2-simplex.) Each of the
subsimplicial interior faces are faces of precisely two adjacent subsimplices. As
before, let c = the number of interior faces carrying the labels 1, 2, 3, . . . , N . We
now count the subsimplices of the simplicial subdivision with faces carrying the
labels 1, . . . , N . Each interior face will be counted twice because it is the face of
two adjacent subsimplices. An exterior face will be counted only once. To count the
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number of exterior faces of the subdivision with labels 1, 2, . . . , N , consider the
face of the full simplex whose vertices are labeled 1, 2, . . . , N . Exterior faces of
the simplicial subdivision that carry the labels 1, 2, . . . , N lie on this face. By the
inductive hypothesis, a simplicial subdivision of this face includes an odd number
of subsimplices on the face defined by vertices 1, 2, . . . , N , which carry a full set
of labels (relative to the face, that is, 1, . . . , N ). Denote this number d. By the
inductive hypothesis, d is odd.

Recall that

a = the number of subsimplices of the simplicial subdivision labeled with 1, . . . , N ,
but not labeled N + 1;

b = the number of subsimplices carrying all the labels 1, . . . , N + 1;
c = the number of interior faces carrying the labels 1, 2, 3, . . . , N , but not N + 1;
d = number of subsimplices on the face defined by vertices 1, 2, . . . , N , carrying

a full set of labels (relative to the face, that is, 1, 2, . . . , N ), which is an odd
number by the inductive hypothesis.

We have

2a + b = 2c + d;

d is odd, and so 2c + d is odd. Thus, 2a + b is odd, and hence b is odd. QED

Theorem 9.2 (Knaster-Kuratowski-Mazurkewicz Theorem) Let S be an N-
simplex. Let the sets C1, C2, . . . , CN+1 ⊂ S be described as follows. Let Cj be
closed, and let vertex j = xj ∈ Cj . For each x ∈ S, let x ∈ Ci for some i such that
xi is one of x ′s carriers. Then

N+1⋂
j=1

Cj �= φ.

Proof We can choose a sequence of simplicial subdivisions �ν , indexed by
ν, �ν = {Sν

k | k = 1, 2, . . .}, ν = 1, 2, 3, . . . . The index k is used to name each
subsimplex within each subdivision �ν . We construct the sequence �ν, ν = 1,

2, 3, . . . , so that its mesh (the diameter of the subsimplices) becomes progres-
sively finer and arbitrarily fine as ν increases. Label the vertices of each Sν

k by j ,
where the vertex is an element of Cj for some j such that xj is an element of the
carrier of the vertex. This is an admissible labeling. Sperner’s Lemma tells us that,
for each ν, there is some Sν ∈ �ν , so that Sν has a complete set of labels. Let xν

i

be the vertex of Sν with label i. Then xν
i ∈ Ci for all ν. The sequence xν

i contains a
convergent subsequence. Using the increasingly fine construction of the sequence
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�ν and taking subsequences, the xν
i converge to the same xo for all i. But because

Ci is closed, xν
i → xo means xo ∈ Ci for all i, and so xo ∈ ∩N+1

i=1 Ci �= φ. QED

Theorem 9.3 (Brouwer Fixed-Point Theorem) Let S be an N -simplex and let
f : S → S, where f is continuous. Then there is x∗ ∈ S so that f (x∗) = x∗.

Proof Let λj (x) be the j th barycentric coordinate of x. Define

Cj = {x | λj (f (x)) ≤ λj (x)}.
Note that Cj fulfills the assumptions of the KKM Theorem inasmuch as

(i) Cj is closed by continuity of λj and f ; and
(ii) vertex j ∈ Cj ; and

(iii) if we let x ∈ S and let I (x) be the (set of) indices of the carrier of x, then there
is j ∈ I (x) so that λj (x) ≥ λj (f (x)) because∑

j∈I (x)

λj (x) = 1 ≥
∑

j∈I (x)

λj (f (x)).

Then by the KKM Theorem there is x∗ ∈ S so that x∗ ∈ ∩N+1
j=1 Cj . But then

λj (x∗) ≥ λj (f (x∗)) for all j

and
∑

λj (x∗) =∑
λj (f (x∗)) = 1, so λj (x∗) = λj (f (x∗)) for all j , and hence

x∗ = f (x∗). QED

Sperner’s Lemma is ponderous in its geometric complexity, but the combinatorial
proof of the Brouwer Fixed-Point Theorem is elementary and successful. There
are simpler proofs, but they require more advanced mathematics. Note that the
Brouwer Theorem, as a well-constructed mathematical statement, makes full use of
its assumptions. Significantly weakening any of the assumptions invalidates the
result. The fixed-point property (the quality that any continuous function from the
set into itself has a fixed point) will fail for any set not topologically equivalent
to the simplex (for example, a domain with a hole in it), such as a circle or a
torus or the union of two disjoint closed sets. The fixed-point property is false
for a discontinuous function or for a domain that is not compact. The fixed-point
property does generalize, however, from the simplex to any finite dimensional
compact convex set, including any set that can be converted by a continuous
transformation into such a set. As we will see below (in the Uzawa Equivalence
Theorem, Chapter 18), the Brouwer Fixed-Point Theorem is essential to proving
the existence of general equilibrium.
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9.1 Bibliographic note

Chapter 1 of Debreu (1959) provides an excellent concise survey of the mathemati-
cal results presented here and in Chapter 23. Useful references on the combinatorial
proof of the Brouwer Fixed-Point Theorem include Tompkins (1964) and Burger
(1963). Techniques for computation of fixed points are presented in Scarf and
Hansen (1973).

Exercises

9.1 The Brouwer Fixed-Point Theorem can be stated in the following way:

Let S ⊂ RN be compact and convex. Let f : S → S be a continuous function.
Then there is x∗ ∈ S so that f (x∗) = x∗.

Show how a fixed point would fail to exist when the assumptions of the
Brouwer Fixed-Point theorem are not fulfilled, as specified in the following
cases:

(i) Suppose S is not convex. Let S = [1, 2] ∪ [3, 4]; S ⊂ R. That is, S

is the union of two disjoint closed intervals in R. Find continuous
f : S → S so that there is no fixed point x∗ fulfilling the theorem.

(ii) Suppose f is not continuous. Let S = [1, 4]; S ⊂ R. Let

f (x) =
{

4 − x for x < 2,

x − 1 for x ≥ 2.

Show that although f : S → S there is no fixed point of f in S.
(iii) Suppose S is not compact. Let S = R and f (x) = x + 1. Note that

f : S → S and f is continuous. Show that there is no fixed point of
f in S.

9.2 Recall the Intermediate Value Theorem:

Let [a, b] be a closed interval in R and h a continuous real-valued function on
[a, b] so that h(a) < h(b). Then for any real k so that h(a) < k < h(b) there is
x ∈ [a, b] so that h(x) = k.

Recall the Brouwer Fixed-Point Theorem:

Let S ⊂ RN be compact and convex. Let f : S → S be a continuous function.
Then there is x∗ ∈ S so that f (x∗) = x∗.

Consider the special case S = [0, 1], the unit interval in R, and let f be
a continuous function from S into itself. Using the Intermediate Value
Theorem, prove the Brouwer Fixed-Point Theorem for this case. You may
find the function g(x) = x − f (x) useful.
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9.3 Recall the following:
(a) a simplicial subdivision of S, an N-simplex, is a finite family of sim-

plices {Sj ⊂ S} so that

i. The elements of {Sj } have disjoint interiors,
ii. When a vertex of Sj is an element of Sj ′, j �= j ′, then that point is

also a vertex of Sj ′ , and

(b) Label each vertex of each subsimplex with one of the numbers
1, 2, . . . , N + 1. A labeling is said to be admissible if each vertex
is labeled with the index of one of the elements of its carrier.

Then we have:

Theorem 9.1 (Sperner’s Lemma) Let {Sj } be a simplicial subdivision
of the N-simplex S. Label {Sj } by an admissible labeling. Then there is
S∗ ∈ {Sj } so that S∗ carries a complete set of labels (that is, S∗ has a vertex
labeled 1, another labeled 2, . . . , N + 1).

Suppose we delete clause (ii) in the definition of a simplicial subdivision.
Demonstrate that Sperner’s Lemma is false with this weakened definition.
A simple counterexample is sufficient.

9.4 Let A, B ⊂ RN . A and B are said to be topologically equivalent (home-
omorphic) if there is a continuous function g(·) so that g : A → B is
one-to-one and onto, and the inverse of g, g−1 : B → A, is also continu-
ous, one-to-one, and onto. That is, g and g−1 are continuous everywhere,
and, for each point y ∈ B, there is unique x ∈ A so that y = g(x). (Recall
that g−1, the inverse of the function g, is defined by g−1(g(x)) = x. )

We have proved the Brouwer Fixed-Point Theorem on the simplex, S.
Show that it holds as well on any set T topologically equivalent to the
simplex. That is, assume
(a) Let S be an N-simplex in RN . Let T ⊂ RN , so that T is topologically

equivalent to S.
(b) Brouwer Fixed-Point Theorem: Let S be an N-simplex in RN, and let

f : S → S, f continuous. Then there is x∗ ∈ S, so that f (x∗) = x∗.
Then show

Let T ⊂ RN , so that T is topologically equivalent to S, an N -simplex in RN , and
let h : T → T , h continuous. Then there is y∗ ∈ T so that h(y∗) = y∗.

(Hint: Define f : S → S by f (x) = g−1(h(g(x)) ), where g is as previously
defined. In more formal notation, let f (x) = g−1 ◦ h ◦ g(x). The notation
◦ is the composition symbol indicating that one function is to be applied
to the value of another. Note that f is continuous [why?]. By the BFPT
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on S, f has a fixed point x∗. Then let y∗ = g(x∗). We claim h(y∗) = y∗

and y∗ is the required fixed point of h in T . Can you prove this?)
9.5 The Brouwer Fixed-Point Theorem says that if S is a compact convex

subset of RN and if f is continuous, f : S → S, then there is x∗ ∈ S so
that f (x∗) = x∗; x∗ is a fixed-point of the mapping f . For the following
combinations of f and S, does f have a fixed point? Explain your answer.
(a) S = R (the real line), f (x) = x + 1.

(b) B = {(x, y) ∈ R2| x2 + y2 ≤ 100}, the ball of radius 10 centered at the
origin, f (x, y) = −(x, y). Note that f maps each point of the ball to
its diametric opposite point.



Part C

An economy with bounded production technology
and supply and demand functions

In Chapters 11 through 14 we will develop a version of the complete Arrow-Debreu
model of the economy. The theory of the firm and production sector is presented
in Chapter 11 and that of households and demand in Chapter 12. We bring them
together with Walras’s Law in Chapter 13 and the existence of general equilibrium
in Chapter 14.

As we noted in Chapter 7, the typical characterization of economic activity of
firms and households is as a maximization subject to constraint. Recall Corollary 7.2
to Theorem 7.5. For maximization to be well defined, sufficient conditions are that
the maximand be a continuous function of its arguments and that the opportunity set
be compact. That pretty well sets the agenda for characterizing firm and household
behavior. We have to find continuous functions for them to maximize. We should
find compact constraint sets for them to do it on. That will characterize firm supply
and household demand behavior. Although these are not necessary conditions, they
are the best generally sufficient conditions available.

Finding continuous functions for the firm and household to optimize does not
pose a problem. For the firm, the obvious choice is profits. For the household,
the traditional maximand is utility, though we will go to some effort to derive the
continuous utility function from the more primitive assumption of a preference
ordering. The obvious constraint set for the firm is a representation of the firm’s
technically available possibilities – the possible input-output combinations based
on available technology represented as a subset of RN . For the household, the
obvious constraint set is a budget constraint. Are these constraint sets compact? If
so, we’ve satisfied the sufficient conditions for finding a well-defined maximum.
Are the constraint sets closed and bounded?

Closedness is largely a technical concern, and we don’t really regard it as a prob-
lem. Boundedness is more difficult to establish. Is the firm’s technology bounded?
We will represent the firm’s technology as a subset of RN . Any technically possible
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combination of inputs and outputs should be represented in the technology set. In
a finite world with a finite economy, how could this set be unbounded? The answer
is that, in a finite world with a finite economy, realized outputs must be bounded in
equilibrium. Firms and households should be led to these finite equilibrium outputs
by prices. It should be a result in equilibrium, not an assumption at the outset of
the study, that supplies offered to the market by firms are finite. The firm should be
in a position to consider what it would produce if it could afford to buy arbitrarily
large amounts of inputs. Eventually, equilibrium prices should persuade the firm
that arbitrarily large production plans are unprofitable.

However, this leaves us with a difficult technical problem. How can we allow
the firm to consider arbitrarily large (unbounded) production plans? If we allow
the firm to try to optimize a profit function over an unbounded set (a noncom-
pact set) we have no assurance that the firm’s maximizing choice will be well
defined. Without a well-defined maximum, we have no worthwhile theory of
supply.

We face the same problem with the theory of the household. In equilibrium,
the household will surely choose bounded consumption plans; after all, in a finite
world bounded consumption is all that the economy will be able to produce so
bounded demand will clear markets. That decision should however be the result
of household optimization led by prices, not the outcome of exogenous constraint.
Conversely, at disequilibrium prices, the household may face an unbounded budget
set (if some goods have zero prices at the price vector currently proposed by the
Walrasian auctioneer). If the budget set is not compact, how can we describe the
demand behavior of the household? There may be no well-defined utility maximum
if the constraint set is not compact.

The solution to this nest of difficulties is a rather elaborate two-step procedure.
At first we will consider an economy with bounded production technology. The
firms will maximize profits over their bounded technology sets. Attainable outputs
will necessarily be bounded as well. Households will face bounded choice sets that
are carefully constructed to include the attainable consumptions as a proper subset.
We will demonstrate the existence of a general equilibrium in this economy with
bounded firm technology and bounded individual choice sets. That comprises the
agenda for this Part C.

The argument will then extend the model to the case of unbounded firm tech-
nologies. The resource endowment of the economy is, however, finite. Under
reasonable weak assumptions, we can show that the attainable outputs of the econ-
omy are finite. We then show that we can artificially restrict the unbounded taste
and technology sets of this economy to a bounded subset containing the attainable
set as a proper subset. This essentially reduces the problem of the economy with
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unbounded technology to the previous case of bounded technology. We will find
an equilibrium in this artificially bounded economy. Then the rabbit comes out
of the hat. We can show that the equilibrium of the artificially bounded economy
is also an equilibrium of the original unbounded economy. That’s the plan for
Part D.
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Markets, prices, commodities, and mathematical
economic theory

10.1 Commodities and prices

We’ve seen examples of general equilibrium economic systems characterized by N

commodities for N = 2 (Robinson Crusoe in Chapter 2; Edgeworth box in Chap-
ter 3), N = 4 (2 × 2 × 2) in Chapter 4, and arbitrary positive integer N in Chapter 5.
Chapters 6 through 9 summarized the mathematics suitable for analyzing these
economies using RN as the commodity space. To represent a list of quantities of N

goods, we’ll use a point in RN . The expression x = (x1, x2, x3, . . . , xN ) represents
a commodity bundle. That is, x is a shopping list: x1 of good 1, x2 of good 2, and so
forth through xN of good N . The coordinates xn (n = 1, 2, . . . , N ) may be either
positive or negative (subject to interpretation).

The price system consists of an N -tuple p = (p1, p2, . . . , pN ). Let pn ≥ 0 for
all n = 1, . . . , N . The value of a bundle x ∈ RN at prices p is p · x.

What are these N commodities? That turns out to be rather a deeper question
than it appears, so a full discussion will be postponed until Chapter 20.

10.2 The formal structure of pure economic theory

The plan for the rest of this book is to develop a formal mathematical model of
a market economy. Professor Debreu describes below some of the strengths of
this approach. It harnesses the power of mathematics. It makes ideas precise (if
abstract). It clarifies the limits of the analysis and purposefully abstracts from some
of the accompanying related ideas (that may have social or political connotations).

Professor Debreu (1986) tells us:

An axiomatized theory first selects its primitive concepts and represents each one of them
by a mathematical object. For instance the consumption of a consumer, his set of pos-
sible consumptions, and his preferences are represented respectively by a point in the
commodity space, a subset of the commodity space, and a binary relation in that sub-
set. Next assumptions on the objects representing the primitive concepts are specified,
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and consequences are mathematically derived from them. The economic interpretation of
the theorems so obtained is the last step of the analysis. According to this schema, an
axiomatized theory has a mathematical form that is completely separated from its eco-
nomic content. If one removes the economic interpretation of the primitive concepts, of the
assumptions, and of the conclusions of the model, its bare mathematical structure must still
stand.

The research program Debreu specifies is to seek a formal mathematical model,
consistent with an economic interpretation. The model is in the mathematics. The
economics is in the interpretation. The formality of the structure allows us to
distinguish assumptions from conclusions and to understand the linkage between
them. It is the logical power of mathematics that brings proofs to the economic
propositions. Market economists for generations have had faith in the power of
the market; mathematical economists have faith in the power of mathematics to
elucidate the power of the market.

10.3 Markets, commodities, and prices

In the model we’ll develop, the market takes place at a single instant, prior to the rest
of economic activity. We think of the market meeting, demands being expressed,
equilibrium prices discovered and equilibrium trades achieved, allocations decided,
all prior to actual consumption or production taking place. This may be unrealistic,
but it serves to fix the economic environment.

We think of a commodity as a good or service completely specified by its char-
acteristics. We assume there to be a finite positive integer number of commodities,
N . As Prof. Debreu reminds us, there is ample scope for interpretation as to what
the commodities are.

In a model where there are several locations, the same good at different locations
will be treated as different commodities. Similar commodities deliverable at differ-
ent locations may then trade at different prices, entering differently in preferences;
converting one good to the other requires a production activity (transportation). In
a model over time, a commodity will be identified by its date in addition to other
characteristics. This is sometimes referred to as “a full set of futures markets.”
The same good deliverable at different dates may be treated as different commodi-
ties. These commodities are regarded differently by consumers, and it requires a
production activity (storage) to convert them from one date to another.

In a model with uncertainty, a commodity will be identified by the (uncertain)
state of the world in which it is available. This is sometimes referred to as “a full
set of contingent commodity markets” or as “a full set of Arrow-Debreu futures
markets.” The function of markets in allocation over time and under uncertainty is
more fully discussed in Chapter 20.
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The assumption of complete markets – that there is separate trade in all econom-
ically distinct goods for all dates or for all distinct goods at all dates and all states –
is very powerful and is far from fulfilled in actual economies. This will affect the
applicability and interpretation of the results below, particularly with reference to
the efficiency of equilibrium allocations. We will discuss this further in Chapter 20.

10.4 Bibliographic note

The description of commodities and prices in this chapter parallels Chapter 2 of
Debreu (1959). The notion of dated commodities, credited to Hicks (1939), is
extremely powerful analytically. The notion of contingent commodities appears in
Arrow (1953, 1964). Debreu (1986) first appeared as the Frisch Memorial Lecture
delivered at the Fifth World Congress of the Econometric Society held at MIT,
August 17–24, 1985.

Exercise

10.1 Review the “Commodities” section of the financial pages of the Wall Street
Journal, the Wall Street Journal website, or other daily newspaper with
extensive coverage. Note the availability of markets for the trade of goods
for future delivery. How does the price vary with delivery date?
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Production with bounded-firm technology

11.1 Firms and production technology

We will represent production as organized in firms. A firm is characterized by its
name, by its production technology, and by who owns it, the shareholders. We’ll
postpone discussion of the ownership and distribution of profits until Chapter 13.
The population of firms is the finite set F , indexed j = 1, . . . , #F . The typical
firm is j ∈ F . Firm j ’s most distinctive characteristic is its production technology,
represented by the nonempty set Yj ⊂ RN .

The set Yj represents the technical possibilities of firm j . A typical element y

of the technology set, y ∈ Yj , is a vector representing a technically possible com-
bination of inputs and outputs. Negative coordinates of y are inputs; positive coor-
dinates are outputs. For example, say, y ∈ Yj , y = (−2,−3, 0, 0, 1); this y ∈ Yj

means that an input of two units of good 1 and three units of good 2 will allow
firm j to produce one unit of good 5. Each element y of Yj is like a recipe in
a cookbook or one of many blueprint plans for production, which can be imple-
mented as a matter of choice by the firm. There is no guarantee that the economy
can provide the inputs y ∈ Y j specifies, either from endowment or from the output
of other firms. Rather, y ∈ Yj represents the technical output possibilities of pro-
duction by firm j if the specified inputs are provided. A typical Yj is illustrated in
Figure 11.1. A point y in Yj represents the answer to a hypothetical question: If
the inputs specified in y were available, what outputs could firm j produce? The
answer includes the outputs (positive coordinates) specified in y.

The more common representation of a firm’s production technology is a pro-
duction function. How does a production function relate to a technology set Yj ?
The answer is that the production function embodies a concept of efficiency; the
production function is the equation of the upper boundary of Yj . In Figure 11.1, the
curve depicting the implied production function is the line 0A. Think of firm j with
the production function w = f j (x), where x is the (scalar) input to production and
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Fig. 11.1. Yj : Technology set of firm j .

w is the scalar output. Let j ’s technology set be Yj with a typical element (−x, w).
Then the relation between f j (x) and Yj is f j (x) ≡ max{w | (−x, w) ∈ Yj }.

11.2 The form of production technology

We now formalize the analytic properties of Yj as a subset of RN . We will use
these assumptions to develop the theory of production and firm supply. Recall that
0 is the origin, the zero-vector in RN .1

(P.I) Yj is convex for each j ∈ F .
(P.II) 0 ∈ Yj for each j ∈ F .

(P.III) Yj is closed for each j ∈ F .

P.I is the convexity assumption. It corresponds to the idea of increasing marginal
costs and diminishing marginal product. It says (when combined with P.II) that
if a particular production plan is possible, then it is also possible at half the
original scale. Hence P.I is an assumption that there are no scale economies and no
indivisibilities.

P.II is the assumption that it is always possible to run a firm at a nil output level
with nil inputs as well. That means that the worst the owners of the firm can do
in terms of profits is zero. The firm is never required to operate at a loss. As a
mathematical formality, this convention allows us to treat the formation of “new”
firms in a quite general fashion as a special case of the ordinary analysis of firm

1 We will designate assumptions on the structure of production by “P” and those on the structure of consumption
by “C ” followed by a roman numeral. The numbering of the assumptions will differ from their order of
appearance (resulting in consecutive low-numbered assumptions in the most general model, Chapter 24).
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production choices. At some prices, the firm will find it unprofitable to produce;
it will set output at zero and have zero profits. Prices may then change, making
it attractive to produce at a positive output level instead of zero. This looks very
much like the founding of a new firm, based on the renewed profitability of its line
of work. In the formal statement of the model, the “new” firm has always been
there, operating at a nil level.

P.III is essentially technical, a continuity assumption, assuring closedness of the
firm’s technology set, helping to assure us of a well-defined profit maximizing
production plan for the firm and of the continuity of output decisions with prices.

We will introduce P.IV and P.V later. Here we will skip to P.VI:

(P.VI) Yj is a bounded set for each j ∈ F .

P.VI is a very convenient assumption; it is also very restrictive. The convenience
comes from our notions of how to describe firm behavior – profit maximization.
P.III says that Yj is closed, and now P.VI says that it is bounded. Hence, under P.III
and P.VI, Yj is a compact set. Maximizing profits over this domain should result
in a well-defined answer (Corollary 7.2).

11.3 Strictly convex production technology

We wish to describe firm supply behavior as profit maximization subject to tech-
nology constraint. To discuss the simplest possible case of firm supply behavior
we introduce:

(P.V) For each j ∈ F,Yj is strictly convex.

P.V rules out scale economies and constant returns to scale. The assumption of
strict convexity assures us of a unique (point-valued) profit-maximizing choice of
production plan. Supply will be a (point-valued) function rather than set-valued
(Theorem 11.1, presented later in this section). This is very convenient and sig-
nificantly simplifies the exposition and mathematics used. It is also an offensively
strong restrictive assumption. Note that P.V implies P.I; thus, it is redundant to
assume both.

We can generalize to the case of weak convexity and set-valued supply behavior
at some increase in technical detail. This exercise is performed in Part G (Chapters
23 and 24). Figure 11.2 illustrates three possible forms of Yj : strictly convex2

(consistent with P.I and P.V), weakly convex (consistent with P.I but not P.V), and
nonconvex (inconsistent with both).

2 Because profit-maximizing choices will typically occur at the origin or above the horizontal axis, the figure
illustrates the technology sets only in this region. In Figure 11.2a, please use your imagination to fill in the set
below the axis to maintain strict convexity.
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a. Strictly Convex

Input

O
utput

0

c. Nonconvex

b. Weakly Convex

Input

O
utput

0

Input
O

utput
0

Fig. 11.2. Convex and nonconvex technology sets.

We are now ready to develop a supply function for firm j . We start with a
space of possible price vectors. We will describe prices by a vector p ∈ RN

+,

p = (p1, p2, . . . , pN ), p �= 0, where 0 denotes the zero vector in RN . RN
+ denotes

the nonnegative orthant (quadrant) of RN . Thus the price vector is taken to have no
negative coordinates and some strictly positive coordinates.3

We assume the firm acts as a “price taker.” It does not set prices but treats
them parametrically, as exogenous values to which it must accommodate. The firm
optimizes subject to the exogenous prices. Taking price vector p ∈ RN

+ as given,
each firm j “chooses” yj ∈ Yj such that p · yj maximizes p · y, the profits of the
firm at production plan y, subject to inclusion in Yj . The sign convention, that
inputs are negative coordinates of y and outputs are positive, means that p · y is the
sum of the value of outputs minus the sum of the value of inputs, revenue minus

3 Nonnegativity of prices reflects nonsatiation of preferences (desirability of some good somewhere), a concept
to be introduced in the next chapter and the notion that all consumption is voluntary; there may be noxious
goods, but no one is compelled to consume them, so they merely become excess supplies at a price of zero.
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cost equals profit. We define the supply function4 of firm j as

S̃j (p) = {y∗j | y∗j ∈ Yj , p · y∗j ≥ p · y for all y ∈ Yj }.
Then we have:

Theorem 11.1 Assume P.II, P.III, P.V, and P.VI. Let p ∈ RN
+, p �= 0. Then S̃j (p)

is well defined, nonempty, and point valued (a function). S̃j is continuous at all
p ∈ RN

+, p �= 0.

Proof Well-defined: S̃j (p) consists of the maximizer of a continuous function on
a compact, nonempty, strictly convex set. The function is well defined because
a continuous real-valued function achieves its maximum on a compact set (by
Corollary 7.2).

Point valued: We will demonstrate that the strict convexity of Yj (P.V) implies
that S̃j (p) is point valued. We wish to show that there is a unique yo ∈ Yj that
maximizes p · y in Y j . Suppose not. Then there are y1, y2 ∈ Yj , y1 �= y2, so
that p · y1 = maxy∈Yj p · y = p · y2. Now consider the profitability of a convex
combination of y1 and y2. For 0 < α < 1, p · [αy1 + (1 − α)y2] = p · y1 = p ·
y2. But, by strict convexity of Yj (P.V), [αy1 + (1 − α)y2] ∈ interior Yj . That
means that in a neighborhood of [αy1 + (1 − α)y2] there is y3 ∈ Yj so that p · y3 >

p · y1 = p · y2, which is a contradiction. Hence, we conclude that S̃j (p) is point
valued, and we can now validly represent S̃j (p) as a function.

Continuity: We now wish to demonstrate continuity of S̃j (p). Let pν ∈ RN
+, ν =

1, 2, . . . , pν �= 0, pν → po �= 0. We must show that S̃j (pν) → S̃j (po). Because
S̃j (pν) is a sequence in the compact set Yj , it contains a convergent subsequence. It
is sufficient to show that the subsequence converges to S̃j (po); this will demonstrate
that all subsequences converge to S̃j (po) and hence that S̃j is continuous.

Without loss of generality let S̃j (pν) → y∗. We must show that y∗ = S̃j (po).
Suppose not. Then po·S̃j (po) > po·y∗. But the dot product is a continuous function
of its arguments; so, for ν large, this implies that pν ·S̃j (pν) → po · y∗ < po ·
S̃j (po). But by continuity of the dot product, for ν large, pν·S̃j (po) > pν·S̃j (pν),
which is a contradiction (because S̃j (pν) is the maximizer of the dot product at
pν). Hence S̃j (pν) → S̃j (po).

This completes the proof. QED

Lemma 11.1 (homogeneity of degree 0) Assume P.II, P.III, P.V, and P.VI. Let
λ > 0, p ∈ RN

+ , p �= 0. Then S̃j (λp) = S̃j (p).

4 The superscript tilde (˜) notation emphasizes that the supply function is defined over the bounded domain Yj .
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11.4 Aggregate supply

We now wish to move from the behavior of the individual firm to production plans
of the whole productive sector. The definition of individual firm j ’s technology
as Yj ⊆ RN is stated without reference to other firms’ production plans. This
expresses the notion that there are no external effects in production – firm j ’s
production decisions can be made independent of other firms’ choices. Supply
behavior for the economy as a whole is the summation over all firms j ∈ F of their
individual supply functions S̃j (p). That is

Definition For any p ∈ RN
+, p �= 0, the economy’s aggregate supply function is

S̃(p) ≡∑
j∈F S̃j (p).

This definition leads to

Theorem 11.2 Assume P.II, P.III, P.V, and P.VI. Let p ∈ RN
+, p �= 0. Then S̃(p)

is well defined, nonempty, and point valued (a function). S̃ is continuous on p ∈
RN

+, p �= 0.

Proof Theorem 11.1. QED

11.5 Attainable production plans

Recall

Definition A sum of sets Yj in RN is defined as

Y =
∑

j

Yj is the set

{
y | y =

∑
j

yj for some yj ∈ Yj

}
.

We will now define the economy’s aggregate technology set as Y ≡∑
j∈F Yj .

The definition Y =∑
j Yj again emphasizes independence, that there are no exter-

nal effects in production. Production decisions of the individual firms can be com-
bined additively. Note that in some coordinates some firms will have negative
values and other firms will have positive values in the corresponding coordinates.
That denotes that outputs of some firms are inputs to others. These intermediate
goods are netted out in the summation. What is left is y ∈ Y whose negative coor-
dinates are net inputs to the economy’s production plans and positive coordinates
are net outputs. We are interested in the array of outputs that can be achieved by
the economy. The economy’s initial endowment of resources is denoted r ∈ RN

+ .
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Definition Let y ∈ Y . Then y is said to be attainable if y + r ≥ 0 (the inequality
applies coordinatewise).

That is, a production plan is attainable if the economy’s initial resources are suffi-
cient to provide its net input requirements. Note that attainability is defined for Y ,
the aggregate technology, not for Yj , the individual firm technologies.

The set of attainable supply plans consistent with Y is [Y+{r}]∩RN
+ . This defini-

tion takes the aggregate production technology setY , translates it by the endowment
vector r , and then takes the intersection with the nonnegative orthant (quadrant)
of RN , RN

+ . The intersection is the set of x attainable as aggregate consumptions
(attainable production plans plus endowment). This intersection corresponds to the
90◦ wedge-shaped attainable set bounded by the coordinate axes and the produc-
tion frontier in the Robinson Crusoe model, the set (designating it by points on its
boundary) 0ABCDMSHGFE in Figures 2.1 and 2.2.

Because the attainable production vectors are those that can be produced with
the available resources (and hence do not create unsatisfiable excess demands in
factor markets), it is among these that an equilibrium vector is to be found (if it
exists). Because Yj is bounded by P.VI, Y (as the finite sum of Yj ) is bounded and
therefore trivially, so is the attainable subset of Y .

11.6 Bibliographic note

The presentation of production technology in this chapter parallels that of Arrow
(1962) and Arrow and Debreu (1954). It is simplified here; the full Arrow-Debreu
treatment appears in Chapters 15 and 24.

Exercises

11.1 Theorem 11.1 (or parts of it) is false if we omit P.VI, boundedness of Y j .
(i) Explain mathematically how and why Theorem 11.1 fails.

(ii) Demonstrate by example that Theorem 11.1 fails. Explain the example.
11.2 Consider the following production function representing the technology of

one firm. Production of y involves a setup cost, S > 0, which is the initial
amount of input required before any positive production can take place.
We have

y =
{

0 if L ≤ S

a(L − S) if L > S,

where L is the amount of labor used as an input to y and a is a positive
constant. This production function (like any production function) is the
upper boundary of a technology set.
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Show that this production function or its technology set violates the
(weak) convexity assumption (P.I). Discuss.

11.3 In the Robinson Crusoe model of Chapter 2, we implicitly used the assump-
tion of convex technology, describing the production possibility set as con-
vex. Consider a Robinson Crusoe economy with a nonconvex production
possibility set.

(i) Diagram the possibility that there is a competitive equilibrium (despite
the nonconvexity).

(ii) Is the equilibrium established in (i) Pareto efficient? Explain.
(iii) Diagram the possibility that there is no competitive equilibrium (due

to the nonconvexity). Explain.
(iv) In the nonconvex Robinson Crusoe economy, can a Pareto-efficient

allocation generally be sustained as a competitive equilibrium? Dia-
gram and explain.

11.4 Recall the following assumptions introduced with regard to the production
technology sets for a typical firm j, Yj :

P.I. Yj is convex for each j .
P.II. 0 ∈ Yj .

P.III. Yj is closed.
P.VI. Yj is a bounded set for each j ∈ H .
Maintaining these assumptions, we can show two properties of Yj :
(a) Yj displays no scale economies. If y ∈ Yj , then it follows that

( 1
2 )y ∈ Yj also.

(b) Firm j ’s technology Yj is unable to deal with very large inputs (recall
that inputs are represented by negative coordinates of elements of Yj ).
For example, if y ∈ Yj , there is y ′ < y (the inequality applies coordi-
natewise) with |y ′| sufficiently large so that y ′ /∈ Yj .

Demonstrate properties (a) and (b). Explain what they mean.
11.5 Consider a firm j characterized by the production function y = f (x) = x2,

where the superscript denotes the squared value of x. The Arrow-Debreu
style technology set for this firm would be Y j = {(x, y)|y ≤ x2, x ≤ 0}.
The phrase “x ≤ 0” is just the usual usage that inputs are treated as negative
values. This production technology has a scale economy. Show that it does
not fulfill P.V (strict convexity). You can do this in the following ways:
(a) Show that the production technology fulfills P.II, that (0, 0) ∈ Y j .
(b) Show that (−10, 100) ∈ Y j .
(c) Show that 0.5(−10, 100) + 0.5(0, 0) = (−5, 50) /∈ Y j .
(d) How does the demonstration in parts a, b, and c show that Y j

fails P.V?



Exercises 123

11.6 The supply function S̃j (p), may not be well defined when assumption P.VI
is not fulfilled and firm j ’s technology set, Yj , is unbounded. Consider the
production technology in R2:

Yj = {
(x, y) ∈ R2|x ≤ 0, y ≤ −2x +√−x

}
.

Recall that inputs are treated as negative coordinates and outputs are
treated as positive, making this all a bit obscure. (If we were writing a
production function and x were measured positively instead of negatively,
we would have y = 2x +√

x.)
(a) Demonstrate that Yj is unbounded, violating P.VI.
(b) Show that for some prices, for example (px, py) = (0.5, 0.5); that S̃j (p)

is not well defined.
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Households

12.1 The structure of household consumption sets and preferences

A household is thought of as an individual or a family with a single well-defined
preference quasi-ordering, interacting with the rest of the economy through the
market. The household sells its endowment, but it does not sell any commodity
it produces. Production for sale takes place in firms. We maintain the convention
introduced in Part A that the household sells all of its endowment. Any portion
of the endowment desired for personal use (in particular as leisure) is then repur-
chased from the market. Households are elements of the finite set H numbered
1, 2, . . . , #H . A household i ∈ H will be characterized by its possible consumption
set Xi ⊆ RN

+ , its preferences �i , and its endowment ri ∈ RN
+ .

The issue of occupational choice in this setting is a bit tricky, and the treat-
ment presented here will ignore it. It is possible to use a convention on income
and consumption to treat occupational choice as part of the household demand
decision.1

12.2 Consumption sets

A typical element of Xi represents the consumption plans of the household (not net
trade) and is hence necessarily nonnegative. We introduce the following assump-
tions on the possible consumption sets.

1 We could say that the household is endowed with several different kinds of labor, each attributed to a possible
occupation the household can pursue. The household will sell all of its labor endowment, contributing to
household income. We can then require as part of the specification of Xi that the household repurchase all
but (at most) 24 hours per day worth of the labor it has sold. The household – which could be a professor of
classics or an investment banker, but lacks the time to pursue both as full-time occupations – sells both forms
of labor and then repurchases the labor of the occupation that it does not wish to pursue, leaving the household
a net seller of labor of the occupation it actually follows. For a more complete elaboration of this treatment see
Arrow and Hahn (1971).

124
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(C.I) Xi is closed and nonempty.
(C.II) Xi ⊆ RN

+ . Xi is unbounded above, that is, for any x ∈ Xi there is y ∈ Xi

so that y > x, that is, for n = 1, 2, . . . , N, yn ≥ xn and y �= x.
(C.III) Xi is convex.

It is usually simplest to take Xi to be the nonnegative orthant (quadrant) of RN ,
denoted RN

+ . But that is a much more precise and unrealistic specification than we
need. The N commodities in the economy include a great variety, over most of
which the typical household cannot be expected to have a preference (for example,
crude oil, brake shoes, coaxial cable). Hence, it is perfectly likely that Xi be a
much lower dimensional subspace of RN

+ . We will take the possible aggregate (for
the economy’s household sector) consumption set to be X =∑i∈H Xi .

12.2.1 Preferences

Each household i ∈ H has a preference quasi-ordering on Xi , denoted �i . For
typical x, y ∈ Xi , “x �i y” is read “x is preferred or indifferent to y (according to
i).” We introduce the following terminology:

If x �i y and y �i x then x ∼i y (“x is indifferent to y”);
If x �i y but not y �i x then x 
i y (“x is strictly preferred to y”).

We will assume �i to be complete on Xi , that is, any two elements of Xi are
comparable under �i . For all x, y ∈ Xi , x �i y, or y �i x (or both). Because we
take �i to be a quasi-ordering, �i is assumed to be transitive and reflexive.

The conventional alternative to describing the quasi-ordering �i is to assume the
presence of a utility function ui(x) so that x �i y if and only if ui(x) ≥ ui(y). We
will show below that the utility function can be derived from the quasi-ordering.
Readers who prefer the utility function formulation may use it at will. Just read
ui(x) ≥ ui(y) wherever you see x �i y.

The assumption that household preferences can be characterized by a transitive,
reflexive, complete relation, �i , is powerful. It says that the household knows what
it wants and (transitivity) that its preferences are well defined and consistent (they
do not cycle but rather represent a true ordering).

There is nothing wrong with the use of a utility function ui(·) instead of the pref-
erence quasi-order �i (though assuming utility function representation is slightly
restrictive); indeed, we will adopt this usage in part in the following discussion.
The utility function is not a necessary primitive element in the theory of household
choice. It is possible to fully develop the theory of choice using preferences �i

as the primitive notion. A corresponding utility function ui will be introduced in
section 12.3 merely as a convenient representation of �i , adding no information to
the notion of preferences embodied in �i .
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12.2.2 Nonsatiation

We will assume there is universal scarcity in the economy. For each household,
and for any consumption plan x ∈ Xi , there is always a preferable conceiveable
alternative y ∈ Xi :

(C.IV) (Nonsatiation) Let x ∈ Xi . Then there is y ∈ Xi so that y 
i x.

The assumption of nonsatiation says that there is always some alternative con-
sumption plan more desirable than any plan one can name. There is always a change
in consumption that could make the household better off. Because Xi is bounded
below (by the coordinate axes or some minimal consumption) and unbounded
above, this suggests that preferable consumptions are likely to be found in the
unbounded (increasing) direction. Thus, nonsatiation implies that some good or
goods are really desirable. This formalizes the notion of scarcity. No matter where
you are in your consumption space, you always want more of something.

(C.IV) includes as a very strong special case weak monotonicity, that more is
better. This is a strong (and hence not very general) condition, stronger than the
theory needs, not because it suggests that more goods are more desirable than fewer
but because it requires that preferences be defined over most of the nonnegative
quadrant. We will find it convenient to use weak monotonicity in section 22.4 on
core convergence.

(C.IV*) (Weak monotonicity) Let x, y ∈ Xi and x >> y. Then x 
i y.

We’ll find that (C.IV) as stated is sufficiently strong to provide a theory of
demand for the existence of general equilibrium.

12.2.3 Continuity

We now introduce the principal technical assumption on preferences, the assump-
tion of continuity:

(C.V) (Continuity) For every x◦ ∈ Xi , the sets Ai(x◦) = {x | x ∈ Xi, x �i x◦} and
Gi(x◦) = {x | x ∈ Xi, x◦ �i x} are closed.

Although C.V is more technical than economic, it proves to be extremely useful.
The structure of the upper and lower contour sets of �i assumed in C.V is precisely
the behavior we’d expect if �i were defined by a continuous utility function. This
follows because the inverse image of a closed set under a continuous mapping is
closed (Theorem 7.5). Thus, suppose household i’s preferences were represented
by the utility function, ui(·). Then the sets Ai(x◦) and Gi(x◦) are the inverse images
of the closed intervals in R [ui(x◦),∞) and [infx∈Xi ui(x), ui(x◦)].

In fact, Debreu (1954, 1959) shows that we can demonstrate the existence of a
continuous utility function representing �i while assuming only C.I, C.II, C.III,
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C.V. The derivation below will use C.IV as well, considerably simplifying the
demonstration. Use of a continuous utility function allows derivation of the theory
of household choice as maximization of a continuous function subject to a compact
constraint. If the constraint set itself is continuous as a function of prices, then
demand is as well. Continuity of demand is, of course, very helpful in proving the
existence of equilibrium.

The economic content of C.V is the following description of the structure of
preferences: Begin with a typical point x in Xi , consider a line segment in Xi

starting at one end with elements superior to x according to �i and progressing
eventually to points inferior to x. Then the line segment must include points
indifferent to x as well. As we pass from superior to inferior according to �i ,
we must touch on indifference. This would seem trivially obvious. But there are
otherwise well-behaved preference quasi-orderings that violate C.V that generate
discontinuities in demand. The classic example is the lexicographic ordering.

Example 12.1 (Lexicographic preferences) In this case, it is not possible to rep-
resent the quasi-order as a continuous real-valued utility function. The lexico-
graphic (dictionary-like) ordering on RN (let’s denote it �L) is described in the
following way: Let x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ); then,

x 
L y if x1 > y1, or
if x1 = y1 and x2 > y2, or
if x1 = y1, x2 = y2, and x3 > y3, and so forth . . .

x ∼L y if x = y.

The expression �L fulfills nonsatiation, trivially fulfills strict convexity (C.VI(SC),
introduced in section 12.2.5), but does not fulfill continuity (C.V). This is easiest
to see graphically (see Figure 12.1). Consider �L on R2

+. For any x in R2
+, the

points superior to x are those above and to the right of x, and those inferior are
those below and to the left. The only point indifferent to x is x itself. Consequently,
while traveling along a line segment, it is perfectly possible to go from better than
x to worse than x without passing through indifference. It is left as an exercise
(12.1) to show that preferences like these can generate discontinuous demand
behavior.

12.2.4 Attainable consumption

Definition x is an attainable consumption if y + r ≥ x ≥ 0, where y ∈ Y and
r ∈ RN

+ is the economy’s initial resource endowment, so that y is an attainable
production plan.

Note that the set of attainable consumptions is bounded under P.VI.
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Fig. 12.1. Lexicographic preferences.

12.2.5 Convexity of preferences

We introduce now the notions of convexity and strict convexity of preferences.
These assumptions correspond to the idea of diminishing marginal rate of substi-
tution (in which the indifference curves have the usual convex to the origin shape).
Convexity, C.VI(C), includes the possibility of flat segments on the indifference
curves, admitting perfect substitutability between goods. This opens the possibility
of set-valued, rather than point-valued, demands, a technically tricky issue we post-
pone to Chapters 23 and 24. For the present chapter, we concentrate on the strictly
convex case (C.VI(SC)), where demands are necessarily point valued. Because
there is a strong family resemblance among these assumptions, we will list them
as subcases from weaker to stronger:

(C.VI)(C) (Convexity of preferences) x 
i y implies ((1 − α)x + αy) 
i y, for
0 < α < 1.

(C.VI)(SC) (Strict convexity of preferences): Let x�iy, (note that this includes
x∼iy), x �=y, and let 0 < α < 1. Then αx + (1 − α)y 
i y.

Equivalently, if preferences are characterized by a utility function ui(·), then we
can state C.VI(SC) as

ui(x) ≥ ui(y), x �= y, implies ui[αx + (1 − α)y] > ui(y).

An immediate consequence of C.VI(C) is that Ai(x◦) is convex for every x◦ ∈ Xi .

Proof Exercise 12.6. QED
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Assumption C.VI(SC) says that the indifference curves are strictly curved. There
are no flat segments in them. This corresponds economically to the idea that there
are no perfect substitutes.

12.3 Representation of �i : Existence of a continuous utility function

Starting from the household preference ordering �i , we can now very conveniently
represent the household preferences by a continuous real-valued function ui(·).
The reason we want a utility function is to use it to help construct the household
demand function. We would like to be able to characterize household demand
behavior as utility maximization subject to a budget constraint. The alternative,
already available to us, is to characterize demand as going as high as possible in the
preference quasi-ordering subject to budget constraint. Because the utility function
we will develop is actually just a representation of the preference ordering, this
is really the same idea. However, the mathematics of maximizing a continuous
function subject to constraint is very well developed. In particular, we can apply
Corollary 7.2. We can save considerable effort by showing that preferences can be
well represented by a continuous utility function.

Classical economists sometimes attributed very strong significance to the numer-
ical values taken by a utility function, suggesting that these represented the intensity
of preference experienced – either by an individual at different consumptions (a
property known as cardinality of the utility function) or between individuals (com-
parability). For our purposes, neither of these conditions is useful. On a principle
of parsimony (using the weakest – and hence most general – possible assumptions
to achieve desired analytic ends) we will demonstrate a weaker property, ordinality
(representing an ordering). The utility function can represent the idea of preference
without necessarily displaying interpersonal comparability or intensity. The essen-
tial point is to allow preferences on consumption plans to be represented by a numer-
ical function so that higher values correspond to more preferred consumption plans.

Definition Let ui: Xi → R. Then ui(·) is a utility function that represents the
preference ordering �i if for all x, y ∈ Xi , ui(x) ≥ ui(y) if and only if x �i y.
This implies that ui(x) > ui(y) if and only if x 
i y.

The function ui(·), i’s utility function, is merely a representation of i’s prefer-
ence ordering �i ; ui(·) contains no additional information. In particular, it does
not represent strength or intensity of preference. Utility functions like ui(·) that
represent an ordering �i , without embodying additional information or assump-
tions, are called ordinal (that is, representing an ordering). In this sense, any
monotone (order-preserving) transformation of ui(·) is equally appropriate as a
representation of �i .
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We are interested in showing that, under reasonable assumptions on �i , ui(·)
exists and is a continuous function of its arguments.

12.3.1 Weak conditions for existence of a continuous utility function

It is possible to prove the existence of a continuous utility function for �i using C.I,
C.II, C.III, and C.V only, without using any assumption on scarcity or desirability
of commodities.

Theorem 12.1 Let �i , X
i, fulfill C.I, C.II, C.III, C.V. Then there is ui : Xi → R,

ui(·) continuous on Xi , so that ui(·) is a utility function representing �i .

Proof See Debreu (1959, Section 4.6) or Debreu (1954). QED

12.3.2 Construction of a continuous utility function

The proof of Theorem 12.1 is rather intricate, and we will not attempt it here.
However, it is possible to construct a continuous utility function much more simply
if we allow stronger assumptions. Indeed, the assumptions thus far introduced,
C.I – C.V, C.VI(C), are sufficient. The treatment here will be somewhat informal.
In this case it is easy to construct a continuous utility function representing �i .
First, assume we can find a least desirable point in Xi , ξ (it need not be unique). It
is not trivial that ξ exists because Xi is unbounded; certainly a least desirable point
can be found in any compact subset2 of Xi . Alternatively, think of the following
construction as creating a suitable continuous utility function on a very large subset
of Xi , Ai(ξ ) the subset of Xi superior or indifferent to ξ.

Assuming ξ is the least desirable point in Xi , then for any x ∈ Xi define

ui(x) ≡ inf
y∈Ai (x)

|y − ξ |

Here ui(x) is merely the (minimum) distance from ξ to Ai(x). Then we claim
ui(x) is a utility function representing �i and ui(·) is continuous on Xi . We seek
to show two properties:

1. For x, w ∈ Xi, ui(x) > ui(w) ⇐⇒ x 
i w

2. xν ∈ Xi, ν = 1, 2, · · · , xν → x◦ ⇒ ui(xν) → ui(x◦).

2 If we used the stronger nonsatiation condition weak monotonicity (C.IV*), finding ξ would be trivial, and the
utility function evaluated at any value x would be merely the length of the 45◦ line from ξ to the indifference
curve through x.
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To demonstrate that u really is a utility function, note that

x 
i w ⇐⇒ inf
y∈Ai (x)

|y − ξ | > inf
y∈Ai (w)

|y − ξ | ⇐⇒ ui(x) > ui(w).

This result follows because under C.VI(C), about any point x ∈ Xi , there is an
ε neighborhood of Xi that includes points superior and inferior to x, creating a
substantial difference between Ai(x) and Ai(w).

To demonstrate continuity of ui(x) throughout Xi or Ai(ξ ), recall Theorem 7.7
and assumptions C.V, C.VI(C); ui : Xi → R+. We state (without proof) that ui(Xi),
the image of Xi under ui(), is connected. We wish to demonstrate that part 2 of
Theorem 7.7 is fulfilled. It is sufficient to show that for every closed interval
I ⊂ R+, ui−1

(I ) is closed. Let I = [a, b]. Then let α ∈ ui−1
(a), β ∈ ui−1

(b).
Connectedness of ui(Xi) assures the existence of α and β. Then ui−1

(I ) =
Ai(α) ∩ Gi(β). ui−1

(I ) is the intersection of two sets closed under C.V. That
completes the demonstration.

12.4 Choice and boundedness of budget sets, B̃i ( p)

We think of the household choosing a consumption plan in its budget set to maxi-
mize its utility subject to budget constraint. This maximization exercise generates
two values, a maximum utility (a real number) and a consumption choice (a non-
negative N -dimensional vector) that maximizes the utility subject to constraint.
Remember that when we try to maximize a continuous real-valued function over a
compact set, we are assured of the existence in the compact set of a point that is a
well-defined maximizer of the continuous function in that set. We will suppose that
the household’s budget set, B̃i(p), is a closed bounded set, but not too bounded.3

We need it to be bounded so that the opportunity set will be compact and hence
so that there will be a well-defined optimum behavior for the household. We need
it to be large enough so that there will be scope for scarcity – so that at some
(disequilibrium) prices, demand may exceed attainable production.

Recall that x is an attainable consumption if y + r ≥ x ≥ 0, where y ∈ Y and
r ∈ RN

+ is the economy’s initial resource endowment, so that y is an attainable pro-
duction plan. Recall that the set of attainable consumptions is bounded under P.VI.

We are interested in describing the demand behavior of the household subject to
budget constraint in a well-defined fashion. We know from the Corollary 7.2 that
compactness and nonemptiness of the opportunity set is a sufficient condition so
that a continuous maximand will have a well-defined maximum on the set. The

3 As before, the superscript tilde notation (∼), emphasizes that the budget set is defined as a bounded set. This is
a restriction that we will wish to relax later (in Chapter 18 and rather obliquely in Lemma 14.1) inasmuch as
at zero prices the budget set can quite reasonably be unbounded.
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opportunity set here is a budget set. When some prices are nil, the opportunity
set may be unbounded (and hence not compact). Using the production model of
Chapter 11, however, we know that attainable consumption plans are bounded.
Scarcity, the boundedness of consumption opportunities, is information to be con-
veyed to consumers through prices, but in searching for equilibrium we will let
it be embodied as well in a bound on their opportunity sets. In formulating our
economic model, we’ll need well-defined demand behavior at all possible price
vectors. But that’s not really possible. When prices of desirable goods are zero so
that budget sets are unbounded, demands will be arbitrarily large – and hence unde-
fined – as well. The answer to this riddle is that we’ll temporarily place quantitative
bounds on the size of household opportunity sets to make sure they stay bounded.
That gives well defined demands. We’ll search for equilibrium prices. Once we’ve
found them, we’ll remove the temporary bounds. The demands stay the same. So,
once equilibrium prices have been found, equilibrium price information is suffi-
cient to guide households to market-clearing consumptions. Those temporary extra
bounds on household choice were helpful to the economic theorist in searching
for the equilibrium. Once the equilibrium is found, the temporary bounds can be
discarded.

Choose c ∈ R+ so that |x| < c (a strict inequality) for all attainable consumptions
x. Choose c sufficiently large that Xi ∩ {x | x ∈ RN, c > |x|} �= φ; c is then a very
suitable bound on individual consumptions in the household opportunity sets. It is
small enough (that is, finite) so that the opportunity sets will be bounded. It is large
enough so that consumption plans constrained by this bound can be well defined
and can reflect scarcity.

We assign to household i a budget at prices p of M̃i(p). This is the value (in
units of account) that the household can spend on purchases. The budget itself will
be defined more fully in Chapter 13. We now characterize a bounded budget set
B̃i(p). Let

B̃i(p) = {x | x ∈ RN, p · x ≤ M̃i(p)} ∩ {x||x| ≤ c}.

This is the budget set of household i. Consumption plans in this budget set must
fulfill a budget constraint and have a maximum length of c (all attainable consump-
tion plans will lie within this length). To represent household consumption choice,
we ask the household to optimize consumption with regard to its preferences (to
maximize utility) subject to budget constraint, to Xi the possible consumption set,
and to length c. Define

D̃i(p) ≡ {x | x ∈ B̃i(p) ∩ Xi, x �i y for all y ∈ B̃i(p) ∩ Xi}
≡ {x | x ∈ B̃i(p) ∩ Xi, x maximizes ui(y) for all y ∈ B̃i(p) ∩ Xi}.
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To characterize market demand let

D̃(p) =
∑
i∈H

D̃i(p).

Lemma 12.1 B̃i(p) is a closed set.

We will restrict attention to models where M̃i(p) is homogeneous of degree one,
that is, where M̃i(λp) = λM̃i(p) for λ > 0. It is immediate then that B̃i(p) is
homogeneous of degree zero.

Lemma 12.2 Let M̃i(p) be homogeneous of degree 1. Let B̃i(p) and D̃i(p) �= ∅.
Then B̃i(p) and D̃i(p) are homogeneous of degree 0.

We’ll restrict attention to nonnegative prices. Homogeneity of degree zero of
both D̃i(p) and S̃j (p) (from Lemma 11.1) allows us to simplify significantly the
space of prices. We do not need to use the full nonnegative quadrant (orthant) of RN .
Instead, we can restrict prices to the unit simplex in RN . Economically speaking,
this restriction represents that homogeneity of degree zero in p implies that only
relative prices (price ratios) matter in forming supply and demand in this economy.
The numerical values in which prices are quoted (dollars, yen, guineas, . . .) are
irrelevant. We will confine attention to price vectors on the set P , the unit simplex
in RN ,

P ≡
{
p | p ∈ RN, pn ≥ 0, n = 1, 2, 3, . . . , N,

N∑
n=1

pn = 1

}
.

12.4.1 Adequacy of income

To avoid possibly empty budget sets B̃i(p) and discontinuities in demand behavior
at the boundary of Xi , we will assume

(C.VII) For all i ∈ H ,

M̃i(p) > inf
x∈Xi∩{x||x|≤c}

p · x for all p ∈ P.

C.VII can be fulfilled in a variety of ways: i’s endowment ri could be strictly
interior to Xi , or i’s share of firm profits could ensure ample income everywhere.
Assumption C.VII allows us to avoid discontinuities that may occur when the
budget set coincides with the boundary of Xi , the Arrow corner.4 Alternatively,

4 A corner solution occurs when the solution is up against a boundary constraint.
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a weaker sufficient condition than C.VII could be used, guaranteeing sufficiently
high income on a subset of P where equilibria might arise, but this requires more
structure than we wish to develop. The next example illustrates the difficulty we
have assumed away.

Example 12.2 (The arrow corner) Consider household i in a two-commodity
economy with sale of endowment as i’s only source of income (i has no share in
firm profits). Let the household consumption set Xi be the nonnegative quadrant,
with i endowed with one unit of good 1 and none of good 2. Consider consumption
behavior in the neighborhood of a zero price of good. We have

Xi = R2
+,

ri = (1, 0),

M̃i(p) = p · ri .

Let p◦ = (0, 1). Then,

B̃i(p◦) ∩ Xi = {(x, y) | c ≥ x ≥ 0, y = 0},
the truncated nonnegative x axis. Consider the sequence pν = (1/ν, 1 − 1/ν).
pν → p◦. We have

B̃i(pν) ∩ Xi =
{

(x, y) | pν · (x, y) ≤ 1

ν
, (x, y) ≥ 0, c ≥ |(x, y)| ≥ 0

}
,

(c, 0)∈B̃i(p◦), but there is no sequence (xν, yν)∈B̃i(pν) so that (xν, yν) →
(c, 0). On the contrary, for any sequence (xν, yν) ∈ B̃i(pν) so that (xν, yν) =
D̃i(pν), (xν, yν) will converge to some (x∗, 0), where 0 ≤ x∗ ≤ 1. For suitably
chosen �i , we may have (c, 0) = D̃i(p◦). Hence D̃i(p) need not be continuous at
p◦. This completes the example.

Example 12.2 demonstrates that when the budget constraint coincides with the
boundary of the consumption set, discontinuities in the budget set (a large change
in the consumption choices available in response to a small change in prices)
and corresponding discontinuity in demand behavior may result. Hence, to ensure
continuity of demand, (C.VII) adquacy of income (sufficient income to stay off the
boundary of the consumption set) may be required.

12.5 Demand behavior under strict convexity

We have now developed enough structure to characterize demand behavior for the
household as a continuous (point-valued) function of prices. As noted in Chapter 5,
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this is a useful step in creating sufficient conditions for existence of a well-defined
general equilibrium. For demand to be point valued, strict convexity of preferences
(C.VI(SC)) is essential. With only convexity C.VI(C), the possibility of perfect
substitutes in consumption would allow there to be a linear segment of equally
satisfactory, equally affordable consumption plans so that demand would be set
valued rather than point valued. That case is treated in Chapters 23 and 24 using
the rather more elaborate mathematics of the Maximum Theorem (Theorem 23.3).

Theorem 12.2 Assume C.I–C.V, C.VI(SC), and C.VII. Let M̃i(p) be a continuous
function for all p ∈ P . Then D̃i(p) is a well-defined, point-valued, continuous
function for all p ∈ P .

Proof B̃i(p) ∩ Xi is the intersection of the closed set {x | p · x ≤ M̃i(p)} with the
compact set {x | |x| ≤ c} and the closed set Xi . Hence it is compact. It is nonempty
by C.VII. Because D̃i(p) is characterized by the maximization of a continuous
function, ui(·), on this compact nonempty set, there is a well-defined maximum
value, u∗ = ui(x∗), where x∗ is the utility-optimizing value of x in B̃i(p) ∩ Xi . We
must show that x∗ is unique for each p ∈ P and that x∗ is a continuous function of p.

We will now demonstrate that uniqueness follows from strict convexity of pref-
erences (C.VI(SC)). Suppose there is x ′ ∈ B̃i(p) ∩ Xi, x′ �= x∗, x ′ ∼i x∗. We must
show that this leads to a contradiction. But now consider a convex combination of
x ′ and x∗. Choose 0 < α < 1. The point αx ′ + (1 − α)x∗ ∈ B̃i(p) ∩ Xi by con-
vexity of Xi and B̃i(p). But C.VI(SC), strict convexity of preferences, implies
that [αx ′ + (1 − α)x∗] 
i x′ ∼i x∗. This is a contradiction because x∗ and x ′ are
elements of D̃i(p). Hence x∗ is the unique element of D̃i(p). We can now, without
loss of generality, refer to D̃i(p) as a (point-valued) function.

To demonstrate continuity, let pν ∈ P , ν = 1, 2, 3, . . . , pν → p◦. We must show
that D̃i(pν) → D̃i(p◦). D̃i(pν) is a sequence in a compact set. Without loss of
generality, take a convergent subsequence, D̃i(pν) → x◦. We must show that x◦ =
D̃i(p◦). We will use a proof by contradiction.

Define

x̂ = arg min
x∈Xi∩{y|y∈RN,c≥|y|}

p◦ · x.

The expression “x̂ = arg minx∈Xi∩{y|y∈RN,c≥|y|}p
◦ · x” defines x̂ as the minimizer of

p◦ · x in the domain Xi ∩ {y | y ∈ RN, c ≥ |y|}. The expression x̂ is well defined
(though it may not be unique) because it represents a minimum of a continuous
function taken over a compact domain.
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Now consider two cases. In each case we will construct a sequence wν in
Xi ∩ {y | y ∈ RN, c ≥ |y|}:
Case 1: If p◦ · D̃i(p◦) < M̃i(p◦) for ν large pν · D̃i(p◦) < M̃i(pν). Then let wν =

Di(p◦).

Case 2: If p◦ · D̃i(p◦) = M̃i(p◦) then by (C.VII) p◦ · D̃i(p◦) > p◦ · x̂.

Let

αν = min

[
1,

M̃i(pν) − pν · x̂
pν · (D̃i(p◦) − x̂)

]
.

For ν large, the denominator is positive, αν is well defined (this is where C.VII
enters the proof), and 0 ≤ αν ≤ 1. Let wν = (1 − αν)x̂ + ανD̃i(p◦). Note that
M̃i(p) is continuous in p. The fraction in the definition of αν is the proportion
of the move from x̂ to D̃i(p◦) that the household can afford at prices pν . As ν

becomes large, the proportion approaches or exceeds unity.
Then in both Case 1 and Case 2, wν → D̃i(p◦) and wν ∈ B̃i(pν) ∩ Xi . Sup-

pose, contrary to the theorem, x◦ �= D̃i(p◦). Then ui(x◦) < ui(D̃i(p◦)). But ui is
continuous, so ui(D̃i(pν)) → ui(x◦) and ui(wν) → ui(D̃i(p◦)). Thus, for ν large,
ui(wν) > ui(D̃i(pν)). But this is a contradiction because D̃i(pν) maximizes ui(·) in
B̃i(pν) ∩ Xi . The contradiction proves the result. This completes the demonstration
of continuity. QED

Theorem 12.2 gives a family of sufficient conditions for demand behavior of
the household to be very well behaved. It will be a continuous (point-valued)
function of prices if preferences are continuous and strictly convex and if income
is a continuous function of prices and sufficiently positive.

What will household spending patterns look like? What is the value of household
expenditures, p · D̃i(p)? There are two significant constraints on D̃i(p), budget and
length: p · D̃i(p) ≤ M̃i(p) and |D̃i(p)| ≤ c. In addition, of course, D̃i(p) must
optimize consumption choice with regard to preferences �i or equivalently with
regard to the utility function ui(·). We have enough structure on preferences and
the budget set to actually say a fair amount about the character of spending and
where D̃i(p) is located. This is embodied in:

Lemma 12.3 Assume C.I–C.V–C.VI(C), and C.VII. Then p · D̃i(p) ≤ M̃i(p).
Further, if p · D̃i(p) < M̃i(p) then |D̃i(p)| = c.

Proof D̃i(p) ∈ B̃i(p) by definition. However, that ensures p · D̃i(p) ≤ M̃i(p), and
hence the weak inequality surely holds. Suppose, however, p · D̃i(p) < M̃i(p)
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and |D̃i(p)| < c. We wish to show that this leads to a contradiction. Recall C.IV
(Nonsatiation) and C.VI(C) (Convexity). By C.IV there is w∗ ∈ Xi so that w∗ 
i

D̃i(p). Clearly, w∗ �∈ B̃i(p) so one (or both) of two conditions holds: (a) p · w∗ >

M̃i(p), (b) |w∗| > c.
Set w′ = αw∗ + (1 − α)D̃i(p). There is an α (1 > α > 0) sufficiently small so

that p · w′ ≤ M̃i(p) and |w′| ≤ c. Thus w′ ∈ B̃i(p). Now w′ 
i D̃i(p) by C.VI(C),
which is a contradiction because D̃i(p) is the preference optimizer in B̃i(p). The
contradiction shows that we cannot have both p · D̃i(p) < M̃i(p) and |D̃i(p)| < c.
Hence, if the first inequality holds, we must have |D̃i(p)| = c. QED

12.6 Bibliographic note

The treatment of the household, preferences, and demand here parallels the pre-
sentations of Arrow (1962), Arrow and Debreu (1954), and Debreu (1959). The
construction of the utility function as the length of a ray to an indifference curve
is presented in Arrow and Hahn (1971) (with a technical oversight, corrected in
Glustoff [1975]). Theorem 12.1, due to Debreu (1954, 1959), provides a more
general derivation of the utility function that does not depend on nonsatiation or
convexity of preferences but at the cost of greater complexity in exposition (using
the connectedness of RN and the density of the rationals in the reals).

Exercises

12.1 The lexicographic (dictionary-like) ordering on RN (let’s denote it �L)
is described in the following way. Let x = (x1, x2, . . . , xN ) and y =
(y1, y2, . . . , yN ):

x �L y if x1 ≥ y1, or
if x1 = y1 and x2 ≥ y2, or
if x1 = y1, x2 = y2, and x3 ≥ y3, or and so forth . . .

if x1 = y1, x2 = y2, x3 = y3, . . . , xN−1 = yN−1, and xN ≥ yN

�L fulfills weak monotonicity, trivially fulfills strict convexity (trivially
because the only point indifferent to x is x), and does not fulfill continu-
ity. Consider a two-commodity (N = 2) economy. Consider a household
(we’ll omit a subscript for its name to save notation) with a lexicographic
preference ordering. Let the possible consumption set X be the nonnega-
tive quadrant R2

+. We give the household endowment, r = (1, 1), 1 unit of
each good. Note that with this endowment, household income will always
be positive, so C.VII is fulfilled. Let the constant c as before indicate a
large real number used to bound the length of a prospective consumption
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vector. The household’s bounded budget set is then described as

B̃(p) = {x | x ∈ RN
+, p · x ≤ p · (1, 1)} ∩ {x | |x| ≤ c}

and demand behavior is described as

D̃(p) ≡ {x | x ∈ B̃(p) ∩ X, x �L y for all y ∈ B̃(p) ∩ X}.
Consider the price sequence in the unit simplex

pν = (1 − (1/ν), 1/ν), ν = 1, 2, . . . .

As ν becomes large, pν converges to (1, 0); that is, as ν increases, x1 (the
lexicographically preferred good) becomes consistently more expensive
and x2 (the lexicographically less preferred good) becomes consistently
less expensive.

Describe the demand behavior at pν and in the limit at (1, 0). Show that
demand is discontinuous at (1, 0).

12.2 Recall our definition of how a utility function represents a preference
ordering:

Definition We will say that the utility function ui(·) represents the prefer-
ence ordering �i if for all x, y ∈ Xi , ui(x) ≥ ui(y) if and only if x �i y.
This implies that ui(x) > ui(y) if and only if x 
i y.

The function ui(·) in Theorem 12.1, i’s utility function, is merely a rep-
resentation of i’s preference ordering �i . The expression ui(·) contains
no additional information. In particular, it does not represent strength or
intensity of preference. A utility function, like ui(·), that represents an
ordering �i , without embodying additional information or assumptions, is
called ordinal (that is, representing an ordering).

Let a, b ∈ R+ be positive real numbers. Define vi(x) = a + b · ui(x).
Show that if ui(·) represents the preference ordering �i then so does vi(·).
This is known as invariance under a monotone transformation.

12.3 We wish to demonstrate the importance of the adequacy of income assump-
tion (C.VII) in avoiding a discontinuity of demand behavior (the arrow
corner). Let household i’s possible consumption set Xi be the nonnegative
quadrant in R2 translated by (1,1). That is,

Xi = {(x, y) | x ≥ 1, y ≥ 1}.
Note that Xi fulfills C.I–C.III. Let household i have no share of any firm.
Let i have endowment ri = (2, 1).
(i) Show that this situation violates C.VII (consider p = (0, 1)).
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Let i’s preferences be represented by the utility function ui(x1, x2) =
x1 + x2 (this utility function violates strict convexity but fulfills weakly
convex preferences; no confusion should result). Define i’s demand behav-
ior as

D̃i(p) ≡ {x | x ∈ B̃i(p) ∩ Xi, ui(x) ≥ ui(y) for all y ∈ B̃i(p) ∩ Xi},
where

B̃i(p) = {x | x ∈ RN, p · x ≤ p · ri} ∩ {x | |x| ≤ c}.
(ii) Consider the price sequence in the unit simplex, pν = [(1/ν, 1 −

(1/ν)], ν = 1, 2, . . . . As ν becomes large, pν converges to (0,1).
Describe the demand behavior (that is, describe D̃i(p) at pν and in the
limit at (0,1)). Show that demand is discontinuous at (0,1).

12.4 Consider the construction of a utility function in section 12.2.3. Arrow
and Hahn try to prove continuity of u it by the same approach used in this
section using a weaker version of monotonicity:
(C.IV′) (Very weak monotonicity) Let x, y ∈ Xi , with x � y. Then x �i y.
Their proof is fallacious. Show that under C.IV′ there may be thick bands
of indifference. We define

ui(x) ≡ inf
y∈Ai (x)

|y − ξ |.

Show that the construction of ui(x) can then lead to discontinuities in ui(x).
12.5 Recall that in defining household demand behavior we used the truncated

budget set

B̃i(p) = {x | x ∈ RN, p · x ≤ M̃i(p)} ∩ {x | |x| ≤ c}.
We defined demand behavior as

D̃i(p) ≡ {x | x ∈ B̃i(p) ∩ Xi, x �i y for all y ∈ B̃i(p) ∩ Xi}.
We then established in Theorem 12.2 that, under a variety of additional
assumptions, D̃i(p) is well defined (nonempty).

Show that this result depends on the truncation of B̃i(p). That is, define

Bi(p) = {x | x ∈ RN, p · x ≤ M̃i(p)}
and

Di(p) ≡ {x | x ∈ Bi(p) ∩ Xi, x �i y for all y ∈ Bi(p) ∩ Xi}.
Show that for some prices (in particular with pk = 0 for some goods k) and
preferences, Di(p) may not be well defined under the same circumstances
where D̃i(p) will be well defined.
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12.6 Show under assumption C.VI(C) that Ai(x◦) is convex for every x◦ ∈ Xi .
12.7 The following preferences represent the notion: “I like x precisely twice

as much as y, and I really like them both, but between two otherwise
equivalent bundles, I’ll choose the one with more x.” Consider a household
having these preferences, with endowment (1, 1) and Xi = R2

+, in the
neighborhood of prices (px, py) = (2/3, 1/3), as px goes slightly up and
down. Show that demand moves discontinuously from buying x only to
buying y only. Show that the preferences specified do not fulfill C.V:

(x, y) 
 (x ′, y ′) if 2x + y > 2x ′ + y ′; or

(x, y) 
 (x ′, y ′) if 2x + y = 2x ′ + y ′ and x > x ′

(x, y) ∼ (x′, y ′) only if (x, y) = (x ′, y ′).

12.8 Household preferences are assumed to be continuous in C.V. That is, they
can be represented by a continuous real valued utility function. In this
problem we see what can happen when that assumption fails. Let there be
two goods, x and y. An allocation to household i will be represented by
(x, y). Consider household preference ordering 
i of the following form.

The expression 
i is read “is strictly preferred to;” ∼i is read “is
indifferent to”

(x, y) 
i (x′, y ′) if 2x + y > 2x′ + y ′; or if

(x, y) 
i (x ′, y ′) if 2x + y = 2x ′ + y ′ and x > x ′.

(x, y) ∼i (x ′, y′) if (x, y) = (x ′, y′).

That is, a bundle (x, y) is evaluated by the value of the expression 2x + y

except when two bundles are tied. Then the tie breaker is which one
has more x. Consider the following Edgeworth box (two-person pure
exchange economy), with two identical households (for convenience).

Household 1 Household 2

Preferences 
i , ∼i 
i , ∼i

Endowment r1 = (50, 50) r2 = (50, 50)

(a) The obvious candidate for equilibrium prices here is (2/3, 1/3).
Everyone likes x twice as much as y. Show that this price vector
(2/3, 1/3) is not an equilibrium – good x will be in excess demand.
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(b) Try raising the price of x very slightly to (2/3 + ε, 1/3 − ε) for very
small ε. Show that this is not an equilibrium either – good y is in excess
demand; demand behavior is discontinuous in this neighborhood.

(c) There’s apparently no equilibrium price vector. Is this a counterexample
to Theorem 5.2?

12.9 Prove Lemma 12.2. That is, for any p ∈ RN
+ , p �= 0, λ > 0, assume

M̃i(λp) = λM̃i(p). Then using the definitions of M̃i(p) and D̃i(p), show
that D̃i(λp) = D̃i(p).
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A market economy

13.1 Firms, profits, and household income

It is now time to bring the firms of Chapter 11 and the households of Chapter
12 together to form a private ownership economy. The link between firms and
households will be in household income. The firms are owned by the households.
Thus, firm profits are transmitted to households as part of income. This essential
step ensures fulfillment of Walras’s Law and hence provides for the existence of
general equilibrium.

The economy is characterized by the agents in it, households (the set H ) and
firms (the set F ). For each firm j , there is a list of households that are shareholders
in j . We let αij ∈ R represent i’s share of firm j . We assume

∑
i∈H αij = 1 for

each j ∈ F and αij ≥ 0 for all i ∈ H , j ∈ F . That is, we assume that every firm
is 100 percent owned by someone or several shareholders and that there is no
negative ownership of firms (no short sales). A household i ∈ H is characterized
by its endowment of goods ri ∈ RN

+ , by its endowed shares αij ∈ R+ of firms
j ∈ F , and by �i . The initial resource endowment of the economy, designated
r ∈ RN

+ in prior chapters is now identified as

r ≡
∑
i∈H

ri.

A firm j ∈ F is characterized by its possible production set Y j . Firm j ’s profit
function is π̃ j (p) = maxy∈Yj p · y = p · S̃j (p).

Theorem 13.1 Assume P.II, P.III, and P.VI. π̃j (p) is a well-defined continuous
function of p for all p ∈ RN

+, p �= 0. π̃ j (p) is homogeneous of degree 1.

Proof Exercise 13.2. QED

142



13.2 Excess demand and Walras’s Law 143

Household i’s income is now defined as M̃i(p) = p · ri +∑j∈F αij π̃ j (p). Note
that this expression is homogeneous of degree one in p. Specifying M̃i(p) in this
form means that household i has income from two sources, sale of endowment
and a share of profits of firms in which it is a shareholder. Assuming P.II, P.III,
and P.VI, M̃i(p) is continuous, real valued, nonnegative, and well defined for all
p ∈ RN

+, p �= 0. Recalling Lemma 12.2 and using this definition of M̃i(p), we
have that B̃ i(p) and D̃i(p) are homogeneous of degree 0 in p. We can then,
without loss of generality, restrict the price space to the unit simplex in RN ,
denoted P ,

P =
{
p | p ∈ RN, pk ≥ 0, k = 1 . . . , N,

N∑
k=1

pk = 1

}
.

13.2 Excess demand and Walras’s Law

We can now define the excess demand function of the economy. It consists of
the demand function defined in Chapter 12 minus the supply function defined in
Chapter 11 minus the endowment of initial resources. General equilibrium will
consist of prices that make this function the zero vector (or in the case of free
goods, a nonpositive vector).

Definition The excess demand function at prices p ∈ P is

Z̃(p) = D̃(p) − S̃(p) − r =
∑
i∈H

D̃i(p) −
∑
j∈F

S̃j (p) −
∑
i∈H

ri .

Recall that by definition D̃i(p) and S̃j (p) are bounded. Then their finite sums
are bounded as well. Theorems 11.1 and 12.2 established sufficient conditions for
D̃i(p) and S̃j (p) to be continuous functions of their arguments. These sufficient
conditions carry over to Z̃(p) as well.

Lemma 13.1 Assume C.I–C.V, C.VI(SC), C.VII, P.II, P.III, P.V, and P.VI. The range
of Z̃(p) is bounded. Z̃(p) is continuous and well defined for all p ∈ P .

Proof Apply Theorems 11.1, 12.2, and 13.1. The finite sum of bounded sets is
bounded. The finite sum of continuous functions is continuous. QED

We saw in Chapter 5 that Walras’s Law is helpful in proving the existence of
general equilibrium. Unfortunately, the classic Walras’s Law (p · Z(p) = 0, the
relationship holds as an equality) is not strictly true in this model. This reflects the
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boundedness restriction on household demand developed in Chapter 12. The classic
Walras’s Law applies only when the budget constraint is the binding constraint on
household expenditure. In the model of Chapter 12, the length restriction, c, may
instead be the binding constraint. This leads us to:

Theorem 13.2 (Weak Walras’s Law) Assume C.I–C.V, C.VI(SC), C.VII, P.II,
P.III, P.V, and P.VI. For all p ∈ P , p · Z̃(p) ≤ 0. For p such that p · Z̃(p) < 0,
there is k = 1, 2, . . . , N so that Z̃k(p) > 0.

The idea of the (Weak) Walras’s Law is simpler than it looks. The expression
p · Z̃(p) is total household expenditures minus total household income (firm profits
and value of endowment). Walras’s Law is merely a consequence of the budget con-
straint. In the Weak Walras’s Law with the strict inequality holding (p · Z̃(p) < 0),
some household is underspending its budget. But under nonsatiation, no household
would do so willingly. That’s what Lemma 12.3 tells us. By nonsatiation (C.IV),
p · D̃i(p) = M̃i(p) or |D̃i(p)| = c. Underspending means that the length constraint
must be binding on the underspending household.

Proof of Theorem 13.2 Recall two properties of the market economy. For each
household i, we have the budget constraint on demand, p · D̃i(p) ≤ M̃i(p) =
p · ri +∑j∈F αij π̃ j (p). For each firm j , we have that it is fully owned by house-
holds i,

∑
i∈H αij = 1 for each j ∈ F .

The proof starts with a string of identities:

p · Z̃(p) = p ·
[∑

i∈H

D̃i(p) −
∑
j∈F

S̃j (p) −
∑
i∈H

ri

]
= p ·

∑
i∈H

D̃i(p) − p ·
∑
j∈F

S̃j (p) − p ·
∑
i∈H

ri

=
∑
i∈H

p · D̃i(p) −
∑
j∈F

p · S̃j (p) −
∑
i∈H

p · ri

=
∑
i∈H

p · D̃i(p) −
∑
j∈F

π̃ j (p) −
∑
i∈H

p · ri

=
∑
i∈H

p · D̃i(p) −
∑
j∈F

[∑
i∈H

αij π̃ j (p)

]
−
∑
i∈H

p · ri

=
∑
i∈H

p · D̃i(p) −
∑
i∈H

[∑
j∈F

αij π̃ j (p)

]
−
∑
i∈H

p · ri
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Note the change in the order of summation:

=
∑
i∈H

p · D̃i(p) −
∑
i∈H

{[∑
j∈F

αij π̃ j (p)

]
+ p · ri

}
=
∑
i∈H

p · D̃i(p) −
∑
i∈H

M̃i(p)

=
∑
i∈H

[
p · D̃i(p) − M̃i(p)

]
≤ 0.

The last inequality holds by the budget constraint, p · D̃i(p) ≤ M̃i(p), that applies
to each household i. This proves the weak inequality as required.

We now must demonstrate the positivity of some coordinate of Z̃(p) when
the strict inequality holds. Let p · Z̃(p) < 0. Then p ·∑i∈H D̃i(p) < p · r +
p ·∑j∈F S̃j (p) =∑

i∈H M̃i(p), so for some i ′ ∈ H , p · D̃i′(p) < M̃i′(p). Now

we apply Lemma 12.3. We must have |D̃i′(p)| = c. Recall that c is chosen so that
|x| < c (a strict inequality) for all attainable x. But then D̃i′(p) is not attainable.
For no y ∈ Y do we have D̃i′(p) ≤ y + r . But for all i ∈ H , D̃i(p) ∈ RN

+ . So∑
i∈H D̃i(p) ≥ D̃i ′(p). Therefore, Z̃k(p) > 0, for some k = 1, 2, . . . , N . QED

The Weak Walras’s Law performs the following exercise. For any price vector
p, we evaluate the excess demand function Z̃(p). That is, we take the dot product
p · Z̃(p). The Weak Walras’s Law tells us that this product will have one of two
characteristics. Either the value of excess demand, evaluated at prevailing prices, is
nil, or the value is negative and there is positive excess demand for one or several
of the N goods.

13.3 Bibliographic note

Explicit development of the behavior of the artificially bounded economy, in par-
ticular the Weak Walras’s Law, is distinctive with the treatment in this volume.
The approach of developing the equilibrium of an unbounded economy as a con-
sequence of the equilibrium of the bounded economy is pursued successfully in
Arrow and Debreu (1954) and expounded in Arrow (1962).

Exercises

13.1 An economy is generally said to be “competitive” if no agent in the econ-
omy has a significant effect in determining equilibrium prices. They cannot
be price setters. Is it an assumption or a conclusion in Chapters 11 through
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13 that agents are competitive in this sense? If it is an assumption, where
is it made? If a conclusion, where does it appear, and what hypotheses is it
based on?

13.2 Prove Theorem 13.1: Assume P.II, P.III, P.VI. Then π̃ j (p) is a well-defined
continuous function of p for all p ∈ RN

+, p �= 0, and π̃ j (p) is homogeneous
of degree 1.
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General equilibrium of the market economy
with an excess demand function

14.1 Existence of equilibrium

In this chapter we will consider the existence of general equilibrium of an economy
where demands D̃i(·) and supplies S̃j (·) come from bounded opportunity sets, B̃i(·)
and Yj , and are point valued. From Chapters 11 and 12 we know that a sufficient
condition for point-valuedness is strict convexity of tastes and technologies, P.V
and C.VI(SC). As noted in Chapter 13, homogeneity of degree zero of D̃i(·) and
S̃j (·) in p means that we may, without loss of generality, restrict the price space to
be the unit simplex in RN :

P =
{

p | p ∈ RN, pk ≥ 0, k = 1 . . . , N,

N∑
k=1

pk = 1

}
.

From Chapter 13, the market excess demand function is defined

Z̃(p) =
∑
i∈H

D̃i(·) −
∑
j∈F

S̃j (·) − r.

We are now in a position to define the general equilibrium of the market
economy.

Definition The expression p◦ ∈ P is said to be an equilibrium price vector if
Z̃(p◦) ≤ 0 (the inequality holds coordinatewise) with p◦

k = 0 for k such that
Z̃k(p◦) < 0.

That is, an equilibrium is characterized by market clearing for all goods except
perhaps free goods that may be in excess supply in equilibrium. To find suffi-
cient conditions and to prove the existence of a general equilibrium, we have to
focus on the excess demand function, Z̃(p), Z̃ : P → RN . We have the following
observations on Z̃(p):

147
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Weak Walras’s Law (Theorem 13.2) For all p ∈ P , p · Z̃(p) ≤ 0. For p such
that p · Z̃(p) < 0, there is k = 1, 2, . . . , N so that Z̃k(p) > 0, under assumptions
C.I–C.V, C.VI(SC), P.I–P.III, P.V, and P.VI.

Continuity Z̃(p) is a continuous function, assuming P.II, P.III, P.V, P.VI, C.I–C.V,
C.VI(SC), and C.VII (Theorems 11.1, 12.2, and 13.1).

In addition, recall

Theorem 9.3 (Brouwer Fixed-Point Theorem) Let S be an N -simplex, and let
f : S → S, where f is continuous. Then there is x∗ ∈ S so that f (x∗) = x∗.

Our approach to proving the existence of general equilibrium follows the plan
used in Chapter 5. We have established sufficient conditions so that excess demand
is a continuous function of prices (Lemma 13.1) and fulfills the Weak Walras’s Law
(Theorem 13.2). The rest of the proof involves the mathematics of an economic
story. Suppose the Walrasian auctioneer starts out with an arbitrary possible price
vector (chosen at random, crié au hasard, in Walras’s phrase) and then adjusts prices
in response to the excess demand function Z̃(p). He raises the price of goods, k,
in excess demand, Z̃k(p) > 0, and reduces the price of goods, k, in excess supply,
Z̃k(p) < 0. He performs this price adjustment as a continuous function of excess
demands and supplies while staying on the price simplex. Then the price adjustment
function T (p) is a continuous mapping from the price simplex into itself. From
the Brouwer Fixed-Point Theorem (Theorem 9.3), there is a fixed point p∗ of the
price adjustment function, so that T (p∗) = p∗. Using the Weak Walras’s Law we
can then show that p∗ is not merely a fixed point of the price adjustment function
but that it is a general equilibrium as well.

Theorem 14.1 1 Assume P.II, P.III, P.V, P.VI, C.I–C.V, C.VI (SC), and C.VII. There
is p∗ ∈ P so that p∗ is an equilibrium.

Proof Let T : P → P , where T (p) = (T1(p), T2(p), . . . , Ti(p), . . . , TN (p)).
Ti(p) is the adjusted price of good i, adjusted by the auctioneer trying to bring
supply and demand into balance. Let γ i > 0. The adjustment process of the ith
price can be represented as Ti(p), defined as follows:

Ti(p) ≡ max[0, pi + γ iZ̃i(p)]
N∑

n=1

max[0, pn + γ nZ̃n(p)]

. (14.1)

1 Acknowledgment and thanks to David Kovo, John Roemer, Li Li, and Peter Sørensen for help in formulating
the proof.
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Fig. 14.1. Mapping from P into P .

The function T is a price adjustment function. It raises the relative price of goods
in excess demand and reduces the price of goods in excess supply while keeping
the price vector on the simplex. The expression pi + γ iZ̃i(p) represents the idea
that prices of goods in excess demand should be raised and those in excess supply
should be reduced. The operator max[0, ·] represents the idea that adjusted prices
should be nonnegative. The fractional form of T reminds us that after each price
is adjusted individually, they are all then readjusted proportionally to stay on the
simplex. For T to be well defined, we must show that the denominator is nonzero,
that is,

N∑
n=1

max[0, pn + γ nZ̃n(p)] �= 0. (14.2)

In fact, we claim that
∑N

n=1 max[0, pn + γ nZ̃n(p)] > 0. Suppose not. Then for
each n, max[0, pn + γ nZ̃n(p)] = 0. Then all goods k with pk > 0 must have
Z̃k(p) < 0. So p · Z̃(p) < 0. Then by the Weak Walras’s Law, there is n so that
Z̃n(p) > 0. Thus,

∑N
n=1 max[0, pn + γ nZ̃n(p)] > 0.

By Lemma 13.1, Z̃(p) is a continuous function. Then T (p) is a continuous
function from the simplex into itself because continuity is preserved under the
operations of max, addition, and division by a positive-valued continuous function.
An illustration of the notion of a continuous function from P into P is presented
in Figure 14.1. By the Brouwer Fixed-Point Theorem, there is p∗ ∈ P so that
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T (p∗) = p∗. But then for all k = 1, . . . , N ,

Ti(p∗) ≡ max[0, p∗
i + γ iZ̃i(p∗)]

N∑
n=1

max[0, p∗
n + γ nZ̃n(p∗)]

. (14.3)

We’ll demonstrate that Z̃n(p∗) ≤ 0 all n.
Looking at the numerator in this expression, we can see that the equation will

be fulfilled either by

p∗
k = 0 (Case 1) (14.4)

or by

p∗
k = p∗

k + γ kZ̃k(p∗)
N∑

n=1

max[0, p∗
n + γ nZ̃n(p∗)]

> 0 (Case 2). (14.5)

Case 1: p∗
k =0=max[0, p∗

k+γ kZ̃k(p∗)]. Hence, 0 ≥ p∗
k+γ kZ̃k(p∗)=γ kZ̃k(p∗)

and Z̃k(p∗) ≤ 0. This is the case of free goods with market clearing or with excess
supply in equilibrium.

Case 2: To avoid repeated messy notation, define

λ ≡ 1
N∑

n=1

max[0, p∗
n + γ nZ̃n(p∗)]

> 0 (14.6)

so that Tk(p∗) = λ(p∗
k + γ kZ̃k(p∗)). We’ll demonstrate that Z̃n(p∗) ≤ 0 all n.

Because p∗ is the fixed point of T , we have p∗
k = λ(p∗

k + γ kZ̃k(p∗)) > 0. This
expression is true for all k with p∗

k > 0, and λ is the same for all k. Let’s perform
some algebra on this expression. We first combine terms in p∗

k :

(1 − λ)p∗
k = λγ kZ̃k(p∗), (14.7)

then multiply through by Z̃k(p∗) to get

(1 − λ)p∗
k Z̃k(p∗) = λγ k(Z̃k(p∗))2, (14.8)

and now sum over all k in Case 2, obtaining

(1 − λ)
∑

k∈Case2

p∗
k Z̃k(p∗) = λ

∑
k∈Case2

γ k(Z̃k(p∗))2. (14.9)
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The Weak Walras’s Law says

0 ≥
N∑

k=1

p∗
k Z̃k(p∗) =

∑
k∈Case1

p∗
k Z̃k(p∗) +

∑
k∈Case2

p∗
k Z̃k(p∗). (14.10)

But for k ∈ Case 1, p∗
k Z̃k(p∗) = 0, and so

0 =
∑

k∈Case1

p∗
k Z̃k(p∗). (14.11)

Therefore,

0 ≥
∑

k∈Case2

p∗
k Z̃k(p∗). (14.12)

Hence, from (14.9) we have

0 ≥ (1 − λ) ·
∑

k∈Case2

p∗
k Z̃k(p∗) = λ ·

∑
k∈Case2

γ k(Z̃k(p∗))2. (14.13)

The left-hand side ≤ 0. But the right-hand side is necessarily nonnegative. It can
be zero only if Z̃k(p∗) = 0 for all k such that p∗

k > 0 (k in Case 2). Thus, p∗ is an
equilibrium. This concludes the proof. QED

It is useful to remark on the character of the equilibrium in Theorem 14.1. We
formalize this as

Lemma 14.1 Assume P.II, P.III, P.V, P.VI, C.I–C.V, C.VI(SC), and C.VII. Let p∗

be an equilibrium. Then for all i ∈ H , |D̃i(p∗)| < c, where c is the bound on the
Euclidean length of demand, D̃i(p∗). Further, in equilibrium, Walras’s Law holds
as an equality: p∗ · Z̃(p∗) = 0.

Proof Because Z̃(p∗)≤0 (coordinatewise), we know that
∑

i∈H D̃i(p∗) ≤∑
j∈F S̃j (p∗) +∑i∈H ri , where the inequality holds coordinatewise. However,

that implies that the aggregate consumption
∑

i∈H D̃i(p∗) is attainable, so for each
household i, |D̃i(p∗)| < c, where c is the bound on demand, D̃i(·).

We have for all p, p · Z̃(p) ≤ 0. In equilibrium, at p∗, we have Z̃(p∗) ≤ 0
(coordinatewise) with p∗

k = 0 for k so that Z̃k(p∗) < 0. Therefore, p∗ · Z̃(p∗) = 0.
QED

We have now demonstrated the existence of equilibrium in the strictly convex
bounded economy. Note how boundedness has entered the argument in the preced-
ing proof. The technology sets of the firms, Yj , were assumed to be bounded. It
follows that the technology set for the economy as a whole, Y , is also bounded.
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In defining the opportunity sets of the households B̃i(·), we constrained the house-
hold to choose a consumption plan in a bounded set, the closed ball of radius c,
where c was specifically chosen to be of length strictly greater than the length of
any attainable consumption. The radius c can be a binding constraint on consump-
tion only when households attempt an unattainable consumption; by definition, an
unattainable plan cannot be an equilibrium.

In the next several chapters, Part D, we will weaken the assumptions of bound-
edness used here. We consider there firms that recognize that their technology
includes the possibility that with unbounded inputs they could produce unbounded
outputs – prices will then nevertheless guide them to bounded inputs and out-
puts. We would like to weaken the boundedness restriction on household choice.
Households should feel free to choose arbitrarily large consumption plans. In equi-
librium, prices will lead the households to bounded plans, but it should be prices,
not definitions, that do so. Indeed, according to Lemma 14.1, prices have already
done that job in the equilibrium developed in Theorem 14.1. The typical household
equilibrium consumption plan does not face a binding constraint on the Euclidean
length of the consumption vector in equilibrium. That is, |D̃i(p∗)| < c (a strict
inequality). We take advantage of this observation in Part D. We will demonstrate
that putting that much faith in the price system is indeed confidence well placed.

14.2 Bibliographic note

The major mathematical insight of modern general equilibrium theory is the impor-
tance of the fixed-point theorem in proving the existence of equilibrium. It appears
first in Arrow and Debreu (1954) and McKenzie (1954).

Exercises

14.1 Consider a two-commodity economy with an excess demand function
Z̃(p). Then p ∈ P = {p | p ∈ R2, p ≥ 0, p1 + p2 = 1}. Let Z̃(p) be con-
tinuous and bounded and fulfill Walras’s Law as an equality (p · Z̃(p) = 0),
and assume Z̃1(0, 1) > 0, Z̃2(1, 0) > 0. Without using the Brouwer Fixed-
Point Theorem, show that the economy has an equilibrium. (Note: You may
find the Intermediate Value Theorem useful.)

We use the following model (paralleling the model of Chapters 11
through 14) in Exercises 14.2 and 14.3. There is thought to be a finite set of
firms denoted F . Each firm j is characterized by a production technology
set Y j ⊂ RN . There is a finite set of households H . Each household i is
characterized by an endowment vector ri ∈ RN

+ , ownership share of firm j ,



Exercises 153

αij , and preferences depicted equivalently by the continuous monotone
quasi-order �i or by a utility function ui(·), defined on a possible con-
sumption set Xi ⊆ RN . In a private ownership economy, i’s income is
characterized as Mi(p) = p · ri +∑j∈F αijp · y◦j , where y◦j is firm j ’s
profit-maximizing production plan. We will generally assume (except as
noted in the questions) the standard conditions:
� for households: income sufficient to keep consumption interior to the

possible consumption set, weak monotonicity, continuity, and strict con-
vexity of preferences;

� for firms: continuity (closedness) and strict convexity of technology.
We use the following definition.

Definition {p◦, x◦i , y◦j }, p◦ ∈ RN
+ , i ∈ H , j ∈ F , x◦i ∈ RN , y◦j ∈ RN is

said to be a competitive equilibrium if
(i) y◦j ∈ Yj and p◦ · y◦j ≥ p◦ · y for all y ∈ Yj , for all j ∈ F ,
(ii) x◦i ∈ Xi , p◦ · x◦i ≤ Mi(p◦) and x◦i �i x for all x ∈ Xi with p◦ · x ≤

Mi(p◦) for all i ∈ H , and
(iii) 0 ≥∑i∈H x◦i −∑j∈F y◦j −∑i∈H ri with p◦

k = 0 for coordinates k

so that the strict inequality holds.

14.2 Consider the general competitive equilibrium of a production economy
with redistributive taxation of income from endowment. Half of each
household’s income from endowment (based on actual endowment, not
net sales) is taxed away. The proceeds of the tax are then distributed
equally to all households. We thus have

Mi(p) = p · (.5ri) +
∑
j∈F

αijp · yj + T ,

where T is the transfer of tax revenues to the household,

T = (1/#H )
∑
h∈H

p · (.5rh).

Does there exist a competitive equilibrium in the economy with redistribu-
tive income taxation? Explain.

14.3 Consider the general competitive equilibrium of a production economy
with excise taxation. In addition to the prices of goods p ∈ RN

+ , there is a
vector of excise taxes τ ∈ RN

+ . Proceeds of the tax are then distributed to
households as a lump sum. Household income then is

Mi(p) = p · ri +
∑
j∈F

αijp · yj + T ,
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where T is the transfer of tax revenues to the household. The household
budget constraint is

(p + τ ) · xi ≤ Mi(p).

The transfer to the typical household, T , is then characterized as

T = (1/#H )
∑
h∈H

τ · xh.

Does there exist a competitive equilibrium in the economy with excise
taxation? Explain.

14.4 In an economy with an excess demand function Z(·), Z : P → RN , we
usually define an equilibrium price vector as p ∈ P so that Z(p) ≤ 0
(where 0 is the zero vector, and the weak inequality holds coordinatewise),
with pk = 0 for any good k so that Zk(p) < 0.

Some authors use an alternate definition:

p∗ so that Z(p∗) ≤ 0. That is, p∗ is a Walrasian equilibrium if there is no good
for which there is a positive excess demand.

The alternate definition imposes no requirement that p∗
k = 0 for k so

that Zk(p∗) < 0.
(i) Show that under this definition of equilibrium there may be excess

supplies at positive prices in equilibrium.
(ii) What is the behavior of the market price adjustment process

(Walrasian auctioneer) with excess supplies implied by this concept
of equilibrium?

(iii) Discuss. Is this a desirable concept of equilibrium?
14.5 The usual U-shaped cost curve model of undergraduate economics includes

a small nonconvexity (diminishing marginal cost at low output levels).
This is a violation of our usual convexity assumptions on production (P.I
or P.V). Consider the general equilibrium of an economy displaying U-
shaped cost curves. It is possible that a general equilibrium exists despite
the small violation of convexity. After all, P.I and P.V are sufficient, not
necessary, conditions. Draw a diagram or give an example (partial equi-
librium is acceptable). Explain. Nevertheless, it is also possible that an
equilibrium fail to exist in this setting. Draw a diagram or give an example.
Explain.

14.6 In Chapter 14 we used the mapping T : P → P as a price adjust-
ment function whose fixed points are competitive equilibria. Consider
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instead using the mapping Q : P → P , where the ith coordinate mapping
of Q is

Qi(p) = max[0, pi + piZ̃i(p)]
N∑

j=1

max[0, pj + pj Z̃j (p)]

.

Assume that Walras’s Law holds as an equality, p · Z̃(p) = 0.
(a) Show that every competitive equilibrium price vector p◦ is a fixed point

of Q.
(b) Show that every vertex of the price simplex P is also a fixed point

of Q.
(c) Suppose p∗ = Q(p∗) is a fixed point of Q(·). Does this prove that the

economy has a competitive equilibrium?
14.7 Consider the following definition: {p◦, x◦i , y◦j }, p◦ ∈ RN

+ , i ∈ H , j ∈ F ,
is said to be a competitive equilibrium if
(i) y◦j ∈ Y j and p◦ · y◦j ≥ p◦ · y for all y ∈ Y j , for all j ∈ F ,
(ii) x◦i ∈ Xi , p◦ · x◦i ≤ Mi(p◦) = p◦ · ri +∑j∈F αijp◦ · y◦j and x◦i �i

x for all x ∈ Xi with p◦ · x ≤ Mi(p◦) for all i ∈ H , and
(iii) 0 ≥∑i∈H x◦i −∑j∈F y◦j −∑i∈H ri with p◦

k = 0 for coordinates k

so that the strict inequality holds.
(a) The concept of competitive equilibrium is supposed to reflect decen-

tralization of economic behavior. Explain how this definition embodies
the concept of decentralization.

(b) The concept of competitive equilibrium is supposed to reflect market
clearing. Explain how this definition includes market clearing.

14.8 The style of analysis we have been using is known as “axiomatic,” involv-
ing precisely stated assumptions, detailed modeling, and logically derived
conclusions. What are the strengths and weaknesses of this approach?

14.9 A two-person, two-commodity, pure exchange (no production) economy
is known as an Edgeworth box (discussed more fully in Chapter 3; you
should not need to consult Chapter 3). Use the model of Chapters 11 to 14
to demonstrate the existence of equilibrium in an Edgeworth box. Present
the following argument:
(a) Set Yj ≡ {0} for all j∈F , where 0 is the zero vector in RN . Explain

why this represents the case of a pure exchange economy. Explain why
the usual assumptions on production are fulfilled by this choice of Yj .

(b) Define an equilibrium in this setting.
(c) Show that Theorem 14.1 applies and ensures the existence of equilib-

rium. State any additional assumptions you need.
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Questions 14.10, 14.11, and 14.12 refer to the following model:
The Peasants’ Rights Party is elected to govern the Republic of Walrasia

on a platform of doing away with the tyranny of the Walrasian auctioneer.
The excess demand function is Z : P → RN . From now on, prices will go
up in response to surpluses. The government adopts the price adjustment
function � : P → P, where for each commodity i,

�i(p) = pi + |min [piZi(p), 0]|
1 +

N∑
n=1

|min [pnZn(p), 0]|
.

The notation | | indicates absolute value. This price adjustment function
says that prices of goods in surplus (Zi(p) < 0) are adjusted upward in
proportion to the absolute value – at market prices – of the prevailing
surplus. Then the complex of prices is readjusted back to the simplex.
The “min” term means the smaller of the two terms in square brackets; it
will typically be zero or negative, and then it is converted to an absolute
value to be added on to the current price. Assume that Z(p) is continuous
everywhere on P and therefore � is continuous (� is the result of continuity
preserving transformations on Z(p) ). You may assume that the � mapping
has a fixed point p◦ = �(p◦).

14.10 Show that each coordinate unit vector (1, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0),
and so on, is a fixed point of �.

14.11 Let p∗ be a competitive equilibrium price vector (as defined in Chapter 14).
Show that p∗ is a fixed point of �, that is, �(p∗) = p∗.

14.12 Let p◦ be a fixed point, p◦ = �(p◦). Is p◦ is a competitive equilibrium price
vector? (Hint: The question is not whether the economy has a competitive
equilibrium or a fixed point of �. The question is whether a fixed point of
this mapping is always a competitive equilibrium price vector.)

Questions 14.13–14.17 use the standard definition of competitive equi-
librium from question 14.7.

14.13 In a market economy, individual firm and household behavior is supposed
to be optimizing. Households choose the best affordable consumption plan.
Firms choose the most profitable available production plan. Which parts
of the preceding definition describe optimizing behavior? What does the
household maximize? What is the constraint on its maximization? What
does the firm maximize? What is the constraint on its maximization? Cite
the portions of the definition that you use.

14.14 The concept of competitive equilibrium is supposed to reflect market clear-
ing. Prices are set (by an anonymous market mechanism) so that supply
equals demand for each commodity (with the possible exception of free
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goods). Explain how this definition includes market clearing. Where does
market clearing appear in the definition? Where does the definition take
account of free goods? Which goods are free in equilibrium? Cite the
portions of the definition that you use.

14.15 How does this definition represent the idea that household income includes
a share of business profits? Explain. What algebraic expression represents
business profits? How are they included in household income? Cite the
portions of the definition you use.

14.16 In a competitive economy, firms and households are supposed to have
virtually no power to set their own prices. The market sets prices. How does
this definition reflect the idea that firms and households do not determine
their own prices? Cite the portions of the definition that you use.

14.17 The concept of competitive equilibrium is supposed to reflect decentral-
ization of economic behavior. Each firm and household is supposed to
make its decisions separately, without referring to the decisions of other
firms and households. Explain how this definition embodies the concept of
decentralization of decision making for firms and for households. Cite the
portions of the definition that you use.

14.18 Consider a three-person pure exchange economy. There are two commodi-
ties, x and y. Household 1 has endowment r1 = (r1

x , r1
y ) = (10, 2); house-

hold 2 has endowment r2 = (r2
x , r2

y ) = (6, 14); household 3 has endowment
r3 = (r3

x , r
3
y ) = (8, 8). All households have the same utility function on

Xi = the nonnegative quadrant of R2, ui(x, y) = sup[x, y], where “sup”
stands for supremum or maximum.
(a) Demonstrate that this economy has no competitive equilibrium.
(b) Is this a counterexample to the existence of General Equilibrium The-

orem 14.1? If so, explain why. If not, explain how this example fails to
fulfill the assumptions of that theorem in a way that causes nonexistence
of equilibrium.

14.19 Consider a two-person, two-commodity pure exchange economy (an
Edgeworth box). Household 1 has endowment r1 = (r1

x , r1
y ) = (5, 0);

household 1 owns only x. Household 2 has endowment r2 = (r2
x , r2

y ) =
(5, 10). Household 1 has preferences summarized by the utility function,
u1(x, y) = x + y. Household 2 has preferences summarized by the util-
ity function u2(x, y) = y. Household 2 does not value x. Preferences in
this economy are convex (fulfilling C.VI(C) but not C.VI(SC)) but not
strictly convex, but that is not the problem. Consider p∗ = (ε, 1 − ε) for
1 > ε > 0. Then p∗ cannot be an equilibrium because it generates an excess
supply of x. But at p0 = (0, 1) there is no equilibrium either because there
is an excess demand for x. How can this observation be consistent with
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the existence of general competitive equilibrium theorem, Theorem 14.1?
Is one of the assumptions (aside from C.VI(SC)) of Theorem 14.1 not
fulfilled? Explain.

14.20 Consider the following Edgeworth box examples. In each case demonstrate
that competitive equilibrium prices and allocations do not exist; state which
of the sufficient conditions of Theorem 14.1 is not fulfilled.

Do both parts (a) and (b) of Examples Alpha and Beta.

Example Alpha: Superscripts are used both to denote the name of the
households and, unfortunately, to raise the consumption to a squared value;
we’ll try to keep them straight. Households are characterized by a utility
function and an endowment vector. The possible consumption set is the
nonnegative quadrant, R2

+. There are two commodities, x and y.
Household A is characterized as

uA(x, y) = [x]2 + [y]2

(where the terms in brackets are raised to the power 2), with endowment
rA = (5, 5). Household A’s optimizing consumption subject to budget con-
straint will typically be a corner solution, so marginal equivalences will
not be fulfilled as an equality.

Household B is characterized as

uB(x, y) = xy

(where neither term is raised to a power; it’s just xB times yB), with
endowment

rB = (5, 5).

Denote A’s demand as (xA, yA), B’s as (xB, yB).
(a) We claim there is no competitive equilibrium in this Edgeworth box.

Demonstrate this argument in the following way, and clearly explain
why each step is sound:

px > py implies there is an excess demand for y;
px < py implies there is an excess demand for x;
px = py implies there is an either an excess demand for x and an
excess supply of y, or the opposite.

(b) Explain which of the assumptions of Theorem 14.1 is not fulfilled.
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Example Beta: The households have identical convex monotone prefer-
ences, denoted P. The expression “(x1, y1)P (x2, y2)” is read “(x1, y1) is
strictly preferred to (x2, y2).” P is described in the following way.

For two bundles (x1, y1), (x2, y2),

(x1, y1)P (x2, y2) if x1 + 3y1 > x2 + 3y2; or

(x1, y1)P (x2, y2) if x1 + 3y1 = x2 + 3y2 and x1 > x2;

or (x1, y1) and (x2, y2) are indifferent to one another if x1 = x2 and
y1 = y2.

Let household A have an endowment of 300 units of x and household
B have an endowment of 100 units of y. Denote A’s demand as (xA, yA),
B’s as (xB, yB).
(a) We claim there is no competitive equilibrium in this Edgeworth box.

Demonstrate this argument in the following way, and clearly explain
why each step is sound:

px > 3py implies there is an excess demand for y;
px < 3py implies there is an excess demand for x;
px = 3py implies there is an excess demand for x.

(b) Explain which of the assumptions of Theorem 14.1 is not fulfilled.





Part D

An economy with unbounded production technology
and supply and demand functions

Our plan in Chapters 15 to 18 is to weaken the boundedness restrictions built into
the model of Chapters 11 to 14. We will allow firm technology sets to be unbounded
and allow households to choose from budget sets limited only by income and not
by direct limits on the size of consumption plans. In equilibrium, prices will guide
firms and households to well-defined (bounded) equilibrium allocations.

Remember the principal characterization of firm and household behavior: maxi-
mization of a criterion function (profit or utility) subject to a constraint (technology
or budget). This results in a well-defined outcome, a supply or demand function, if
the criterion is a continuous function of its arguments and the constraint set is com-
pact and hence bounded (Corollary 7.2). In Chapters 11 to 14 we achieved bound-
edness of the constraint sets by assumption P.VI and by definition (the restriction
|x| ≤ c in the definition of B̃i(p) prevents budget sets from being unbounded when
some prices are zero). This is inadequate. Unbounded production technology sets
make sense, and our theory should be able to deal with them; if a firm could acquire
arbitrarily large inputs it would find it technically possible to produce arbitrarily
large outputs. Scarcity – the limits of available inputs – should be communicated
by prices, not by the modeler’s assumptions. Price incentives should lead firms to
choose finite inputs and outputs as an optimizing choice. On the household side, it
should be prices, not an arbitrary constraint, that alert households that they cannot
afford unbounded consumption.

There is a much-repeated story about how mathematicians think:

How do you tell the difference between an engineer and a mathematician?
You do an experimental test. You get them to boil water. You provide a kitchen with

water and a teakettle. The engineer goes into the kitchen, fills the kettle with water and boils
the water. You then restore the kitchen’s initial conditions and send in the mathematician.
She proceeds to do the same thing: She fills the kettle with water and boils the water.

Now, you make the test slightly harder. You fill the kettle with water prior to the
subjects arriving. The engineer notes this, boils the water in the kettle as before. The

161



162 An economy with unbounded production technology

Table D.1. Model economy versus artificially bounded economy.

Model economy Artificially bounded economy

Strict upper bound on
length of attainable output c

j ’s production technology Y j Ỹ j = Y j ∩ {x | |x| ≤ c}
j ’s supply function Sj (p), may not exist S̃j (p), always exists
i’s income function Mi(p), may not exist M̃i(p), always exists
i’s demand function Di(p), may not exist D̃i(p), always exists
Excess demand function Z(p), may not exist Z̃(p), always exists

mathematician sees that the kettle is full of water, empties the kettle into the sink, and
leaves the kitchen. When asked why,? she replies, “It’s trivial; we’ve reduced the problem
to the previous case.”

In Chapters 15 to 18 we will repeat the exercise of characterizing household
demand and firm supply behavior and market equilibrium, this time without the
boundedness constraints. We will do this in a slightly tricky two-part argument.
Like the mathematician in our story, we’ll reduce this issue to the previous case.
We first characterize an economy with unbounded firm and household opportunity
sets. Unfortunately, because constraint sets are unbounded, demand and supply
may not be well defined. We will show that (under reasonable conditions, P.IV, to
be developed later) attainable outputs of the economy are nevertheless bounded.
We will then reintroduce the bound c that we developed above, representing a loose
upper bound on the Euclidean length of attainable outputs and consumptions. We
will artificially bound technology and budget sets using this bound. Thus the model
is reduced to the previous case (a common mathematician’s technique) of Chapters
11 to 14. Just as we found an equilibrium in Theorem 14.1, we can find it again
in this artificially bounded model. We are not really interested in the artificially
bounded model; it represents merely a reflection of the true model of Chapters
15 to 18. But recall Lemma 14.1. The bound c is not binding in equilibrium!
Hence, we will show that the equilibrium of the artificially bounded economy is
also an equilibrium of the full unbounded economy of Chapters 15 to 18. We only
use the artificial bound to find the equilibrium, like training wheels on a bicycle.
Once we’ve found the equilibrium, we can discard the artificial bound, discovering
that equilibrium prices are sufficient to keep the system in balance. Thus, the
existence of general equilibrium in the unbounded economy will be demonstrated
as a generalization of the bounded existence of equilibrium result (Theorem 14.1).

The relationship between the model economy and its more tractable artificially
bounded counterpart is summarized in Table D.1.
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We use the model of Chapters 11–14 to establish the existence of equilibrium
prices p∗ for the artificially bounded economy, Z̃(p∗) ≤ 0. We then show that at
prices p∗, the supply and demand functions of the model economy and the artifi-
cially bounded economy coincide so that the equilibrium of the artificially bounded
economy is also an equilibrium of the model economy. That is, S̃j (p∗) = Sj (p∗),
D̃i(p∗) = Di(p∗), and Z̃(p∗) = Z(p∗) ≤ 0 with p∗

k = 0 for k so that Zk(p∗) < 0.
This is the plan we will follow in Chapters 15–18.



15

Theory of production: The unbounded
technology case

15.1 Unbounded production technology

We will introduce here a model of firms and production decisions that is formally
identical to the model introduced in Chapter 11, except that we omit the assump-
tion of boundedness of production technology (P.VI). Remember why we need
boundedness. Sufficient conditions for well-defined optimizing behavior include a
compact (hence, bounded) opportunity set. We will introduce a weaker assumption
(P. IV) and show that the set of attainable allocations is still bounded.

Our modeling plan is to reduce the study of general equilibrium in the economy
with unbounded technology sets to the case of bounded technologies introduced
in Chapters 11–14. We will define an artificially restricted firm sector consisting
of the unbounded production technologies restricted to a bounded subset that
includes their attainable portions as a proper subset. Of course, actual equilibria
and successful production plans have to be located in this attainable region, but
the inducement of firms to choose to operate there should not be from exogenous
constraint; it should be the result of incentives provided by the price system. We
will show this to be the case in the equilibrium of the artificially bounded firm
sector using Lemma 14.1. In equilibrium, artificial bounds on production will not
be a binding constraint.

We now (re)state a generalized form of the model of the production sector
introduced in Chapter 11. In the notation here, a Roman “Y,” Y j , is used to denote
the (possibly) unbounded production technology, substituting for the script “Y,”
Yj , that denoted a bounded production technololgy. Production is organized in
firms; these are represented by technology sets Y j . The population of firms is the
finite set F , indexed j = 1, . . . , #F. Y j ⊆ RN . The set Y j represents the technical
possibilities of firm j . The expression y ∈ Y j is a possible combination of inputs
and outputs. Negative coordinates of y are inputs; positive coordinates are outputs.
For example, if y ∈ Y j , y = (−2,−3, 0, 0, 1), then an input of two units of good 1

164
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and three units of good 2 will allow firm j to produce one unit of good 5. Y j is like a
list of recipes or a collection of blueprint plans for production, to be implemented as
a matter of choice by the firm. There is no guarantee that the economy can provide
the inputs y ∈ Y j specifies, either from endowment or from the output of other
firms. Rather, y ∈ Y j represents the technical output possibilities of production
by firm j if the specified inputs are provided. With this slightly new notation, we
reintroduce the mathematical structure first presented in Chapter 11.

We restate for the technologies Y j the assumptions P.I–P.III on production tech-
nologies introduced in Chapter 11 for the technology sets Yj :

(P.I) Y j is convex for each j ∈ F .
(P.II) 0 ∈ Y j for each j ∈ F .

(P.III) Y j is closed for each j ∈ F .

The aggregate technology set is Y =∑
j∈F Y j .

15.2 Boundedness of the attainable set

Assumptions P.I, P.II, and P.III refer to the possible production plans of individual
firms. We now introduce P.IV, an assumption on the set of possible production plans
for the economy as a whole. P.IV is designed to give us weak sufficient conditions
(not including boundedness of individual firm technologies) that will ensure that the
set of outputs attainable from the economy and from individual firms is bounded.
This will be true even though the technology sets of the firms and the economy
may be unbounded. With finite endowments and convex technologies, of course, we
expect that plans attainable for the economy will be bounded (we will demonstrate
this). Nevertheless, this is information that we expect to be communicated to the
firms and households through the price system, not by an exogenously assumed
restriction on firm technology. The firm technology is a blueprint for what the firm
could produce with inputs hypothetically provided. It is perfectly reasonable then
for the technology to specify that, if infinite inputs were provided, then infinite
outputs would be possible. With finite resource endowments, of course, we do not
ordinarily expect that an unbounded plan can be an equilibrium outcome.

(P.IV) is designed as weak and economically meaningful technical assumptions
under which a bounded attainable set is assured. P.IV(a) is the “no free lunch” pos-
tulate – there are no outputs without inputs. P.IV(b) is the irreversibility postulate –
there exists no way to transform an output back to the original quantities of all
inputs.

(P.IV) (a) if y ∈ Y and y �= 0, then yk < 0 for some k.
(b) if y ∈ Y and y �= 0, then −y �∈ Y .
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P.IV is not an assumption about the individual firms; it treats the production sector
of the whole economy. P.IV enunciates two quite reasonable-sounding notions
regarding production. P.IV(a) says we cannot expect outputs without inputs. There’s
no free lunch, a fundamental notion of scarcity appearing throughout economics.
P.IV(b) says that production is irreversible. You can’t unscramble an egg. You
cannot take labor and capital to produce an output and then take the output and
transform it back into labor and capital. Let r ∈ RN

+ be the vector of total initial
resources or endowments. Finiteness of r and P.IV imply that there can never be
an infinite production. We will demonstrate this in Theorems 15.1 and 15.2.

Definition Let y ∈ Y . Then y is said to be attainable if y + r ≥ 0 (the inequality
holds coordinatewise).

The concept of attainability is of course familiar from previous chapters. We will
show that the set of attainable vectors y is bounded under P.I–P.IV. In particular,
this demonstration will not use P.VI; boundedness of the individual firm production
technologies is not required for boundedness of the attainable set. Because the
attainable production vectors are those that can be produced with the available
resources (and hence do not create unsatisfiable excess demands in factor markets),
it is among these that an equilibrium production plan is to be found (if it exists).

In an attainable production plan y ∈ Y , y = y1 + y2 + · · · + y#F, we have y +
r ≥ 0. But an individual firm’s part of this plan, yj , need not satisfy yj + r ≥ 0.
Thus:

Definition We say that yj ∈ Y j is attainable in Y j if there exists a yk ∈ Y k for
each of the firms k ∈ F , k �= j , such that yj +∑k∈F,k �=j yk is attainable.

That is, yj is attainable in Y j if there is a plan for firm j and for all of the other
firms in the economy so that, with available inputs, there is an attainable output for
the economy as a whole, consistent with firm j producing yj . We wish to show,
in Theorem 15.1, that this definition and P.I–P.IV imply boundedness for the set
of plans yj attainable in Y j . Here is the strategy of proof. The argument is by
contradiction. We use the convexity of Y and each Yj to concentrate on a subset
of Y j (for suitably chosen j ) contained in a sphere of radius 1. How could there
be an attainable plan in Y j that is unbounded? We will show that this could occur
only in two possible ways: Either firm j could be producing outputs without inputs
(contradicting P.IV(a)), or firm j ’s unbounded production plan could be partly
reversed by the plans of the other firms, so that the net effect is a bounded attainable
sum even though there is an unbounded attainable sequence in Y j . We map back
into a bounded set and take a limit – using both convexity and closedness of Y j .
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Then, in the limit, it follows that other firms’ production plans precisely reverse
those of firm j . But this contradicts the assumption of irreversibility, P.IV(b). The
contradiction completes the proof.

Lemma 15.1 Assume P.II and P.IV. Let y =∑
j∈F yj , yj ∈ Y j for all j ∈

F, y ∈ Y, y = 0. Then yj = 0 for all j ∈ F .

Proof Let k ∈ F . By P.II, ∑
j∈F,j �=k

yj ∈ Y, and yk ∈ Y.

But

yk +
∑

j∈F,j �=k

yj = 0.

So

yk = −
∑

j∈F,j �=k

yj .

But under P.IV(b), this occurs only if

0 = yk = −
∑

j∈F,j �=k

yj = 0.

But this holds for all k ∈ F . QED

Theorem 15.1 For each j ∈ F , under P.I, P.II, P.III, and P.IV, the set of vectors
attainable in Y j is bounded.

Proof We will use a proof by contradiction. Suppose, contrary to the theorem, that
the set of vectors attainable in Y j ′

is not bounded for some j ′ ∈ F . Then, for each
j ∈ F , there exists a sequence {yνj } ⊂ Y j , ν = 1, 2, 3, . . . , such that:

(1) |yνj ′ | → +∞, for some j ′ ∈ F ,
(2) yνj ∈ Y j , for all j ∈ F , and
(3) yν =∑

j∈F yνj is attainable; that is, yν + r ≥ 0.

We show that this contradicts P.IV. Recall P.II, 0 ∈ Y j , for all j . Let μν =
maxj∈F |yνj |. For ν large, μν ≥ 1. By (1) we have μν → +∞. Consider the
sequence ỹνj ≡ 1

μν y
νj = 1

μν y
νj + (1 − 1

μν )0. By P.I, ỹνj ∈ Y j . Let ỹν = 1
μν y

ν =∑
j∈F ỹνj . By (3) and P.I, we have

(4) ỹν + 1
μν r ≥ 0.



168 Theory of production: The unbounded technology case

The sequences ỹνj and ỹν are bounded (ỹν as the finite sum of vectors of length
less than or equal to 1). Without loss of generality, take corresponding convergent
subsequences so that ỹν → ỹ◦ and ỹνj → ỹ◦j for each j , and

∑
j ỹνj →∑

j ỹ◦j =
ỹ◦. Of course, 1

μν r → 0. Taking the limit of (4), we have

ỹ◦ + 0 =
∑
j∈F

ỹ◦j + 0 ≥ 0 (the inequality holds coordinatewise).

By P.III, ỹ◦j ∈ Y j , so
∑

j∈F ỹ◦j = ỹ◦ ∈ Y . But, by P.IV(a), we have that∑
j∈F ỹ◦j = 0.
Lemma 15.1 says then that ỹ◦j = 0 for all j, so |ỹ◦j | �= 1.

The contradiction proves the theorem. QED

We have shown that, under P.I–P.IV, the set of production plans attainable in Yj

is bounded. We can now conclude that the attainable subset of Y is compact (closed
and bounded).

Theorem 15.2 Under P.I–P.IV, the set of attainable vectors in Y is compact, that
is, closed and bounded.

Proof We will demonstrate the result in two steps.

Boundedness: The expression y ∈ Y attainable implies y =∑
j∈F yj , where

yj ∈ Y j is attainable in Y j . However, by Theorem 15.1, the set of such yj is
bounded for each j . Attainable y then is the sum of a finite number (#F ) of vectors,
yj , each taken from a bounded subset of Y j , so the set of attainable y in Y is also
bounded.

Closedness: Consider the sequence yν ∈ Y , yν attainable, ν = 1, 2, 3, . . . . We
have yν + r ≥ 0. Suppose yν → y◦. We wish to show that y◦ ∈ Y and that y◦

is attainable. We write the sequence as yν = yν1 + yν2 + · · · + yνj + · · · + yν#F ,
where yνj ∈ Y j , yνj attainable in Y j for all j ∈ F .

Because the attainable points in Y j constitute a bounded set (by Theorem 15.1),
without loss of generality, we can find corresponding convergent subsequences
yν, yν1, yν2, . . . , yνj , . . . , yν#F so that for all j ∈ F we have yνj → y◦j ∈ Y j ,
by P.III. We have then y◦ = y◦1 + y◦2 + · · · + y◦j + · · · + y◦#F and y◦ + r ≥ 0.
Hence, y◦ ∈ Y and y◦ is attainable. QED
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Fig. 15.1. Bounding firm j ’s production technology.

15.3 An artificially bounded supply function

We wish to describe firm supply behavior as profit maximization subject to tech-
nology constraint. Because Y j may not be bounded, maximizing behavior may not
be well defined. However, we have shown above that attainable production plans
do lie in a bounded set. We can, of course, describe well-defined profit-maximizing
behavior subject to technology and boundedness constraints, where the bound
includes all attainable plans. Eventually, we will wish to eliminate the bounded-
ness constraint – not because we are interested in firms producing at unattainable
levels but rather because the resource constraints that define attainability should be
communicated to firms in prevailing prices rather than in an additional constraint
on firm behavior.

Assume P.I, P.II, P.III, and P.IV. Choose a positive real number c, sufficiently
large so that for all j ∈ F , |yj | < c (a strict inequality) for all yj attainable in
Y j . Let Ỹ j = Y j ∩ {y ∈ RN ||y| ≤ c}. Note the weak inequality in the definition
of Ỹ j and the strong inequality in the definition of c. That combination means that
Ỹ j includes all of the points attainable in Y j and a surrounding band of larger
points in Y j that are too big to be attainable. Note that Ỹ j is closed, bounded
(hence compact), and convex. Restricting attention to Ỹ j in describing firm j ’s
production plans allows us to remain in a bounded set so that profit maximization
will be well defined. A typical artificially bounded technology set, Ỹ j , is depicted
in Figure 15.1. Note that, under P.I.–P.IV, using Ỹ j as Yj , Ỹ j fulfills P.I–P.III and
P.VI of Chapter 11. That is, we have reduced the study of supply in Ỹ j to the
formally identical case of supply in Yj studied in Chapter 11.
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The strategy of proof for demonstrating the existence of equilibrium in the
economy characterized by the production technologies Y j is then:

(1) demonstrate that the artificially restricted economy defined by the production
technologies Ỹ j fulfills the assumptions of the model of Part C;

(2) use Theorem 14.1 to establish the existence of equilibrium, with price vector
p∗, in the artificially restricted economy; and then

(3) show that the artificial restrictions are not binding constraints in the equilibrium
developed in (2), as noted in Lemma 14.1, so that p∗ is also an equilibrium
price vector of the unrestricted economy.

This amounts to reducing the study of the economy whose production technology
is characterized by Y j to the previously treated case characterized by Yj .

To discuss the simplest possible case of firm supply behavior, we continue to use

(P.V) For each j ∈ F , Y j is strictly convex.

Note that P.V is identical to P.V of Chapter 11. Under P.V, Ỹ j is strictly convex.
Hence, again setting Ỹ j = Yj , Ỹ j fulfills P.V of Chapter 11.

Taking price vector p ∈ RN
+ as given, each firm j “chooses” yj ∈ Y j such that

p · yj maximizes p · y. We will consider two cases: a restricted supply function
where the supply behavior of firm j is required to be contained in Ỹ j , the artificially
bounded subset of Y j , and an unrestricted supply function where the supply behav-
ior is not so restricted. Any attainable planned supply will be in both Y j and Ỹ j , but
very large (unattainable) planned supply will be in Y j only. There are many points
of Y j and some of Ỹ j that are not attainable. When the firm’s intended supply is
unattainable, it cannot, of course, be fulfilled and cannot represent an equilibrium.
It is the role of the price system to lead the firm toward attainable plans and to
value unattainable production plans as unprofitable. We use the restricted supply
function because it is very convenient: It is always well defined even if the planned
production is unattainable. It is an essential step to show that the restriction of the
supply function is only a technical convenience and has no constraining effect on
the economic analysis or on the set of equilibria. The restricted supply function is
denoted S̃j (p) ∈ Ỹ j , and the unrestricted supply function is Sj (p) ∈ Y j . They are
defined as follows.

Define the restricted supply function of firm j as

S̃j (p) = {y∗j | y∗j ∈ Ỹ j , p · y∗j ≥ p · yj for all yj ∈ Ỹ j }.
Define the (unrestricted) supply function of firm j as

Sj (p) = {y∗j | y∗j ∈ Y j , p · y∗j ≥ p · y for all y ∈ Y j }.
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Note that Sj (p) may not exist (may not be well defined) and that S̃j (p) here is
identical to the same function defined in Chapter 11 when we identify Yj with Ỹ j .
Then we have:

Theorem 15.3 Assume P.II, P.III, P.IV, and P.V. Let p ∈ RN
+, p �= 0. Then

(a) S̃j (p) is a well-defined (nonempty) continuous (point-valued) function, and
(b) if S̃j (p) is attainable in Y j , then S̃j (p) = Sj (p).

Proof There are two ways to prove part (a). We can either prove it directly or
note that it has already been proved in a different context. In fact part (a) is
simply Theorem 11.1 inasmuch as under assumptions P.II–P.V, Ỹ j fulfills all of the
properties in Theorem 11.1 required of Yj . Nevertheless, we include a direct proof
of part (a) for completeness.

Part (a)
Well-defined: S̃j (p) consists of the maximizer of a continuous function on a

compact strictly convex set. The function is well defined since a continuous real-
valued function achieves its maximum on a compact set.

Point valued: We will demonstrate that the strict convexity of Ỹ j implies that
S̃j (p) is point valued. We wish to show that there is a unique y◦ ∈ Ỹ j that maximizes
p · y in Ỹ j . If we suppose that such is not the case then there are y1, y2 ∈ Ỹ j , y1 �=
y2 so that p · y1 = p · y2 = maxy∈Ỹ j p · y. But by strict convexity of Ỹ j (P.V)
for 0 < α < 1, αy1 + (1 − α)y2 ∈ interior Ỹ j . We have p · (αy1 + (1 − α)y2) =
p · y1 = p · y2. However, in a neighborhood of αy1 + (1 − α) y2 there is y3 ∈ Ỹ j

with p · y3 > p · y1 = p · y2. This is a contradiction. Hence, we conclude that
S̃j (p) is point valued.

Continuity: We now wish to demonstrate continuity of S̃j (p). Let pν ∈ RN
+ , ν =

1, 2, . . . , pν �= 0, pν → p◦ �= 0. We must show that S̃j (pν) → S̃j (p◦). Suppose
this is not true. Because Ỹ j is compact, if we take a subsequence, there is y◦ ∈ Ỹ j

so that S̃j (pν) → y◦ �= S̃j (p◦).
Remember that pν · S̃j (pν) ≥ pν · S̃j (p◦), by the definition of S̃j (p). But the dot

product is a continuous function: pν · S̃j (pν) → p◦ · y◦. So p◦ · y◦ ≥ p◦ · S̃j (p◦),
which is a contradiction. Hence, there is no such y◦, and S̃j (p) is continuous. This
completes the proof of part (a).

For part (b)
Suppose S̃j (p) is attainable in Y j , but S̃j (p) �= Sj (p). There are three ways

this can happen: (i) Sj (p) may be the empty set, (ii)Sj (p) may be nonempty and
point valued but Sj (p) �= S̃j (p), (iii) Sj (p) may be nonempty but not point valued.
Strict convexity of Y j (P.V) prevents (iii). In cases (i) and (ii), there is ȳj ∈ Y j
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so that p · ȳj > p · S̃j (p). Then,

p · [αȳj + (1 − α)S̃j (p)] > p · S̃j (p) for any α, 0 < α ≤ 1.

Now S̃j (p) being attainable implies |S̃j (p)| < c, so we can choose some
α > 0 that is sufficiently small so that |αȳj + (1 − α)S̃j (p)| ≤ c. But then
αȳj + (1 − α)S̃j (p) ∈ Ỹ j ; thus S̃j (p) is not a profit maximizer in Ỹ j , a con-
tradiction that proves the theorem. QED

The intuition behind part (b) of Theorem 15.3 is that when S̃j (p) is attainable,
the constraint that |S̃j (p)| ≤ c is not binding. Removing the constraint leaves firm
j ’s profit-maximizing plan at price vector p unchanged: The optimizing choice
is Sj (p) precisely equal to S̃j (p), so the two functions coincide when the length
constraint is not binding.

Lemma 15.2 (Homogeneity of degree 0) Assume P.II–P.V. Let λ > 0, p ∈
RN

+, p �= 0. Then Sj (λp) = Sj (p) and S̃j (λp) = S̃j (p).

In this chapter we have developed two closely related notions of the supply
function of firm j , Sj (p) and S̃j (p). The first, Sj (p), represents the supply behavior
of firm j based on j ’s technology set Y j . The second, S̃j (p), is based on a bounded
subset of Y j , Ỹ j . By design, S̃j (p) fulfills all of the properties of the function
of the same name in Chapter 11. Because these are useful properties, being well
defined and continuous, we’re delighted to have them. What makes S̃j (p) useful is
the relationship between the two. For those values of p so that S̃j (p) is attainable
in Y j , Sj (p) = S̃j (p). That is the result proved in Theorem 15.3(b). We will use
this relationship in Chapter 18 to establish the existence of an equilibrium in the
economy characterized by the production technology Yj .

15.4 Bibliographic note

The use of the artificially bounded economy and the argument that the twin assump-
tions of irreversibility and no free lunch imply boundedness appear in Arrow and
Debreu (1954). The treatment here in part follows that of Arrow (1962).

Exercises

15.1 Consider production without P.IV(b) but fulfilling P.I–P.III and P.IV(a).
Formulate an example of Y 1 and Y 2 in R2 so that the set of points attainable
in Y 1 is not bounded.
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15.2 The convexity assumption is essential in proving Theorems 15.1 and 15.2.
Formulate an example fulfilling P.II, P.III, and P.IV but not P.I (or P.V)
where the theorems are false, that is, where the set of attainable points in
Y j and Y are unbounded.

15.3 In Chapter 15 the supply function for firm j is defined as Sj (p) ={
y∗j |y∗j ∈ Y j maximizes p · y for all y ∈ Y j

}
. The artificially bounded

supply function for firm j , is defined using the truncated technology set
Ỹ j ≡ Y j ∩ {y|y ∈ RN, |y| ≤ c

}
. S̃j (p) = {y∗j |y∗j ∈ Ỹ j , y∗j maximizes

p · y for all y ∈ Ỹ j }. To demonstrate that using the artificially bounded
supply function is useful, show that there are examples of Y j fulfilling
P.I–P.V so that Sj (p) is not well defined even when S̃j (p) is well defined.
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Households: The unbounded technology case

16.1 Households

Most of the theory of the household developed in Chapter 12 remains unchanged
with consideration of an unbounded production technology. However, we will want
to consider an unbounded budget set, Bi(p), in place of the bounded budget set,
B̃i(p), introduced in Chapter 12. Our strategy of proof and investigation will be to
reduce the study of the unbounded case to the previously completed bounded case,
showing that they coincide in equilibrium.

Theorem 15.2 reassures us of boundedness of the attainable set assuming P.IV.
The constant c, restated and used in Chapter 15, representing a (strict) upper
bound on the size of any attainable allocation, is just as defined and used in
Chapter 12. Consequently, the theory of production introduced in Chapter 15
leaves the household model of Chapter 12 unchanged. The functions B̃i(p) and
D̃i(p) remain formally as developed in Chapter 12, and the fundamental theory of
the household introduced in Chapter 12 remains unchanged.

16.2 Choice in an unbounded budget set

It is at this point that our treatment of household consumption choice behavior
begins to differ from that of Chapter 12. Instead of taking the household budget
set to be bounded in part by a sphere of radius c, designed to strictly contain all of
the attainable set (recall the definition of B̃i(p) above), we will take the budget set
to be determined by household income Mi(p) only, as Bi(p). It will nevertheless
be convenient to consider the bounded budget set, B̃i(p), because demand behav-
ior in this compact set will be well defined even when Bi(p) is unbounded and
demand behavior may be undefined. It is then essential for us to show that opti-
mizing demand behavior in B̃i(p) is the same as in Bi(p) when demand is in the
attainable set.

174
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We will denote the household budget or income as a real number, Mi(p) ≥ 0.
Then the household budget constraint set is

Bi(p) ≡ {x | x ∈ RN, p · x ≤ Mi(p)}.

Lemma 16.1 Bi(p) is a closed convex set.

We characterize the demand behavior of household i as optimizing household
satisfaction from consumption based on preferences �i (or, equivalently, optimiz-
ing utility ui) subject to budget constraint and the possible consumption set Xi .
Although in equilibrium, the household will choose an attainable consumption;
we do not wish to impose attainability as a constraint on individual consumption
choice. Attainability should be a result, not an assumption, in equilibrium. It is
the job of the price system to lead consumers away from unattainable consump-
tion plans by informing them that the plans are prohibitively expensive. Let the
household demand function, Di : RN

+ → RN
+ , be defined in the following way:

Di(p) ≡ {y | y ∈ Bi(p) ∩ Xi, y �i x for all x ∈ Bi(p) ∩ Xi}
≡ {y | y ∈ Bi(p) ∩ Xi, ui(y) ≥ ui(x) for all x ∈ Bi(p) ∩ Xi}.

We will restrict attention to models where Mi(p) is homogeneous of degree one,
that is, where Mi(λp) = λMi(p). It is immediate then that Bi(p) is homogeneous
of degree zero.

Lemma 16.2 Let Bi(p) be homogeneous of degree 0. Then Di(p) is homogeneous
of degree 0 also.

Recall that homogeneity of degree zero of both Di(p) and Sj (p) (from Lemma 15.2)
allows us significantly to simplify the space of prices. We will confine attention to
price vectors on the set P , the unit simplex in RN ,

P ≡
{
p | p ∈ RN, pi ≥ 0, i = 1, 2, 3, . . . , N,

N∑
i=1

pi = 1

}
.

Even with a well-defined budget set, we still have a problem in defining
demand behavior for typical i ∈ H . For some p ∈ P , household i’s opportunity set
(Bi(p) ∩ Xi) may not be compact. Unbounded Bi(p) ∩ Xi will arise when some
goods’ prices are zero so that the budget constraint is consistent with unbounded
consumption of some goods. In an economy with a bounded attainable set, such con-
sumptions could never be equilibria, but during the process of price adjustment the
Walrasian auctioneer should be free to search through the nil prices and households
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should be free to demand the unbounded consumption plans. It should be a conclu-
sion – not an assumption – that such points are not equilibria, and this information
should be communicated to agents in the economy through prices, not by assump-
tion. As an intermediate step in characterizing household consumption behavior,
we use the same technical device that we used on the production side in a similar
setting. We create an artificially bounded budget set containing as a proper sub-
set all of the economy’s attainable points consistent with budget constraint. The
strategy of proof will then be:

� to characterize demand behavior in the artificially bounded economy,
� to show that it coincides with demand of the unbounded economy throughout

the attainable set,
� to find an equilibrium for the artificially bounded economy and show that the

equilibrium is attainable, and finally
� to show that the artificial bound is not a binding constraint in equilibrium so that

the equilibrium of the artificially bounded economy is also an equilibrium for
the unbounded economy.

We wish now to characterize a bounded subset of Bi(p) containing the con-
sumption plans that are both within the budget M̃i(p) > 0 (where M̃i(p) equals
Mi(p) when the latter derives from attainable firm production plans) and that are
also attainable. We have not yet fully described this budget.

Definition x ∈ RN
+ is an attainable consumption if y + r ≥ x ≥ 0, where y ∈ Y

and r is the economy’s initial resource endowment, so that y is an attainable
production plan.

Note that Theorem 15.2 says that the set of attainable consumptions is bounded
under P.I–P.IV.

Choose c so that |x| < c (a strict inequality) for all attainable consumptions x.
Let

B̃i(p) = {x | x ∈ RN, p · x ≤ M̃i(p)} ∩ {x | |x| ≤ c}.
Note that B̃i(p) is defined just as in Chapter 12. We now define

D̃i(p) ≡ {x | x ∈ B̃i(p) ∩ Xi, x �i y for all y ∈ B̃i(p) ∩ Xi}
≡ {x | x ∈ B̃i(p) ∩ Xi, x maximizes ui(y) for all y ∈ B̃i(p) ∩ Xi}.

Note that D̃i(p) is also as defined in Chapter 12. Sets B̃i(·) and D̃i(·) are homoge-
neous of degree 0 as are Bi(·) and Di(·). Let D(p) =∑

i∈H Di(p) and, as before,
D̃(p) =∑

i∈H D̃i(p).
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16.3 Demand behavior under strict convexity

We will now more fully characterize demand. Theorem 16.1 says that D̃i(p), the
artificially restricted demand behavior, is continuous and well defined everywhere
on the price space P . This is merely the repetition of the corresponding result from
Chapter 12. In addition, D̃i(p) and Di(p) coincide whenever D̃i(p) is attainable,
the relevant range where equilibria may be found.

Theorem 16.1 Assume C.I–C.V, C.VI(SC), and C.VII. Let M̃i(p) be a continuous
function for all p ∈ P . Then,

(a) D̃i(p) is a well-defined (point-valued) continuous function for all p ∈ P .
Furthermore,

(b) if D̃i(p) is attainable and if M̃i(p) = Mi(p), then D̃i(p) = Di(p).

Proof Part (a) was already proved in the proof of Theorem 12.2. We repeat the
proof here merely for completeness.

B̃i(p) ∩ Xi is the intersection of a closed set, {x|p · x ≤ M̃i(p)}, a compact
set (the closed ball of radius c), and the closed set Xi . Hence, it is compact. It
is nonempty by C.VII. Because D̃i(p) is characterized by the maximization of a
continuous function, ui(·), on this compact nonempty set, there is a well-defined
maximum value, u◦ = ui(x◦), where x◦ is the optimizing value of x in B̃i(p) ∩ Xi .
We must show that x◦ is unique for each p ∈ P and a continuous function of p.

We will now demonstrate that uniqueness follows from strict convexity of pref-
erences, C.VI(SC). Suppose there are x ′, x′′ ∈ B̃i(p) ∩ Xi , x ′ �= x ′′, x′ ∼ x ′′. We
must show that this leads to a contradiction. But now consider a convex combina-
tion of x ′ and x ′′. Choose 0 < α < 1. The point αx ′ + (1 − α)x ′′ ∈ B̃i(p) ∩ Xi by
convexity of Xi and B̃i(p). But C.VI(SC), strict convexity of preferences, implies
that αx′ + (1 − α)x ′′ 
i x′ ∼i x′′. This is a contradiction because x ′ and x′′ are
both elements of D̃i(p). Hence, x◦ is the unique element of D̃i(p). We can now,
without loss of generality, refer to D̃i(p) as a (point-valued) function.

To demonstrate continuity, let pν ∈ P , ν = 1, 2, 3, . . . , pν → p◦. We must show
that D̃i(pν) → D̃i(p◦). D̃i(pν) is a sequence in a compact set. Without loss of
generality take a convergent subsequence, D̃i(pν) → x◦. We must show that x◦ =
D̃i(p◦). We will use a proof by contradiction.

Define

x̂ = arg minx∈Xi∩{y|y∈RN ,c≥|y|} p
◦ · x.

The expression x̂ = arg minx∈Xi∩{y|y∈RN ,c≥|y|} p◦ · x defines x̂ as the minimizer of
p◦ · x in the domain Xi ∩ {y | y ∈ RN, c ≥ |y|}. x̂ is well defined (though it may
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Fig. 16.1. Household i’s budget sets and demand functions.

not be unique) because it represents a minimum of a continuous function taken
over a compact domain.

Note that under C.IV and C.VII, p◦ · D̃i(p◦) > p◦ · x̂.
Let

αν = min

[
1,

M̃i(pν) − pν · x̂
pν · (D̃i(p◦) − x̂)

]
.

For ν large, the denominator is positive, αν is well defined (this is where C.VII
enters the proof), and 0 ≤ αν ≤ 1. Let wν = (1 − αν)x̂ + ανD̃i(p◦). Note that
M̃i(p) is continuous in p. Then wν → D̃i(p◦), and wν ∈ B̃i(pν) ∩ Xi . Suppose,
contrary to the theorem, x◦ �= D̃i(p◦). Then ui(x◦) < ui(D̃i(p◦)), so that for ν large,
ui(wν) > ui(D̃i(pν)). But this is a contradiction because D̃i(pν) maximizes ui(·) in
B̃i(pν) ∩ Xi . The contradiction proves the result. This completes the demonstration
of continuity and of part (a).

Part (b) has not previously been proved. We now wish to demonstrate the equiv-
alence of Di(p) and D̃i(p) when Mi(p) = M̃i(p) and D̃i(p) is attainable. In this
case the sets Bi(p) and B̃i(p) differ only by the constraint |x| ≤ c. The informal
argument here is to note that all the attainable points are strictly contained in this
ball. That is, for all attainable points, the constraint |x| ≤ c is not binding. There-
fore, if the constraint is not binding for D̃i(p), the optimum is left unchanged by
it’s relaxation in Bi(p).

For a formal argument, use a proof by contradiction. Suppose Di(p) and D̃i(p)
do not coincide. Then Di(p) �= D̃i(p). This could occur if Di(p) were the empty
set, were point valued but different from D̃i(p) or if Di(p) were set valued with
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more than one element. This last possibilty is ruled out by strict convexity of
preferences, C.VI(SC). Then there is xi ∈ Bi(p) ∩ Xi so that xi 
i D̃i(p). Because
D̃i(p) is attainable, |D̃i(p)| < c (a strict inequality). Then, using the convexity of
the budget sets and of preferences, for any 0 < α < 1, αxi + (1 − α)D̃i(p) 
i

D̃i(p). However, because Mi(p) = M̃i(p), for α sufficiently small, we have αxi +
(1 − α)D̃i(p) ∈ B̃i(p). (This is illustrated in Figure 16.1.) But then, contrary to
hypothesis, D̃i(p) is not the optimizer of �i in B̃i(p). The contradiction shows that
the hypothesis is false, and Di(p) = D̃i(p). QED

Theorem 16.1 here establishes the link between two closely related demand
functions for each household i ∈ H , Di(p) and D̃i(p). The expression Di(p) is i’s
demand function; unfortunately, it may not be well defined if the corresponding
budget is ill defined or if the budget set is unbounded. Thus we use D̃i(p), i’s
artificially restricted demand function, which would be i’s demand function when
i’s optimization is restricted to a bounded set containing the attainable points as a
proper subset. The expression D̃i(p) is always well defined. Moreover, when D̃i(p)
is attainable and M̃i(p) = Mi(p) is well defined, then D̃i(p) = Di(p). Theorem
16.1(b) shows that the two functions coincide for prices leading to household choice
in the attainable set. That is, they coincide at all prices p ∈ P where an equilibrium
can occur.

16.4 Bibliographic note

The treatment here – emphasizing choice in a bounded domain and then extending
it to an unbounded domain – parallels that in Arrow and Debreu (1954) and Arrow
(1962).

Exercise

16.1 Formulate an example demonstrating the importance of considering D̃i(p)
in B̃i(p) rather than Di(p) in Bi(p). Consider p′ = (0, 1). Let Mi(p′) =
M̃i(p′) = 10, Xi = R2

+. Let u(x1, x2) = x1 + x2 + (x1 · x2)1/2. Show that
Di(p) is undefined. Show that D̃i(p) is well defined.
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A market economy: The unbounded technology case

17.1 Firms and households

We now bring the elements of Chapters 15 and 16 together to describe the market
economy and to develop Walras’s Law. As before, the economy is characterized by
the agents in it, households (the set H ) and firms (the set F ). A household i ∈ H

is characterized by its endowment of goods ri ∈ RN
+ , by its endowed share αij of

firms j ∈ F , and by �i . We assume
∑

i∈H αij = 1 for each j ∈ F and αij ≥ 0 for
all i ∈ H , j ∈ F . Each firm is 100 percent owned by one or more shareholders, and
there is no negative ownership (no short sales). The initial resource endowment of
the economy, designated r ∈ RN

+ , is r ≡∑
i∈H ri .

17.2 Profits

A firm j ∈ F is characterized by its possible production technology set Y j . Firm
j ’s profit function is πj (p) = maxy∈Y j p · y = p · Sj (p).

Note that πj (p) may not be well defined (may not exist) for some values of p.
This reflects that πj (p) is defined as the maximum of a real-valued function on
the domain Y j . A well-defined value of πj (p) depends on that maximum existing.
Because Y j is not compact, the maximum may not exist. That is why we depend
so heavily on π̃ j (p), defined by the compact domain Ỹ j .

Considering that we need to discuss artificially restricted firm technology sets
Ỹ j , it is convenient to have a concept of the profit function for the firm so restricted,

π̃ j (p) = max
y∈Ỹ j

p · y = p · S̃j (p).

Note that the definition of π̃ j (p) is identical to the corresponding definition in
Chapter 13 with Ỹ j substituted for Yj . Because the formal properties of these sets
are the same, the profit functions π̃ j (p) have the same properties.

180
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Theorem 17.1 Assume P.II and P.III. Then πj (p) ≥ 0 for all j ∈ F , all p ∈ RN
+

such that πj (p) is well defined. The expression πj (p) is a continuous function
of p in every neighborhood such that πj (p) exists. Then π̃ j (p) is a well-defined
continuous function of p for all p ∈ P , and πj (p) = π̃ j (p) for all p so that Sj (p)
is attainable in Y j ; πj (p) = π̃ j (p) for all p such that Sj (p) = S̃j (p).

Proof Exercise 17.2. QED

17.3 Household income

Household i’s income is defined as

Mi(p) = p · ri +
∑
j∈F

αijπj (p).

That is, we define household income as the sum of the value of the household
endowment plus the value of the household’s share of firm profits. For the model
with restricted firm supply behavior, household income is

M̃i(p) = p · ri +
∑
j∈F

αij π̃ j (p).

Note that Mi(p) is a continuous, nonnegative, real-valued function of p wherever
πj is well defined for all j ∈ F . M̃i(p) is continuous, real-valued, nonnegative,
and well defined for all p ∈ P . Mi(p) = M̃i(p) whenever Sj (p) = S̃j (p) for all
j ∈ F , in particular for p so that Sj (p) is attainable in Y j for all j ∈ F .

17.4 Excess demand and Walras’s Law

Definition The excess demand function at prices p∈P is
Z(p) = D(p) − S(p) − r .

As before, we denote Z̃(p) = D̃(p) − S̃(p) − r . In the present setting, Z̃(p) is
something of an artificial construct, representing the excess demand function of an
economy characterized by artificial bounds on the firms’ production technology
and households’ budget sets of the underlying true economy.

Lemma 17.1 Let Mi(p) and Di(p) be well defined, and assume C.II, C.IV, C.VI(C).
Let x ∈ Di(p). Then p · x = Mi(p).

Of course, if Di(p) is point valued, as it would be under C.VI(SC), we can write
p · Di(p) = Mi(p).
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Proof Exercise 17.3. QED

Lemma 17.1 develops one of the principal implications of nonsatiation of prefer-
ences, C.IV. Combined with convexity, C.VI(C), nonsatiation implies that for any
consumption plan, there are nearby strictly preferable plans; and they will be in
the direction of increasing consumption (under C.II). When households optimize
subject to a budget constraint, the budget will be fully spent. This is an essential
point in proving Walras’s Law. A naive reading of Lemma 17.1 would suggest that
it says there is no saving. However, in a model with dated goods, saving takes the
form of purchasing goods dated for future delivery.

Walras’s Law is one of the essential building blocks of the proof of existence of
general equilibrium. It says that at any prices where excess demand is well defined,
the value of excess demand, evaluated at prevailing prices, is zero. This is not
an equilibrium condition. It is true at all price vectors, in and out of equilibrium.
Walras’s Law reflects two essential elements of the model: the disbursement of
profits to shareholders (embodied in the definition of the budget constraint) and the
equality of expenditure to income (Lemma 17.1, deriving from monotonicity). The
first of these is essentially an accounting consistency requirement; the profits have
to go somewhere. Nonsatiation of preferences C.IV reflects the idea of scarcity,
which is essential to economic analysis. Walras’s Law then embodies the technical
implications of these economic assumptions.

Theorem 17.2 (Walras’s Law) Assume C.II, C.IV, C.VI(C), and let Z(p) be well
defined and point valued.1 Then p · Z(p) = 0.

Proof Note that

p · Z(p) = p ·
∑
i∈H

Di(p) − p ·
∑
j∈F

Sj (p) − p ·
∑
i∈H

ri .

By Lemma 17.1, we have

p · Di(p) = Mi(p) = p · ri +
∑
j∈F

αijπj (p)

= p · ri +
∑
j∈F

αij (p · Sj (p)).

It follows then that∑
i∈H

p · Di(p) =
∑
i∈H

p · ri +
∑
i∈H

∑
j∈F

αij (p · Sj (p)),

1 “Well defined” depends on p ∈ P being a value where firm profits and supplies are well defined (exist).
Point-valuedness may come from C.VI(SC).
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which can be written as

p ·
∑
i∈H

Di(p) = p ·
∑
i∈H

ri + p ·
∑
j∈F

∑
i∈H

αijSj (p).

Note the changed order of summation in the last term. Recall that
∑

i∈H αij = 1
for each j . We have then

p ·
∑
i∈H

Di(p) = p · r + p ·
∑
j∈F

Sj (p)

p ·
[∑

i∈H

Di(p) −
∑
j∈F

Sj (p) − r

]
= p · Z(p) = 0. QED

We showed in Chapter 15 that under P.I–P.III and P.IV the attainable subset of
Y j is bounded. We defined Ỹ j as a bounded subset of Y j containing the attainable
part of Y j as a proper subset. Under P.I–P.IV, it is then redundant to assume
P.VI (boundedness of Ỹ j ) explicitly because it is implied by P.I–P.IV according to
Theorem 15.1, and by the definition of Ỹ j . The following results from Chapter 13
were proved using P.I–P.III and P.V using the techology sets Yj . They are still valid
and applicable under the definitions of Chapters 15–17, substituting Ỹ j for Yj .

Lemma 13.1 Assume C.I–C.V, C.VI(SC), C.VII, P.II, P.III, P.V, and P.VI (alterna-
tively, substitute P.IV for P.VI). The range of Z̃(p) is bounded. Z̃(p) is continuous
and well defined for all p ∈ P .

Theorem 13.2 (Weak Walras’s Law) Assume C.I–C.V, C.VI(SC), C.VII, P.II,
P.III, P.V, and P.VI (alternatively, substitute P.IV for P.VI). For all p ∈ P , p · Z̃(p) ≤
0. For p such that p · Z̃(p) < 0, there is k = 1, 2, . . . , N so that Z̃k(p) > 0.

The Weak Walras’s Law tells us that any value of the truncated excess demand
function Z̃(p) will have one of two characteristics. Either the value of excess
demand, evaluated at prevailing prices, is nil (as in Walras’s Law) or the value
is negative and there is positive excess demand for someone or several of the N

goods. This differs from the usual Walras’s Law (Theorem 17.2) because the excess
demand function Z̃(p) here is based on household demand functions D̃i(p) and the
firm supply functions S̃j (p) that include a restriction to keep demand and supply
inside a sphere of radius c. The Weak Walras’s Law presents the counterpart to
Walras’s Law we can expect in the truncated version of the model where households
may not fully spend income, and firms may not fully pursue profitable production
if the quantity constraints on expenditure or supply are binding. It is not as elegant
as Walras’s Law, referring not to actual excess demands (which are not everywhere
well defined) but to their well-defined counterpart. Nevertheless, it serves a similar
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function in emphasizing the role of scarcity in proving the existence of general
equilibrium. We saw this in Theorem 14.1, and we will see it again in Theorem 18.1.

17.5 Bibliographic note

The definition of household income as the value of endowment plus the share of
firm profits appears in Arrow and Debreu (1954) and Debreu (1959).

Exercises

17.1 In the economy with excess demand function Z(p), the market for good
k is said to clear at prices p ∈ P if Z(p) ≤ 0, with pk = 0 for k such
that Zk(p) < 0. Recall the statement of the classic Walras’s Law for all
p ∈ P, p · Z(p) = 0.

A common interpretation of Walras’s Law is: At prices p ∈ P , if there
is market clearing in all markets but one (that is, in N − 1 markets) then
the remaining (N th) market clears as well. Explain and demonstrate the
validity of the common interpretation.

17.2 Prove Theorem 17.1.
17.3 Prove Lemma 17.1. You will find the nonsatiation assumption C.IV and

the convexity assumption C.VI(C) useful.
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General equilibrium of the market economy:
The unbounded technology case

18.1 General equilibrium

In this chapter we will consider the general equilibrium of an economy with
(possibly) unbounded production technologies where demands and supplies are
point valued. We will establish the most important single result in this book,
Theorem 18.1, the existence of general equilibrium. We know that a sufficient
condition for point-valuedness of supply and demand is strict convexity of tastes
and technologies, P.V and C.VI(SC). As noted earlier, homogeneity of degree zero
of Di(·) and Sj (·) in p means that we may, without loss of generality, restrict the
price space to be the unit simplex in RN ,

P =
{

p | p ∈ RN, pk ≥ 0, k = 1 . . . , N,

N∑
k=1

pk = 1

}
.

From Chapter 17, the market excess demand function is defined as

Z(p) =
∑
i∈H

Di(p) −
∑
j∈F

Sj (p) − r.

There are some regions of P where Z(·) may not be well defined because the
maximization of profits in determining Sj or utility in determining Di may not
have a well-defined value. This arises because the opportunity sets, Y j or Bi(p),
may be unbounded. Then, profit or utility may lack a well-defined maximum.

We are interested in investigating a market clearing equilibrium defined as:

Definition p◦ ∈ P is said to be an equilibrium price vector if Z(p◦) ≤ 0 (the
inequality applies coordinatewise) with p◦

k = 0 for k such that Zk(p◦) < 0.

That is, an equilibrium is characterized by market clearing for all goods except
perhaps free goods, which may be in excess supply in equilibrium.

185
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18.2 An artificially restricted economy

We would like to establish the existence of a general equilibrium where the economy
is characterized by the excess demand function Z(p). There are unfortunately
regions of price space where Z(p) is not well defined. The strategy of proof is to
consider the bounded counterpart of the economy, the artificially bounded economy
characterized by the excess demand function Z̃(p). We will establish the existence
of equilibrium in this artificially bounded economy. We know we can do so because
this economy fulfills all of the conditions required of an economy in Chapters 11–
14, particularly Theorem 14.1. There will be an equilibrium price vector p∗ for
the artificially bounded economy so that Z̃(p∗) ≤ 0. But the equilibrium allocation
is attainable. As noted in Lemma 14.1, the quantity constraint on D̃i(p) is not
binding in equilibrium. By Theorems 15.3(b) and 16.1(b), Sj (p∗) = S̃j (p∗) and
Di(p∗) = D̃i(p∗). At the equilibrium of the artificially bounded economy, demand
and supply coincide with those of the unrestricted economy. Therefore, Z̃(p∗) =
Z(p∗) ≤ 0. But then the trick is done. We have an equilibrium at p∗ for the original
economy characterized by the unrestricted excess demand function Z(·).

We will describe the artificially bounded economy by taking the production
technology of each firm j to be Ỹ j rather than Y j and by taking the demand function
of each household i to be D̃i(p) rather than Di(p). In this special restricted case we
will refer to the excess demand function of the economy as Z̃(p). As demonstrated
in Chapters 11, 12, and 13 (for the economy with bounded technology sets Yj )
the artificially restricted excess demand function is well defined for all p ∈ P .
Z̃:P→RN . The unrestricted economy is defined by Y j , Di , and Z. As demonstrated
in Chapters 15–17, Z(p) and Z̃(p) will coincide for p so that each firm and
household’s plans in the restricted economy, S̃j (p) and D̃i(p), are attainable.

The results of Chapters 11–14 (particularly Theorems 13.2 and 14.1 and Lemma
13.1) depend on P.VI, boundedness of the firm technology sets Y j . But in the
following treatment, in Lemma 18.1 and Theorem 18.1, we want to rely on those
results but without assuming P.VI. How can we do that? P.IV (no free lunch and
irreversibility of production) tells us that the set of attainable points for each firm
and for the economy as a whole are bounded, so the limit c > 0 on length of
a planned production for a firm is well defined. Hence, the artificially bounded
production sets Ỹ j based on the unbounded technology sets Y j are well defined.
Thus, Ỹ j fulfills P.VI for all j , and Theorems 13.2 and 14.1 and Lemma 13.1 can
be applied where P.IV holds even without P.VI.

We have the following observations on Z̃(p):

Weak Walras’s Law (Theorem 13.2): For all p ∈ P, p · Z̃(p) ≤ 0. For p such that
p · Z̃(p) < 0, there is k = 1, 2, . . . , N, so that Z̃k(p) > 0.
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Z̃(p) is a continuous function, assuming P.II–P.V, C.I–C.V, C.VI(SC), and C.VII
(Theorem 11.1, Theorem 12.2).

From Chapter 14 we know that there is p◦∈P , so that p◦ is an equilibrium of the
artificially restricted economy characterized by Z̃(p). How do we know this? The
economy characterized by Ỹ j and D̃i(p) fulfills all of the assumptions of Theorem
14.1 when we substitute Ỹ j , the bounded subset of Y j , for Yj , the bounded
technology sets of Chapters 11 through 14. Therefore, by applying Theorem 14.1
we can find p◦∈P so that Z̃(p◦) ≤ 0, with p◦

k = 0 for k so that Z̃k(p◦) < 0.

18.3 General equilibrium of the unrestricted economy

We now wish to establish the existence of general equilibrium in the unrestricted
economy, Theorem 18.1. We start with Lemma 18.1: Consider the restricted econ-
omy characterized by Ỹ j , S̃j , and D̃i , and show that it has a general equilibrium
by Theorem 14.1. This result is in itself of no interest because the economy to
which it applies is entirely artificial. We will then show that the equilibrium of the
artificially restricted economy is attainable in the actual economy. It then follows
that, at the equilibrium prices of the artificially restricted economy, the firm supply
functions and household demand functions of the actual economy coincide with
those of the restricted economy. This coincidence follows from Theorem 15.3(b)
and Theorem 16.1(b). Hence, the equilibrium price vector developed in Lemma
18.1 is also an equilibrium of the unrestricted economy. This proves Theorem 18.1.

Lemma 18.1 Assume P.II–P.V, C.I–C.V, C.VI(SC), and CVII. There is p∗ ∈ P so
that p∗ is an equilibrium of the artificially restricted economy. That is, Z̃(p∗) ≤ 0
and p∗

k = 0 for k so that Z̃k(p∗) < 0.

Proof Lemma 18.1 is merely a restatement of Theorem 14.1, so the proof is
completely redundant. P.IV implies boundedness of attainable sets allowing us to
use boundedness of Ỹ j in place of P.VI. We reproduce the treatment here merely
for completeness.

Let T : P → P , where T (p) = (T1(p), T2(p), . . . , Ti(p), . . . , TN (p)). Ti(p) is
the adjusted price of good i, adjusted by the auctioneer trying to bring supply and
demand into balance. Let γ i > 0. The adjustment process of the ith price can be
represented as Ti(p), defined as follows:

Ti(p) ≡ max[0, pi + γ iZ̃i(p)]
N∑

n=1

max[0, pn + γ nZ̃n(p)]

. (18.1)
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The function T is a price adjustment function. It raises the relative price of goods
in excess demand and reduces the price of goods in excess supply while keeping
the price vector on the simplex. The expression pi + γ iZ̃i(p) represents the idea
that prices of goods in excess demand should be raised and those in excess supply
should be reduced. The operator max[0, ·] represents the idea that adjusted prices
should be nonnegative. The fractional form of T reminds us that, after each price is
adjusted individually, they are then readjusted proportionally to stay on the simplex.
For T to be well defined, we must show that the denominator is nonzero, that is,

N∑
n=1

max[0, pn + γ nZ̃n(p)] �= 0. (18.2)

In fact, we claim that
∑N

n=1 max[0, pn + γ nZ̃n(p)] > 0. Suppose not. Then
for each n, max[0, pn + γ nZ̃n(p)] = 0. Then p · Z̃(p) < 0. Then by the Weak
Walras’s Law, there is n so that Z̃n(p) > 0. Thus

∑N
n=1 max[0, pn+γ nZ̃n(p)] > 0.

By Lemma 13.1, Z̃(p) is a continuous function. Then T (p) is a continuous
function from the simplex into itself because continuity is preserved under the
operations of max, addition, and division by a positive-valued continuous function.
An illustration of the notion of a continuous function from P into P is presented
in Figure 14.1. By the Brouwer Fixed-Point Theorem, there is p∗ ∈ P so that
T (p∗) = p∗. But then, for all k = 1, . . . , N ,

Ti(p
∗) ≡ max[0, p∗

i + γ iZ̃i(p∗)]
N∑

n=1

max[0, p∗
n + γ nZ̃n(p∗)]

. (18.3)

We’ll demonstrate that Z̃n(p∗) ≤ 0 all n.
Looking at the numerator in this expression, we can see that the equation will

be fulfilled either by

p∗
k = 0 (Case 1) (18.4)

or by

p∗
k = p∗

k + γ kZ̃k(p∗)
N∑

n=1

max[0, p∗
n + γ nZ̃n(p∗)]

> 0 (Case 2). (18.5)

Case 1: p∗
k =0=max[0,p∗

k +γ kZ̃k(p∗)]. Hence, 0 ≥ p∗
k +γ kZ̃k(p∗)=γ kZ̃k(p∗)

and Z̃k(p∗) ≤ 0. This is the case of free goods with market clearing or with excess
supply in equilibrium.
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Case 2: To avoid repeated messy notation, define

λ ≡ 1
N∑

n=1

max[0, p∗
n + γ nZ̃n(p∗)]

> 0 (18.6)

so that Tk(p∗) = λ(p∗
k + γ kZ̃k(p∗)). We’ll demonstrate that Z̃n(p∗) ≤ 0 all n.

Because p∗ is the fixed point of T , we have p∗
k = λ(p∗

k + γ kZ̃k(p∗)) > 0. This
expression is true for all k with p∗

k > 0, and λ is the same for all k. Let’s perform
some algebra on this expression. We first combine terms in p∗

k :

(1 − λ)p∗
k = λγ kZ̃k(p∗), (18.7)

then multiply through by Z̃k(p∗) to get

(1 − λ)p∗
k Z̃k(p∗) = λγ k(Z̃k(p∗))2, (18.8)

and now sum over all k in Case 2, obtaining

(1 − λ)
∑

k∈Case2

p∗
k Z̃k(p∗) = λ

∑
k∈Case2

γ k(Z̃k(p∗))2. (18.9)

The Weak Walras’s Law says

0 ≥
N∑

k=1

p∗
k Z̃k(p∗) =

∑
k∈Case1

p∗
k Z̃k(p∗) +

∑
k∈Case2

p∗
k Z̃k(p∗). (18.10)

But for k ∈ Case 1, p∗
k Z̃k(p∗) = 0, and so

0 =
∑

k∈Case1

p∗
k Z̃k(p∗). (18.11)

Therefore, ∑
k∈Case2

p∗
k Z̃k(p∗) ≤ 0. (18.12)

Hence, from (18.9) we have

0 ≥ (1 − λ) ·
∑

k∈Case2

p∗
k Z̃k(p∗) = λ ·

∑
k∈Case2

γ k(Z̃k(p∗))2. (18.13)

The left-hand side ≤ 0. But the right-hand side is necessarily nonnegative. It can
be zero only if Z̃k(p∗) = 0 for all k such that p∗

k > 0 (k in Case 2). Thus, p∗ is an
equilibrium. This concludes the proof. QED
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Theorem 18.1 Assume P.II–P.V, C.I–C.V, C.VI(SC), and C.VII. There is p∗ ∈ P

so that p∗ is an equilibrium price vector. That is, Z(p∗) ≤ 0 and p∗
k = 0 for k so

that Zk(p∗) < 0.

Proof We note from Lemma 18.1 that there is an equilibrium price vector p∗ ∈ P

for the artificially restricted economy. There is p∗∈P so that Z̃(p∗) ≤ 0 with
p∗

k = 0 for k so that Z̃k(p∗) < 0. Now we must show that the equilibrium
of the restricted economy is also an equilibrium of the unrestricted economy.
First, we note that the production plans at p∗ of each firm in the artificially
restricted economy, S̃j (p∗), are attainable, and similarly for D̃i(p∗). This fol-
lows simply from the definition of equilibrium, which implies that the equilibrium
allocation be attainable. That is, Z̃(p∗) =∑

i∈H D̃i(p∗) − r −∑j∈F S̃j (p∗) ≤ 0
implies r +∑j∈F S̃j (p∗) ≥∑i∈H D̃i(p∗) ≥ 0. But then by Theorem 15.3(b) we
have S̃j (p∗) = Sj (p∗) for all j ∈ F . It follows that π̃ j (p∗) = πj (p∗), and hence
M̃i(p∗) = Mi(p∗) for all i ∈ H . But then by Theorem 16.1(b), D̃i(p∗) = Di(p∗).
By definition, Z(p∗) =∑

i∈H Di(p∗) − r −∑j∈F Sj (p∗). Therefore, Z̃(p∗) =
Z(p∗). But then Z(p∗) ≤ 0, with p∗

k = 0 for k so that Zk(p∗) < 0, so p∗ is an
equilibrium price vector. QED

Theorem 18.1 is the most important single result of this book. It says that the
competitive economy, guided only by prices, has a market-clearing equilibrium
outcome. The decentralized price-guided economy has a consistent solution. This
is the defining result of the general equilibrium theory.

18.4 The Uzawa Equivalence Theorem

The principal mathematical tool we used in proving Lemma 18.1 and hence The-
orem 18.1 is the Brouwer Fixed-Point Theorem. We’ll demonstrate a distinctive
result that shows that the use of the Brouwer Fixed-Point Theorem is not merely
convenient. It is essential. We will demonstrate the mathematical equivalence of
two propositions: (i) the existence of equilibrium in an economy characterized by
a continuous excess demand function fulfilling Walras’s Law and (ii) the Brouwer
Fixed-Point Theorem. We already know that the Brouwer Fixed-Point Theorem
implies existence of equilibrium. We will now demonstrate the converse: If we
are always sure of existence of equilibrium in such an economy, then the Brouwer
Fixed-Point Theorem must follow. The Brouwer Fixed-Point Theorem implies exis-
tence of general equilibrium; existence of general equilibrium implies the Brouwer
Fixed-Point Theorem. Thus, the two apparently distinct results are mathematically
equivalent.
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Just to get terminology and notation straight (and to keep it distinct from the
economic model developed above) we will restate some results and introduce some
new notation for familiar constructs.

Let S (≡ P ) be the unit simplex in RN . Recall two propositions:

Brouwer Fixed-Point Theorem (BFPT) Let f :S → S, where f is continuous. Then
there is p∗ ∈ S so that p∗ = f (p∗).

Walrasian Existence of Equilibrium Proposition (WEEP) Let X:S → RN so that

(1) X(p) is continuous for all p ∈ S, and
(2) p · X(p) = 0 (Walras’ Law) for all p ∈ S.1

Then, there is p∗ ∈ S so that X(p∗) ≤ 0 with p∗
i = 0 for i so that Xi(p∗) < 0.

The observation that these two results are equivalent constitutes Theorem 18.2.
Mathematical equivalence means that each proposition implies the other. We
already know that BFPT implies WEEP; that was Theorem 5.2. It remains to
demonstrate that the implication goes the other way as well. The proposition
requires that – using WEEP but not BFPT – we prove that, for an arbitrary con-
tinuous function from the simplex to itself, there is a fixed point. The strategy of
proof is to take an arbitrary continuous function f (p) from the simplex into itself.
We use f (p) to construct a continuous function mapping from S into RN , fulfilling
Walras’s Law. That is, we construct an “excess demand” function (derived from
no actual economy but fulfilling the properties required in WEEP). The strategy of
proof then is to find the general equilibrium price vector associated with this excess
demand function and show that it is also a fixed point for the original function.
Obviously, this plan requires clever construction of the excess demand function.

Theorem 18.2 (Uzawa Equivalence Theorem) 2 WEEP implies BFPT.

Proof Let f (·) be an arbitrary continuous function mapping S into S. Assume
WEEP but not BFPT. We shall prove that there is p∗ ∈ S so that f (p∗) = p∗.

Let f :S → S, where f is continuous. Let

μ(p) ≡ p · f (p)

|p|2

≡ |p||f (p)|
|p|2 cos(p, f (p)) ≤ |f (p)|

|p| ,

1 We use the strong form of Walras’s Law for convenience.
2 The result is credited to Hirofumi Uzawa (1962). Thanks to Jin-lung Lin for essential assistance in the proof.
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Fig. 18.1. The Uzawa Equivalence Theorem.

where cos(p, f (p)) denotes the cosine of the angle included by p, f (p). Let

X(p) ≡ f (p) − μ(p)p.

The function X(p) represents “excess demand.” If we have constructed it cleverly
enough, the equilibrium price vector of X(p) will also be a fixed point of f (·).
The geometry of this construction is illustrated in Figure 18.1. It makes for a
compelling visual demonstration that the equilibrium price vector of the excess
demand function X(p) is necessarily a fixed point of the function f (p). Note that
X(p) fulfills (1) and (2) of WEEP. We have

p · X(p) = p · f (p) − p · f (p)

|p|2 |p|2 = 0;

this is Walras’s Law (2).
Hence, assuming WEEP, there is p∗∈S so that X(p∗) ≤ 0. Note that by con-

struction X(p∗) = 0. This follows because p∗
i = 0 for Xi(p∗) < 0. If there were

i so that Xi(p∗) < 0, it would lead to a contradiction: p∗
i = 0, so 0 > Xi(p∗) =

fi(p∗) − μ(p∗)p∗
i = fi(p∗) − 0 ≥ 0. Therefore, X(p∗) = f (p∗) − μ(p∗)p∗ = 0.

Thus f (p∗) = μ(p∗)p∗. But p∗ and f (p∗) are both points of the simplex. The
only scalar multiple of a point on the simplex that remains on the simplex occurs
when the scalar is unity. That is, f (p∗)∈S, p∗∈S, and f (p∗) = μ(p∗)p∗ implies
μ(p∗) = 1, which implies f (p∗) = p∗. QED
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What are we to make of the Uzawa Equivalence Theorem? It says that use of
the Brouwer Fixed-Point Theorem is not merely one way to prove the existence of
equilibrium. In a fundamental sense, it is the only way. Any alternative proof of
existence will include, inter alia, an implicit proof of the Brouwer Theorem. Hence,
this mathematical method is essential; one cannot pursue this branch of economics
without the Brouwer Theorem. If Walras (1874) provided an incomplete proof of
existence of equilibrium, it was in part because the necessary mathematics was not
yet available.

18.5 Bibliographic note

The proof of existence of equilibrium presented here parallels that of Arrow and
Debreu (1954). The Uzawa Equivalence Theorem appeared first in Uzawa (1962)
and is discussed in Debreu (1982).

Exercises

18.1 Describe the significance of:
(a) The Uzawa Equivalence Theorem, Theorem 18.2. Does it have an

implication for the importance of mathematics in economics?
(b) The Existence of General Equilibrium Theorem, Theorem 5.2, Theorem

14.1, or Theorem 18.1.
18.2 Consider the general competitive equilibrium of a production economy

with redistributive taxation of income from endowment. Half of each
household’s income from endowment (based on actual endowment, not
net sales) is taxed away. The proceeds of the tax are then distributed
equally to all households. We then have

Mi(p) = p · (.5ri) +
∑
j∈F

αijp · yj + T ,

where T is the transfer of tax revenues to the household,

T = (1/#H )
∑
h∈H

p · (.5rh).

(a) Define a competitive equilibrium in this economy.
(b) State Walras’s Law for this economy. Does it hold? Explain.
(c) Does a competitive equilibrium generally exist in this economy?

Explain.
18.3 The model below is an interpretation of E. Malinvaud’s Theory of Unem-

ployment Reconsidered.
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Consider the general equilibrium of a private ownership production
economy. There are #H households, i = 1, . . . , #H . Each household i has
a continuous monotonic, concave utility function ui(·) and is endowed with
resources ri ∈ RN

+ . There is a finite number of firms comprising the set F .
Firm j has a compact convex technology set Y j . Firm supply behavior is
guided by simple profit maximization:

yj = arg max
y∈Y j

p · y,

The expression yj = arg maxy∈Y j p · y defines yj as the maximizer of p · y
in Y j . Then, i’s income is

Mi(p) = p · ri.

Note that Mi makes no allowance for the payment of firm profits to owners.
i’s consumption behavior is

(C) choose x◦i ∈ RN
+, p · x◦i ≤ Mi(p), ui(x◦i) ≥ ui(x)

for all x such that p · x ≤ Mi(p).

(a) Is Walras’s Law fulfilled in the economy in this case? Explain.
(b) Is the excess demand function continuous in prices? Explain briefly.

Feel free to cite known results.
(c) Does a competitive general equilibrium exist in the economy? Always?

Never? Explain.

Problems 18.4 and 18.5 consider the existence of general competitive
equilibrium in a pure exchange economy subject to excise tax on net
purchases. The notation ()+ emphasizes that excise taxes are collected only
on net purchases, not on all consumption. All taxes are rebated as lump
sums equally to all households. A pure exchange economy is a special
case of the economy studied in Chapters 11–14, the case where all firm
production technologies are identically equal to the zero vector, Y j = {0}.
We use the following notation:

p is the N -dimensional nonnegative price vector.
xi is the N -dimensional nonnegative vector of household i’s consumption,

xi is a decision variable for i.

ri is the N -dimensional nonnegative vector of i’s endowment.
D̃i(p)(= xi) is the N -dimensional vector of i’s consumption as a function

of p, based on i’s budget, which is denoted M̃i(p).
#H is the finite integer number of households in the economy consisting

of the set H.
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τ is the N-dimensional nonnegative vector of excise tax rates (on net
purchases) in the economy; τ is exogenously given and fixed.

T is the transfer of tax revenue to the typical household.

The budget constraint is p · xi + τ · (xi − ri)+ = M̃i(p) where M̃i(p) =
p · ri + T where T = (1/#H )

∑
h∈H τ · (xh − rh)+ where the notation ()+

indicates the vector consisting of the nonnegative coordinates of () with
zeros replacing the negative coordinates of (). That is, household i pays no
tax on consumption of his endowment; he pays a tax τn on each unit of
good n he consumes greater than his endowment of n. The household is
assumed to treat T parametrically – as independent of his own expenditure
decisions.

Please make the usual assumptions (the assumptions of Theorem 14.1
are sufficient) about continuity, convexity, monotonicity of preference, and
adequacy of income (net of tax).

18.4 In the model above, the Weak Walras’s Law would be stated as

p · Z̃(p) = p ·
(∑

h∈H

D̃h(p)−
∑
h∈H

rh

)
=
(∑

h∈H

p · D̃h(p)−
∑
h∈H

p · rh

)
≤0.

Show that the Weak Walras’s Law is fulfilled in this model.
18.5 Will a general competitive equilibrium exist in the economy with excise

taxation? Explain why or why not. State any additional assumptions you
need. Feel free to cite well-known results.

18.6 Let f : P → P , f continuous. Define

Z(p) = f (p) −
[
p · f (p)

p · p
]

p.

The term in square brackets is just a scalar multiplying the vector p. Show
that p · Z(p) = 0. Z is a continuous function, Z : P → RN . Why? Assume
there is a competitive equilibrium price vector p∗ so that Z(p∗) = 0
(the zero vector; ignore excess supplies of free goods). Is p∗ also a fixed
point of f so that f (p∗) = p∗? Consult Theorem 18.2 to see what you’ve
demonstrated.

18.7 Consider an Edgeworth box for two households. The two goods are denoted
x, y. The households have identical preferences:

(x, y) 
 (x′, y ′) if 3x + y > 3x ′ + y ′, or

(x, y) 
 (x′, y ′) if 3x + y = 3x ′ + y ′ and x > x ′.

(x, y) ∼ (x ′, y ′) only if (x, y) = (x ′, y ′).
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They have identical endowments of (20, 20). Demonstrate that there is no
competitive equilibrium. Is this example a counterexample to Theorem 18.1
(does it demonstrate that Theorem 18.1 is false?) ? Explain.

18.8 Consider a small economy, with two goods and three households. The
two goods are denoted x, y. The households have identical preferences
described by the utility function

u(x, y) = sup[x, y],

where “sup” indicates the supremum or maximum of the two arguments.
Demonstrate that these preferences are nonconvex; they do not fulfill
assumptions C.VI(SC) or CVI(C). The households have identical endow-
ments of (10, 10). Demonstrate that there is no competitive equilibrium in
this economy. (Hint: Show that price vector ( 1

2 + ε, 1
2 − ε), ε > 0, cannot

be an equilibrium; similarly for ( 1
2 − ε, 1

2 + ε); and finally (1
2 , 1

2 ). That
pretty well takes care of it.)

18.9 The proof of Theorem 18.1 (Existence of Competitive Equilibrium)
depends on continuity of the excess demand function Z̃(p). How would
the proof fail if Z̃(p) were not continuous? Is there a step in the proof that
would be false?

18.10 Recall assumption C.V (Continuity). For an example of how C.V can fail,
note problem 18.7 above. The failure of C.V there means that D̃i(p) may
be discontinuous at some p′ ∈ P . The proof of Theorem 18.1 (Existence
of Competitive Equilibrium) depends on continuity of the excess demand
function Z̃(p) everywhere in p ∈ P . Recall that

Z̃(p) =
∑
i∈H

D̃i(p) −
∑
j∈F

S̃j (p) −
∑
i∈H

ri.

How can Z̃(p) be discontinuous at some p ∈ P , if C.V is not fulfilled?
(Hint: This question is as simple as it looks.)

Questions 18.11, 18.12, and 18.13 are based on this two-person pure
exchange economy (an Edgeworth box). Let there be two households
denoted A and B, with different endowments. Superscripts A and B are
used to denote the name of the households. There are two commodities, x

and y.

Household A is characterized as

uA(xA, yA) = xAyA,

for xA, yA ≥ 0, with endowment rA = (6, 2).
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Household B is characterized as

uB(xB, yB) = max[xB, yB]

for xB, yB ≥ 0, where max means the larger of the terms within brackets,
with endowment rB = (4, 8). B’s utility function is not concave (the
preferences are nonconvex, violating assumption C.VII).

18.11 B’s utility function is not of the form we usually encounter. It is not
a concave function. Though B likes both x and y, for any budget with
positive prices B prefers his consumption either concentrated on good
x (with no y) or concentrated on good y (with no x) rather than mixed
between them. For convenient notation we can restate C.VI(SC) (strict
convexity of preferences) in this two-commodity case as

(C.VI(SC)). Let u(x1, y1) ≥ u(x2, y2). Let 1 > α > 0. Then

u(α(x1, y1) + (1 − α)(x2, y2)) > u(x2, y2).

B’s utility function violates assumption C.VI(SC) (and C.VI(C)).
Use the following example to demonstrate that B’s utility function
violates C.VI(SC). Example: (x1, y1) = (12, 0), (x2, y2) = (0, 12). Set
α = ( 1

2 ).
18.12 Note the following observations: The usual calculation of for util-

ity maximization subject to budget constraint, ux/uy = px/py, is not
valid for household B. All of B’s optimizing plans are corner solu-
tions (where consumption of one good is zero). Use the price space
P = {(px, py)|1 ≥ px, py ≥ 0; py = 1 − px}. B’s budget constraint is
pxx

B + pyy
B = px4 + py8. For px > 1

2 , B’s utility maximizing choice
of consumption subject to budget constraint will be xB = 0, yB > 12. For
px < 1

2 , B’s utility maximizing choice of consumption subject to budget
constraint will be xB > 12, yB = 0. For px = 1

2 , B is equally satisfied
with xB = 0, yB = 12 or xB = 12, yB = 0, both of which are optimizing
plans. As shown in problem 18.11, no convex combination of these plans
is equally desirable. Using the properties in the paragraph above, show that
this Edgeworth Box has no competitive equilibrium.

18.13 Explain why this Edgeworth Box has no competitive equilibrium. You may
assume all the properties and results of problems 18.11 and 18.12. Is this a
counterexample to Theorem 18.1, demonstrating that the theorem is false?
Explain.
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Problems 18.14 and 18.15 are based in part on the following story
“How does a mathematician boil water?” (a very old story):

Q – How do you boil water?

A (from a mathematician) – Take an empty teakettle from the
countertop to the sink, fill with water, place on the stovetop. Turn on
the heat beneath the kettle. Wait for the water to boil.

Q – Very good. Now suppose the teakettle is already filled with
water and is on the stovetop. How then would you boil water?

A (from the same mathematician) – Take the teakettle to the
sink and empty it, placing the teakettle on the countertop.

Q – Why should you empty the teakettle?

A – Now the problem has been reduced to the previous case.

The market excess demand function for a production economy (for exam-
ple, in Theorem 18.1) is defined as
(1) Z(p) =∑

i∈H Di(p) −∑j∈F Sj (p) − r . A competitive equilibrium is
defined as a price vector p0 ∈ P so that

(2) Z(p0) ≤ 0 with p0
k = 0 for goods k so that Zk(p0) < 0.

The excess demand function for a pure exchange economy (with no pro-
duction) is defined as
(3) Z(p) =∑

i∈H Di(p) − r . The definition (2) of a competitive equilib-
rium remains the same. The following problems consider applying
Theorem 18.1 to a pure exchange economy.

18.14 Consider the special case of a production economy with Y j = {0} for all
j ∈ F , where 0 is the zero vector. Note that in this case Sj (p) = 0 for all
p ∈ P . Demonstrate that this case represents a pure exchange economy.
That is, show that, for this case,

Z(p) =
∑
i∈H

Di(p) −
∑
j∈F

Sj (p) − r =
∑
i∈H

Di(p) − r.

18.15 Consider the special case of Y j = {0} for all j ∈ F , where 0 is the zero vec-
tor. Theorem 18.1 shows existence of equilibrium in a production economy
fulfilling these conditions and additional assumptions on the households.
Use Theorem 18.1 to show that, under the assumptions of Theorem 18.1,
there exists an equilibrium in a pure exchange economy. That is, assume
Theorem 18.1, and then show

Theorem (Existence of Equilibrium in a Pure Exchange Economy)
Assume C.I–C.V, CVI(SC), CVII. There is p∗ so that p∗ is a competitive
general equilibrium of a pure exchange economy.
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18.16 In this problem, we ignore free goods. In an economy with excess demand
function Zk(p) ∈ RN , the market for good k is said to clear at prices
p ∈ RN

+ if Zk(p) = 0. Recall the statement of the classic (strong) Walras’s
Law:

(Walras’s Law, strong form) p · Z(p) = 0.

A common interpretation of Walras’s Law is: Let all prices be positive
(that is pn > 0, for all n). If there is market clearing in all markets but one
(that is, N − 1 markets clear) then the remaining (N th) market clears as
well.

Assume the Strong Walras’ Law. Demonstrate the validity of this inter-
pretation. That is, suppose for all n = 1, 2, . . . , N , n �= k, Zn(p) = 0. Then
show that Zk(p) = 0.

18.17 The term “non–price rationing” is used to mean the possibility of short-
ages, preventing some demands from being fulfilled at current prices, or
surpluses, preventing some supplies from being sold at current prices.
In the model of Chapters 11–18, firms (when they decide on Sj (p)) and
households (when they decide on Di(p)) take no account of possible short-
ages and surpluses; they behave as though there is no non–price rationing.
Households’ demands represent the amount they would like to extract from
the market if price and budget were the only binding constraints. This is
the standard assumption in partial equilibrium models as well (a partial
equilibrium demand curve is based on treating price parametrically with
no non–price rationing). The household budget constraint is based on treat-
ing the market value of endowment and the share of the household in firm
profits parametrically at levels that reflect no non–price rationing. This
assumption is sound in equilibrium but may not be fulfilled out of equi-
librium How can we justify characterizing household and firm behavior
this way at disequilibrium prices? (Hint: The assumption of no non–price
rationing is fulfilled in equilibrium, and the equilibrium positions are the
only ones the theory claims to characterize.)

18.18 The notion that the economy is competitive is embodied in the model
of Chapters 11–18, in the description of firms and households as “price
takers.” That is, firms and households do not set prices and do not bargain
to rearrange prices. This reflects the notion that they are supposed to be
individually small relative to the size of the economy and hence lack
sufficient market power to set prices themselves or to bargain effectively.

In the model of Chapters 11–18, is it an assumption or a conclusion that
firms and households are “competitive” in this sense? If an assumption,
where is it made? If a conclusion, what explicit assumptions is it based on?
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18.19 In Chapters 14 and 18 we used the mapping T : P → P as a price adjust-
ment function whose fixed points are competitive equilibria. Consider
instead using the mapping � : P → P where the ith coordinate mapping
of � is

�i(p) = med
[
0, pi + piZ̃i(p), c

]
N∑

j=1
med

[
0, pj + pjZ̃i(p), c

] ,
where med stands for “median” (the middle value of the three in brackets;
when two of the three are equal, that value is the median) and c is defined,
as in Chapter 12, as a strict upper bound on the Euclidean length of an
attainable consumption. Assume c > 1. Assume that Walras’s Law holds
as an equality, that is, that p · Z̃(p) = 0.
(a) Show that every competitive equilibrium price vector p0 is a fixed point

of �.
(b) A vertex of the price simplex is a coordinate unit vector, a vector of

the form (0, 0, . . . , 0, 1, 0, . . . , 0), with 1 in one coordinate and 0 in all
others. Show that every vertex of the price simplex P is a fixed point
of �.

(c) Under the usual assumptions of continuity of Z̃(p), �(·) can be shown
to have a fixed point, p∗ = �(p∗). Does this prove that the economy –
under those sufficient conditions – has a competitive equilibrium?

18.20 Consider a tax and public good provision program. Using the model
of Chapters 15–18, let each household i ∈ H be taxed, in kind, 0.1ri ,
so that household income is Mi(p) = p · (0.9ri) +∑j∈F αijπj (p). The
resources 0.1

∑
i∈H ri are then used to provide a public good, γ , according

to the production function γ = g(0.1
∑

i∈H ri). We take g to be continuous,
concave.

Household utility functions are then characterized as ui(xi ; γ ). The
households treat γ parametrically. Assume all the usual properties of ui ,
particularly continuity in its arguments. The household budget constraint
is then p · xi ≤ Mi(p).
(a) Define a competitive equilibrium with public goods for this economy.
(b) Assuming the usual properties on production and consumption, does

Theorem 18.1, Existence of Equilibrium, still hold? Explain.
18.21 Consider an economy with a finite number of households (enough so that

it makes sense for them to be price takers), two firms acting as price takers,
and two outputs, X and Y. Each household is endowed with one unit of
labor, which it sells on a competitive labor market. The household then uses
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its budget to buy X and Y. All households have the same Cobb-Douglas
utility function, Ui(Xi, Y i) = XiY i . X is produced using the technology
X = [Lx]2, where Lx ≥ 0 is the labor used as an input to X production and
the superscript 2 indicates a squared term.

Y is produced using the technology Y = [Ly]2, where Ly ≥ 0 is the
labor used as an input to Y production and the superscript 2 indicates a
squared term.

Note that each of these technologies displays scale economy.
There is no competitive equilibrium in this example. Why? Is this a

counterexample to Theorem 18.1? If not, which assumptions of Theorem
18.1 are not fulfilled? Explain.

18.22 Consider the general competitive equilibrium of a production economy
with corporate income taxation. In addition to the prices of goods p ∈ RN

+ ,
there is a (scalar) corporate tax rate τ , 1 > τ > 0. Proceeds of the tax are
then distributed to households as a lump sum. Household income then is

Mi(p) = p · ri +
⎡⎣∑

j∈F

αij (1 − τ ) p · Sj (p)

⎤⎦+ T ,

where T is the transfer of tax revenues to the household. The transfer to
the typical household is

T = 1

#H

∑
j∈F

τ (p · Sj (p)).

The household budget constraint is

p · Di(p) ≤ Mi(p).

Assume the household consumption sets are the nonnegative quadrant,
RN

+ , and that household endowments are ri � 0 (endowments are strictly
positive in all goods).
(a) The (Weak) Walras’s Law can be stated as

p · Z(p) = p ·
∑
i∈H

Di(p) − p ·
∑
j∈F

Sj (p) − p ·
∑
i∈H

ri ≤ 0.

Show that the (Weak) Walras’s Law is fulfilled.
(b) Theorem 18.1 is proved in a model without taxation. Does there exist

a competitive equilibrium in the economy with corporate income taxa-
tion? You may assume P.I–P.VI, C.I–C.VI(C), C.VII. Explain.
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18.23 Consider the following (conventional) definition:

{p◦, x◦i , y◦j }, p◦ ∈ RN
+, i ∈ H, j ∈ F,

is said to be a competitive equilibrium if
(i) y◦j ∈ Y j and p◦ · y◦j ≥ p◦ · y for all y ∈ Y j , for all j ∈ F ,
(ii) x◦i ∈ Xi , p◦ · x◦i ≤ Mi(p◦) = p◦ · ri +∑j∈F αijp◦ · y◦j and

x◦i �i x for all x ∈ Xi with p◦ · x ≤ Mi(p◦) for all i ∈ H , and
(iii) 0 ≥∑i∈H x◦i −∑j∈F y◦j −∑i∈H ri with p◦

k = 0 for coordinates k

so that the strict inequality holds.
� The concept of competitive equilibrium is supposed to reflect decentral-

ization of economic behavior. Explain how this definition embodies the
concept of decentralization.

� The concept of competitive equilibrium is supposed to reflect market
clearing. Explain how this definition includes market clearing.



Part E

Welfare economics and the scope of markets

Ever since Adam Smith’s evocation of an invisible hand, market equilibrium has
been supposed not only to clear markets but also to achieve an efficient allocation
of resources. This view is embodied in Chapter 19 in a definition and two major
results. We define a very general efficiency concept, Pareto efficiency. We then state
and prove the two major results relating market equilibrium to efficient allocation,
which are the two most important results in welfare economics.

The First Fundamental Theorem of Welfare Economics agrees with Adam Smith:
A market equilibrium allocation is Pareto efficient. This result can be demon-
strated in a surprisingly elementary fashion. It requires very little mathematical
structure, and it does not require any assumption of convexity. If, despite noncon-
vexity, the economy has a market equilibrium, that equilibrium allocation is Pareto
efficient.

The Second Fundamental Theorem of Welfare Economics requires more math-
ematical structure. It is a more surprising and deeper result. It says – assuming
convexity of tastes and technology – that any efficient allocation can be supported
as a competitive equilibrium. Find an efficient allocation. Then there are prices
and a distribution of resource endowments of goods and share ownership that will
allow the efficient allocation to be an equilibrium allocation at those prices and
endowments. Market allocation is compatible with any efficient allocation subject
to a redistribution of income.

The models treated here can be interpreted to treat allocation over time and under
uncertainty. To do so, the space of commodities traded needs to be interpreted to
include intertemporal trade and trade in insurance or event-contingent goods. These
are the notions of futures markets and contingent commodity markets developed
in Chapter 20. The concept of complete markets available over time and uncer-
tainty is sometimes described as “a full set of Arrow-Debreu futures markets.”
The remarkable notion is that these issues can be treated merely as a matter of
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interpretation – no expansion of the mathematical structure is required. This capac-
ity for generalization reflects the power of the axiomatic method:

If one removes the economic interpretation of the primitive concepts, of the assumptions,
and of the conclusions of the model, its bare mathematical structure must still stand.

The divorce of form and content immediately yields a new theory whenever a novel
interpretation of a primitive concept is discovered. A textbook illustration of this application
of the axiomatic method occurred in the economic theory of uncertainty. The traditional
characteristics of a commodity were its physical description, its date, and its location when
in 1953 Kenneth Arrow proposed adding the state of the world in which it will be available.
This reinterpretation of the concept of a commodity led, without any formal change in
the model developed for the case of certainty, to a theory of uncertainty which eventually
gained broad acceptance, notably among finance theorists.

– G. Debreu (1986)
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Pareto efficiency and competitive equilibrium

19.1 Pareto efficiency

The purpose of economic activity is to allocate scarce resources to promote the
welfare of households in their consumption of goods and services. There is a very
large number of possible allocations of resources (typically, an uncountable infin-
ity), but most of them are wasteful – we can do better. Some wasteful allocations
are those that do not make effective use of productive resources (corresponding
to points inside the production frontier in the Robinson Crusoe economy). An
alternative form of inefficiency occurs in allocations that allocate the mix of out-
puts among consumers without equating marginal rates of substitution (subject
to boundary conditions), leaving room for improvement in the mix of consump-
tion across households (wasteful points corresponding to those off the locus of
tangencies in the Edgeworth box).

Economic theory does not give us precise guidance as to the desirable distri-
bution of income and wealth across households. The theory is agnostic on the
distribution of income between Smith and Jones and between Rockefeller and
Micawber. We are led then to posit a criterion of nonwastefulness as a standard
for the effective utilization of scarce resources, while avoiding the moral question
of the desirable distribution of income. The nonwastefulness criterion is Pareto
efficiency, and it is fundamentally a simple idea. A (Pareto) improvement in allo-
cation is a reallocation that increases some household’s utility (moves higher in the
preference quasi-ordering) while reducing no household’s utility. An allocation is
Pareto efficient if there is no further room among attainable allocations for (Pareto)
improvement.

To analyze this concept more fully we start with the definitions needed to
formalize these concepts.

205
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Definition An allocation xi , i∈H , is attainable if xi ∈ Xi , i∈H and there is
yj∈Y j , j∈F , so that 0 ≤∑i∈H xi ≤∑j∈F yj +∑i∈H ri . (The inequality holds
coordinatewise.)

Note that the inequality, ≤, (
∑

i∈H xi ≤∑j∈F yj +∑i∈H ri), in the definition
of “attainable.” This amounts to assuming that commodities can be discarded
costlessly (free disposal).

Definition Consider two allocations of bundles to consumers, vi, wi ∈ Xi , i ∈ H .
Then vi is said to be Pareto superior (or Pareto preferable) to wi if for each i ∈ H ,
vi �i wi , and for some h ∈ H , vh 
h wh.

Definition An attainable allocation of bundles to consumers, wi ∈ Xi , i ∈ H ,
is said to be Pareto efficient (or Pareto optimal) if there is no other attainable
allocation vi ∈ Xi so that vi is Pareto superior to wi .

Definition The expression {p◦, x◦i , y◦j }, p◦∈RN
+ , i∈H , j∈F , x◦i∈RN , y◦j∈RN ,

is said to be a competitive equilibrium if

(i) y◦j ∈ Y j and p◦ · y◦j ≥ p◦ · y for all y ∈ Y j , for all j ∈ F ,
(ii) x◦i ∈ Xi , p◦ · x◦i ≤ Mi(p◦) = p◦ · ri +∑j∈F αijp◦ · y◦j and x◦i �i x for

all x ∈ Xi with p◦ · x ≤ Mi(p◦) for all i ∈ H , and
(iii) 0 ≥∑i∈H x◦i −∑j∈F y◦j −∑i∈H ri with p◦

k = 0 for coordinates k so that
the strict inequality holds.

This definition is sufficiently general to include the equilibria developed in
Theorems 14.1, 18.1, and 24.7.

19.2 First Fundamental Theorem of Welfare Economics

We are now ready to state and prove the First Fundamental Theorem of Welfare
Economics. It says that every equilibrium is an optimum. A competitive equilib-
rium allocation is always Pareto efficient. The result is remarkable in two ways.
First, it requires virtually no assumptions or mathematical structure beyond the
definitions of equilibrium and efficiency and an assumption of scarcity (nonsatia-
tion). Second, it does not require convexity of tastes or technology. In addition, the
proof is disarmingly simple. We start from a competitive equilibrium. That means
that households are optimizing utility subject to a budget constraint and that firms
are maximizing profits. We use a proof by contradiction. Suppose, the theorem
were false. That would mean that there is an attainable Pareto preferable alloca-
tion. Evaluate the preferable allocation at equilibrium prices. For those households
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whose consumptions are strictly improved at the alternative allocation, the cost of
their consumption bundle must go up. If these more expensive bundles are attain-
able, then they must be more profitable as well. But that leads to a contradiction.
If they are more profitable and attainable then the equilibrium allocation cannot be
an equilibrium. The contradiction proves the theorem.

An essential point in the proof and in the economic application of the First
and Second Fundamental Theorems is the absence of external effects (external
economies and diseconomies). This notion shows up mathematically in specify-
ing the possible consumption sets of the households, of the household sector, the
possible production sets of individual firms and of the production sector. All of
the relations are additive. That is, each household’s tastes and opportunities are
independent of the others’ and of the firms’. Each firm’s technology is independent
of other firms. When external effects, issues like water and air pollution (disec-
onomies) or beneficial effects of a neighbor’s garden (external economies), are
significant, the theorem does not correctly apply.

To prove the First Fundamental Theorem of Welfare Economics, it is useful
to have the budget constraint fulfilled as an equality in equilibrium, as noted in
Lemmas 14.1, 17.1, or 24.4. For full generality, it is useful at this point to have
alternative sufficient conditions for that equality that do not depend on convexity
of preferences, C.VI(C).

(C.IV*) (Weak Monotonicity) Let x, y ∈ Xi and x >> y. Then x 
i y.

Lemma 19.1 Assume C.IV*, Xi = RN
+ , and let Mi(p) and Di(p) be well defined.

Let x ∈ Di(p). Then p · x = Mi(p).

Proof Suppose not; p · x < Mi(p). Then there is x ′ ∈ Xi so that x ′ >> x and
p · x ′ ≤ Mi(p). But x′ 
i x, a contradiction. QED

Theorem 19.1 (First Fundamental Theorem of Welfare Economics) For each
i ∈ H , either assume C.II, C.IV, and C.VI(C) or assume C.IV*, Xi = RN

+ . Let
p◦ ∈ RN

+ be a competitive equilibrium price vector of the economy. Let w◦i ∈ Xi ,
i∈H , be the associated individual consumption bundles, and let y◦j , j ∈ F , be the
associated firm supply vectors. Then w◦i is Pareto efficient.

Proof It follows that w◦i �i x, for all x ∈ Xi so that p◦ · x ≤ Mi(p◦), for all
i ∈ H . This is a property of the equilibrium allocation. Consider an allocation xi

that household i ∈ H regards as more desirable than w◦i . If the allocation xi is
preferable, it must also be more expensive. That is,

xi 
i w◦i implies p◦ · xi > p◦ · w◦i .
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Similarly, profit maximization in equilibrium implies that production plans more
profitable than y◦j at prices p are not available in Y j . Then p◦ · y > p◦ · y◦j

implies y �∈ Y j . Noting that markets clear at the equilibrium allocation, we have∑
i∈H

w◦i ≤
∑
j∈F

y◦j + r.

Note that, for each household i ∈ H ,

p◦ · w◦i = Mi(p◦) = p◦ · ri +
∑

j

αij (p◦ · y◦j ),

by Lemmas 14.1, 17.1, and 24.4 or by Lemma 19.1.
Summing over households,

∑
i∈H

p◦ · w◦i =
∑

i

Mi(p◦) =
∑

i

⎡⎣p◦ · ri +
∑

j

αij (p◦ · y◦j )

⎤⎦
= p◦ ·

∑
i

r i + p◦ ·
∑

i

∑
j

αij y◦j

= p◦ ·
∑

i

r i + p◦ ·
∑

j

∑
i

αij y◦j

= p◦ · r + p◦ ·
∑

j

y◦j
(

since for each j,
∑

i

αij=1

)
.

Suppose, contrary to the theorem, there is an attainable Pareto-preferable allocation
vi ∈ Xi , i ∈ H , so that vi �i w◦i , for all i with vh 
h w◦h for some h ∈ H . The
allocation vi must be more expensive than w◦i for those households made better
off and no less expensive for the others. Then, we have∑

i∈H

p◦ · vi >
∑
i∈H

p◦ · w◦i =
∑
i∈H

Mi(p◦) = p◦ · r + p◦ ·
∑
j∈F

y◦j .

But if vi is attainable, then there is y ′j ∈ Y j for each j ∈ F , so that∑
i∈H

vi =
∑
j∈F

y′j + r.

But then, evaluating this production plan at the equilibrium prices, p◦, we have

p◦ · r + p◦ ·
∑
j∈F

y◦j < p◦ ·
∑
i∈H

vi = p◦ ·
∑
j∈F

y ′j + p◦ · r.

So, p◦ ·∑j∈F y◦j < p◦ ·∑j∈F y ′j . Therefore, for some j ∈ F , p◦ · y◦j < p◦ · y ′j .
But y◦j maximizes p◦ · y for all y ∈ Y j ; there cannot be y ′j ∈ Y j so that

p · y ′j>p · y◦j . Hence, y ′j �∈Y j . The contradiction shows that vi is not
attainable. QED
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Note that the First Fundamental Theorem does not require convexity of tech-
nologies. It uses the convexity of tastes only to avoid thick bands of indifference;
alternatively, a monotonicity condition is sufficient. If there is an equilibrium in a
nonconvex economy (a possibility because convexity is part of the sufficient, not
necessary, conditions for existence of equilibrium), then the equilibrium allocation
is Pareto efficient.

Theorem 19.1, the First Fundamental Theorem of Welfare Economics, is a
mathematical statement of Adam Smith’s notion of the invisible hand leading to an
efficient allocation. A competitive equilibrium decentralizes an efficient allocation.
Prices provide the incentives so that firms and households guided by prices and
self-interest can, acting independently, find an efficient allocation.

19.3 Second Fundamental Theorem of Welfare Economics

The Second Fundamental Theorem of Welfare Economics says that every Pareto-
efficient allocation of an economy with convex preferences and convex technology
is an equilibrium for a suitably chosen price system, subject to an initial redistri-
bution of endowment and ownership shares. Any desired redistribution of welfare
(subject to attainability) can be achieved through a market mechanism subject to
a redistribution of endowment and ownership.1 The strategy of proof is to charac-
terize an efficient allocation as on the boundaries of two convex sets with disjoint
interiors, the set of attainable allocations and the set of Pareto preferable allocations.
The Separating Hyperplane Theorem tells us that we can run a hyperplane between
them. The normal to the hyperplane is the price system that supports the efficient
allocation. This is presented in Theorem 19.2. It is then a matter of bookkeeping to
attribute endowments to households to allow them to support the allocation as an
equilibrium. That is the corollary that embodies the Second Fundamental Theorem
of Welfare Economics. This is actually a very familiar result from the Robinson
Crusoe economy and is illustrated in Figure 19.1.

In proving Theorem 19.2, we will fully utilize the structure of technology and
preferences, particularly convexity, already developed. The economy is character-
ized by convexity of the aggregate technology set Y (=∑

j∈F Y j ), convexity of pref-
erences and consumption sets Xi , and continuity and nonsatiation of preferences.
To prove Theorem 19.2, we will use the Separating Hyperplane Theorem. Recall:

Theorem 8.2 (Separating Hyperplane Theorem) Let A,B ⊂ RN ; let A and
B be nonempty, convex, and disjoint, that is, A ∩ B = φ. Then there is p ∈ RN ,
p �= 0, so that p · x ≥ p · y for all x ∈ A, y ∈ B.

1 Note that this may require an implausible redistribution of labor endowment, that is, redistributing to one
household ownership of another’s labor.
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attainable region
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Fig. 19.1. Supporting an efficient allocation (Theorem 19.2).

In addition, a minor lemma helps with the technical structure of the proof.

Lemma 19.2 Assume C.II, C.III, C.IV, C.VI(C). Let x◦∈Xi . Then there is
xν∈Xi, ν = 1, 2, 3, . . . , xν 
i x◦, so that xν → x◦.

Proof Under C.II, C.IV, C.VI(C) there is y 
i x◦, y ∈ Xi , and under C.III
the sequence xν = (1 − 1/ν)x◦ + (1/ν)y has the property that xν ∈ Xi, ν =
1, 2, 3, . . . xν 
i x◦, by C.VI(C) . Trivially, xν → x◦. QED

Recall the definition Ai(xi) ≡ {x | x ∈ Xi, x �i xi}. Under the assumptions of
convexity and continuity of preferences, Ai(xi) is a closed convex set. Starting from
the allocation xi, i ∈ H , we can take the sum of sets

∑
i∈H Ai(xi); this sum, called

A, is also a convex set and represents the set of aggregate consumptions preferred
or indifferent to xi . Consider a subset of A that includes aggregate consumptions
strictly preferred to xi (approximately the interior of A). Let us denote this set byA,
which is also a convex set. A point in A represents an aggregate consumption mix
that can provide an allocation Pareto-preferable to xi , i ∈ H . The set of aggregate
attainable allocations is the (coordinatewise) nonnegative elements of Y + {r}.
We will denote this set as B = (Y + {r}) ∩ RN

+ , a convex set. Starting from a
Pareto-efficient allocation xi , i ∈ H , under monotonicity, the sets A and B must be
disjoint. If not, there would be an attainable Pareto-preferable allocation. But this
is precisely the setting where we can employ the Separating Hyperplane Theorem.
The normal to the separating hyperplane is the price system that decentralizes
the efficient allocation. The existence of such a price system is the import of
Theorem 19.2.
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Theorem 19.2 Assume P.I and C.I–C.V, C.VI(C). Let x∗i , y∗j , i ∈ H , j ∈ F , be
an attainable Pareto efficient allocation. Then there is p ∈ RN, p �= 0 so that

(i) x∗i minimizes p · x on Ai(x∗i), i ∈ H , and
(ii) y∗j maximizes p · y on Y j , j ∈ F .

Proof Let x∗ =∑
i∈H x∗i , and let y∗=∑j∈F y∗j . Note that x∗ ≤ y∗ + r (the

inequality applies coordinatewise). Let A =∑
i∈H Ai(x∗i). Let B = Y + {r}. A

and B are convex sets. Let A =∑
i∈H {x | x∈Xi, x
ix

∗i} =∑
i∈H {Xi\Gi(x∗i)},

a convex set whose closure is A (by Lemma 19.2). Set A represents aggregate
consumption bundles that can provide an allocation that is a Pareto improvement
over x∗i , i∈H . A and B are disjoint. The bundle x∗ is an element of A, but x∗ is
not interior to A or B. By the Separating Hyperplane Theorem, there is a normal
p ∈ RN, p �= 0, so that

p · x ≥ p · v for all x ∈ A and all v ∈ B.

By continuity of preferences and continuity of the dot product we have also p · x ≥
p · v for all x ∈ A and all v ∈ B. But x∗ ≤ y∗ + r , p ≥ 0 . So p · x∗ ≤ p · (y∗ + r).
Then x∗ minimizes p · x on A, and (y∗ + r) maximizes p · v on B. However, x∗

is the sum of many elements, one for each of Ai(x∗i), i∈H ; y∗ is the sum of many
elements, one for each Y j , j ∈ F . Then the additive structure of A and B implies
that x∗i minimizes p · x on Ai(x∗i) and y∗j maximizes p · y on Y j . That is,

p · x∗ = min
x∈A

p · x = min
xi∈Ai (x∗i )

p ·
∑
i∈H

xi =
∑
i∈H

(
min

x∈Ai (x∗i )
p · x

)
,

and

p · (r + y∗) = max
v∈B

p · v = p · r +
∑
j∈F

(
max
yj∈Y j

p · yj

)
.

So x∗i minimizes p · x for all x ∈ Ai(x∗i), and y∗j maximizes p · y for all y ∈ Y j .
QED

Theorem 19.2 presents the mathematical structure we need. It says that the sep-
aration theorem can be used to find prices that support any efficient allocation.
The Corollary 19.1 constitutes the Second Fundamental Theorem of Welfare Eco-
nomics. It says that the supporting prices introduced in Theorem 19.2 can be used,
along with a suitably chosen redistribution of endowment, to support any chosen
efficient allocation as an equilibrium.
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For full generality, the corollary presents two possible cases of household
incomes. This represents the complexity of corner solutions again. Case 1 (pre-
sumably the most common) occurs when the household expenditure at the efficient
allocation exceeds the minimum level in the consumption set. Then the household
is a utility maximizer subject to budget constraint. Case 2 occurs when the effi-
cient allocation attributes expenditure to the household equal the minimum in its
consumption set. In that case the household is an expenditure minimizer subject to
utility constraint. Restricting attention to interior allocations would eliminate this
complexity by confining attention to Case 1.

Corollary 19.1 (Second Fundamental Theorem of Welfare Economics)
Assume P.I and C.I–C.V, C.VI(C). Let x∗i , y∗j be an attainable Pareto-efficient
allocation. Then there is p ∈ RN, p �= 0 and r̂ i ∈ RN , r̂ i ≥ 0, α̂ij ≥ 0, so that∑

i∈H

r̂i = r,

∑
i∈H

α̂ij = 1 for each j,

p · y∗j maximizes p · y for y ∈ Y j ,

and

p · x∗i = p · r̂ i +
∑
j∈F

α̂ij (p · y∗j ).

Further, for each i ∈ H , one of the following properties holds:

Case 1: (p · x∗i > minx∈Xi p · x) : x∗i �i x for all x ∈ Xi so that

p · x ≤ p · r̂ i +
∑
j∈F

α̂ij (p · y∗j ), or

Case 2: (p · x∗i = minx∈Xi p · x) : x∗i minimizes p · x for all x so that x �i x∗i .

Proof Applying Theorem 19.2, we have p ∈ RN, p �= 0 so that y∗j maximizes
p · y for all y ∈ Y j and so that x∗i minimizes p · x for all x ∈ Ai(x∗i). We must
show two properties, (1) that r̂ i , α̂ij can be found fulfilling the above equations
and inequalities, and (2) that household behavior can be characterized as utility
optimization subject to budget constraint in Case 1 and as cost minimization subject
to utility level in Case 2.
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By attainability of the allocation, we have∑
i∈H

x∗i ≤
∑
j∈F

y∗j + r.

Commodities k in which the strict inequality holds will have pk = 0. Multiplying
through by p, we have ∑

i∈H

p · x∗i =
∑
j∈F

p · y∗j + p · r.

But then it is merely simple arithmetic to find suitable r̂ i , α̂ij . A simple choice
(one of many possible) is to let

λi = p · x∗i∑
h∈H p · x∗h

and set r̂ i = λir , α̂ij = λi , for all i ∈ H , j ∈ F .
On the consumer side now, we wish to show that cost minimization subject

to a utility constraint is equivalent to utility maximization subject to a budget
constraint in Case 1. This follows from nonsatiation and convexity of preferences,
CVI(C). Suppose, on the contrary, there is x ′i so that p · x ′i ≤ p · x∗i and x ′i 
i x∗i .
We will show that this leads to a contradiction. Because this is case 1, there
is x̂ ∈ Xi , so that x̂ is both less expensive and less desirable than x∗i . That is,
x∗i 
i x̂, p · x∗i > p · x̂. By C.III, the points along the chord between x′i and x̂

are elements of Xi . All the points interior to the chord are less expensive than
x∗i . That is, under C.VI(C) and C.V, there is α, 0 < α < 1, so that [αx̂ + (1 −
α)x ′i] ∼i x∗i and p · [αx̂ + (1 − α)x ′i] < p · x∗i . But then, [αx̂ + (1 − α)x ′i] ∈
Ai(x∗i) and p · [αx̂ + (1 − α)x′i] < p · x∗i , contradicting the result of Theorem
19.2, that x∗i is the minimizer of p · x in Ai(x∗i). The contradiction proves the
result.

The assertion for Case 2 is merely a restatement of the property shown in
Theorem 19.2. QED

The Second Fundamental Theorem of Welfare Economics represents a signif-
icant defense of the market economy’s resource allocation mechanism. It says
(assuming convexity of tastes and technology) that any efficient allocation of
resources can be decentralized using the price mechanism, subject to an initial
redistribution of endowment. This is the basis of the common prescription in
public finance that any attainable distribution of welfare can be achieved using
a market mechanism and lump-sum taxes (corresponding to the redistribution of
endowment). On this basis, public authority intervention in the market through
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direct provision of services (housing, education, medical care, child care, and the
like) is an unnecessary escape from market allocation mechanisms with their effi-
ciency properties. Public authority redistribution of income should be sufficient to
achieve the desired reallocation of welfare while retaining the market discipline
for efficient resource utilization.

19.4 Corner solutions

The most common description of the efficiency of competitive allocations is that
presented in Chapter 4 using calculus. This treatment implicitly assumes an interior
solution, that variations in the decision variables are not up against a boundary
constraint (a corner). But for most households and most commodities, nonnegativity
is a natural bound. If goods are sufficiently precisely defined, most households
consume zero of most goods. Hence, the notion of an interior solution is particularly
inappropriate. Thus the treatment here, emphasizing the separation theorems, is
far more general than the calculus-based approach to efficient allocation. The
conclusions, of course, are perfectly consistent.

19.5 Bibliographic note

The notion that competitive equilibrium and efficient allocation are closely related
concepts dates at least as far in the past as Adam Smith (1776). The mathematical
treatment here, emphasizing the use of separating hyperplanes rather than differ-
ential calculus, is attributed to Arrow (1951) and is fully expounded in Koopmans
(1957) and in Debreu (1959).

Exercises

19.1 Consult Exercises 14.2 and 14.3. In each of those problems, when a com-
petitive equilibrium exists, is the resulting allocation Pareto efficient?

19.2 A well-recognized problem in industrial organization and welfare eco-
nomics is allocative efficiency with a natural monopoly. A natural
monopoly is a firm characterized by a large nonconvexity in the pro-
duction technology, hence displaying (weakly) declining marginal costs
throughout the relevant range of output levels. An efficient allocation
will typically include only one firm active in this market (hence it has
a monopoly). Marginal cost pricing (generally characterizing an efficient
market allocation) is incompatible with a market equilibrium (marginal
cost is below average cost, so marginal cost pricing leads the firm to
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run losses). A conventional proposal to deal with this problem is as
follows:

Government should provide a subsidy to the firm (financed by nondistortionary
taxation) to repay its losses. The firm should price at marginal cost. The resulting
allocation is (thought to be) Pareto efficient.

(a) Why is this proposal thought to achieve a Pareto-efficient allocation?
(b) Diagram a simple Robinson Crusoe two-commodity case where it will

achieve an efficient allocation.

(i) Diagram the production frontier in the case of declining marginal
cost.

(ii) Diagram an interior optimum.
(iii) Diagram the budget line (and the lump-sum tax) supporting the

efficient allocation.

(c) Show that the proposal may also support an inefficient allocation as a
marginal cost pricing equilibrium.

(i) Diagram the production frontier in the case of declining marginal
cost.

(ii) Diagram a corner optimum.
(iii) Diagram the budget line (and the lump-sum tax) supporting an

inefficient interior allocation.

(d) Discuss. How does this relate to the Fundamental Theorems of Wel-
fare Economics? Can local conditions (marginal equivalences, MRS =
MRT) fully characterize efficient allocations in this problem? Why or
why not?

19.3 The usual U-shaped cost curve model of undergraduate intermediate eco-
nomics includes a small nonconvexity (diminishing marginal cost at low
output levels). This is a violation of our usual convexity assumptions on
production (P.I or P.V). Consider the general equilibrium of an economy
displaying U-shaped cost curves. It is possible that a general equilibrium
exists despite the small violation of convexity. After all, P.I and P.V are suf-
ficient, not necessary, conditions. If a general equilibrium does exist despite
the small nonconvexity, will the allocation be Pareto efficient? Does the
First Fundamental Theorem of Welfare Economics apply? Explain.

19.4 First Fundamental Theorem of Welfare Economics, Theorem 19.1,
assumes weak monotonicity of preferences, C.IV*, or assumes the combi-
nation of nonsatiation C.IV and convexity of preferences, C.VI(C). Show
that the theorem is false without one of these assumptions.
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19.5 External effects (for example, air pollution, water pollution, annoyance due
to neighboring noise, traffic congestion) occur in economic analysis when
one firm or household’s actions affect the tastes or technology of another
through nonmarket means. That is, in an external effect, the interaction
between two firms does not take the form of supply of output or demand for
input going through the market (and hence showing up in price). It would
be characterized rather as the shape of one firm’s available technology
set depending on the output or input level of another firm. Or it might
be characterized as one firm’s inputs (like clean air at a tourist resort)
being nonmarketed but their availability being affected by the production
decisions of another firm.

Does the model of Chapter 19 treat external effects? Explain your
answer. How does the treatment of externalities (or lack of treatment)
show up in the specification of the model?

19.6 Describe the significance of:
(a) the First Fundamental Theorem of Welfare Economics (Theorem 19.1).
(b) the Second Fundamental Theorem of Welfare Economics (Theorem

19.2 and Corollary 19.1).
19.7 Consider an economy with two consumption goods, x and y, and one input

to production L, which is inelastically supplied. Let a and k be positive
constants. Production of x is by simple constant returns,

x = kLx,

where Lx is the amount of L used as an input to x. Production of y involves
a setup cost, S ≥ 0 (a nonconvexity),

y = 0 if Ly ≤ S

y ≤ a(Ly − S) if Ly > S

where Ly is the amount of labor used as an input to y. The total labor input
supplied is

Lx + Ly = L◦.

(a) Set S = 0. Will a Pareto-efficient allocation typically be supported as a
profit-maximizing competitive equilibrium (subject to a possible redis-
tribution of household endowments)? Explain. If the answer is “no,”
are there special cases where an efficient allocation can nevertheless
be sustained as a competitive equilibrium? Explain. A diagram may be
useful.

(b) Set S > 0. Will a Pareto-efficient allocation typically be supported
as a profit-maximizing competitive equilibrium (subject to a possible
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redistribution of household endowments)? Explain. If the answer is
“no,” are there special cases where an efficient allocation can never-
theless be sustained as a competitive equilibrium? Explain. A diagram
may be useful.

19.8 In the Robinson Crusoe model of Chapter 2, we implicitly used the
assumption of convex technology (concavity of the production function
F (·)), describing the production possibility set as convex. Consider now
a Robinson Crusoe economy with a nonconvex production possibility
set.
(a) Diagram the possibility that there is a competitive equilibrium (despite

the nonconvexity).
(b) Is the equilibrium established in (a) Pareto efficient? Explain.
(c) Diagram the possibility that there is no competitive equilibrium (due to

the nonconvexity). Explain.
(d) In the nonconvex Robinson Crusoe economy, can a Pareto-efficient allo-

cation generally be sustained as a competitive equilibrium? Diagram
and explain.

19.9 The Second Fundamental Theorem of Welfare Economics, Theorem 19.2
and Corollary 19.1, assumes convexity of preferences and technology
(C.VI(C) and P.I).
(a) Give an example (a well-constructed and labeled diagram is sufficient)

showing that the theorem may fail (the results may be false) without
these assumptions.

(b) How is the convexity assumption used to prove the theorem? Where or
how does the proof fail without this assumption? Explain.

19.10 The Second Fundamental Theorem of Welfare Economics, Theorem 19.2
and Corollary 19.1, is sometimes interpreted as saying

Any proposed attainable redistribution of welfare among households can be
achieved through a redistribution of income through lump-sum transfers. The
market can then provide needed goods to households. Direct allocation of goods
to their intended recipients (for example, food stamps, public housing) is neither
necessary nor desirable. It is unnecessary because efficient allocations can be
achieved through market mechanisms. It is undesirable because direct allocation
may involve inefficient allocation (oversupply of some goods to some households,
insufficient supply to others).

Explain this interpretation. How does it follow from the formal theorem?
19.11 Using the definition of Pareto efficiency in Chapter 19 describe how Pareto

efficiency deals with the notion of fairness in distribution of income and
consumption. Does Pareto efficiency of an allocation depend on the distri-
bution of income? If the distribution of income is unfair by some measure
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(too much income to some households, too little to others) is the resulting
allocation Pareto inefficient?

Problem 19.12 follows from the model of problems 18.4 and 18.5. Recapit-
ulating that problem: Consider general competitive equilibrium in a pure
exchange economy subject to excise tax on net purchases. The notation ()+
emphasizes that excise taxes are collected only on net purchases, not on all
consumption. All taxes are rebated as lump sums equally to all households.
A pure exchange economy is a special case of the economy of Chapters 11–
14, the case where all firm production technologies are identically equal
to the zero vector, Y j = {0}. We use the following notation:

p is the N -dimensional nonnegative price vector.
xi is the N -dimensional nonnegative vector of household i’s consumption,

xi is a decision variable for i.

ri is the N -dimensional nonnegative vector of i’s endowment.
D̃i(p)(= xi) is the N -dimensional vector of i’s consumption as a function

of p, based on i’s budget which is denoted M̃i(p).
#H is the finite integer number of households in the economy consisting

of the set H.

τ is the N -dimensional nonnegative vector of excise tax rates (on net
purchases) in the economy; τ is exogenously given and fixed.

T is the transfer of tax revenue to the typical household.

The budget constraint is p · xi + τ · (xi − ri)+ = M̃i(p), where M̃i(p) =
p · ri + T where T = (1/#H )

∑
h∈H τ · (xh − rh)+ where the notation ()+

indicates the vector consisting of the nonnegative coordinates of () with
zeroes replacing the negative coordinates of (). That is, household i pays
no tax on consumption of his endowment; he pays a tax τn on each unit of
good n he consumes greater than his endowment of n. The household is
assumed to treat T parametrically – as independent of his own expenditure
decisions.

Please make the usual assumptions (the assumptions of Theorem 14.1
are sufficient) about continuity, convexity, monotonicity of preference, and
adequacy of income (net of tax).

19.12 The First Fundamental Theorem of Welfare Economics, Theorem 19.1
(stated and proved in a setting without taxation), says that a competitive
equilibrium allocation is Pareto efficient. Consider the following example:
Let

r1 = (10, 0), r2 = (0, 10), u1(x, y) = x + 2y, u2(x, y) = 2x + y,

p = (.5, .5), τ = (2, 2).
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In this example show that the equilibrium allocation in the model with
excise taxation is the endowment. This is a corner solution so marginal
rates of substitution may not be well defined or equal the price ratio. Show
that the following allocation is Pareto preferable: x1 = (0, 10), x2 = (10, 0)
(The example uses weakly convex preferences – merely for convenience;
it is not essential). Can you conclude that the First Fundamental Theorem
of Welfare Economics does not validly apply to the model with excise
taxation? Explain.

19.13 Consider the economy of problem 19.12. The typical household treats T

parametrically – as a fixed amount like price that it cannot affect. Assume
there is a competitive equilibrium. Theorem 19.1 (First Fundamental The-
orem of Welfare Economics) cannot be correctly applied to this economy.
The excise tax paid by buyers but not received by sellers makes the theorem
inapplicable. Economists call the tax a “wedge between buying and selling
prices.” There must be a part of Theorem 19.1’s proof that is not valid in
this case. Where does the proof go wrong? Explain.

19.14 Consider the general equilibrium allocation in the model of problem 14.2.
Is the allocation Pareto efficient? Why or why not? How does this problem
contrast with problem 19.12 above?

19.15 Consider a two-person pure exchange economy (Edgeworth box) made up
of the following two households. The notation “min[xy, 16]” means the
minimum of xy and 16. Superscripts denote the household name – nothing
in this problem is raised to a power.

Household 1 Household 2

Endowment r1 = (1, 9) r2 = (9, 1)
Utility function u1(x, y) = xy u2(x, y) = min[xy, 16]

(a) Household 2 does not fulfill C.IV. Household 2 has a maximum utility
of 16; whenever household 2’s holdings of x and y fulfill xy > 16,
household 2 gets no additional satisfaction from additional consump-
tion. Adopt the notation: (x1, y1) is household 1’s consumption plan
of x and y; (x2, y2) is household 2’s consumption plan of x and y.
Set p = (.5, .5). This is a competitive equilibrium price vector with the
consumption plan (x1, y1) = (5, 5), (x2, y2) = (5, 5). Show that this
plan is Pareto inefficient.

(b) Is this a counterexample to the First Fundamental Theorem of Welfare
Economics (Theorem 19.1)? Explain.

19.16 The proof of the First Fundamental Theorem of Welfare Economics (The-
orem 19.1) uses the combined assumption of nonsatiation (C.IV) and con-
vexity (C.VI (C)) or the assumption of weak monotonicity (C.IV*). The



220 Pareto efficiency and competitive equilibrium

theorem is invalid (that is, the conclusion may not be true) without one of
these assumptions. Note that these assumptions preclude locally satiated
preferences that are characterized by thick indifference curves (zones of
satiation). Note problems 19.4 and 19.15.

Explain how C.IV and C.VI(C) or C.IV* are used in the proof of Theorem
19.1. Where does the logic of the proof of the theorem break down without
them? (Hint: It is not sufficient to give an example where the equilibrium
allocation is not Pareto efficient. This question asks you to look at the proof
to see how C.IV and C.VI(C) (or C.IV*) are used and to identify which
essential step(s) cannot be taken in their absence.)

19.17 One of the assumptions used in proving the First Fundamental Theorem of
Welfare Economics, Theorem 19.1, is nonsatiation of preferences, C.IV.
Give an example of a competitive equilibrium allocation that is Pareto effi-
cient despite the failure of C.IV. A well-constructed and labeled Edgeworth
box diagram is sufficient. Or an algebraic example is OK too.

19.18 A natural monopoly is a firm whose technology includes large-scale
economies, diminishing marginal cost throughout the range of production.
Its production function might be y = f (x) = x2 (where y is output, x is
input and the function is x squared). The technology set will be nonconvex.

Note that, under natural monopoly, assumption P.V (or P.I) is not fulfilled
and we cannot be sure that a general competitive equilibrium will exist.

In the case of natural monopoly, does the Second Fundamental Theorem
of Welfare Economics (Theorem 19.2 and Corollary 19.1) apply? Can a
Pareto-efficient allocation generally be supported as a market equilibrium
with redistribution of endowment? Explain your answer.

19.19 Consider the economy in problem 14.2. The typical household treats T

parametrically – as a fixed amount like price that it cannot affect. The
tax and redistribution scheme, taxing 0.5p · ri and returning T , is what
economists call a “lump sum” tax. It redistributes income before any
household has actually made any consumption decisions. Assume there is
a competitive equilibrium and that Walras’s Law is fulfilled. Theorem 19.1
(First Fundamental Theorem of Welfare Economics) applies correctly to
this economy. The equilibrium allocation is Pareto efficient. Explain why.
(Hint: The easy way is to answer this question show that the economy of
problem 14.2 is really just a special case of the model of Chapter 14 (and
Chapter 19) with a rearrangement of endowment; the model of problem
14.2 is just reduced to the previous case. The hard way is to go through the
proof of Theorem 19.1 and show that the logic there still holds.)

19.20 The Second Fundamental Theorem of Welfare Economics (Theorem 19.2
and Corollary 19.1) depends on convexity of preferences (C.VI(C) or
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C.VI(SC)) and on convexity of technology (P.V or P.I). Review the proof
of Theorem 19.2. How does the proof fail – what step can’t validly be
taken? – when convexity of preferences or convexity of technology is not
assumed? Explain.

19.21 The Second Fundamental Theorem of Welfare Economics, Theorem 19.2
and Corollary 19.1, assumes convexity of preferences and technology
(C.VI(C) and P.I). Give an example (a well-constructed and labeled dia-
gram is sufficient) showing that the theorem may fail (the results may be
false) without these assumptions.

19.22 Consider the welfare economics of air pollution, a situation where one
household’s utility is affected by another household’s consumption deci-
sions (economists call this an “externality” or “external effect”). Suppose
the (consumption) decision to drive a car by one household reduces utility
of other households through resulting smog. There is no market for air
pollution or for clean air. Starting from a competitive equilibrium alloca-
tion, it may be possible then to increase all households’ utilities (using
nonmarket regulation) by requiring smog reduction equipment on cars. All
drivers benefit from breathing clean air.

Does the First Fundamental Theorem of Welfare Economics (Theorem
19.1) apply in this case (without required smog reduction equipment)? Is
the market allocation of air pollution Pareto efficient? Explain.

19.23 Consider a tax and public good provision program. Using the model of
Chapters 15–18, let each household i ∈ H be taxed, in kind, 0.1ri , so that
household income is Mi(p) = p · (.9ri) +∑j∈F αijπj (p). The resources
0.1
∑

i∈H ri are then used to provide a public good, γ , according to the
production function γ = g(.1

∑
i∈H ri). We take g to be continuous, con-

cave.
Household utility functions are then characterized as ui(xi ; γ ). The

households treat γ parametrically. Assume all the usual properties of ui ,
particularly continuity in its arguments. The household budget constraint
is then p · xi ≤ Mi(p).

Two notions of economic efficiency seem appropriate here, full Pareto
efficiency (defined as a Pareto-efficient allocation of all goods and
resources including efficient allocation of public good) and conditional
Pareto efficiency (defined as a Pareto efficient allocation of private goods
1, 2, . . . , N , except for the tax payments 0.1rh and the level of public good
γ , which are treated as exogenously fixed).

If there is a competitive equilibrium in this economy, is the equilibrium
allocation fully Pareto efficient? Is the equilibrium allocation conditionally
Pareto Efficient? Explain.
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19.24 Consider two households in an Edgeworth box, with goods x and y.
The households have identical convex monotone preferences, denoted P.
(Superscripts distinguish the consumption vectors – nothing in this problem
is raised to a power.) The expression “(x1, y1)P (x2, y2)” is read “(x1, y1)
is strictly preferred to (x2, y2).” P is described in the following way:

For two bundles (x1, y1), (x2, y2),

(x1, y1)P (x2, y2) if x1 + y1 + 3 > x2 + y2 + 3;

or

(x1, y1)P (x2, y2) if x1 + y1 + 3 = x2 + y2 + 3 and x1 > x2.

(x1, y1) and (x2, y2) are indifferent to one another if x1 + 3 = x2 + 3 and
y1 = y2.

Let household A have an endowment of 300 units of x and household B
have an endowment of 100 units of y.
(a) We claim there is no competitive equilibrium in this Edgeworth box.

Demonstrate this argument in the following way – clearly explain why
each step is sound:

px > py implies there is an excess demand for y;
px < py implies there is an excess demand for x;
px = py implies there is an excess demand for x.

(b) The Second Fundamental Theorem of Welfare Economics apparently
fails (or is inapplicable) in this case. Which assumption of Theorem
19.2 or Corollary 19.1 is not fulfilled in this example? Or is the theorem
false?

19.25 A public good is provided to a pure exchange economy in the quantity
Q > 0 at a cost C. The economy is pure exchange except for provision
of the public good; ignore for convenience the inputs and technology for
producing the public good. Let 1 > τ > 0 be a scalar (real number). The
public good is financed through a lump-sum commodity tax on households,
i (using the notation of Starr’s General Equilibrium Theory) in the amount
τri so that the household budget constraint becomes

p · D̃i(p) ≤ M̃i(p)

where

M̃i(p) = p · ri − τp · ri.∑
i∈H

τp · ri = C.
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The typical household utility function is

ui(xi ; Q),

where xi ∈ Xi . Household i formulates D̃i(p) as its choice of xi to max-
imize ui(xi ; Q) subject to budget constraint, treating Q parametrically.
Suppose the economy achieves competitive equilibrium prices p∗, with
equilibrium consumption plans x∗i and public good provision Q.
(a) Compare competitive equilibrium with Q > 0 and τ > 0 to competitive

equilibrium with Q = 0 and τ = 0. Is the competitive equilibrium
allocation with Q > 0, τ > 0 Pareto preferable to the allocation with
Q = 0 and τ = 0? Explain. (“Yes,” “no,” “maybe,” and “can’t tell” are
all possible answers, with an explanation.) Your answer should be brief.

(b) The First Fundamental Theorem of Welfare Economics (developed in
a model without public goods) says that a competitive equilibrium
allocation is Pareto efficient. Is the competitive equilibrium allocation
with Q > 0, τ > 0 Pareto efficient? Your answer should be brief.

(c) Consider the following definition. The allocation xoi is said to be Pareto
efficient subject to Q if there is no attainable allocation yoi , (that is,∑

i y
oi = (1 − τ )

∑
i r

i) so that ui(yoi ; Q) ≥ ui(xoi ; Q) for all house-
holds i, and uk(yok; Q) > uk(xok; Q) for some household k. Is the
competitive equilibrium allocation above (with Q > 0, τ > 0) Pareto
efficient subject to Q? Explain.

19.26 “Margaret Thatcher . . . was the catalyst . . . [for] universal acceptance of
the market as indispensable to prosperity.” (Time, April 13, 1998). The
policies of Thatcher and Reagan have their origin in Adam Smith (“laissez
faire”) and in the Fundamental Theorems of Welfare Economics.

Consider the following example in a Robinson Crusoe economy. Two
goods, x and y, supplied in nonnegative quantities; one input, labor, is
denoted L, inelastically supplied at a wage rate w > 0. There are 10 units
of labor (perfectly divisible). There are ten firms, denoted j = 1, 2, . . . , 10,
that can produce x, each using the same technology, xj = (Lj )2, where the
superscript j indicates the name of the firm, and the superscript 2 indicates
a squared term. The expression xj is firm j’s output of x. Lj is firm j’s input
of L. There are ten firms, denoted k = 1, 2, . . . , 10, that can produce y, each
using the same technology, yk = (Lk)2, where the superscript k indicates
the name of the firm and the superscript 2 indicates a squared term.

Household preferences are described by u(x, y) = min[x, y], where
“min” denotes the smaller of x and y. These preferences are convex
and continuous (they are not differentiable, but you should not need to
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differentiate). Typically, at any positive prices, the household will seek to
consume equal quantities of the two goods.

An efficient allocation in this problem is x = y = 25, with equal
allocations of L, 5 units, to production of each of x and of y, each in
a single firm. Demonstrate that this allocation cannot be sustained as a
competitive equilibrium. Explain; why does Corollary 19.1 not apply?

19.27 Consider a competitive equilibrium price vector p∗ and the resulting
allocation in the model of exercise 18.22. The first fundamental theorem of
welfare economics (Theorem 19.1) is proved in a model without taxation.
(a) Is the competitive equilibrium allocation Pareto efficient?
(b) The usual welfare economics argument against corporate income

taxation is that it discourages investment, by repeatedly (every year at
tax time) taxing the returns to capital, raising the economy’s effective
time discount rate. If you answered “yes” in part (a), explain why this
reasoning does not apply. If you answered “no” in part (a), explain
where the proof of Theorem 19.1 fails in this model.
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Time and uncertainty: Futures markets

20.1 Introduction

We have already demonstrated the existence and efficiency of general equilibrium
in an economy of N goods with active markets for trading them. But what are these
N goods? The answer is that they could be anything. This generality reflects the
distinctive power of mathematical modeling. The model and its interpretation are
separate. We have a mathematical model that provides a general family of results
based on mathematical relations among the variables. How we label the variables
and interpret the results is now up to us. The model could apply to trading mineral
samples at annual meetings of an amateur gemologists society. It can apply to
the trading and production of a small closed economy. It can apply to trading and
production of an entire world economy. In each case, of course, it applies only if the
assumptions of the model are fulfilled. What we know in each instance is that if the
assumptions of the model are fulfilled then the conclusions follow: There will be
market clearing prices that lead to a Pareto-efficient allocation. This is true whether
the prices and allocations are for rock samples, the goods available in a small
economy, or those available throughout the world. We have left until now a more
complete discussion of the range of goods to be allocated by the market mechanism.

The simplest economic models take no explicit account of time. Thus, the model
of Chapters 10–18 covers a simple one-period model where all allocation is at a
single date. Equivalently, it covers a static, steady-state economy with no intertem-
poral trade.

Is the general equilibrium model timeless then? Does it have nothing to say
about allocation over time? On the contrary, it has a great deal to say about time,
allocation over time, and the institutions required for a market economy to achieve
efficient intertemporal allocation. It says simply:

Make the markets for goods over time look just like those in the general equilibrium
model, and the same formal results will follow. You’ll be able to establish an intertemporal
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equilibrium and intertemporally efficient allocation. All that remains is to interpret what
economic institutions it requires for intertemporal goods allocation to look like the general
equilibrium model.

That’s actually quite a tall order – one that we undertake in the next section.
The simplest economic models take no explicit account of uncertainty. The

general equilibrium model covers a simple economic model where all allocation
is in a given certain environment. Is the general equilibrium model then without
uncertainty? Does it have nothing to say about allocation under uncertainty? On
the contrary, it has a great deal to say about uncertainty, allocation over uncertain
events, and the institutions required for a market economy to achieve efficient
allocation of goods and risk under uncertainty. It says simply:

Make the markets for goods under uncertainty look just like those in the general equilibrium
model, and the same formal results will follow. You’ll be able to establish an equilibrium
for goods across uncertain events and an efficient allocation of risk bearing. All that remains
is to interpret what economic institutions it requires for goods allocation under uncertainty
to look like suitable goods in the general equilibrium model.

This too is quite a tall order, which we undertake in Section 20.3.
We can outline the character of the economic model’s requirements on the space

of commodities and firm and household relations to them.
For the market:

� All economically significant scarce resources are traded in the market; goods
distinct from one another in production or consumption are distinct coordinates
in N-dimensional commodity space.

� There is a single market date at which all supplies and demands are expressed
and equated. Budget constraints and firm profits are expressed effective with this
date.

For the firm:

� There is a single scalar maximand, profit.
� All economically relevant production possibilities are fully expressed in the firm

technology set.

For the household:

� There is a single maximand, �i or, equivalently, the scalar ui(·).
� There is a single scalar budget constraint.

For the economy:

� Firm profits are distributed to households. Walras’s Law holds.
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Our task now is to see how a model of allocation over time and uncertainty can
fulfill this outline.

20.2 Time: Futures markets

We can now reinterpret the model above as a model of allocation and economic
activity over time. The way we do that is to reinterpret the concept of commodity.
Otherwise, identical goods deliverable at different dates are to be different com-
modities. Because firms and households will make their allocation decisions about
commodities, they are also making intertemporal allocation decisions.

The idea of a commodity is a primitive concept in the model developed above.
The definition of a commodity is implicit in how the notion of commodity enters
the model. Two goods are different commodities if they enter separately in the
production or consumption decisions of households and firms. If they require
different resources to produce them or differ in their consumption desirability, then
they are different goods.

In a timeless model with differing geographic locations, a commodity is defined:

what it is (its description), and
where it is available (its location).

The same good available in two different locations represents two different com-
modities. After all, a New York driver is not interested in gasoline available in
California, and it is a resource-using process (transportation) to convert a gallon of
California gasoline to a gallon of New York gasoline. Hence, for the purposes of the
model developed in Chapters 10–18, it is perfectly reasonable to interpret deliver-
able location as a defining characteristic of a commodity. In a one-period model or
a stationary equilibrium model, then, we distinguish commodities by their delivery
location. The model would then be perfectly consistent with differing equilibrium
prices of otherwise identical orange juice deliverable in Florida or in Alaska.

Can we apply this same notion to goods separated by time rather than by distance?
There are many examples in actual economies of goods distinguished by delivery
date. The most prominent is the organized futures markets such as the Chicago
Board of Trade, Chicago Mercantile Exchange, or the New York Commodities
Exchange. In these markets there is active trade in grains, metals, fibers, petroleum,
and foods, specified by description, quality, place of delivery, and by date of
delivery. Contracts for goods otherwise identical in description and location may
trade at prices differing substantially by date of delivery. It is a resource-using
production activity (storage) to convert goods deliverable at one date into goods
deliverable at a succeeding date. Goods deliverable in the distant future may trade
at prices far different from those in the present. Prices for future delivery may
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be lower than current delivery (spot) prices, reflecting the anticipated availability
of additional new harvests or other supplies becoming available. Alternatively,
current prices for future delivery may be higher, reflecting storage costs. Prices
payable currently for future delivery may be lower than for spot delivery, reflecting
time discounting. That is, prices are in the nature of present discounted values,
discounted from the delivery date back to the market date.

We can take this notion of futures prices and discuss our general equilibrium
model where there is a full set of futures markets. A commodity is characterized

what it is (its description),
where it is available (its location), and
when it is available (its date).

There are actively traded goods for all dates: If a good will be available at a
particular date in the future, futures contracts for the good deliverable at that date
are traded in the market at the market date. The formal mathematical model of
production and consumption remains completely unchanged by this change in
interpretation. However, to understand the implications of this augmented model
of futures markets requires some economic interpretation.

Let’s start with N , the number of commodities. We take N to be finite. The
number N includes as a separate count every good, at every location where it is
deliverable, and at every date at which it is deliverable. N is clearly a large finite
number. Assuming N is finite amounts to assuming that there is a finite number of
locations at which goods can be delivered and that there is no significant spatial
difference within each location. More importantly, assuming N is finite means that
in terms of economic time there is an ending date, and so we are using a finite
horizon model. The finite horizon may be very far away (for example, 10,000 years
is a finite number), but this artificial construct is unfortunately mathematically
essential. We could interpret this as indicating a true determinate predictable end to
economic activity. Alternatively, we could interpret the finite horizon as a time so
distant that prospects beyond the horizon can have no effect on supply and demand
on futures markets meeting in the present.

The trickiest issue involves interpreting the prices of goods, p ∈ P , p =
(p1, p2, . . . , pN ). There is only a single meeting of the market. The market mecha-
nism – personified as a Walrasian auctioneer – simultaneously balances supply and
demand for all dated goods. Each household has only a single budget constraint,
representing receipts and expenditures at all dates from the present to the finite
horizon. Firms have only a single calculation of profit, representing the net return
on receipts for outputs and expenditures for inputs over all dates from the present
to the finite horizon. All receipts and expenditures for spot (current) goods and
future deliveries are evaluated at the single market date. Hence, we can interpret
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pi , the price of commodity i (where the description of commodity i includes i’s
delivery date), as a present discounted value of commodity i discounted from the
delivery date to the market date. This model is usually described as including “a
full set of futures markets,” that is, markets currently available for all goods at all
future dates.

The convention on payment for futures contracts bought and sold is institutionally
a bit different here from those in operation in actual economies. Our model requires
payment at the market date, far in advance of delivery. In contrast, at the Chicago
Board of Trade, agreements to buy or sell commodities may be undertaken years
in advance; full payment is made only at delivery. In the present model, all of the
financial elements of economic activity take place at the single market date prior
to the rest of economic activity. Costs are incurred, revenues received, accounts
debited and credited at the market date, long prior to delivery. This reflects an
assumption of full reliability of the agents without possibility of default on the
promised deliveries.

How do we interpret the household endowment r i ≡ (ri
1, r

i
2, . . . , r

i
N )? The house-

hold is endowed with present and future goods. The household typically is endowed
with its own labor deliverable in the present and in each of the next several periods,
up until the date of its death. In addition, the household may own other dated goods.
If it owns land, its rights to the use of the land are time dated from the present up
until a finite horizon. A similar situation occurs for other real goods with which the
household is endowed (we deal with share ownership αij in a moment).

How can we describe household consumption xi ≡ (xi
1, x

i
2, . . . , x

i
N ) in this econ-

omy with complete futures markets? Each coordinate in xi represents dated planned
consumption of a particular good. Hence, the vector xi comprises a list at each
of the dates in the present and the future of planned consumption at that date. It
represents a lifetime consumption plan for household i.

Similarly, firm j ’s production yj ∈ Y j represents a dated plan for inputs and
outputs at a sequence of dates. Thus, seeds, labor, and the use of land in the spring
result in a harvest in the fall. Grapes, barrels, and a cellar in 2010 result in good
wine in 2011 and excellent wine in 2012. Capital in 2010, 2011, . . . combined with
labor and intermediate inputs create output in 2010, 2011, . . . . The set Y j then
represents an array of technically possible plans of mixing dated inputs to produce
dated outputs from the present through the finite horizon for firm j . Among the
production possibilities, of course, is 0 ∈ Y j , the possibility of not operating firm
j actively at all.

Input and output prices are discounted values, discounted to the market date. At
prevailing prices p ∈ P , firm j ’s profit is

πj (p) = max
y∈Y j

p · y = p · Sj (p).
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That is, πj (p) is the sum evaluated at the market date, over all dates from the
present through the time horizon of the (present discounted) value of outputs less
the (present discounted) value of inputs. Firm j ’s supply behavior Sj (p) is then
characterized as choosing a production plan in the present and for all future dates
to maximize the present discounted value of the flows of outputs less inputs of the
firm. The profit πj (p) is the value of firm profits discounted to the market date
or, equivalently, a present discounted value of the flow of firm profits. Maximizing
firm (discounted) profit and maximizing firm (stock market) value are identical.

In actual economies, markets meet at each date, and receipts and expenditures
take place at each date. In this model, receipts and expenditures take place only
at the market date though delivery of goods takes place throughout time. The
presence of the complete futures markets allows all of the receipts and expenditures
of the firm representing current and future deliveries to be collapsed into a single
number representing the present discounted value of the firm’s profits. Hence, πj (p)
represents the (stock market) value of the firm. The presence of the complete futures
market eliminates the distinction between the value of the firm and its stream of
profits by collapsing the future into the single market date. The complete futures
market eliminates the stock-flow distinction between income and wealth.

The preferences of household i, �
i
, represent preferences on time-dated streams

of consumption from the present through the future until the horizon. The pref-
erences �

i
include i’s attitude toward consumption timing (impatience) as well

as desires for variety and consistency in consumption over time. Household i’s
preferences into the distant future are taken to be fully predictable (because this is
a subjective certainty model).

The value of endowment and goods prices are discounted values, discounted
to the market date. As before, household i’s income is characterized as Mi(p) =
p · ri +∑j∈F αijπj (p). Because Mi(p) includes pricing for all goods and profits
into the future, it can be interpreted as a measure of wealth (a stock) rather than
income (a flow). In the presence of the full set of futures markets the stock/flow
distinction becomes irrelevant. Household consumption behavior is characterized
as before. Household i chooses xi ∈ Xi to optimize �

i
subject to p · xi ≤ Mi(p).

That is, i chooses a consumption plan for the present through the horizon to
optimize a planned program of consumption evaluated by i’s preferences for con-
sumption across goods and time. It does so subject to the budget constraint that the
present discounted value of the consumption plan is bounded above by the present
discounted value of endowment plus the value of firm ownership (this latter equals
the discounted value of the flow of outputs less inputs from the firms).

Market equilibrium is characterized as prices p ∈ P , a price for each dated good
representing a present discounted value, so that all markets clear. That is, for each
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good at each date the futures market demand for the dated good is equated to the
futures market supply with the possibility of free goods in oversupply.

Here is what the economic activity looks like in this model. The market takes
place at a time prior to all economic activity. Prices are quoted for all goods at all cur-
rent and future dates up to a finite horizon. Prices of future goods may be conceived
as present values discounted to the market date. At those prices firms formulate a
production/supply plan that maximizes the value of the firm. This is equivalent to
maximizing the discounted value of the dated stream of firm profits earned through
sales and purchases deliverable at the succession of dates. Household budgets are
formulated as the value of endowment (equivalently, the discounted value of the
dated stream of endowed goods) plus the value of firm ownership, both evaluated
at the market date. The household then chooses a consumption plan to satisfy
preferences subject to the budget. The value of the consumption plan (discounted
value of the dated stream of goods consumption) is constrained by the budget.
Equilibrium is characterized as a price vector for the array of goods that equates
supply and demand for all dated goods. The household comes to market with a
dated endowment stream and delivers the endowment to the market. It leaves the
market with contracts for a consumption plan for the present through the horizon.
That is the only meeting of the market. Because markets are complete and there is
no uncertainty, reopening the market would serve no function – there would be no
transactions. The balance of economic activity from the market date to the horizon
consists in fulfillment of the contracts undertaken on the futures market. As usual,
equilibrium is Pareto efficient. There is no reallocation of goods or factors across
firms, households, or over time that would create a Pareto-improving reallocation.
Household well-being here is judged not at a single point in time but rather over
the lifetime up to the horizon, according to household intertemporal preferences.

The notion of a household becomes a bit more complex in this setting because the
household is active in the market at the market date and the model extends through
a finite horizon. How can we deal with the unborn? The model is, of course, silent
on this, but it gives scope for interpretation. All households are represented in
the market. How can we interpret the unborn? Someone who is unborn at date
1 merely means that he or she has no endowment dated 1 and prefers to avoid
consumption until some later date, b, his or her birthdate. Who represents the
unborn’s preferences at the market? Although the model tells us nothing, it is clear
that for the allocation to be an equilibrium and efficient, the unborn will require
representation. An alternative interpretation is that though there are individuals
unborn at the market date, there are no unborn households. Unborn individuals’
interests are represented by their parents or other ancestors. These are admittedly
unsatisfactory replies.
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The futures markets here perform the functions both of goods markets and of
capital markets. Thus the household budget constraint is in the nature of a lifetime
budget constraint. The present discounted value of the household lifetime con-
sumption plan is bounded by household wealth, the present discounted value of
endowment plus firm ownership (the household’s share of the present discounted
value of firm profits). In a model without futures markets, this value would be com-
parable to the value of wealth plus the discounted value of future income streams.
The complete futures markets eliminate the distinction between income and wealth.
The complete futures markets imply a perfect capital market: There is no effective
borrowing constraint on current consumption other than eventual ability to repay.
There is no effective constraint on firm investment other than the eventual prof-
itability of the business undertaken. All trade takes place prior to consumption or
production. Consumption in one period can be financed by delivery of endowment
dated before the consumption takes place (corresponding to saving by the house-
hold in a model without futures markets) or after the consumption (corresponding
to borrowing). Firms finance their purchase of inputs through the sale of outputs.
The outputs may be dated later than the inputs. That is precisely the function
of capital markets – the forward sale of outputs finances the prior acquisition of
productive inputs.

20.2.1 A sequence economy

The futures market model can seem a bit daunting. It requires so many markets to
be available and active at the market date. And it requires that all market activity
stop after the single active market date. It seems painfully unrealistic.

There is an alternative, one that carries most of the same structure without the
requirement of so many active markets at a single date and that allows markets to
reopen. That is the model of a sequence economy, which is equivalent to the futures
market model.

The sequence economy is characterized in the following way: At each date there
are spot markets for active trade in goods deliverable at that date. There are financial
markets in debt instruments – borrowing and lending into the future. Firms and
households have perfect foresight concerning the prices prevailing in the future.
At each date, firms and households buy and sell spot goods. They face a budget
constraint at each date: Sales of goods and debt (borrowing) must finance purchases.
To the extent that their purchases on the current market exceed their receipts, they
borrow. To the extent that their receipts exceed their expenditures, they lend. At
the finite horizon they must fulfill a lifetime budget constraint: No one can be a
net debtor at the end of the finite horizon. Equilibrium occurs when all markets
clear at each date, both spot good markets and the debt markets. With perfect
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foresight regarding future spot prices, it is easy to show that the sequence economy
model is equivalent to the complete futures market model. Foreseen spot market
prices (correctly foreseen to be equivalent to the futures market prices) replace
futures prices. Debt markets replace futures markets in redistributing purchasing
power over time. Essentially, a simple reinterpretation of the futures market model
with the addition of debt instruments allows us to model intertemporal allocation
without explicitly resorting to futures markets. This certainly appears more realistic.
Of course, it relies on the unrealistic assumption of perfect foresight on spot market
prices to replace the unrealistic model of complete markets. The sequence economy
model with complete debt markets corresponds to the concept of a perfect capital
market.

20.3 Uncertainty: Arrow-Debreu contingent commodity markets

Time is not the only complication in designating the commodities of economic
activity. There is also uncertainty. Economically important events that we cannot
clearly foresee include the weather, our health, and technical change. It is for-
mally possible fully to take account of uncertainty again through a very clever
reinterpretation of the model we already have in place.

We have heretofore defined a commodity by description, location, and date. We
now go a step further. Uncertainty means that we don’t know what’s going to
happen in the future. But we do know what might happen. Assume that we can
make an exhaustive list of all the uncertain events that might take place in the future.
We describe this array of possible events by an event tree (see Figure 20.1). At each
date there is assumed to be a finite list of events that describes the condition of the
economy in terms of all the economically relevant uncertain events that may occur.
The path of events in the economy is framed as transit down one of the branches
of the event tree. A state of the world will be defined by the current condition (in
terms of uncertain events) of the economy and the history of past realizations of
uncertain events that leads to it.

In Section 20.2, we reinterpreted our basic model to accommodate time by
defining the idea of a commodity to include specification of a delivery date. We
now perform the same reinterpretation to accommodate uncertainty by defining a
commodity to include specification of a state of the world. A commodity is now
characterized

by what it is (its description),
by where it is available (its location),
by when it is available (its date), and
by its state of the world (the uncertain event in which it is deliverable).
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Date 1 Date 2 Date 3Market Date

Fig. 20.1. Uncertain states of the world: An event tree.

The number of commodities N has grown again. Again, we take N to be finite.
That means we are assuming that the number of possible uncertain events is finite at
every date (in addition to the previous assumption that the number of time periods
is finite).

What is a commodity in this setting? It’s not really something you can use or
consume. Rather, it is a promise of delivery of a particular good or service at a
particular date if an uncertain event actually occurs. The term for that is a contin-
gent commodity. This sounds a bit bizarre, but we have all experienced contingent
commodities. An HMO (health maintenance organization) medical plan is a con-
tingent commodity (or a bundle of contingent commodities). It is a contingent
commodity providing medical care in the uncertain event that you are ill or injured.
An auto club membership is also a contingent commodity. It provides towing and
emergency repair service in the uncertain event that your car malfunctions. An
insurance contract is a closely related concept. Insurance usually provides a pay-
ment of money in case a specified uncertain event occurs – that’s not precisely the
same as a contingent commodity, but it’s similar if the payment is chosen to cover
the cost of a particular purchase you want to make in the event. We discuss this
further in Section 20.4.

The price of good i will not generally be the price of a definite consumption. It
is the price of a contingent commodity, the price of a specific good deliverable if a
specified event occurs.
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What is the meaning of yj , firm j ’s production plan, in this setting? Prior to the
start of economic activity, j ’s management considers the production possibilities
along each branch of the event tree. For a farming enterprise, the production
possibilities might look something like this: Inputs of land, labor, and seed in the
spring produce an uncertain output. There are three events to deal with: drought,
normal rain, and flood. In each event there will be an output, but the quantity will
differ by the event. Thus, the production possibilities of j are well specified though
uncertain only because of the uncertainty of the weather. Firm j then consults its
technology Y j and the prevailing prices of contingent inputs and outputs. It will
choose a plan yj that specifies the inputs it needs and the outputs it plans to produce
in each event and date. It makes a plan for each branch of the event tree – actual
events will take it along only one branch of the tree. It may buy inputs and sell
outputs along each branch of the tree, wherever the currently prevailing prices make
this purchase and sale of contingent commodities profitable. Consequently, most
of its planning will never be implemented. Most of the contingent commodities it
buys and sells will not be delivered because the events in which they are deliverable
may not take place. The firm needs no attitude toward risk taking or risk aversion.
The firm’s production plan is chosen to maximize the value of p · y for y in Y j

at contingent commodity prices that are known with certainty at the market date
(prior to the rest of economic activity). To make this choice of profit-maximizing
contingent production plan, the firm does not need a probability judgment to
forecast which states are more likely nor does it need an attitude toward risk. Its
production opportunities are fully specified by Y j ; the profitability of any plan
is fully implied by p. Implicit in this formulation is the concept that the firm’s
supply decisions are default free. Even if the firm (or its managers) believes the
probability of an event occurring to be nil, it will sell output in that event only
to the extent that it purchases contingent inputs that will allow production of
the projected output in the unlikely situation that the event actually takes place. In
equilibrium, households’ risk aversion and probability judgments will be embodied
in the contingent commodity prices.

At prevailing prices p ∈ P , firm j ’s profit is

πj (p) = max
y∈Y j

p · y = p · Sj (p).

That is, πj (p) is the sum evaluated at the market date, over all dates and events of
the (present discounted) value of contingent outputs less the (present discounted)
value of contingent inputs. Firm j ’s supply behavior Sj (p) is then characterized
as choosing a production plan in the present and for all future uncertain events
to maximize the present discounted value of the flows of contingent outputs less
contingent inputs of the firm. Maximizing firm profit and maximizing firm (stock
market) value are identical.
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A household i’s endowment vector ri is an N-dimensional vector listing the
endowed contingent commodities of the household: 24 hours a day of labor/leisure
in the event the household is alive and well, 0 in the event the household is
dead, and so forth. As before, household i’s income is characterized as Mi(p) =
p · ri +∑j∈F αijπj (p). The household sells all its endowment ri . The endowment
consists of contingent commodities, most of which will never actually be delivered
(because their events may not take place). Nevertheless, the full endowment of
contingent commodities is sold forward and the proceeds enter i’s budget.

Household i’s consumption vector xi represents a state-contingent dated list
of projected consumptions. Each coordinate in xi represents a dated contingent
consumption of a particular good in its specified state of the world. The vector xi

is a list, at each date and state, of planned consumption at that date/state pair. It
represents a lifetime event-contingent consumption plan for household i. The pref-
erences of household i, �

i
, represent preferences on time-dated, state-contingent

commodities from the present through the future until the horizon. Household i

considers the prospect of each possible mix of contingent commodities, and �
i

represents i’s preferences among them. Because the contingent commodities are
not precisely consumptions, it is not precisely accurate to say that �

i
represents

i’s consumption preferences. Rather, �
i

represents i’s preferences among contin-
gent commodity consumption programs, preferences that reflect the result of i’s
consumption preferences on actual goods when delivered, i’s personal judgments
on the likelihood that the individual uncertain events will actually take place, and
i’s attitude toward risk (unpredictable variation in consumption). Vector xi rep-
resents a portfolio of risky assets. The preference ordering �

i
then represents i’s

preferences among those portfolios.
One way to think of the formulation of �

i
is to regard the preference ordering on

contingent commodities as representing an expected utility. This is the most eas-
ily interpretable formulation. Nevertheless, assuming expected utility optimizing
behavior is not necessary to pursue the model. Any transitive continuous preference
ordering on portfolios of contingent commodities will do the job. The assumption of
convex preferences, C.VI(C) or C.VI(SC), will typically be maintained; that implies
risk-averse behavior. A risk lover will concentrate his portfolio on consumption
deliverable in a single event – he doesn’t want to hedge his bets. However, convex
preferences on the portfolio imply that given the choice of two equally desirable
portfolios, each with its payoff concentrated in a different single event, the midpoint
of the two portfolios will be preferred to either extreme. The midpoint represents
hedging – not putting all your eggs in one basket. That’s risk aversion.

In this model of contingent commodities, household i’s demand behavior is
characterized just as before. Household i chooses xi ∈ Xi to optimize �

i
subject

to p · xi ≤ Mi(p). That is, i chooses a state-contingent dated consumption plan
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for the present through the horizon to optimize the consumption plan evaluated by
i’s portfolio preferences for contingent commodities subject to a wealth constraint.
A portfolio will imply a dated consumption plan across time along each branch
of the event tree. Risk takes the form of possible variation in consumption across
events. The way for the household to assure a steady consumption is to choose
contingent commodities that deliver the same consumption plan independent of
events. Alternatively, at the market date, the household can adjust its contingent
consumption plans to vary with the market’s price differentials. Market prices
for each commodity will reflect the differing scarcities of goods across events,
household state-varying tastes for the goods (desirability of an umbrella in the rain
will differ from that of an umbrella in dry weather), household attitudes toward
risk, and household probability judgments on the likelihood of the states of the
world. Household i chooses its optimal portfolio subject to the budget constraint.
The budget constraint says that the value of the portfolio of contingent commodities
chosen is bounded by the value of the contingent commodity endowment plus the
value of the household endowment of firm shares (whose value is also determined
on the contingent commodity market).

Equilibrium in this contingent commodity economy occurs just as in the certainty
economy with futures markets. The market prices all of the contingent commodi-
ties. Supplies and demands are announced by firms and consumers. Prices adjust
until supply equals demand. Households come to the market with their endowed
contingent commodities and sell the endowment. They acquire a portfolio of con-
tingent commodities that represents their most desirable portfolio subject to budget
constraint. Payment takes place at the market date. The profits of firms, the value
of household endowments, and the value of household budget constraints and of
household consumption plans are all computed in terms of the prices of these plans
at the contingent commodity prices. The household budget constraint applies at the
single market date. All contingent commodities are bought, sold, and paid for at
the market date. Payment is made for the contingent commodity contract, not for
actual delivery (which may never take place).

Because most of the possible states of the world do not take place, most con-
tingent commodity contracts expire without being executed by delivery. In the
absence of any learning or change in subjective probabilities or tastes, there is no
need for markets to reopen. If they did reopen, there would be no active trade
on them. Once the equilibrium is established, remaining economic activity in the
economy consists merely in the execution of the contracted plans. At each date
households and firms discover the state of the world. They discard as worthless all
of their contracts for contingent commodities deliverable in other states at that date
and contracts for future delivery in branches of the event tree that they now know
will not take place. They then deliver and take delivery on the contracts for the
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date-state pair that pertains. The balance of economic activity through the horizon
consists of fulfilling their previously contracted plans.

The equilibrium allocation of risky assets is Pareto efficient relative to �
i
, that is,

relative to household preferences on contingent commodity portfolios. Given the
endowments ri and available technologies Y j , there is no attainable reallocation of
inputs to firms j or of contingent commodity outputs to households i that would
move some household i higher in its ranking of portfolios, �i , without moving
some other household i′ lower in its ranking of portfolios, �i′ . This means that
the allocation of risk bearing among households is Pareto efficient. There is no
rearrangement of the risky assets, the contingent commodities, among households
that would be Pareto improving in terms of household portfolio preferences.

We should recognize as well what Pareto efficiency of the allocation of contingent
commodities does not mean. The concept of efficiency here takes the probability
judgments of households as both exogenous and given. It is perfectly consistent
with our concept of efficiency that we could improve the allocation of goods
actually delivered by improving household foresight of the future. All the market
does is to efficiently implement the allocation of contingent commodities subject
to prevailing expectations. Efficiency of the allocation of contingent commodities
does not assure us that there will be no regrets. After the state of the world is
revealed, many agents will discover that their expectations were mistaken and they
will wish that they had arranged their portfolios differently. Indeed, their mistaken
expectations may cause a real misallocation of resources. Widely held expectations
may raise contingent commodity prices for goods deliverable in an expected event.
Those high prices for the expected event then may lead to input reallocations that
skew output toward the expected event away from other events. For example, if
most households expect flooding then market prices of output deliverable in the
event of flooding will be higher (than they would otherwise be) as well. Farms
wishing to produce output deliverable in that event to take advantage of the high
prices will reallocate planting to forms that will deliver in the event of flooding
(for example, planting on high ground at additional expense of resources). These
additional resources will turn out to have been wasted if the flooding does not take
place. The markets efficiently allocate resources, consumption, and risk for a given
state of expectations of the future. They provide no substitute for foresight.

20.4 Uncertainty: Arrow securities markets

Contingent commodity markets provide in equilibrium for an efficient allocation
of risk bearing. Within each date-event pair, they provide an efficient allocation
of goods. They do so at potentially great cost either to realism or to the operating
costs of the markets, for this model requires a great many markets to be active
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at the market date, and none to be active thereafter. This model requires that
each good be traded at the market date before the start of economic activity in a
multitude of different contracts. There will be a different contingent commodity
for each good, date, and event combination. Because each node on the event tree
constitutes a different event at the date represented, the proliferation of date-event
pairs is immense. And the model requires that each good be traded in a separate
contract for each such pair! This is an overwhelming proliferation of contingent
commodities! The model calls for many more active markets at the market date
than we ever see actually in reality – and it calls for far fewer at most dates in real
time than we actually see in market economies. How can we escape this bind? Can
we retain the essential elements of this model – market allocation of goods and
risk – while moving to greater realism, fewer active markets for risky goods, and
more active spot markets?

It is possible to restate the model of the contingent commodity general equi-
librium in a way that retains all of the results but lets us significantly reduce the
number of markets in active use at each date and allows trade to reopen at each date,
adding a touch of realism to the model. We define an Arrow insurance contract
in the following way: Suppose there is a “money” or numeraire in which we can
describe a payment of generalized purchasing power. For each date-event pair, t, s,
the contract c(t, s) pays one unit of purchasing power if event s occurs at date t

and nil otherwise. Then, instead of a full set of contingent commodity markets, we
can use a mix of insurance contracts and spot markets (markets for actual goods
deliverable in the current period) to achieve the same allocation as available in the
contingent commodity equilibrium. To make their portfolio decisions, however,
households and firms will need (perfect) state-contingent price foresight. They’ll
need to know what spot prices to expect for each good in each event.

In designating a commodity k, we have not thus far needed to distinguish k by the
date or event in which it is deliverable. It is time to do that now. Using a somewhat
imprecise notation, let us write k ∈ (t, s) if good k is deliverable at date t , state s,
and of course k �∈ (t, s), if not. Now consider the value of household i’s spending
on contingent commodities deliverable in (t, s),

∑
k∈(t,s) pkx

i
k. That is the amount

at currently prevailing contingent commodity prices that household i spends on
the contingent commodity market for goods deliverable at date t , state s. Suppose,
we then reopen the spot markets for goods in (t, s). Denote the spot price of good
k ∈ (t, s) on the spot market at t as qk . Finally, let the price of an Arrow insurance
contract payable in (t, s) be θt,s . Let household i buy Si

t,s units of Arrow insurance
contract c(t, s), where

Si
t,s =

∑
k∈(t,s)

qkx
i
k.



240 Time and uncertainty: Futures markets

For k ∈ (t, s), set pk = θt,sqi . Then the household budget constraint can be restated
as
∑

t,s θt,sS
i
t,s ≤ Mi(p) = Mi(θ, q). Here, θ and q denote the vectors of θt,s and qk.

Thus, the household budget (and hence the entire household optimization problem)
can be restated in terms of the prices of Arrow insurance contracts θt,s and the spot
prices qk without any direct reference to the contingent commodity markets or their
prices pk .

A firm’s policy in this economy is to formulate its profit-maximizing production
plan, just as it did in the full contingent commodity model. The firm needs no
attitude toward risk. Like households, it does need to have correct state-contingent
price foresight. That is, the firm correctly foresees that if event s occurs at date t ,
then the price of good k will be pk. The firm then maximizes its value (the present
discounted value of the stream of state-contingent outputs less the cost of inputs
it plans) based on its technology and the correctly foreseen state-contingent prices
and Arrow securities prices. It announces its planned profits to its shareholders who
incorporate the announced values in their budget constraints. In each date-event
pair, the firm may have a deficit or surplus of receipts less disbursements attributable
to that date-event should it occur. The firm finances its production plan by trading
on the Arrow securities markets and distributing profits to shareholders. The value
of the firm profits (its stock market valuation entering the owners’ budgets) equals
the value of its securities sales less its purchases. The demands of price foresight
here are significant (and implausible), but so is the reduction in the volume of
transactions and corresponding increase in verisimilitude. Indeed, in actual market
economies with well-developed financial markets, firm stock market values do
indeed enter owners’ budget constraints and represent a present discounted value
under uncertainty of future profit streams.

What we have just argued is that a family of simple accounting identities can
create a formal equivalence between two quite different models. The first (Model
I) is the model of the contingent commodity markets:

The market meets once for all time and a very large number of contingent commodities are
traded; most do not result in delivery of actual goods.

The second (Model II) is a model of securities markets for securities (Arrow
insurance contracts) payable in abstract purchasing power:

The securities market meets once; goods markets reopen at each date for spot trade. Most
securities do not result in actual payment.

We claim that Models I and II are equivalent. The key to this equivalence is simply
that in Model II spot relative prices for goods in each state should be the same
as their relative prices in Model I and that the securities positions assumed by
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traders in Model II be sufficient at the resultant spot market prices to support their
consumption plans from Model I.

What can we conclude? We can replace the full set of contingent commodity
markets discussed in Section 20.3 with a much smaller number of markets. Instead
of a market for each good deliverable in each date and event, we can use a securities
market that distributes purchasing power across dates and events. In those events
where a firm is profitable or a household has a large endowment, the model replaces
the remuneration for those real goods with the value of securities payable in
money for the date-event pair. In each date and event, once the event that actually
pertains is clear, spot markets for factors of production and for consumption goods
open to distribute the actual goods for consumption and factors to use. Instead of
maintaining a full set of contingent commodity markets for all goods deliverable in
all events, the only goods markets actually in use are those for events that actually
take place. There are active securities (or insurance) markets, one for each possible
date-event combination. The capital market function of the contingent commodity
markets is fulfilled by the securities markets: To finance activity in one date-event
from the anticipated proceeds of another, sell securities from the second and spend
the proceeds on securities payable in the first.

To demonstrate this equivalence, firms and households need perfect price fore-
sight for each date-event pair in the future. How else will they know the value of
securities to buy and sell? At the market date all of the firms and households must
know what the spot market prices qk are going to be. The N commodity markets do
not all need to meet, but the economy needs to use the information that they would
generate. However, generating the equilibrium prices is a prime responsibility of
the markets. We may argue that this is too much foresight for the model to require;
how can market prices be known even before the markets meet? Alternatively, we
can argue that the requirements of the model are plausible; households may rea-
sonably be expected to have a good forecast of market prices under well-specified
events (for example, they would expect agricultural prices to be higher in the event
of bad weather than in good). Further, it is not necessary for all agents to foresee all
prices. They need only know the value of firms and of the budgets they need in each
date-state. These are summaries, not individual prices. Nevertheless, the notion of
perfect price foresight is troubling. It is particularly hard to defend in the case
of multiple equilibria, where even the Walrasian auctioneer with full information
cannot predict which of several possible equilibria will prevail.

20.5 Conclusion: The missing markets

The use of futures markets, contingent commodity markets, and Arrow insurance
markets (with perfect date-state price foresight) allows the market mechanism to
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overcome the confusion generated by time and uncertainty. Markets can work
successfully when there are enough of them. We need a sufficient variety of com-
modity and financial instruments traded in the market to allow the market allocation
mechanism to do its job. Unfortunately, this model appears to require many more
active markets than are actually in use in real economies. The financial markets of a
modern economy, including stock exchanges, futures exchanges, option exchanges,
and the (dealer) market for insurance instruments not sold on exchanges, provide
an array of markets for intertemporal allocation and exchange of risk that is rich
and complex. Nevertheless, they are sparse compared to the array of possible
uncertainties and dates facing economic agents.

The message of this family of models is that a rich enough array of active markets
can result in a successful allocation over time and uncertainty. Conversely, one
source of allocative failures in actual economies is the absence of a sufficiently large
array of future and contingent commodities actively traded. A persistent objection
to the class of models is that they require far too many active markets – many more
than will be found in an actual economy. The reasons for these mismatches between
theory and practice are not to be found in the theory; they reflect issues omitted
from the model: the costs of operating markets themselves and the difficulty or cost
of verifying the state of the world.

The major results articulated in Chapters 10–19 for an applied economist or
policy maker are a restatement of the laissez-faire doctrine: The market will perform
allocation decisions and do it right. The discussion in this chapter points out a
strength and a weakness in that message. We have demonstrated the power of that
formal result by showing that it persists over time and across uncertainty. We have
demonstrated its fragility by showing that it requires many more active markets
than actual economies contain. A laissez-faire advocate who insists that the market
makes the best allocation decisions is using the fundamental theorems of welfare
economics. The advocate doesn’t typically stop to qualify such claims for the
market by noting that the proposed economy lacks sufficient insurance markets
fully to handle uncertainty or capital markets perfect enough fully to deal with
intertemporal allocation.1

20.6 Bibliographic note

The brilliantly simple notion of dated commodities first appears in Hicks (1939).
The notion of contingent commodities and of Arrow insurance contracts appears
in Arrow (1953, 1964) and is well expounded in Debreu (1959).

1 The bridge between theory and application requires luck and interpretation. All theories in the sciences are
abstract, but they give predictions about concrete results. That’s true in physics and chemistry as well as in
economics. No theory perfectly fits application. The theory is a guide to application. It’s a judgment call when
the omissions of the theory are sufficiently great and relevant to cause a failure in application.



Exercises 243

Exercises

20.1 Consider a business starting up. The business has a plan that requires inputs
to get started. Eventually, the business expects to have outputs that will
be sold and return the initial investment and a profit. In actual market
economies, the business goes to capital markets (banks, investment banks,
the stock market, venture capitalists, a parent firm) to raise money.

Consider an Arrow-Debreu general equilibrium model over time (with-
out uncertainty) with a full set of futures markets. How does the firm raise
capital in this setting? Explain the use of futures markets to provide for
needed inputs in providing the start-up inputs for the firm. How are these
start-up expenses financed?

20.2 Consider an Arrow-Debreu economy without uncertainty with a full set of
futures markets over finite time. Let a competitive equilibrium price and
allocation be established at the market date.

At a later date, the usual comment is that markets do not reopen. More
precisely, if markets reopen for trade, there is zero activity on them.
Explain.

20.3 Consider an Arrow-Debreu economy with uncertainty with a full set of
contingent commodity markets over finite time. Let a competitive equilib-
rium price and allocation be established at the market date.
(a) At a later date, the usual comment is that markets do not reopen. More

precisely, if markets reopen for trade, there is zero activity on them.
Explain.

(b) At a later date, suppose there has been an unforeseen exogenous change
in household subjective probabilities about future events. Then, if mar-
kets reopen for trade, will there be zero activity on them? Explain.

20.4 Consider an Arrow-Debreu economy under uncertainty with a full set of
contingent commodity markets over finite time. Let a competitive equi-
librium price and allocation be established at the market date. Do firms
formulate a probability distribution on future events in order to maximize
expected discounted profits? Explain.

20.5 Consider the economy with a finite time horizon and a nonrenewable
natural resource (such as coal or oil). In each of the following cases describe
the process of decision making with regard to use of the nonrenewable
resource and state whether the allocation may be expected to be Pareto
efficient. Will the economy run out of coal or oil because of excessively
rapid use? Why or why not? Explain.

Case 1: A full set of futures markets. There are active futures markets for
the resource and its products available for delivery at all present and future
dates.
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Case 2: No futures markets, perfect foresight, and perfect capital markets.
There are no active futures markets, but there is perfect price foresight
regarding the resource, its outputs, and all other goods. All agents have
access to a perfect capital market that allows them to borrow and lend, and
spend and save, at common equilibrium interest rates, subject only to a
lifetime budget constraint.

Case 3: No futures markets, no active capital markets, perfect price fore-
sight. Saving and investment decisions are taken but they are autarkic –
households have no access to a market for borrowing and lending.

20.6 Consider an economy in general equilibrium with a full set of Arrow-
Debreu contingent commodity markets. Explain how the economy deals
with medical insurance. How does it work? Is medical insurance just
another contingent commodity? Is there a moral hazard problem (over-
spending when the insured event occurs because insurance will cover the
bill)? Will every household be insured for every illness or injury?

20.7 Consider a firm planning to start operations in an intertemporal certainty
economy with a full set of futures contracts. There are profitable oppor-
tunities to produce widgets for supply at t + 2; this production requires
inputs at t . The firm is inactive prior to t . How does the firm finance its
production plan?

20.8 Consider education as a private investment good. Explain the following
observations:
(a) In the Arrow-Debreu Walrasian model with a full set of futures markets,

efficient allocation of resources does not require government provision
of education. The market will provide and distribute education in a
Pareto-efficient fashion.

(b) In actual economies, market imperfections may prevent private markets
from financing efficient levels of education. This may create a role for
nonmarket provision or explicit subsidy.

20.9 Assume an Arrow-Debreu model of futures markets (without uncertainty,
section 20.2). Explain how household saving and spending decisions over
time can be arranged. In a monetary economy, a household saves money
in periods of high income and uses the savings to spend – and smooth out
consumption – in periods of low income. How can this be arranged in a
(nonmonetary) economy with a full set of futures markets?

Specifically, household i has a large endowment dated in periods 0 and
1 but no endowment dated T − 2, T − 1, T . Household i wants relatively
constant consumption throughout the periods 0, 1, 2, . . . , T . How can i
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try to arrange i’s desired time pattern of consumption using the futures
markets?

20.10 In discussing the relationship of saving to consumption in a monetary
economy, Keynes writes

An act of individual saving means – so to speak – a decision not to have dinner
to-day. But it does not necessitate a decision to have dinner or to buy a pair of
boots a week hence or a year hence or to consume any specified thing at any
specified date. Thus it depresses the business of preparing to-day’s dinner without
stimulating the business of making ready for some future act of consumption . . . If
saving consisted not merely in abstaining from present consumption but in placing
simultaneously a specific order for future consumption, the effect might indeed be
different.

J. M. Keynes, The General Theory . . . , chap. 16.

Can the difficulty Keynes notes (“depresses the business of preparing
to-day’s consumption without stimulating . . . some future act of consump-
tion”) occur in an Arrow-Debreu economy in equilibrium? In particular, in
an Arrow-Debreu economy with a full set of futures markets, is it true that
(paraphrasing Keynes) saving consists merely in abstaining from present
consumption but not in placing simultaneously a specific order for future
consumption? Explain.

20.11 In an Arrow-Debreu economy with a full set of futures/contingent com-
modity markets under uncertainty, consider the portfolio and consumption
allocations of households 1 and 2. There are two periods, date 0 and a
future date 1 where there are three conceivable states of the world, A, B,
and C. They regard states A, B, and C with the following subjective beliefs
(p represents probability):

Household State A State B State C

1 p = 1/2 p = 1/4 p = 1/4
2 p = 0.90 p = 0.09 p = 0.01

The economy achieves a competitive equilibrium on the contingent com-
modity markets. Under the First Fundamental Theorem of Welfare Eco-
nomics, the allocation is Pareto efficient, meaning that the two households
equate their MRSs for the contingent commodities. As you would expect,
the proportion of 1’s portfolio in state C goods is considerably larger
than 2’s.

In the event, state C occurs. Households 1 and 2 calculate their MRSs of
date 0 versus date 1 state C consumption. Their MRSs are very different
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from one another! This appears to indicate Pareto inefficiency. Is the First
Fundamental Theorem of Welfare Economics false? Explain.

20.12 Consider resource allocation under uncertainty in general equilibrium with
a full set of Arrow-Debreu contingent commodity markets. Denote the
price of good n, date t , state s as pnts . Let households be expected utility
maximizers. Let household i’s subjective probability of state s at date t

be πits , and her utility function ui(x), where x is a (long) vector whose
typical co-ordinate is xnts . Denote the current, certain, period as 0.

For households i and j , the first-order conditions for goods nts (a con-
tingent commodity) and n′0 (a current period certain good) characterizing
market equilibrium and efficient allocation of risk bearing at an interior
solution are

π its

∂ui

∂xnts

∂ui

∂xn′0

= pnts

pn′0
= πjts

∂uj

∂xnts

∂uj

∂xn′0

.

Once event s occurs in date t , the MRS between n′0 and nts for households

i and j will turn out to be
∂ui

∂xnts

∂ui

∂xn′0

and
∂uj

∂xnts

∂uj

∂xn′0

.

Will these MRSs be equated? If so, why? If not, does that imply Pareto
inefficiency of the market allocation? Is the First Fundamental Theorem of
Welfare Economics fulfilled in this setting? Explain.

20.13 Consider a pure exchange economy under uncertainty composed of a num-
ber of individuals. There are three types of households, A, B, and C. There
are three states of the world, 1, 2, and 3. There is a single consumption
good that is deliverable in each of the three states in differing amounts. The
households receive perfectly correlated random endowments of the single
consumption good in the following way:

Type A: 100 units if state 1 occurs, 200 units if state 2 occurs, 600 units
if state 3 occurs.

Types B and C: 200 units if state 1 occurs, 400 units if state 2 occurs,
1200 units if state 3 occurs.

All households are expected utility maximizers. Type A individuals are
risk neutral and believe that the three states of nature will occur with equal
subjective probability. Their subjective utility of a random consumption
bundle {C1 if state 1 occurs, C2 if state 2 occurs, C3 if state 3 occurs} is
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given by

UA(C1, C2, C3) = C1 + C2 + C3.

Type B individuals believe that states 1 and 2 are impossible. Their sub-
jective utility of a random consumption bundle {C1 if state 1 occurs, C2 if
state 2 occurs, C3 if state 3 occurs} is given by

UB(C1, C2, C3) = C3.

Type C individuals are infinitely risk averse (with positive subjective prob-
ability of each state occurring), and their subjective utility of a random
consumption bundle {C1 if state 1 occurs, C2 if state 2 occurs, C3 if state
3 occurs} is given by

UC(C1, C2, C3) = min[C1, C2, C3].

Agents sell all of their endowment as contingent commodities at prevailing
prices and buy any nonnegative portfolio of contingent commodities they
wish. No short selling is allowed. Consider a population consisting of two
households of type A, one of type B, and one of type C.
(a) We propose as competitive equilibrium prices for the three state con-

tingent commodities p∗ = (1/3, 1/3, 1/3). Demonstrate that these are
competitive equilibrium prices by deriving the competitive equilibrium
consumption bundles for each of the three types of agents and then
demonstrating that markets clear. (Hint: Type B and Type C’s demand
functions will be point-valued; Type A’s will be set-valued. You should
be able to figure them out by inspection – it’s probably a waste of effort
to differentiate for MRSs.)

(b) Now suppose that there are large numbers of agents in the economy:
200 type A, 100 type B, 100 type C. How do competitive equilibrium
prices change? Explain.

20.14 Consider an Arrow-Debreu model over time without uncertainty, including
a full set of futures markets for delivery of all goods and services at future
dates. There is no money and no debt instruments.
(a) Once the equilibrium allocation is established, markets do not reopen

at each date (or if they did open, they would be inactive). Why?
(b) The futures markets are supposed to perform the functions we usually

associate with capital markets. Explain how they arrange saving: a
household whose only income comes from endowment dated 2012
wants to consume in 2013, 2014, . . . , 2030.

(c) The futures markets are supposed to perform the functions we usually
associate with capital markets. Explain how they finance investment: A
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firm needs inputs in 2012 and 2013. At prevailing prices, the inputs will
allow it profitably to produce output deliverable in 2014, 2015, 2016.

20.15 The traditional functions of money in an economy are “unit of account,
store of value, medium of exchange, standard of deferred payment.” Prof.
Debreu (in Theory of Value) explains that, in the Arrow-Debreu model,
“No theory of money is offered here, and it is assumed that the economy
works without the help of a good serving as medium of exchange.” Most
theorists would say that Debreu’s position is sound; that there can be no
money in an Arrow-Debreu economy.

Prof. Frank Hahn (1982) writes

“The most serious challenge that the existence of money poses to the theorist is
this: the best developed model of the economy cannot find room for it. The best
developed model is, of course, the Arrow-Debreu version of a Walrasian general
equilibrium. A first, and . . . difficult . . . task is to find an alternative construction
without . . . sacrificing the clarity and logical coherence . . . of Arrow-Debreu.”

Explain Hahn’s remarks in replying to the following questions.
(a) One of the traditional functions of money is “store of value.” That is,

money allows purchasing power to be carried from sales in one time
period to purchases in the future. How is that function performed in an
Arrow-Debreu model without money?

(b) Another of the traditional functions of money is “medium of exchange.”
Money helps to enforce the budget constraint and carries the message –
at a point in time – between sale and purchase transactions that a value of
goods delivered (sold) in one transaction may be acquired (purchased)
in another. How does the Arrow-Debreu model achieve this equality of
purchase and sale values without a “medium of exchange”?

(c) Why can’t the Arrow-Debreu model find room for money?
The single lifetime budget constraint eliminates the function of a medium
of exchange (carrying value between transactions), and the full set of
futures markets eliminates the function of a store of value. The Arrow-
Debreu theoretical structure prevents a monetary store of value or medium
of exchange from having any function in equilibrium. Explain.



Part F

Bargaining and equilibrium: The core

One of the ideas presented repeatedly to students of economics is the link between
large numbers of economic agents and competitive, price-taking, behavior. The
notion is that in a large economy individual agents are strategically powerless and
hence price-taking behavior makes sense. We can now give a formal proof of this
argument. It is presented in Chapters 21 and 22. We define the core of a market
economy as a generalization of the idea of the Edgeworth box. There will be many
different kinds of traders and the usual N commodities. We will take a limit as the
economy becomes large in a stylized fashion. The striking result is that the family
of solutions to a bargaining problem corresponding to the contract curve in the
Edgeworth box shrinks to the set of competitive allocations. In a large economy,
strategic bargaining merely gets you to the competitive equilibrium. We will prove
that, in a large economy, individual traders really do lack strategic power. Hence,
competitive price taking is the appropriate model of behavior.
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The core of a market economy

21.1 Bargaining and competition

The model we have been using so far is competitive in a rather refined sense.
All agents act as price takers. They treat prices parametrically, as variables that
they cannot control and to which they must adapt. The prices themselves are set
by an impersonal market mechanism (idealized as the Walrasian auctioneer). The
assumption that individual buyers and sellers are powerless to affect market prices
reflects one idea of the notion of competition, that the market is so large that indi-
vidual actions have no impact. But that makes up only half of what we mean by
competition. In ordinary usage, we say competition occurs when each economic
agent tries to do as well as possible by making the most advantageous deals he can.
This is the idea of competition as conflict. One of the major achievements of mod-
ern general equilibrium theory is that we can demonstrate formally that these two
notions of competition are equivalent. We can show mathematically that a model
of bargaining and deal making where each buyer and seller tries to get the best
deal possible leads to a price-taking equilibrium in a large economy. Hence, we
can demonstrate the soundness of the informal notion that large economies leave
individuals strategically powerless. We will present a concept of the outcome of
strategic bargaining known as the core of the market economy. The core appeared
in Chapter 3 as the contract curve. We will develop it more fully in this chapter. In
Chapter 22 we will show that in a large economy the core and competitive equilib-
rium are identical. Thus, the strategic outcome in a large economy is equivalent to
nonstrategic price taking.

To define the core we start by summarizing the model of the economy, particu-
larly of consumers, that we developed in Chapter 12. We will develop the model of
the core for a pure exchange economy. That is, we will consider an economy with-
out production, where the only economic activity is trade of endowment among
consumers. This is obviously a special case, but the traditional and most interesting
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issues can successfully be treated here. Generalization to a linear production econ-
omy is straightforward (Debreu and Scarf [1963]).

Households are characterized by their endowments and preferences. There is a
finite set of households H . For simplicity let us take Xi = RN

+ , all i. Each i∈H

has an endowment ri∈RN
+ and a preference quasi-ordering �i defined on RN

+ .
An allocation is an assignment of xi ∈ RN

+ for each i ∈ H . A typical allocation,
xi ∈ RN

+ for each i ∈ H , will be denoted {xi, i ∈ H }. An allocation, {xi, i ∈ H },
is feasible if

∑
i∈H xi ≤∑i∈H ri , where the inequality holds coordinatewise. We

assume preferences fulfill nonsatiation (C.IV), continuity (C.V), and strict convex-
ity (C.VI(SC)).

21.2 The core of a pure exchange economy

The primitive concepts for bargaining in the core are ownership and preferences.
Each household (trader) owns its endowment and can dispose of it at will. Consider
the entire set of feasible allocations. Any one of them can be proposed as a possible
allocation for the economy. The concept of bargaining that defines the core is
that groups of households (known as coalitions) form to see how satisfactory an
allocation they can achieve by trading their endowment among themselves. If any
trader or group of traders, a coalition, can achieve an allocation on its own that it
prefers to one proposed, the coalition will withdraw from the proposed allocation
and trade on its own. The strategic threat available to any coalition is to withdraw
from a proposed allocation. The threat is credible when the withdrawal will allow
it to move to an alternative allocation that according to its preferences is superior
for its members. The idea of bargaining here is that any proposed allocation must
pass the test of whether a coalition can improve its own situation by withdrawing
from the proposed allocation. If so, then the allocation will not be sustained in the
core. It will be blocked. If not, then the proposal remains. With #H households,
there are 2#H possible coalitions, so this becomes quite an exacting test in a large
economy. We now formalize this notion of bargaining.

Definition A coalition is any subset S ⊆ H . Note that every individual comprises
a (singleton) coalition.

Definition An allocation {xi, h∈H } is blocked by a coalition S⊆H if there is an
assignment {yi, i ∈ S} so that:

(i)
∑

i∈S yi ≤∑i∈S ri (where the inequality holds coordinatewise),
(ii) yi�ix

i , for all i ∈ S, and
(iii) yh
hx

h, for some h ∈ S.
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The idea of blocking1 is that a coalition S blocks a proposed allocation xi if, using
only the resources available to S, it can achieve an allocation to the members of
S that is a Pareto improvement over xi for the members of S. When the coalition
S considers blocking, it considers only its own resources and tastes. S takes no
account of the situation of the remaining traders, H\S.

Definition The core of the economy is the set of feasible allocations that are not
blocked by any coalition S⊆H .

The core is a generalization of Edgeworth’s concept of the contract curve. The
definition of the core tells us a fair amount about core allocations:

� Any allocation in the core must be individually rational. That is, if {xi, i ∈ H } is a
core allocation then we must have xi �i ri , for all i ∈ H . If not, then the proposed
core allocation would be blocked by a single-member coalition (singleton) for
whom xi was inferior to endowment. That is, the proposed allocation was not
individually rational.

� Any allocation in the core must be Pareto efficient. This follows because if
{xi, i ∈ H } were not Pareto efficient, the coalition of all agents could improve
upon the allocation merely by redistributing consumption. That is, if {xi, i ∈ H }
is a core allocation then we must have that for all alternative feasible assignments
yi , xi �i yi , for all i ∈ H or xi 
i yi for some i ∈ H . This holds for all alterna-
tive feasible assignments {yi, i ∈ H }. If not, then the proposed core allocation
would be blocked by a coalition S = H , consisting of all of the traders.

Merely defining the core does not mean that it is an interesting concept. For
example, the set of core allocations could be empty. If that happened, then there
would be very little to discuss. However, this is happily not the case. We can show
several results:

(i) The competitive equilibrium is always in the core (Theorem 21.1). The con-
ditions under which the competitive equilibrium exists are well developed
(Theorems 14.1, 18.1, and 24.7 applied to a pure exchange economy). Hence,
whenever the conditions for those theorems are fulfilled (principally continuity
and convexity of preferences), we can be sure that the core is nonempty.

Most interesting is the behavior of the core for economies where the number of
traders is large. This model will be developed in Chapter 22. The principal result
there (Theorems 22.2 and 22.3) is that

1 The empty set, φ, is trivially a coalition, and trivially, there is no allocation that it can block.
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(ii) For a large economy, the set of competitive equilibria and the core are virtually
identical. All core allocations are (nearly) competitive equilibria. Hence, our
two concepts of competition coincide for a large economy. Price-taking behav-
ior in equilibrium is the natural outcome of the bargaining process in a large
economy.

21.3 The competitive equilibrium allocation is in the core

We will now state and prove the principal result of this chapter: inclusion of
the competitive equilibrium in the core. It is useful to restate the definition of
competitive equilibrium for this pure exchange economy.

Definition p ∈ RN
+ , p �= 0, xi ∈ RN

+ , for each i ∈ H , constitutes a competitive
equilibrium if

(i) p · xi ≤ p · ri , for each i ∈ H ,
(ii) xi �i y, for all y ∈ RN

+ , such that p · y ≤ p · ri , and
(iii)

∑
i∈H xi ≤∑i∈H ri (the inequality holds coordinatewise) with pk = 0 for any

k = 1, 2, . . . , N so that the strict inequality holds.

Theorem 21.1 here states that any competitive equilibrium (if it exists) is included
in the core. In proving the theorem we use the same logic that we used in proving
the First Fundamental Theorem of Welfare Economics. Starting from a competitive
equilibrium allocation, along with its price vector, we note that any preferable allo-
cation must be more expensive evaluated at equilibrium prices than the competitive
allocation. This leads to a contradiction.

Theorem 21.1 Let the economy fulfill C.II, C.IV, C.VI(SC), and let Xi = RN
+ . Let

p, xi , i∈H , be a competitive equilibrium. Then {xi, i ∈ H } is in the core of the
economy.

Proof We will present a proof by contradiction. Suppose the theorem to be false.
Then there is a blocking coalition S⊆H and a blocking assignment yi, i ∈ S. We
have ∑

i∈S yi ≤∑i∈S ri(attainability, the inequality holds coordinatewise)
yi�ix

i, for all i ∈ S, and
yh
hx

h, some h ∈ S.

But xi is a competitive equilibrium allocation. That is, for all i ∈ H , p · xi = p · ri

(recalling Lemma 17.1), and xi �i y, for all y ∈ RN
+ such that p · y ≤ p · ri .
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Note that
∑

i∈S p · xi =∑
i∈S p · ri . Then for all i ∈ S, p · yi ≥ p · ri . That

is, xi represents i’s most desirable consumption subject to budget constraint. The
bundle yi is at least as good under preferences �i fulfilling C.II, C.IV, C.VI(SC).
Therefore, yi must be at least as expensive. Furthermore, for h, we must have
p · yh > p · rh. Therefore, we have∑

i∈S

p · yi >
∑
i∈S

p · ri.

Note that this is a strict inequality. However, for coalitional feasibility we must
have ∑

i∈S

yi ≤
∑
i∈S

ri.

But because p ≥ 0, p �= 0, we have
∑

i∈S p · yi ≤∑i∈S p · ri . This is a contra-
diction. The allocation {yi, i ∈ S} cannot simultaneously be smaller or equal to the
sum of endowments ri coordinatewise and be more expensive at prices p ≥ 0. The
contradiction proves the theorem. QED

21.4 Bibliographic note

The notion of rational bargaining solutions and their relation to competitive equilib-
rium goes back at least to Edgeworth’s (1881) pioneering work. The core concept
is attributed to Gillies (1953) and its application in economics begins with Shubik
(1959). The treatment of the core of a market economy here parallels that of Debreu
and Scarf (1963).

Exercise

21.1 Consider a two-person (1 and 2) two-commodity (x and y) economy. Both
households have the utility function u(x, y) = (x + 1)1/2(y + 1)1/2. Let
r1 = (99, 0) and r2 = (0, 99). Describe the core of this economy.
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Convergence of the core of a large economy

22.1 Replication: A large economy

There is a long-standing tradition in economic theory emphasizing the importance
of large (“thick”) markets in maintaining competition. The underlying idea is that
if the number of agents in the market is large enough, then no single agent can
have monopoly power. Consequently, a competitive price-taking equilibrium will
be maintained. Our task in this chapter is to present a rigorous statement and
proof of this result in the model of the core of a market economy. We will show
that, in a large economy, the core allocations are nearly identical to the competitive
equilibrium allocation. That is, in a large economy, there is virtually no incremental
return to the monopolistic strategic behavior associated with coalition formation
(the strategic behavior assumed in the core). Hence, in a large economy, there is no
point in behaving strategically. The best an agent can do is to follow price-taking
competitive behavior. This result is actually quite general in models where no single
trader is large relative to the size of the market. The version of the theorem we
will present in sections 22.1 to 22.3 depends on the idealization that the economy
becomes large (and hence each trader becomes strategically negligible) through
successive replication of the set of traders. The treatment in section 22.4 is more
general at the cost of greater mathematical detail.

In replication, the economy keeps cloning itself. As the growth goes from dupli-
cate to triplicate, . . . , to Q-tuplicate, and so on, the set of core allocations keeps
getting smaller, although it always includes the set of competitive equilibria (per
Theorem 21.1). We will show that it eventually shrinks to the point where only the
competitive equilibria are left. This is the core convergence result. In a large econ-
omy, the core converges to the competitive equilibrium. This treatment, allowing
the economy to become large through replication, is the simplest version of the
theorem to prove, and that is why we present it here. Section 22.4 uses the Shapley-
Folkman Lemma to let the economy become large without requiring replication.

256
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Alternatively, more advanced mathematical techniques (nonatomic measure the-
ory) can be used to treat economies that start out with infinitely many agents rather
than approach the large size as a limit.

We will treat a Q-fold replica economy, denoted Q-H . Q will be a positive
integer; Q = 1, 2, . . . . In a Q-fold replica economy we take an economy consist-
ing of households i ∈ H , with endowments ri and preferences �i , and create a
similar larger economy with Q times as many agents in it, totaling #H × Q agents.
There will be Q agents with preferences �1 and endowment r1, Q agents with
preferences �2 and endowment r2, . . . , and Q agents with preferences �#H and
endowment r#H . Each household i∈H now corresponds to a household type. There
are Q individual households of type i in the replica economy Q-H . Note that
the competitive equilibrium prices in the original H economy will be equilibrium
prices of the Q-H economy. Household i’s competitive equilibrium allocation xi

in the original H economy will be a competitive equilibrium allocation to all type
i households in the Q-H replica economy. Agents in the Q-H replica economy
will be denoted by their type and a serial number. Thus, the agent denoted i, q will
be the qth agent of type i, for each i ∈ H, q = 1, 2, . . . , Q.

22.2 Equal treatment

We will now prove a very useful technical result, the equal treatment property. The
power of the replication approach is that it simplifies the idea of a large economy.
There will be Q agents of type i, for each i ∈ H . We can show that, for each
i, all Q of them are treated identically in the core allocation so that we do not
need to consider the allocation to any individual but rather need to analyze only
the allocation to his type. This is particularly straightforward to demonstrate if we
assume strict convexity of preferences (C.VI(SC)). For convenience, we’ll suppose
that all household consumption sets, Xi are the nonnegative quadrant, RN

+ . Denote
the allocation (in RN

+) to the agent i, q as xi,q .

Theorem 22.1 (Equal treatment in the core) Assume C.IV, C.V, and C.VI(SC).
Let {xi,q, i ∈ H, q = 1, . . . , Q} be in the core of Q-H , the Q-fold replica of
economy H . Then for each i, xi,q is the same for all q. That is, xi,q = xi,q ′

for each
i ∈ H, q �= q ′.

The proof of Theorem 22.1 will be by contradiction. The strategy of proof is to
note that if the theorem fails there will be individuals of a single type who have
differing consumptions and then to show that this will allow construction of a
blocking coalition. If, contrary to the theorem, consumptions differ within type,
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then for each type of household we can identify one individual who, according
to the preferences of that type, has the least desirable allocation (there may be a
tie). We then form a coalition consisting of one member of each type, the member
with the least desirable core allocation. We then show that this coalition of the
least well-off can achieve with their own endowments a better (strictly better for
some types, no worse for others) allocation to each trader than the proposed core
allocation. This constitutes a blocking coalition to the proposed core allocation,
and hence a contradiction. What allocation can they achieve? For each type i, we
will show that the coalition of the worst off can achieve the average type i core
allocation. Thus, each member of this coalition moves from being the worst-off of
its type to being average – a definite improvement and one we will demonstrate to
be attainable.

Proof of Theorem 22.1 Recall that the core allocation must be feasible. That is,

∑
i∈H

Q∑
q=1

xi,q ≤
∑
i∈H

Q∑
q=1

ri.

Equivalently,

1

Q

∑
i∈H

Q∑
q=1

xi,q ≤
∑
i∈H

ri.

Suppose the theorem to be false. Consider a type i so that xi,q �= xi,q ′
. For each

type i, we can rank the consumptions attributed to type i according to �i .
For each i, let xi∗ denote the least preferred of the core allocations to type

i, xi,q , q = 1, . . . , Q. For some types i, all individuals of the type will have the same
consumption, and xi∗ will be this expression. For those in which the consumption
differs, xi∗ will be the least desirable of the consumptions of the type. We now
form a coalition consisting of one member of each type: the individual from each
type carrying the worst core allocation, xi∗ . The strategy of proof is to show that
this coalition blocks the proposed core allocation and hence to demonstrate that
the proposed allocation cannot truly be in the core.

Consider the average core allocation to type i, to be denoted x̄i . x̄i= 1
Q

∑Q
q=1 xi,q .

We have, by strict convexity of preferences (C.VI(SC)),

x̄ i = 1

Q

Q∑
q=1

xi,q 
i xi∗ for those types i so that xi,q are not identical,
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and

xi,q = x̄i = 1

Q

Q∑
q=1

xi,q ∼i xi∗ for those types i so that xi,q are identical.

From feasibility, above, we have

∑
i∈H

x̄i =
∑
i∈H

1

Q

Q∑
q=1

xi,q = 1

Q

∑
i∈H

Q∑
q=1

xi,q ≤
∑
i∈H

ri.

In other words, a coalition composed of one of each type (the worst-off of each) can
achieve the allocation x̄i . However, for each agent in the coalition, x̄i �i xi∗ for all i
and x̄i 
i xi∗ for some i. Therefore, the coalition of the worst-off individual of each
type blocks the allocation xi,q . The contradiction proves the theorem. QED

The equal treatment property, Theorem 22.1, greatly simplifies the notation
characterizing core allocations as the economy grows. Because the allocation within
type is identical in the core, we can characterize the core by the allocation attributed
to each type. Core(Q) = {xi, i ∈ H } where xi,q = xi, q = 1, 2, . . . , Q, and the
allocation xi,q is unblocked.

22.3 Core convergence in a large economy

The next result, Theorem 22.2, is the principal result in the study of the core
using replication. We will show that as the economy becomes large through an
increasing number of replications, the core shrinks1 until it converges to the set
of competitive equilibria. Thus, in a large economy, the core outcomes (based
on strategic behavior) are equivalent to the price-taking (nonstrategic) solutions.
The mathematical foundation of this result, given by the Bounding Hyperplane
Theorem, is that a convex set is supported by a hyperplane. The normal to the
hyperplane will serve as the supporting price vector for the equilibrium.

Why does the core shrink as the economy becomes large? The individual agents
are indivisible. Increasing the size of the economy through replication overcomes
the indivisibility, allowing coalitions to form with arbitrary proportional compo-
sition of types. In a small economy (Q = 1), each individual agent is unique and
has some bargaining power. As the economy becomes large (Q = 2, 3, 4, . . .), no
individual is unique. The presence of many others reduces any one individual’s

1 In most examples, the set of core allocations really does shrink, becoming much smaller as the number of
agents increases. There are examples, however, in which little or no shrinkage occurs; these will typically be
examples in which the core of a small economy is equivalent to the set of competitive equilibria, so it has no
room to contract further.
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bargaining power. The large number of replications helps to overcome the indivis-
ibility of the agents. The logic of the shrinking core is simple: As Q grows, there
are more blocking coalitions, and they are more varied. Any coalition that blocks
an allocation in Q-H still blocks the allocation in (Q + 1)-H , but there are new
blocking coalitions and allocations newly blocked in (Q + 1)-H .

Recall the Bounding Hyperplane Theorem:

Theorem 8.1 (Bounding Hyperplane Theorem Minkowski) Let K be convex,
K ⊆ RN . There is a hyperplane H through z and bounding for K if z is not interior
to K . That is, there is p ∈ RN, p �= 0, so that for each x ∈ K, p · x ≥ p · z.

A technical digression: Quasi-equilibrium and compensated equilibrium ver-
sus Competitive equilibrium We noted earlier (in Chapter 19, Theorem 19.2)
the distinction between market clearing at optimizing behavior characterized as
(i) expenditure minimization subject to utility constraint versus (ii) utility maxi-
mization subject to budget constraint. These will be identical at interior solutions
with nonnegative prices and ample budget to escape the boundary. Competitive
equilibrium is the situation arising under (ii). A market-clearing allocation under
(i) is known as a quasi-equilibrium (Debreu [1959]) or a compensated equilibrium
(Arrow and Hahn [1971]).

To avoid dealing with this distinction it is sufficient to posit conditions so that
prices are nonnegative and no household is forced to the boundary of the possible
consumption set. Hence, it is convenient to assume Xi = RN

+ and ri � 0 for all
i ∈ H.

Theorem 22.2 (Debreu-Scarf) Assume C.IV, C.V, C.VI(SC). Let Xi = RN
+ and

ri � 0 for all i ∈ H. Let {x◦i , i ∈ H } ∈ core(Q-H ) for all Q = 1, 2, 3, 4, . . . .

Then {x◦i , i ∈ H } is a competitive equilibrium allocation for Q-H , for all Q.

Proof We must show that there is a price vector p so that for each household
type i, p · x◦i ≤ p · ri and that x◦i optimizes preferences �i subject to this budget.
The strategy of proof is to create a set of net trades preferred to those that achieve
{x◦i , i ∈ H }. We will show that it is a convex set with a supporting hyperplane
through the origin. The normal to the supporting hyperplane will be designated
p. We will then argue that p is a competitive equilibrium price vector supporting
{x◦i , i ∈ H }.

For each i ∈ H , let �i = {z | z ∈ RN, z + ri 
i xoi}. What is this set of vectors
�i? The expression �i is defined as the set of net trades from endowment ri so that
an agent of type i strictly prefers these net trades to the trade xoi − ri , the trade
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Fig. 22.1. Core convergence (Theorem 22.2).

that gives him the core allocation. We now define the convex hull (set of convex
combinations) of the family of sets �i, i ∈ H . Let � = {∑i∈H aiz

i | zi ∈ �i , ai ≥
0,
∑

ai = 1}, the set of convex combinations of preferred net trades. The set � is
the convex hull of the union of the sets �i . (See Figure 22.1.) Note that (x◦i − ri) ∈
boundary(�i), (x◦i − ri) ∈ �

i
, and (x◦i − ri) ∈ � for all i.

The strategy of proof now is to show that � and the constituent sets �i are arrayed
strictly above a hyperplane through the origin. The normal to the hyperplane will
be the proposed equilibrium price vector.

We wish to show that 0 �∈ �. We will show that the possibility that 0 ∈ �

corresponds to the possibility of forming a blocking coalition against the core
allocation xoi , a contradiction. The typical element of � can be represented as∑

aiz
i , where zi ∈ �i . Suppose that 0 ∈ �. Then there are 0 ≤ ai ≤ 1,

∑
i∈H ai =

1 and zi ∈ �i so that
∑

i∈H aiz
i = 0. We’ll focus on these values of ai, z

i , and
consider the k-fold replication of H, eventually letting k become arbitrarily large.
Let the notation [·] represent the smallest integer greater than or equal to the
argument. Consider the hypothetical net trade for a household of type i, kai

[kai ]
zi .

We have kai

[kai ]
zi → zi as k → ∞. Therefore, by (C.V, continuity) for k sufficiently

large,

[
ri + kai

[kai]
zi

]

i xoi (†)
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Further, ∑
i∈H

[kai]
kai

[kai]
zi = k

∑
i∈H

aiz
i = 0 (‡).

It is now time to form a blocking coalition. We confine attention to those i ∈ H

so that ai > 0. The blocking coalition is formed by [k̂ai] households of type i

where k̂ is the smallest integer so that (†) is fulfilled for all i ∈ H for ai > 0. That
is, let k̂ ≡ inf{k ∈ N |(†) is fulfilled for all i ∈ H such that ai > 0} where N is the
set of positive integers. Consider Q larger than k̂. Form the coalition S consisting
of [k̂ai] households of type i for all i so that ai > 0. The blocking allocation to
each household of type i is ri + kai

[kai ]
zi. This allocation is attainable to the coalition

by (‡) and it is preferable to the coalition by (†). This is how replication with large
Q overcomes the indivisibility of the individual agents. Thus S blocks xoi , which
is a contradiction. Hence, as claimed, 0 �∈ �.

Having established that 0 is not an element of �, we should recognize that
0 is nevertheless very close to �. Indeed, 0 ∈ boundary of �. This occurs inas-
much as 0 = (1/#H )

∑
i∈H (x◦i − ri), and the right-hand side of this expression

is an element of �, the closure of �. Thus, 0 represents just the sort of boundary
point through which a supporting hyperplane may go in the Bounding Hyperplane
Theorem. The set � is trivially convex. Hence, we can invoke the Bounding Hyper-
plane Theorem. There is p ∈ RN, p �= 0, so that for all v ∈ �, p · v ≥ p · 0 = 0.
Noting Xi = RN

+ , C.IV and C.VI(SC), we know that p ≥ 0. Now (x◦i − ri) ∈ � for
each i, so p · (x◦i − ri) ≥ 0. But

∑
i∈H (x◦i − ri) = 0, so p ·∑i∈H (x◦i − ri) = 0.

Hence, p · (x◦i − ri) = 0 each i. Equivalently, p · x◦i = p · ri . This gives us

0 = p ·
∑
i∈H

1

#H
(x◦i − ri) = inf

x∈�
p · x =

∑
i∈H

1

#H

[
inf

zi∈�i
p · zi

]
,

so

p · (x◦i − ri) = inf
zi∈�i

p · zi .

We have then for each i that p · (x◦i − ri) = inf p · y for y ∈ �i . Equivalently,
x◦i minimizes p · (x − ri) subject to x �i x◦i . In addition, p · x◦i = p · ri . Further,
by the specification of Xi and ri , there is an ε-neighborhood of x◦i contained in Xi .
By C.IV, C.V, and C.VI(SC), and strict positivity of ri , expenditure minimization
subject to a utility constraint is equivalent to utility maximization subject to budget
constraint. Hence, x◦i , i ∈ H , is a competitive equilibrium allocation. QED

The method of proof here is to allow replication to overcome the indivisibility of
the individual households. The expression k̂ represents the number of replications
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needed to achieve the approximate proportion ai of type i, for all i ∈ H , in the
economy.

The theorem is easily generalized in a few modest ways. Strict convexity is
convenient but with simple convexity C.VI(C) the equal treatment property is
maintained, with all households of the same type achieving the same utility rather
than the same consumption. If endowments are not interior to Xi , the supporting
prices result in a compensated or quasi-equilibrium rather than a competitive equi-
librium. Production can be accommodated if all coalitions have access to the same
convex constant returns technology.

22.4 A large economy without replication

Though the result in Theorem 22.2 (Debreu and Scarf) is very intuitive, it treats a
special case – an economy becoming large through replication. It suggests a more
general result: Almost any large economy with a nonempty core should have its
core close to competitive equilibrium. In fact, this result is true. We’ll prove it using
the Shapley-Folkman Lemma in Theorem 22.3 (Anderson). The conditions for core
convergence there are remarkably weak. We completely dispense with convexity at
the household level: The Shapley-Folkman Lemma provides approximate convexity
for the economy as a whole, and that is all that is required. Nor is continuity of
preferences required. The economically meaningful conditions are a well-defined
bound on the size of individual endowments and weak monotonicity.

Recall the proof in the previous section. The core allocation is shown to be close
to competitive equilibrium by showing that the set of preferred net trades is a convex
set with the zero vector, 0, on the boundary, and running a supporting hyperplane
through 0. Convexity is assured by filling in nonconvexities through replication.
Then the normal to the supporting hyperplane, p, is the required competitive
equilibrium price vector. The argument without replication follows the same logic,
but it cannot fill in the the nonconvexities through replication. Rather, we use
the Shapley-Folkman Lemma to show that the nonconvexities are of bounded
size, small as a proportion of the number of households as that number becomes
large.

Recall that the Shapley-Folkman Lemma says that the difference between a sum
of sets and the convex hull of the sum is no larger than the N largest summands. In
the present argument, we again form the set of preferred net trades and its convex
hull. How far is the convex hull of the preferred net trade set from 0? No farther than
the N largest summands. Then we can run a supporting hyperplane for this convex
hull through a point offset from 0 by the N largest summands. How far is it from
supporting the preferred net trade set? No farther than the N largest summands.
Thus the normal to the supporting hyperplane supports the core allocation with a
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discrepancy fixed in size independent of the number of summands. As the economy
becomes large, the discrepancy, per head of population, converges to 0.

Because we dispense with the convexity assumption, we can no longer rely
on C.VI(SC) to imply local nonsatiation. With that in mind we replace C.IV
(nonsatiation) with C.IV* below, weak monotonicity.

(C.IV*) (Weak monotonicity) Let x, y ∈ Xi and x � y. Then x 
i y.

We start by measuring the largest of the individual endowments. Define

M ≡ max

{∑
i∈S

ri
n|n = 1, . . . , N, S ⊆ H, #S = N

}
.

Trivially, M exists and is finite. We’ll discuss M as though it is independent of
the size of H . M is the largest amount of any of the N goods that any N-member
subset of H can accumulate out of initial endowment. Then the N-dimensional
vector (M, M, . . . , M) is an upper bound on the size of the sum of the endowments
of any N-member coalition.

We will then prove the principal theorem of this section.

Theorem 22.3 (Anderson) Assume C.IV*, Xi = RN
+ , for all i ∈ H , a pure

exchange economy. Let {x◦i|i ∈ H } be a core allocation for H . Then there is
p ∈ P so that

(i)
∑

i∈H |p · (x◦i − ri)| ≤ 2M

(ii)
∑

i∈H | inf{p · (x − ri)|x 
i x◦i}| ≤ 2M

The theorem says that the core allocation {x◦i|i ∈ H } is approximately a com-
petitive equilibrium. Expression (i) expresses the approximation by saying that
households approximately fulfill budget constraint at the core allocation. How
close is the approximation? With prices on the unit simplex, the total by which
households may under- and overspend their budgets is 2M . Note that the theorem
does not require convexity of preferences (any form of C.VI). Sufficient convexity
is provided by the Shapley-Folkman Lemma.

Expression (ii) says the core allocation nearly minimizes expenditure subject to
utility constraint (equally satisfactory to {x◦i|i ∈ H }). How good is the approxi-
mation? (Within 2M).

2M may be a big number. Nevertheless, we take M (and 2M) to be fixed by the
character of the population. Then for a large economy, #H large, the ratio 2M/#H

is small. In the limit, as #H becomes arbitrarily large, 2M/#H approaches zero.
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In a large economy, the typical discrepancy from competitive equilibrium becomes
negligible.

Proof Define �i as in the proof of Theorem 22.2. �i = {z | z ∈ RN, z + ri 
i xoi}.
Define � ≡∑

i∈H {�i ∪ {0}}.
The proof proceeds in several steps.

Step 1 Let RN
++ denote the strictly positive quadrant of RN , that is, the interior

of RN
+ . We claim (−RN

++) ∩ � = ø. The reason is straightforward. If there is
a nonempty intersection we can form a blocking coalition and block the core
allocation – but, of course, the core is unblocked, so this leads to a contradiction.

Suppose, contrary to the claim, there is z ∈ � so that z � 0. Then there is
zi ∈ {�i ∪ {0}} for each i ∈ H so that

∑
i∈H zi � 0. Take the subset S ⊂ H of

i ∈ H corresponding to the nonzero elements zi in this sum. Then for i ∈ S there
is zi ∈ �i so that

∑
i∈S zi < 0 (the inequality holds coordinatewise). But then S

is a blocking coalition. That is, for all i ∈ S, zi = x ′i − ri so that x ′i 
i xoi and∑
i∈S x ′i ≤∑i∈S ri . This is a contradiction. Hence, we have (−RN

++) ∩ � = ø as
claimed.

Step 2 Recall that the notation con(A) denotes the convex hull of the set A. Define
the set Z as the strictly negative quadrant of RN translated to the southeast by M

in each coordinate. That is, let Z ≡ {z ∈ RN |zn < −M, for n = 1, 2, . . . , N}. In
this step, we establish that Z ∩ con(�) = ø.

Again, we use a proof by contradiction, establishing a blocking coalition in
the event that the step were not fulfilled. Suppose, contrary to the step, we have
Z ∩ con(�) �= ∅. Choose z ∈ Z ∩ con(�). Then by the Shapley-Folkman Lemma
we can represent z in the following way. There is a partition of H into disjoint
subsets S and T with no more than N elements in T . There is a choice of zi ∈
con({�i ∪ {0}}) so that z =∑

i∈S zi +∑i∈T zi , where for all i ∈ S, zi ∈ {�i ∪ {0}}
and for all i ∈ T , zi ∈ [con({�i ∪ {0}})\{�i ∪ {0}}]. That is, a point in the convex
hull of � is the sum of points of con({�i ∪ {0}}) no more than N of which are
from [con({�i ∪ {0}})\{�i ∪ {0}}]. That is, most of the summands making up the
convex hull of the sum will be from the original sets of the sum while a fixed finite
number will be from the corresponding convex hulls. The original sum was nearly
convex on its own.

Recall that for each i, 0 ∈ {�i ∪ {0}} and that z � −(M, M, . . . , M). Then the
sum [

∑
i∈S zi +∑i∈T 0] ∈ �. Note that each element of con(�i ∪ {0}) ≥ −ri

(the inequality applies coordinatewise). Then we have [
∑

i∈S zi +∑i∈T 0] =
z −∑i∈T zi ≤ z +∑i∈T ri � −(M, M, . . . ,M) +∑i∈T ri ≤ 0. But then
(−RN

++) ∩ � �= ø, contradicting Step 1. The contradiction suffices to establish
Step 2.
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Step 3 By the Separating Hyperplane Theorem, there is p∗ �= 0, p∗ ≥ 0 (by C.IV*)
and real k so that p∗ · x ≥ k ≥ p∗ · y for all x ∈ con(�), y ∈ Z. Then, without loss
of generality, we take p∗ ∈ P .

Step 4 (x◦i − ri) ∈ �̄i (the closure of �i) so p∗ · (x◦i − ri) ≥ inf{p∗ · y|y ∈
�i ∪ {0}}. Let H+ denote the subset of H so that p∗ · (x◦i − ri) ≥ 0. Let H−

denote the subset of H so that p∗ · (x◦i − ri) < 0.
It is useful here to establish an identity∑

i∈H+
inf{p∗ · y|y ∈ �i ∪ {0}}

+
∑
i∈H−

inf{p∗ · y|y ∈ �i ∪ {0}} ≡ inf{p∗ · y|y ∈ �} (†)

∑
i∈H+

p∗ · (x◦i − ri) ≥
∑
i∈H+

inf{p∗ · y|y ∈ �i ∪ {0}}

≥
∑
i∈H+

inf{p∗ · y|y ∈ �i ∪ {0}} +
∑
i∈H−

inf{p∗ · y|y ∈ �i ∪ {0}}

=
∑
i∈H

inf{p∗ · y|y ∈ �i ∪ {0}} = inf{p∗ · y|y ∈ �}

= inf{p∗ · y|y ∈ con(�)} ≥ k ≥ sup{p∗ · y|y ∈ Z} = −M.

The core allocation x◦i is attainable, so
∑

i∈H (x◦i − ri) ≤ 0 and for any goods
n in surplus at the core allocation p∗

n = 0. So
∑

i∈H p∗ · (x◦i − ri) = 0. Then∑
i∈H− p∗ · (x◦i − ri) = −∑i∈H+ p∗ · (x◦i − ri) ≥ inf{p∗ · y|y ∈ �} ≥ −M

This implies that

M ≥ − inf{p∗ · y|y ∈ �} ≥
∑
i∈H+

p∗ · (x◦i − ri) (∗)

Note that for i ∈ H+, inf{p∗ · y|y ∈ �i ∪ {0}} ≤ 0. (∗∗)
It follows then that[

−
∑
i∈H+

inf{p∗ · y|y ∈ �i ∪ {0}} +
∑
i∈H+

p∗ · (x◦i − ri)

]

≥
∑
i∈H+

| inf{p∗ · y|y ∈ �i}|. (∗∗∗)

Further, note that∑
i∈H−

| inf{p∗ · y|y ∈ �i}| ≤ −
∑
i∈H−

inf{p∗ · y|y ∈ �i ∪ {0}}. (∗∗∗∗)
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Now the conclusions of the theorem follow directly.∑
i∈H−

|p∗ · (x◦i − ri)| =
∑
i∈H+

|p∗ · (x◦i − ri)| ≤ M, so

∑
i∈H

|p∗ · (x◦i − ri)| =
∑
i∈H−

|p∗ · (x◦i − ri)| +
∑
i∈H+

|p∗ · (x◦i − ri)| ≤ 2M.

This establishes the assertion (i) in the theorem.
To demonstrate assertion (ii), we form the following argument:∑

i∈H

| inf{p∗ · (x − ri)|x 
i x◦i}|

=
∑
i∈H+

| inf{p∗ · y|y ∈ �i}| +
∑
i∈H−

| inf{p∗ · y|y ∈ �i}|.

(Subsituting the left hand side of (***) for the first term in this expression and
the right hand side of (****) for the second term)

≤
[
−
∑
i∈H+

inf{p∗ · y|y ∈ �i ∪ {0}} +
∑
i∈H+

p∗ · (x◦i − ri)

]

−
∑
i∈H−

inf{p∗ · y|y ∈ �i ∪ {0}}

= −
∑
i∈H+

inf{p∗ · y|y ∈ �i ∪ {0}} −
∑
i∈H−

inf{p∗ · y|y ∈ �i ∪ {0}}

+
∑
i∈H+

p∗ · (x◦i − ri) (Then using the identity (†), and the expression (*))

= − inf{p∗ · y|y ∈ �} +
∑
i∈H+

p∗ · (x◦i − ri)

≤ M + M = 2M.

Thus
∑

i∈H | inf{p∗ · (x − ri)|x 
i x◦i}| ≤ 2M . QED

22.5 Interpreting the core convergence result

The principal interpretation of the core convergence result is to confirm the idea
that large economies are competitive. Price-taking behavior is a good model of
rational behavior in a large economy. The convergence result shows that, in a
large economy, bargaining will not improve on the competitive equilibrium. Any
advantage one coalition can achieve by banding together for strategic trade will be
lost as another coalition blocks the new allocation.
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We can interpret the coalitions of the core convergence story as monopolies,
or attempts to form monopoly cartels. It is a misinterpretation of the result to say
that in a large economy monopolies don’t matter. They matter terribly if they are
allowed to persist. The result is that monopolies cannot persist in a regime of
freely forming countercartels; freely forming cartels and countercartels give rise
to the core. The process of bargaining in the core lets individual agents outside the
attempted monopoly form countervailing coalitions with members of the monopoly
cartel. They thus try to dilute the monopoly profits by inducing individual members
of the cartel to defect. The result in the core is that the cartel is broken and a near-
competitive core allocation is reestablished.

Note that this scenario supposes that individual members of a proposed cartel
can bargain freely to improve their individual situations by making side deals (or
threatening to do so) with agents outside the cartel. In actual economies, cartels
recognize this problem and strictly enforce rules against side deals.

An essential element of the bargaining process in the core model is the ease of
forming countervailing coalitions. The model takes no account of the difficulty of
forming coalitions and hence has nothing to say about differences in the ease with
which coalitions may form. In actual economies, of course, forming a coalition
(making a deal) is a resource-using process in itself, and there are differences
among (potential) coalitions in the costs of coalition formation. Adam Smith (1776)
warned us that any meeting of the members of a particular business could result in a
(monopolistic) agreement contrary to the interests of the general public. In the core
model this remains true, but it is countered by the possible meeting of any member
of that business with members of the general public to form an agreement contrary
to the interests of the business group. Which of these coalitions seems more likely
to form? In a model where coalition formation is costless, as above, they will both
form effortlessly to move the economy to the core allocation. In a model where
coalition formation is costly, we may guess that forming a coalition of members of
the same business is an easier operation than one that mixes business and public
members. Hence, we see the power of Smith’s prediction.

22.6 Bibliographic note

The treatment of core convergence in Theorem 22.2 follows that of Debreu and
Scarf (1963). They introduce the powerful simplification of replica economies.
Cornwall (1979) provides an excellent expository treatment. Arrow and Hahn
(1972) uses the Shapley-Folkman results. The treatment in Theorem 22.3 follows
Anderson (1978) and Ichiishi (1983). Aumann (1964) introduces the mathemati-
cally elegant approach of a nonatomic measure space of households.
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Exercises

22.1 Consider core convergence in a pure exchange economy with two goods,
(x, y), two household types, and (integer) Q of each type.

Type 1: endowment (99, 1)
utility function u1(x, y) = x(1/2)y(1/2)

Type 2: endowment (1, 99)
utility function u2(x, y) = x(1/2)y(1/2)

(a) Consider the allocation
Type 1: (10, 10)
Type 2: (90, 90).

Show that this allocation is in the core for Q = 1.
(b) Show that the allocation in part a is blocked for Q = 2. Discuss.
(c) Find an allocation in the core for arbitrarily large Q. Explain.

22.2 Consider a pure exchange economy composed of households in the set H ,
where the economy becomes large through Q-fold replication.
(a) Let p0 be an equilibrium price vector for the original economy. Show

that p0 is also an equilibrium price vector for the (larger) economy
replicated Q times.

Now consider the special case where there are two commodities, x

and y, and two trader types. Type 1 is characterized as

u1(x, y) = x · y
r1 = (10, 0).

Type 2 is characterized as

u2(x, y) = x1/2y1/2

r2 = (0, 10).

(b) Show that the following allocation, a1 to type 1 and a2 to type 2, is in
the core for all levels of replication Q:

a1 = a2 = (5, 5).

(c) Show that the following allocation, a1 to type 1 and a2 to type 2, is in
the core for the original economy with one of each type and is not in
the core for a replica economy with Q ≥ 2:

a1 = (9, 9); a2 = (1, 1).

Discuss.
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22.3 Consider the core of a pure exchange economy growing large by replica-
tion. There are two goods, (x, y), two household types and (integer) Q of
each type.

Type 1: endowment (98, 2)
utility function u1(x, y) = xy

Type 2: endowment (2, 98)
utility function u2(x, y) = xy.

(a) Consider the allocation

Type 1: (15, 15)
Type 2: (85, 85).

Show that this allocation is in the core for Q = 1.
(b) Show that the allocation in part (a.) is blocked for Q = 2. Discuss.
(c) Find an allocation in the core for arbitrarily large Q. Explain.

22.4 (With acknowledgment to Richard Cornwall). Four examples are given
below of a pure exchange economy and of a proposed allocation for this
economy. For each, show whether or not the proposed allocation is:

(i) Pareto efficient,
(ii) in the core,

(iii) obtainable as a competitive equilibrium with respect to some price
vector.

In each example, explain your reasoning for each of (i), (ii), and (iii).

Example 22.1 This example has two goods denoted a and b and four
traders, each having the same utility function:

u(a, b) = ab.

The endowment vectors are

r1 = r2 = (10, 10)

and

r3 = r4 = (10, 30).

In this example, the proposed allocation is

x1 = x2 = (7.5, 15)

and

x3 = x4 = (12.5, 25).
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Example 22.2 This example is the same as Example 1 except that the
proposed allocation is

x1 = x2 = (
√

50, 2
√

50)

and

x3 = x4 = (20 −
√

50, 40 − 2
√

50).

Example 22.3 This example is the same as Example 1 except that the
proposed allocation is

x1 = (
√

50, 2
√

50), x2 = (7.5, 15)

and

x3 = x4 = (12.5, 25).

Example 22.4 This example is the same as Example 1 except that the
proposed allocation is

x1 = (8, 12), x2 = (9, 11)

and

x3 = (12, 23), x4 = (11, 29).

22.5 Consider a sequence of pure exchange economies. Each economy has an
equal number of traders of the following types:

Type 1 Type 2

Utility function u1(x, y) = x1/2y1/2 u2(x, y) = x1/2y1/2

Endowment r1 = (0, 5) r2 = (5, 0)

Economy E-1 consists of one trader of each type; economy E-2 consists
of two traders of each type. Economy E-K consists of K traders of each
type.
(a) Find the core of E-1.
(b) Show that the allocation a1 = (1, 1), a2 = (4, 4) is in the core of E-1.
(c) Show that the allocation in which both traders of type 1 get a1 and both

traders of type 2 get a2 is not in the core of E-2.
(d) Find an allocation that is in the core of E-K for all K . Explain.
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y

x0

Fig. 22.2. Nonconvex preferences (Exercise 22.6).

22.6 Consider the core of a pure exchange economy composed of three identical
agents, 1, 2, 3. There are two goods, x and y. For each of the agents
i = 1, 2, 3, i’s utility function is

ui(xi, yi) = xi + yi + max[xi, yi],

where xi and yi are i’s consumption of x and y, respectively. This utility
function results in an indifference map that looks like Figure 22.2. The
preferences are nonconvex, violating C.VI(SC).

Let each agent’s endowment be ei = (2, 2), two units of x and y each.
Assume the equal treatment property:

(E) at any core allocation, all agents i have equal utility.

Demonstrate the following points:
(a) At any Pareto-efficient allocation, at most, one agent will have positive

holdings of both goods.
(b) The core is empty.

22.7 Consider a pure exchange economy becoming large through Q-fold repli-
cation. Consider an example where there are two commodities, x and y,
and two trader types, 1 and 2.

Type 1 is characterized as having utility function

u1(x, y) = xy, and endowment

r1 = (99, 1).
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Type 2 is characterized as having utility function

u2(x, y) = xy, and endowment

r2 = (1, 99).

(a) Show that the following allocation, a1 to type 1 and a2 to type 2, is in
the core for all levels of replication Q:

a1 = a2 = (50, 50).

(b) Show that the following allocation, a1 to type 1 and a2 to type 2, is in
the core for the original economy with one of each type and is not in
the core for an economy with Q ≥ 2:

a1 = (90, 90);

a2 = (10, 10).

Define a new concept, the equi-core, as the set of allocations unblocked by
equal-weighted coalitions. A coalition S in economy Q-H will be said to
equal-weighted , if it contains the same number of individuals of each type
represented in the coalition. For example, a coalition of five households
each of types 1 and 2 is equal weighted; a coalition of five of type 1, and
four of type 2 is not equal weighted; a coalition of three of type 2 and zero
of type 1 is equal weighted.

You may assume without proof that the equi-core retains two properties
of the core: inclusion of the competitive equilibrium (Theorem 21.1) and
the equal treatment property (Theorem 22.1). Further, you may assume
that any equal-weighted blocking coalition maintains the equal treatment
property in its blocking allocation.
(c) Show that the following allocation, discussed in part (b), a1 to type 1

and a2 to type 2, is in the equi-core for the original economy with one
of each type, and is still in the equi-core for an economy with Q ≥ 2:

a1 = (90, 90);

a2 = (10, 10).

(d) Discuss the examples of parts (b) and (c). What do they indicate about
the process of core convergence in Theorem 22.2?

22.8 Theorem 22.3 develops a result that approximates the result of Theo-
rem 22.2. Assume that

For all h ∈ H, |rh| ≤ M(M positive, real).
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Let #H be the (finite) number of elements in H as #H becomes large.
Explain how Theorem 22.3 can be interpreted as:
(a) The value of the core allocation xi◦ at p◦ is approximately equal to the

value of endowment ri , for typical i ∈ H ,
(b) xi◦ is approximately a utility maximizer for typical i ∈ H subject

to budget constraint (equivalently, expenditure minimizer, subject to
utility constraint)

Explain how these properties are similar to Theorem 22.2.
22.9 Consider the Debreu-Scarf replica economy model of sections 22.1–22.3.

You may use the equal treatment property, Theorem 22.1. Let Q be a
positive integer. Let Core (Q-H ) denote the set of core allocations of
the Q-fold replica of the original economy H . Under the equal treatment
property, a typical core allocation will be represented by allocations to
type, {xh|h ∈ H }. Recall that blocking coalitions do not need to provide
equal treatment in the blocking allocation. Denote the set of households of
this economy as

Q × H = {h, q|h ∈ H, q = 1, 2, . . . , Q},
where “h, q” is read as “the qth household of type h.” Demonstrate that
Core ((Q + 1)-H ) ⊆ Core(Q-H ).



Part G

An economy with supply and demand
correspondences

In Chapters 10–18, we developed the theory of firm and household behavior, con-
centrating on the case of strictly convex preferences and strictly convex production
technology sets. Using strict convexity allowed us to use point-valued supply and
demand functions. There are many settings, however, where this mathematically
simple formulation seems inappropriate economically; for example, when there
are perfect substitutes in consumption or when production technologies are linear.
In these cases, where weak rather than strict convexity holds, supply and demand
relations appear to be set valued. Figure G.1 presents the example of a firm with
a linear production technology and the resulting set-valued supply function. Fig-
ure G.2 shows the case of a consumer choosing between perfect substitutes with
the resulting set-valued demand behavior. It is important in these examples that
preferences and technology be convex, even though they are not strictly convex.
That assures us that a household demand or a firm supply at given prices can be
characterized as a convex set. Figure G.3 depicts, in partial equilibrium, typical
resulting supply and demand curves and possible market equilibria.

We need a mathematical treatment that will allow us to deal with this additional
complexity. Fortunately, there is an available theory of continuous point-to-set
mappings that fully parallels the theory of continuous functions. We will develop
concepts of continuity and a fixed-point theorem that will allow us to duplicate, in
the more general setting of set-valued supply and demand, the results on existence
of equilibrium we developed for point-valued supply and demand in Chapters 11–
18. Chapter 19’s results on the efficiency of equilibrium and supportability of
efficient allocation do not depend on point-valuedness of demand and supply and
are hence unaffected by whether strict or weak convexity is used.

Our modeling plan for an economy characterized by set-valued supply and
demand functions (to be denoted correspondences) will closely parallel the model
developed for point-valued supply and demand functions in Chapters 11–18. The
model we developed there focused on the notion of continuous supply and demand

275
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input

output

p

S(p)

q0

0

Y j

Fig. G.1. Linear production technology and its supply correspondence.

behavior as a function of prices; combined with Walras’s Law, continuity led to
existence of general competitive equilibrium. We develop in Chapter 23 a concept
of continuity of correspondences, called upper hemicontinuity. We will describe –
under the assumptions of weak rather than strict convexity – supply and demand
correspondences as upper hemicontinuous correspondences in prices. We further
show that each supply and demand correspondence evaluated at a given price
vector will be a convex set. We will show in Chapters 23 and 24 that essentially
the same results we found in Chapters 11–18 are true of an economy where the
set-valued demand and supply are upper hemicontinuous and convex valued. That
is, the property “upper hemicontinuous convex-valued correspondence” will play
the same role in this more general setting that “continuous function” played in the
treatment of Chapters 11–18. Thus, we substitute the Kakutani Fixed-Point The-
orem (on upper hemicontinuous convex-valued correspondences) for the Brouwer
Fixed-Point Theorem, and corresponding results follow.

Recall how the argument for existence of competitive equilibrium goes in Chap-
ters 15–18:

We consider an artificially bounded economy. A price adjustment process continuous in
excess demand (which is itself continuous in prices) is posited. Hence price adjustment
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q0

0 1
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Bi(p)

Fig. G.2. Preferences for perfect substitutes and the demand correspondence.

can be characterized as a continuous function from price space into itself. Price adjustment
is then shown to lead to a fixed point of the price adjustment process as the result of a
fixed-point theorem. This fixed point is then shown to be an equilibrium of the artificially
bounded economy.

The artificial bound on the economy is then shown not to be a binding constraint in
equilibrium. Hence the household and firm optimizations at the equilibrium prices of the
artificially bounded economy are still optimizing when the artificial bounds are removed.
Markets still clear. The equilibrium of the artificially bounded economy is an equilibrium
of the true unbounded economy.

We will develop a treatment of the economy with set-valued excess demand and
supply that parallels the summary above. The market excess demand correspon-
dence at given prices will be simply the set summation of household demand
correspondences minus the summation of firm supply correspondences minus
endowment. Excess demand will be upper hemicontinuous and convex valued
whenever all of the individual firm and household demands and supplies are upper
hemicontinuous and convex valued. We develop a fixed-point theorem (Kakutani
Fixed-Point Theorem) for upper hemicontinuous convex-valued correspondences.
Then, we will find a price adjustment function for a Walrasian auctioneer in this
set-valued economy that is also upper hemicontinuous and convex valued. We will
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set of equilibrium q* 
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Fig. G.3. Equilibrium in a market with supply and demand correspondences.

then describe the set of possible excess demands (suitably bounded to include all
“attainable” supply and demand values as a proper subset) as a compact convex set.
Finally, we will characterize the state of the economy as a point in the Cartesian
product of the price simplex with the space of possible excess demands. Price
and excess demand adjustments will be represented as an upper hemicontinuous
convex-valued mapping from this space into itself. There is a fixed point that will
be shown to be a competitive equilibrium for an artificially bounded economy and,
by extension, to the actual economy.



23

Mathematics: Analysis of point-to-set mappings

23.1 Correspondences

We will call a point-to-set mapping a correspondence. A function maps points into
points. A correspondence (or point-to-set mapping) maps points into sets of points.
Let A and B be sets. We would like to describe a correspondence from A to B. For
each x ∈ A we associate a nonempty set β ⊂ B by a rule ϕ. Then we say β = ϕ(x),
and ϕ is a correspondence. The notation to designate this mapping is ϕ : A → B.
For example, suppose A and B are both the set of human population. Then we could
let ϕ be the cousin correspondence ϕ(x) = {y | y is x’s cousin}. Note that if x ∈ A

and y ∈ B, it is meaningless or false to say y = ϕ(x), rather we say y ∈ ϕ(x).
The graph of the correspondence is a subset of A × B : {(x, y) | x ∈ A, y ∈ B and
y ∈ ϕ(x)}.

For example, let A= B = R. We might consider ϕ(x) = {y | x −1 ≤ y ≤ x +1}.
The graph of ϕ(·) appears in Figure 23.1.

23.2 Upper hemicontinuity (also known as upper semicontinuity)

In the balance of this chapter and the next, we concentrate on mappings from
one real Euclidean space into another, from RN into RK , for N ≥ 1 and K ≥
1. The continuity concept for correspondences will parallel that for functions –
a correspondence is continuous when nearby points in the domain are mapped
into sets nearby in the range. “Nearby” becomes a bit more complicated. We
introduce two independent concepts of continuity of correspondences, upper and
lower hemicontinuity. For functions (point-valued correspondences) into a compact
range they are equivalent to one another and equivalent to continuity of the function.

Definition Let ϕ : S → T , ϕ be a correspondence, and S and T be closed subsets
of RN and RK , respectively. Let xν, x◦ ∈ S, ν = 1, 2, 3, . . . ; let xν→x◦, yν∈ϕ(xν),
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y
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0

Fig. 23.1. A typical correspondence, ϕ(x) = {y | x − 1 ≤ y ≤ x + 1}.

for all ν=1, 2, 3, . . . , and yν → y◦. Then ϕ is said to be upper hemicontinuous
(also known as upper semicontinuous) at x◦ if and only if y◦ ∈ ϕ(x◦).

Start with a convergent sequence in the domain of the correspondence. Evaluate
the correspondence along that sequence. Suppose the correspondence values
include a convergent sequence in the range. Upper hemicontinuity asserts then
that the limit of the convergent sequence in the range is included in the correspon-
dence evaluated at the limit of the convergent sequence in the domain. Intuitively,
ϕ is upper hemicontinuous at x◦, if whenever ϕ is sneaking up on a value y◦ in the
range as its arguments approach x◦ in the domain, the correspondence can catch
that value y◦ in ϕ(x◦). If you can sneak up on a value, you can catch it. That is
upper hemicontinuity. Let’s consider a few examples:

Example 23.1 An upper hemicontinuous correspondence. Let ϕ(x) be defined as
follows. ϕ : R → R. For

x < 0, ϕ(x) = {y | x − 4 ≤ y ≤ x − 2}
x = 0, ϕ(x) = {y | −4 ≤ y ≤ +4}
x > 0, ϕ(x) = {y | x + 2 ≤ y ≤ x + 4}.

Note that ϕ(·) is convex valued. For each x ∈ R, ϕ(x) is a convex set. The graph
of ϕ(·) is shown in Figure 23.2. For all x◦ ∈ R, ϕ(·) is upper hemicontinuous
at x◦. This may be obvious from inspection, but we should demonstrate it more



23.2 Upper hemicontinuity 281

x

4

2

-2

-4

�(x)

0

Fig. 23.2. Example 23.1 – An upper hemicontinuous correspondence.

formally. Consider the sequence yν ∈ ϕ(xν), where xν ∈ R, xν → x◦. Without
loss of generality, let x◦ ≤ 0 (note the weak inequality). If yν → y◦, then x◦ − 4 ≤
y◦ ≤ x◦ − 2. Then y◦ ∈ ϕ(x◦). The tricky point appears to be at x = 0. But the
essential notion is that ϕ(0) contains all of the limit points of ϕ(·) evaluated in the
neighborhood of x = 0. That is the property that defines upper hemicontinuity. In
contrast, consider Example 23.2.

Example 23.2 A correspondence not upper hemicontinuous at 0. Let ϕ(x) be
defined much as in Example 23.1 but with a discontinuity at 0. ϕ : R → R. For

x < 0, ϕ(x) = {y | x − 4 ≤ y ≤ x − 2}
x = 0, ϕ(0) = {0}
x > 0, ϕ(x) = {y | x + 2 ≤ y ≤ x + 4}.

Note that ϕ(·) is convex valued. For each x ∈ R, ϕ(x) is a convex set. The graph
of ϕ(·) is shown in Figure 23.3. At x◦ different from 0, the behavior is just as
in Example 23.1, so the correspondence is upper hemicontinuous at those values.
At x◦ = 0, we have the following problem. Without loss of generality, consider
a sequence xν > 0, xν → 0. Consider the sequence yν ∈ ϕ(xν). yν → y◦. Then
y◦ ≥ 2. But then y◦ �∈ ϕ(0) = {0}. Hence, ϕ(·) is not upper hemicontinuous at 0.
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Fig. 23.3. Example 23.2 – A correspondence that is not upper hemicontinuous at 0.

Theorem 23.1 ϕ is upper hemicontinuous if and only if its graph is closed in
S × T .

Proof Exercise 23.7. QED

23.3 Lower hemicontinuity (also known as lower semicontinuity)

We now introduce a second, related, concept of continuity for correspondences,
lower hemicontinuity. We described, loosely, the notion of upper hemicontinuity
as the property that, if the correspondence approaches a value as a limit, that value
is in the correspondence. Conversely, lower hemicontinuity is the property that, if
a value is in the correspondence, then that value can be approached as the limit of
a sequence of values in the correspondence.

Definition Let ϕ : S → T , where S and T are closed subsets of RN and RK ,
respectively. Let xν ∈ S, xν → x◦, y◦ ∈ ϕ(x◦), q = 1, 2, 3, . . . . Then ϕ is said to
be lower hemicontinuous (also known as lower semicontinuous) at x◦ if and only
if there is yν ∈ ϕ(xν), yν → y◦. Lower hemicontinuity asserts the presence of a
sequence of points in the correspondence evaluated at a convergent sequence of
points in the domain.

Intuitively, ϕ is lower hemicontinuous at x◦ if whenever ϕ(x◦) includes a value y◦,
and x◦ is characterized as the limit of a sequence in the domain, then there is a
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Fig. 23.4. Example 23.3 – A lower hemicontinuous correspondence.

sequence of values in the correspondence evaluated at that sequence in the domain
that is sneaking up on y◦. If you’ve caught a value, you must be able to sneak up
on it. Consider a few examples.

Example 23.3 A lower hemicontinuous correspondence. Let ϕ(x) be defined as
follows. ϕ : R → R. For

x �= 0, ϕ(x) = {y | x − 4 ≤ y ≤ x}
x = 0, ϕ(x) = {y | −3 ≤ y ≤ −1}.

The graph of ϕ(·) is shown in Figure 23.4. Note that ϕ(·) is convex valued. For each
x ∈ R, ϕ(x) is a convex set. For all x◦ ∈ R, ϕ(·) is lower hemicontinuous at x◦.
The only point where this requires some care is at x◦ = 0. Let xν → 0, y◦ ∈ ϕ(0).
To demonstrate lower hemicontinuity, we must show that there is yν ∈ ϕ(xν) so
that yν → y◦. Note that −3 ≤ y◦ ≤ −1. But for ν large, there is yν ∈ ϕ(xν), so that
yν = y◦. Hence, trivially, yν → y◦. Note that ϕ(·) is not upper hemicontinuous at
x◦ = 0. This follows simply because y = −4 is the limit of a sequence of values
in ϕ(xν) but −4 �∈ ϕ(0).

Example 23.4 An upper hemicontinuous correspondence that is not lower hemi-
continuous. This example is merely Examples 23.1 and 23.2 revisited. The corre-
spondence ϕ(·) in both Examples 23.1 and 23.2 is not lower hemicontinuous at
x◦ = 0. In both cases, 0 ∈ ϕ(0) but, for a typical sequence xν → 0, there is no
yν ∈ ϕ(xν) so that yν → 0.
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Fig. 23.5. Example 23.5 – A continuous correspondence.

23.4 Continuous correspondence

We have presented examples above of upper hemicontinuous correspondences that
are not lower hemicontinuous and vice versa. It is certainly possible for a correspon-
dence to be both. A correspondence that is both upper and lower hemicontinuous
will be known simply as a continuous correspondence.

Definition Let ϕ : A → B, with ϕ a correspondence. The correspondence ϕ(·) is
said to be continuous at x◦ if ϕ(·) is both upper and lower hemicontinuous at x◦.

Example 23.5 A continuous correspondence. The following correspondence, ϕ(·),
is both upper and lower hemicontinuous throughout its range and hence is a con-
tinuous correspondence. For

x < 0, ϕ(x) = {y | 2x ≤ y ≤ −x}
x = 0, ϕ(x) = {0}
x > 0, ϕ(x) = {y | −2x ≤ y ≤ −x} ∪ {y | 3x ≤ y ≤ 4x}.

The correspondence ϕ(·) is illustrated in Figure 23.5. To demonstrate that it is
upper hemicontinuous, note that it contains all its limit points. That is, for any
convergent sequence in the domain and a corresponding convergent sequence of
correspondence values in the range, the limit of the sequence of correspondence
values is in the correspondence evaluated at the limiting value in the domain.
To demonstrate lower hemicontinuity, note that any point in the correspondence
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evaluated at a point can be approached as the limit of points in the correspondence
evaluated at a corresponding convergent sequence in the domain.

Unlike Examples 23.1 through 23.4, ϕ(·) in this example is not convex valued.
For x > 0, ϕ(x) is a nonconvex set, composed of two noncontiguous segments.

Note that if ϕ is point valued (that is, a function) with a compact range then upper
hemicontinuity, continuity (in the sense of a function), and lower hemicontinuity
are equivalent.

23.5 Cartesian product of correspondences

Theorem 23.2 Let ϕ : S → T and μ : S → U . Let × denote the Cartesian prod-
uct. Then ϕ × μ : S → T × U . Further, if ϕ and μ are upper hemicontinuous at
x◦ ∈ S, then so is ϕ × μ.

Proof Exercise 23.8

23.6 Optimization subject to constraint: Composition of correspondences;
the Maximum Theorem

We can now use the structure of upper and lower hemicontinuity of correspondences
to demonstrate a powerful result: continuity of optimizing behavior. We commonly
think of household demand as the result of maximizing utility (a continuous real-
valued function of consumption) subject to a budget constraint. This is the stuff of
economic analysis every day. We would like to develop sufficient conditions for
demand to be an upper hemicontinuous correspondence in prices. The mathematical
basis for this result is the Maximum Theorem. This theorem gives us sufficient
conditions for optimizing choice behavior to be continuous as a function of variation
in constraint.

Suppose the budget constraint set is a continuous (both upper and lower hemi-
continuous) correspondence in prices. Prices are an argument that determines
the household budget constraint. The constraint set and optimization determine
demand. Demand is then characterized as a function of prices (which directly deter-
mine the budget constraint set). How will the optimizing demand of the household
vary with prices? The Maximum Theorem gives us a clear definite result. Demand
will be an upper hemicontinuous correspondence in prices. The Maximum Theo-
rem will tell us that all we need to assert this result is the continuity of the budget
constraint in prices and the continuity of utility in commodities. However, first we
need to state and prove the theorem.

We formalize this notion in the following way. Let f (·) be a real-valued function,
and let ϕ(·) be a correspondence intended to represent an opportunity set. Then we
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Fig. 23.6. The maximum problem.

let μ(·) represent the correspondence consisting of the maximizers of f (·) subject
to choosing the maximizer in the opportunity set ϕ(·). Formally, we state

The maximum problem Let T ⊆ RN, S ⊆ RM, f : T → R, and ϕ : S → T ,
where ϕ is a correspondence, and let μ : S → T , where μ(x) ≡ {y◦ | y◦ maxi-
mizes f (y) for y ∈ ϕ(x)}.1

This situation is depicted in Figure 23.6. We treat μ(·) as a correspondence
because maximization subject to constraint need not result in a unique maximizer;
there may be a set of several or an infinite number of maximizers. Nevertheless,
the Maximum Theorem lets us treat this set of maximizers as a well-behaved upper
hemicontinuous correspondence, whenever the opportunity set and maximand are
continuous.

To prove the theorem, we make use of a trivial result.

Lemma 23.1 Let xν and yν be sequences in R such that xν ≥ yν for all
ν = 1, 2, . . . Let xν → x◦ and yν → y◦. Then x◦ ≥ y◦.

Proof Suppose x◦ ≥ y◦ is not true. Then y◦>x◦ and y◦ − x◦>0. Thus, there
is Nε and ε > 0 so that for all ν > Nε, |y◦ − yν | < ε, |x◦ − xν | < ε, and ε <
1
3 (y◦ − x◦). But then yν > y◦ − ε > x◦ + ε > xν . This contradiction proves the
lemma. QED

Theorem 23.3 (The Maximum Theorem) Let f (·), ϕ(·), and μ(·) be as defined
in the Maximum Problem. Let f be continuous on T and let ϕ be continuous (both
upper and lower hemicontinuous) at x◦ and compact valued in a neighborhood of
x◦. Then μ is upper hemicontinuous at x◦.

1 The Maximum Problem and Theorem are often stated more generally, with f : S × T → R and f continuous
on S × T .
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Proof We seek to show that if xν ∈ S, xν → x◦, yν ∈ μ(xν), ν = 1, 2, 3, . . . , and
yν → y∗ then y∗ ∈ μ(x◦). Note that ϕ(x◦) compact implies μ(x◦) is well defined,
nonempty.

Here’s the situation. We have a convergent sequence of constraint parameters (for
example, prices) xν ∈ S. The sequence converges to a limit point xν → x◦ ∈ S.
There is a corresponding convergent sequence of optimizing choices yν ∈ μ(xν)
and yν → y∗. We must show that the limit of that sequence, y∗, is the optimizing
choice in the opportunity set defined at x◦, the limit of the sequence in the domain
S, xν → x◦. There are two parts to demonstrating this result. First, we must show
that y∗ is in the opportunity set, that is, that y∗ ∈ ϕ(x◦). Then, we must show that
y∗ is the optimizing choice in ϕ(x◦), that is, that y∗ ∈ μ(x◦).

We seek to show that if xν ∈ S, xν → x◦, yν ∈ μ(xν), and yν → y∗, then y∗ ∈
μ(x◦). By construction, yν ∈ ϕ(xν). Recall that ϕ being continuous means that ϕ is
both upper and lower hemicontinuous. By upper hemicontinuity of ϕ, y∗ ∈ ϕ(x◦).
It remains to show that y∗ maximizes f (y) for y ∈ ϕ(x◦). We must demonstrate that
f (y∗) ≥ f (z∗) for all z∗ ∈ ϕ(x◦). By lower hemicontinuity of ϕ there is zν ∈ ϕ(xν)
so that zν → z∗. But recall that yν ∈ μ(xν) all ν, so that f (yν) ≥ f (zν) for all ν.
Taking the limit as ν becomes large, using Lemma 23.1 and continuity of f , we
get f (y∗) ≥ f (z∗). Thus, y∗ ∈ μ(x◦). QED

Example 23.6 Applying the Maximum Theorem. Let S = T = R. Let f (y) = y2.
Let

ϕ(x) = {y | −x ≤ y ≤ x} for x ≥ 0
ϕ(x) = {y | x ≤ y ≤ −x} for x < 0.

Then μ(x) = {x,−x}, because μ(x) is the set of maximizers of y2 for y ∈ ϕ(x).
Note that ϕ(x) is both upper and lower hemicontinuous throughout R and is con-
vex valued. The correspondence μ(x) is upper hemicontinuous by the Maximum
Theorem. It is not, however, convex valued.

23.7 Kakutani Fixed-Point Theorem

We now need an extension of the Brouwer Fixed-Point Theorem to the context
of correspondences. It is clear that upper hemicontinuity of a correspondence is
not a sufficient condition for a mapping from a compact convex set into itself
to have a fixed point. (See Figure 23.7.) The condition that does the job is upper
hemicontinuity plus the requirement that the correspondence evaluated at each point
of the domain be a convex set. This can be illustrated convincingly in mapping the
1-simplex (line segment) into itself. (See Figure 23.8.) This result is the Kakutani
Fixed-Point Theorem.
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Fig. 23.7. An upper hemicontinuous mapping from an interval (1-simplex) into itself
without a fixed point.

We will prove the Kakutani Fixed-Point Theorem as a limiting result of the
Brouwer Fixed-Point Theorem. It will help to have a technical lemma.

Lemma 23.2 Let S be an N-simplex. Let ϕ : S → S be a correspondence upper
hemicontinuous everywhere on S. Further, let ϕ(x) be a convex set for all x ∈ S.

x
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45º

Fig. 23.8. An upper hemicontinuous convex-valued mapping from an interval (1-simplex)
into itself with a fixed point.
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Fig. 23.9. Lemma 23.2 – Approximating an upper hemicontinuous convex-valued corre-
spondence by a continuous function.

Let ν = 1, 2, 3, . . . . For each ν, there is a continuous function f ν(·) from S into S

so that

max
x∈S

min
x ′ν∈S,y′ν∈ϕ(x ′ν )

|(x, f ν(x)) − (x′ν, y ′ν)| <
1

ν
for all x ∈ S.

Proof The proof is a bit technical, so we omit it here. It is presented in Hildenbrand
and Kirman (1976). QED

The notion of the lemma is illustrated in Figure 23.9. Note that the lemma, the
ability to approximate an upper hemicontinuous correspondence by a sequence of
continuous functions, clearly depends on the convex valuedness of ϕ(·).

Theorem 23.4 (Kakutani Fixed-Point Theorem) Let S be an N -simplex. Let
ϕ : S → S be a correspondence that is upper hemicontinuous everywhere on
S. Further, let ϕ(x) be a convex set for all x ∈ S. Then there is x∗ ∈ S so that
x∗ ∈ ϕ(x∗).

Proof Here is the strategy of proof: We will present a limiting argument based on
the Brouwer Theorem. Lemma 23.2 says we can find a sequence of continuous
functions f ν(·) from S into S approximating ϕ(·). By the Brouwer Fixed-Point
Theorem, we know that each of the functions f ν(·) has a fixed point. The sequence
f ν(·) is constructed so that it converges to limiting values in ϕ(·). Then the sequence
of fixed points of f ν(·) will converge to a fixed point of ϕ(·).
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Fig. 23.10. Example 23.7 – Applying the Kakutani Fixed-Point Theorem.

Let ν = 1, 2, 3, . . . . Lemma 16.2 says that there is a sequence of continuous
functions f ν(·) from S into S so that

max
x∈S

min
x ′ν∈S,y′ν∈ϕ(x ′ν)

|(x, f ν(x)) − (x ′ν, y′ν)| <
1

ν
for all x ∈ S.

By the Brouwer Theorem we know that f ν(·) has a fixed point; call it xν .
xν, ν = 1, 2, 3, . . . , is a sequence on a compact set, S, so – without loss of
generality – taking a subsequence, we find its limit point, xν→xo. We will show
that xo is a fixed point of ϕ(·).

We have f ν(xν) = xν . Recall that there is y ′ν ∈ ϕ(x ′ν) so that |(xν, f ν(xν)) −
(x ′ν, y ′ν)| < 1

ν
. Then x ′ν, y ′ν→xo. But by upper hemicontinuity of ϕ(·), the proper-

ties x ′ν → xo, y′ν ∈ ϕ(xν), and y ′ν→xo imply xo ∈ ϕ(xo). Hence, choose x∗ = xo,
and we have x∗ ∈ ϕ(x∗). QED

Example 23.7 Applying the Kakutani Fixed-Point Theorem. Let ϕ : [0, 1] →
[0, 1]. Let

ϕ(x)={1 − x/2} for 0 ≤ x < 0.5
ϕ(0.5)= [0.25, 0.75]

ϕ(x)={x/2} for 1 ≥ x > 0.5,

where ϕ is upper hemicontinuous and convex valued. The fixed point is x◦ = 0.5.
(See Figure 23.10.)

The Kakutani Fixed-Point Theorem is stated (and proved traditionally) on the
simplex. We will use a slightly stronger version, Corollary 23.1.
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Corollary 23.1 Let K ⊆ RM, K �= φ, be compact and convex. Let � : K → K ,
with �(x) upper hemicontinuous and convex valued for all x ∈ K . Then there is
x∗ ∈ K so that x∗ ∈ �(x∗).

Proof We omit the full proof. The proof depends on the topological equivalence
of K and S. We state without proof the following property. Let K be a nonempty,
compact, convex set in RM . Then there is an N-simplex S and g : K → S, so
that g is continuous, 1-1, onto, and the inverse of g, g−1, is continuous. This
is the topological equivalence of K and S. Because K and S are equivalent, a
fixed point in a correspondence in one can be shown to be a fixed point of the
image of the correspondence in the other. The actual proof is a bit more complex,
because convexity is not topologically invariant (though a related property, con-
tractibility, is). QED

We will find that the combined property of upper hemicontinuity and convex
valuedness of a correspondence plays essentially the same role in the model of set-
valued supply and demand behavior that continuity of demand and supply functions
plays in the point-valued model. Of course, a continuous (point-valued) function,
viewed as a correspondence, is upper hemicontinuous and convex valued.

23.8 Bibliographic note

The exposition of upper and lower hemicontinuous point-to-set mappings is
presented in Debreu (1959). The Maximum Theorem is sometimes attributed
to Berge (1959). The Kakutani Fixed-Point Theorem first appeared as Kakutani
(1941).

Exercises

23.1 Find two correspondences that are upper hemicontinuous but not lower
hemicontinuous.

23.2 Find two correspondences that are lower hemicontinuous but not upper
hemicontinuous.

23.3 Let ϕ : R → R, ϕ(x) = {y|x − 1 ≤ y ≤ x + 1}. Prove that ϕ is upper
hemicontinuous, and prove that ϕ is lower hemicontinuous at each x ∈ R.

23.4 Give a specific example (complete with sets, functions, and so on) of the
Maximum Theorem.

23.5 Let I = [−1000, 1000], ϕ : I → I, ϕ(x) ≡ [−1, 1]. Prove that ϕ is upper
hemicontinuous and lower hemicontinuous at x = 1.
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23.6 Let I = [−1000, 1000], ϕ : [−998, 997] → I . Define ϕ as follows:

ϕ(x)= [x − 2, x − 1] for −998 < x < 1
ϕ(x)= [x + 2, x + 3] for 1 < x < 997
ϕ(x)= [−1, 0] ∪ [3, 4] for x = 1.

Prove that ϕ(x) is upper hemicontinuous at x = 1.
23.7 Prove Theorem 23.1: ϕ is upper hemicontinuous if and only if its graph is

closed in S × T .
23.8 Prove Theorem 23.2: Let ϕ : S → T , μ : S → U . Let × denote Carte-

sian product. Then ϕ × μ : S → T × U . Further, if ϕ and μ are upper
hemicontinuous at x◦ ∈ S, then so is ϕ × μ.
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General equilibrium of the market economy with
an excess demand correspondence

24.1 General equilibrium with set-valued supply and demand

Our plan in this chapter is to take the model of production, consumption, the
economy, and market equilibrium of Chapters 15–181 and restate it for the case of
set-valued demand and supply behavior. Formally this means that we dispense with
assumptions of strict convexity of tastes and production technology, C.VI(SC) and
P.V. We rely rather on convexity, C.VI(C) and P.I. Under the remaining assumptions
on consumption and production behavior, this will allow us to characterize demand
and supply behavior as upper hemicontinuous, convex-valued correspondences.
In turn, excess demand will then be characterized as upper hemicontinuous and
convex-valued. A model of price adjustment that is also upper hemicontinuous and
convex valued completes the picture: Applying the Kakutani Fixed-Point Theorem
allows us to find a fixed point in price space that achieves a market equilibrium.

Just as we did in Chapters 15–18, we treat the economy in two formats: an arti-
ficially restricted bounded economy denoted by the superscript tilde notation (∼)
and an unrestricted economy (representing the true model we are really interested
in). The artificially restricted economy is a purely technical construct, designed to
allow us to develop the properties of the underlying unrestricted economy in a more
tractable setting. The technique of the proof is to note that the restricted budget,
demand, supply, and profit behavior is always well defined because it represents
optimizing behavior on a compact set. Unrestricted demand and supply correspon-
dences and profit functions may not be everywhere well defined. When the demand
and supply correspondences of the restricted economy designate attainable alloca-
tions, then they coincide with their counterparts of the unrestricted economy. An
equilibrium allocation is necessarily attainable. Hence, when we find an equilib-
rium of the artificially restricted economy (something that is possible for us to do
because its behavior is everywhere upper hemicontinuous, convex valued, and well

1 Note that the model of these chapters includes as a special case the bounded economy model of Chapters 11–14.

293
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defined), the equilibrium price vector and allocation is also an equilibrium of the
unrestricted (true) economy.

24.2 Production with a (weakly) convex production technology

We will show that supply behavior of the firm is convex and set valued when the
production technology is convex but not strictly convex. This includes the cases
of constant returns to scale, linear production technology, and perfect substitutes
among inputs to production. In each of these cases there may be a (linear) range of
equally profitable production plans differing by scale of output or by the input mix.
The purpose of developing a theory of set-valued supply behavior is to accommo-
date this range of indeterminacy.

Supply correspondence with a weakly convex production technology: We now
omit P.V and use P.I–P.IV only. In this case, the policy of profit maximization for
firm j may not yield a unique solution.

Let Sj (p) = {y∗|y∗ ∈ Y j , p · y∗ ≥ p · y for all y ∈ Y j } be the supply corre-
spondence of the firm.

Example 24.1 An upper hemicontinuous, convex-valued supply correspondence.
Let firm j ’s production technology be described as follows.

Let Y j = {(x, y)|y ≤ −x; x ≤ 0, K ≥ y ≥ 0}. That is, output y is produced by
a constant returns technology using input x, each unit of x producing one unit
of y, up to a limit of K of y. Let the price vector p be an element of the price
space R2

++ = {(px, py)|px, py > 0}. Then for each p ∈ R2
++, we have the supply

correspondence

Sj (p) = {(0, 0)} for px > py,

= {(−y, y)|y ∈ [0, K]} for px = py,

= {(−K,K)} for px < py.

Note that, starting with the convex technology set Y j , the resulting supply corre-
spondence Sj (p) is also convex valued. The correspondence is upper hemicontin-
uous (it has a closed graph). Sj (p) is depicted in Figure 24.1. Note that with upper
hemicontinuity and convex valuedness, a continuous downward-sloping demand
curve will intersect the supply correspondence. The importance of the convexity
of Y j is demonstrated by comparison to Example 24.2.

Example 24.2 An upper hemicontinuous supply correspondence that is not con-
vex valued. We consider here the supply behavior of a firm situated similarly to
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Fig. 24.1. Example 24.1 – An upper hemicontinuous, convex-valued supply correspon-
dence.

Example 24.1 with a minimum efficient scale of output,

Y j = {(x, y)|y ≤ −x; K ≥ y ≥ 0 for x ≤ −k; y = 0 for 0 ≥ x ≥ −k}.
Y j is a nonconvex set, representing the scale economy. Minimum efficient scale of
output is k; inputs insufficient to support output of k result in a zero output. This
technology set gives us a supply correspondence that is upper hemicontinuous, but
not convex valued:

Sj (p) = {(0, 0)} for px > py,

= {(−y, y)|y = 0 or y ∈ [k,K]} for px = py,

= {(−K,K)} for px < py.

Sj (p) is depicted in Figure 24.2. Note the jump in the supply correspondence
at px = py . This jump is sometimes loosely described as a discontinuity. That
description is imprecise because the correspondence is actually upper hemicontin-
uous. Rather, the correspondence is nonconvex valued at px = py . The example
demonstrates the importance of convex valuedness for the existence of market
equilibrium. A continuous downward-sloping demand curve may have no intersec-
tion with Sj (p), hence implying no market equilibrium. Upper hemicontinuity of
demand and supply is insufficient to assure a market equilibrium. Convex valued-
ness of the correspondence may be needed as well.
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Fig. 24.2. Example 23.2 – An upper hemicontinuous supply correspondence that is not
convex valued.

Taking price vector p ∈ RN
+ as given, each firm j “chooses” yj in Y j . Profit

maximization guides the choice of yj . Firm j chooses yj to maximize p · y subject
to y ∈ Y j . We will consider two cases:

� a restricted supply correspondence where the supply behavior of firm j is required
to be in a compact convex set Ỹ j ⊆ Y j , which includes the plans attainable in
Y j as a proper subset, and

� an unrestricted supply correspondence where the only requirement is that the
chosen supply behavior lie in Y j . Of course, Y j need not be compact. Hence, in
this case, profit-maximizing supply behavior may not be well defined. Further,
Y j may include unattainable production plans. When the profit-maximizing
production plan is unattainable, it cannot, of course, be fulfilled and cannot
represent a market equilibrium.

The restricted supply correspondence will be denoted S̃j (p) ⊂ Ỹ j , and the unre-
stricted supply correspondence will be Sj (p) ⊂ Y j .

Recall Theorems 15.1 and 15.2. They demonstrated that under assumptions P.I,
P.II, P.III, and P.IV the set of attainable production plans for the economy and for
firm j were bounded. We then defined Ỹ j as the bounded subset of Y j containing
production plans of Euclidean length c or less, where c was chosen as a strict
upper bound on all attainable plans in Y j . That is, choose c such that |yj | < c (a
strict inequality) for yj attainable in Y j . Let Ỹ j = Y j ∩ {y||y| ≤ c}. Note the weak
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inequality in the definition of Ỹ j . Restricting attention to Ỹ j in describing firm j ’s
production plans allows us to remain in a bounded set so that profit maximization
will be well defined. Note that Ỹ j is nonempty, closed, bounded (hence compact),
and convex.

Define the restricted supply correspondence of firm j as

S̃j (p) = {y∗j |p · y∗j ≥ p · yj for all yj ∈ Ỹ j , y∗j ∈ Ỹ j }.
In many of the following lemmas and theorems assumptions P.I–P.IV are introduced
because the restriction to Ỹ j is essential to the analysis and this restriction rests on
the boundedness of production plans attainable in Y j .

The (unrestricted) supply correspondence of firm j was defined above as

Sj (p) = {y∗|y∗ ∈ Y j , p · y∗ ≥ p · y for all y ∈ Y j }.
Then, we have:

Lemma 24.1 Under P.I–P.IV, S̃j (p) is convex.

Proof Let y1 ∈ S̃j (p) and y2 ∈ S̃j (p). For fixed p, p · y1 = p · y2 ≥ p · y for all
y ∈ Y j . For 0 ≤ λ ≤ 1, consider

p · [λy1 + (1 − λ)y2] = λp · y1 + (1 − λ)p · y2 = p · y2 ≥ p · y
for all y ∈ Y j .

But (λy1 + (1 − λ)y2) ∈ Y j by P.I. QED

Lemma 24.2 Under P.I–P.IV, S̃j (p) is nonempty and upper hemicontinuous for
all p ∈ RN

+, p �= 0.

Proof The set S̃j (p) consists of the maximizers of a continuous real-valued func-
tion on a compact set. The maximum is hence well defined and the set is nonempty.

To demonstrate upper hemicontinuity, let pν → p◦; pν, p◦ ∈ RN
+ ; pν, p◦ �=

0; ν = 1, 2, . . . ; and yν ∈ S̃j (pν), yν → y◦.
We must show that y◦ ∈ S̃j (p◦). Suppose not. Then there is y ′ ∈ Ỹ j so that

p◦ · y ′ > p◦ · y◦. The dot product is a continuous function:

pν · y ′ → p◦ · y ′

pν · yν → p◦ · y◦.

Therefore, for ν sufficiently large, pν · y ′ > pν · yν . But this contradicts the defi-
nition of S̃(pν). The contradiction proves the lemma. QED
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Theorem 24.1 Assume P.I–P.IV. Then

(a) S̃j (p) is an upper hemicontinuous correspondence throughout P. For each
p, S̃j (p) is closed, convex, bounded, and nonnull;

(b) π̃ j (p) is a well-defined continuous function for all p ∈ P;
(c) if yj is attainable in Y j and yj ∈ S̃j (p), then yj ∈ Sj (p).

Proof Part (a). Upper hemicontinuity and nonemptiness are established in Lemma
24.2. The correspondence S̃j (p) is bounded because Ỹ j is bounded. Closedness
follows from upper hemicontinuity. Convexity is established in Lemma 24.1. Part
(b): For each p ∈ P, S̃j (p) is nonempty, and for any two y ′, y ′′ ∈ S̃j (p), p · y′ =
p · y ′′ = π̃ j (p). Let pν ∈ P, ν = 1, 2, . . . , pν → po. Let yν ∈ S̃j (pν). Without
loss of generality – because Ỹ j is compact – let yν → yo. The dot product is a
continuous function of its arguments, so π̃ j (pν) = pν · yν → po · yo = π̃ j (po).
Thus, π̃ j (p) is continuous throughout P.

Part (c): Proof by contradiction. Suppose yj attainable and yj ∈ S̃j (p) but yj �∈
Sj (p). Then there is ŷj ∈ Y j so that p · ŷj > p · yj . Furthermore,

p · [αŷj + (1 − α)yj ] > p · yj for any α, 0 < α ≤ 1.

But for α sufficiently small,

|αŷj + (1 − α)yj | ≤ c,

so that

αŷj + (1 − α)yj ∈ Ỹ j .

But then p · (αŷj + (1 − α)yj ) > p · yj and αŷj + (1 − α)yj ∈ Ỹ j ; thus yj is not
the maximizer of p · y in Ỹ j and yj �∈ S̃j (p) as was assumed. The contradiction
proves the theorem. QED

Lemma 24.3 (homogeneity of degree 0) Assume P.I–P.IV. Let λ > 0, p ∈ RN
+ .

Then S̃j (λp) = S̃j (p) and Sj (λp) = Sj (p).

Proof Exercise 24.1. QED

24.3 Households

We now develop a theory of the household with set-valued demand behavior
paralleling the theory of the household developed in Chapter 16. We use all of the
structure and assumptions developed there with the exception of the assumption
of strict convexity of preferences, C.VI(SC). We use convexity, C.VI(C), which
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admits the possibility of set-valued linear segments in demand behavior, occurring,
for example, in the case of perfect substitutes in consumption. To see how this
might arise, consider Example 24.3.

Example 24.3 Convex set-valued household demand. Let household i’s possible
consumption set Xi be R2

+, the nonnegative quadrant in R2. Let the household
endowment be (1, 1) with no ownership of shares of firms. At prices p ∈ R2

+, the
household income is p · (1, 1) = px + py . Let household preferences be described
by the utility function u(x, y) = [ax + by]. Then household demand can be char-
acterized as

Di(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

([px + py]/px, 0) for
px

py

<
a

b

(0, [px + py]/py) for
px

py

>
a

b

{(x, [px + py − pxx]/py)|x ∈ [0, (px + py)/px]} for
px

py

= a

b

undefined for px = 0 or py = 0.

Note that Di(p) is convex set valued for px/py = a/b. This simply reflects the
idea that if goods x and y are perfect substitutes at the ratio a/b, then, when their
prices occur in this ratio, the household will be indifferent among a whole set of
linear combinations of x and y in the inverse of this ratio. After all, if the goods x

and y are perfect substitutes, then it really doesn’t matter in what proportion they
are used. The demand behavior, Di(p), is described as upper hemicontinuous and
convex valued for all p so that px �= 0 and py �= 0.

We now define the household’s budget set and demand correspondences. The
household budget set is precisely as defined in Chapter 16:

Bi(p) ≡ {x|x ∈ RN, p · x ≤ Mi(p)}.
The definition of demand behavior for household i is here just as it was in Chap-
ter 16, but because we are using C.VI(C) (convexity of preferences) rather than
C.VI(SC) (strict convexity of preferences) we will be dealing with a demand cor-
respondence rather than a demand function. We have

Di : RN
+ → RN,

Di(p) ≡ {y|y ∈ Bi(p) ∩ Xi, y �i x for all x ∈ Bi(p) ∩ Xi}
≡ {y|y ∈ Bi(p) ∩ Xi, ui(y) ≥ ui(x) for all x ∈ Bi(p) ∩ Xi}.

We now define the artificially bounded budget and demand sets much as we did
in Chapter 16. Choose c so that |x|<c (a strict inequality) for all attainable con-
sumptions x. Theorem 15.1 assures us that c exists under P.I–P.IV. The artificially
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restricted budget set is then defined as

B̃i(p) = {x|x ∈ RN, p · x ≤ M̃i(p), |x| ≤ c}.
Note that B̃i(p) is just as defined in Chapters 12 and 16. B̃i(·) is homogeneous
of degree 0, just as is Bi(·). We now define the artificially restricted demand
correspondence,

D̃i(p) ≡ {x|x ∈ B̃i(p) ∩ Xi, x �i y for all y ∈ B̃i(p) ∩ Xi}.
Note that D̃i(p) is just as defined in Chapters 12 and 16, but under convexity
(C.VI(C)), D̃i(p) may be set valued.

Just as in Chapters 13 and 17, firm j ’s profit function is πj (p) = maxy∈Y j p · y.
Because Y j need not be compact, πj (p) may not be well defined. Firm j ’s profit
function in the artificially restricted firm technology set Ỹ j is π̃ j (p) = maxy∈Ỹ j

p · y. The function π̃ j (p) is always well defined, since Ỹ j is compact by definition
and P.III.

Just as in Chapters 13 and 17, household i’s income is defined as

Mi(p) = p · ri +
∑
j∈F

αijπj (p).

For the model with restricted firm supply behavior, household income is

M̃i(p) = p · ri +
∑
j∈F

αij π̃ j (p).

Note that Mi(p) may not be everywhere well defined because πj (p) may not
be well defined for some j ∈ F, p ∈ P . Conversely, M̃i(p) is continuous, real
valued, nonnegative, and well defined for all p ∈ RN

+ . By the same argument as
in Chapters 12 and 16, B̃i(p) and D̃i(p) are homogeneous of degree 0 in p. This
allows us to confine attention in prices to the unit simplex in RN , denoted P .

As in Chapter 16, to avoid discontinuities in demand behavior at the boundary
of Xi we will continue to assume C.VII, adequacy of income,

M̃i(p) � min
x∈Xi∩{y|y∈RN ,c≥|y|}

p · x ≥ 0 for all p ∈ P.

We want to show that the (artificially restricted) demand correspondence of
household i, D̃i(p), is upper hemicontinuous and convex valued. To demonstrate
upper hemicontinuity, we will use the Theorem of the Maximum, Theorem 23.3.
That theorem requires that the opportunity set, in this case B̃i(p) ∩ Xi , be con-
tinuous, both upper and lower hemicontinuous. Continuity of B̃i(p) ∩ Xi is the
message of Theorem 24.2.
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Xi
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˜
ν

Fig. 24.3. Theorem 23.2 – Continuity of the budget set showing the construction of yν .

Theorem 24.2 Assume P.I–P.IV, C.I, C.II, C.III, and C.VII. Then B̃i(p) ∩ Xi is
continuous (lower and upper hemicontinuous), compact valued, and nonnull for
all p ∈ P .

Proof P.I–P.IV and Theorem 15.1 ensure that c is well defined. Continuity of
B̃ i(p) ∩ Xi depends on continuity of M̃i(p). This follows from definition and
Theorem 24.1 (continuity of π̃ j (p)). Upper hemicontinuity of B̃i(p) ∩ Xi is left as
an exercise. Nonnullness follows directly from C.VII. Compactness follows from
closedness and the restriction to {x||x| ≤ c}. To demonstrate lower hemicontinuity,
we will use adequacy of income, C.VII, and the convexity of B̃ i(p) ∩ Xi . Consider a
sequence pν ∈ P, pν → p◦, y◦ ∈ B̃i(p◦) ∩ Xi . To establish lower hemicontinuity,
we need to show that there is a sequence yν , so that yν ∈ B̃i(pν) ∩ Xi and yν → y◦.
We will consider two cases depending on the cost of y◦ at price vector p◦.

Case 1: p◦ · y◦ > 0 and

p◦ · y◦ > min
x∈Xi∩{y|y∈RN ,c≥|y|}

p◦ · x.

The strategy of proof in this case is to create the required sequence yν in the
following way. Find a minimum expenditure point, x◦ in Xi ∩ {x||x| ≤ c}. We
extend a ray from x◦ through y◦. We then take a sequence of points on the ray
chosen to fulfill the budget constraint at pν and to converge to y◦. That sequence
is yν . This construction is depicted in Figure 24.3.
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For ν large, we have

pν · y◦ > min
x∈Xi∩{y|y∈RN,c≥|y|}

p◦ · x.

We choose x◦ as a cost-minimizing element of Xi ∩ {x||x| ≤ c} at prices p◦. Let
x◦ ∈ Xi ∩ {x||x| ≤ c} and

p◦ · x◦ = min
x∈Xi∩{y|y∈RN ,c≥|y|}

p◦ · x.

We now construct yν as a convex combination of x◦ and y◦, fulfilling budget
constraint at pν .

Let αν = min

[
1,

[M̃i(pν) − pν · x◦]

pν · (y◦ − x◦)

]
,

yν = ανy◦ + (1 − αν)x◦.

For ν large, αν is well defined. yν is chosen here so that it fulfills budget constraint
and converges to y◦. We have pν · yν = pν · ((1 − αν)x◦ + ανy◦) ≤ M̃i(pν).
αν → 1 as ν becomes large. By convexity of Xi (C.III), yν ∈ Xi ∩ {x||x| ≤ c}. For
ν large, pν · x◦ < pν · y◦ and p · yν ≤ M̃i(pν). So yν ∈ B̃i(pν) ∩ Xi and yν → y◦.
Hence, the sequence yν demonstrates lower hemicontinuity of B̃i(p) ∩ Xi .

Case 2: p◦ · y◦ = 0 < M̃i(p◦) or

p◦ · y◦ = min
x∈Xi∩{y|y∈RN ,c≥|y|}

p◦ · x.

Once again we need to construct a sequence yν with the required convergence
properties. In this case, it is trivial. By continuity of the dot product, for large
ν, pν · y◦ < M̃i(pν). By hypothesis we have y◦ ∈ B̃i(p◦) ∩ Xi . Thus we can set
yν = y◦; then for ν large, we have yν ∈ B̃i(pν) ∩ Xi and hence yν → y◦ trivially.

Cases 1 and 2 exhaust the possibilities. In each case we have demonstrated the
presence of sequence yν , so that yν ∈ B̃i(pν) ∩ Xi and yν → y◦. This is precisely
what lower hemicontinuity of B̃ i(p) ∩ Xi requires. QED

Theorem 24.2 demonstrates the continuity of the consumer’s opportunity set
B̃i(p) ∩ Xi as a function of p. We are not really interested in B̃i(p) ∩ Xi on its
own. Rather, we are interested in the household demand behavior, D̃i(p). In order to
apply the Kakutani Fixed-Point Theorem and find a general equilibrium, we would
like D̃i(p) to be upper hemicontinuous and convex valued. Upper hemicontinuity
follows from Theorem 24.2 and the Maximum Theorem (Theorem 23.3). This is
demonstrated in Theorem 24.3.
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Theorem 24.3 Assume P.I–P.IV, C.I,C.II, C.III, C.V, and C.VII. Then D̃i(p) is an
upper hemicontinuous nonnull correspondence for all p ∈ P .

Proof By Theorem 24.2 above, B̃ i(p) is continuous with B̃i(p) ∩ Xi nonempty,
compact, continuous for all p ∈ P . By Theorem 12.1, ui(·) is a continuous real-
valued function. D̃i(p) is defined as the set of maximizers of ui(·) on B̃i(p) ∩ Xi .
Nonnullness follows because a continuous function achieves its maximum on a
compact set. Upper hemicontinuity of D̃i(p) follows from the Maximum Theorem
(Theorem 23.3). QED

Recall the convexity assumption

(C.VI(C)) x 
i y implies ((1 − α)x + αy) 
i y, for 0 < α < 1.

Under C.VI(C), we have convexity of D̃i(p). This is formalized as Theorem 24.4.

Theorem 24.4 Assume P.I–P.IV, C.I, C.II, C.III, C.V, C.VI(C), and C.VII. Then
B̃i(p) and D̃i(p) are convex-valued.

Proof Exercise 24.3. QED

Under nonsatiation (C.IV), continuity (C.V), and convexity (C.VI(C)), given the
geometry of Xi , we can rely on households spending all of their available income
subject to constraint. This is the implication of Lemmas 24.4 and 24.5.

Lemma 24.4 Under C.I–C.V, C.VI(C), x ∈ Di(p) implies p · x = Mi(p).

Proof Exercise 24.4. QED

Lemma 24.5 Under C.I–C.V, C.VI(C), x ∈ D̃i(p) implies p · x ≤ M̃i(p). Further,
if p · x < M̃i(p), then |x| = c.

Proof Exercise 24.5. The proof follows from nonsatiation, C.IV, and convexity
C.VI(C). (See proof of Lemma 12.3.) QED

Lemma 24.6 Under P.I–P.IV, C.I–C.V, C.VI(C), and C.VII, D̃i(p) is upper hemi-
continuous, convex, nonnull, and compact for all p ∈ P . If Mi(p) is well defined
and Mi(p) = M̃i(p), and if x ∈ D̃i(p) and x is attainable, then x ∈ Di(p).
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Proof Upper hemicontinuity follows from Theorem 23.2. Convexity follows from
convexity of preferences (C.VI(C)) and convexity of B̃i(p) summarized in Theo-
rem 24.4.

If x ∈ D̃i(p) and x is attainable then |x| < c. Note the strict inequality. We
now wish to show that x ∈ Di(p). Suppose not. Then there is x′ ∈ Bi(p) ∩ Xi so
that x ′ 
i x. But then by C.VI(C) convexity of preferences, for all α, 0 < α < 1,
(1 − α)x + αx′ 
i x. For α sufficiently small, then (1 − α)x + αx′ ∈ B̃i(p), but
this is a contradiction because x is the optimizer of �i in B̃i(p). QED

24.4 The market economy

We now bring the two sides, households and firms, of the set-valued economic
model together. The demand correspondence of the unrestricted model is defined
as

D(p) =
∑
i∈H

Di(p).

For the artificially restricted model, the demand side is characterized as

D̃(p) =
∑
i∈H

D̃i(p).

The economy’s resource endowment is

r =
∑
i∈H

ri.

The supply side of the unrestricted economy is characterized as

S(p) =
∑
j∈F

Sj (p),

and for the artificially restricted economy we have

S̃(p) =
∑
j∈F

S̃j (p).

We can now summarize supply, demand, and endowment as an excess demand
correspondence.

Definition The excess demand correspondence at prices p ∈ P is Z(p) ≡ D(p) −
S(p) − {r}.

The excess demand correspondence of the artificially restricted model is Z̃(p) =
D̃(p) − S̃(p) − {r}.
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Having defined excess demand, we can now state and prove Walras’s Law, first
for the unrestricted economy and then for the artificially restricted economy.

Theorem 24.5 (Walras’s Law) Assume C.IV, C.V, and C.VI(C). Suppose Z(p) is
well defined, and let z ∈ Z(p). Then p · z = 0.

Proof Let z ∈ Z(p). Substituting into the definition of Z(p), we have

p · z = p ·
∑
i∈H

xi − p ·
∑
j∈F

yj − p ·
∑
i∈H

ri

for some xi ∈ Di(p), yj ∈ Sj (p).

For each i ∈ H , by Lemma 24.4,

p · xi = Mi(p) = p · ri +
∑
j∈F

αijπj (p)

= p · ri +
∑
j∈F

αijp · yj .

Now summing over i ∈ H , we get∑
i∈H

p · xi =
∑
i∈H

p · ri +
∑
i∈H

∑
j∈F

αij (p · yj ).

Taking the vector p outside the sums and reversing the order of summation in the
last term yields

p ·
∑
i∈H

xi = p ·
∑
i∈H

ri + p ·
∑
j∈F

∑
i∈H

αijyj .

Recall that
∑

i∈H αij = 1 for each j , and that r =∑
i∈H ri . We have then

p ·
∑
i∈H

xi = p · r + p ·
∑
j∈F

yj .

That is, the value at market prices p of aggregate demand equals the value of
endowment plus aggregate supply. Transposing the right-hand side to the left and
recalling that z =∑

i∈H xi −∑j∈F yj − r , we obtain

p ·
[∑

i∈H

xi −
∑
j∈F

yj − r

]
= p · z = 0.

QED

Walras’s Law tells us that at prices where supply, demand, profits, and income are
well defined, planned aggregate expenditure equals planned income from profits
and sales of endowment. Hence, the value of planned purchases equals the value
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of planned sales and the net value at market prices of excess demand is nil. Unfor-
tunately, Z(p) is not always well defined. This arises because Y j and Bi(p) may
be unbounded and hence may not include well-defined maxima of πj (·) or ui(·),
respectively. This shifts our focus to Z̃(p), which we know to be well defined for
all p ∈ P . We now establish the counterpart of Walras’s Law for Z̃(p).

Theorem 24.6 (Weak Walras’s Law) Assume C.I–C.V, C.VI(C). Let z ∈ Z̃(p).
Then p · z ≤ 0. Further, if p · z < 0 then there is k = 1, 2, 3, . . . , N so that zk > 0.

Proof p · z = p ·∑i∈H xi − p ·∑j∈F yj − p ·∑i∈H ri , where xi ∈ D̃i(p), yj ∈
S̃j (p). For each i ∈ H ,

p · xi ≤ M̃i(p) = p · ri +
∑
j∈F

αij π̃ j (p)

= p · ri +
∑
j∈F

αij (p · yj ),

and ∑
i∈H

p · xi ≤
∑
i∈H

p · ri +
∑
i∈H

∑
j∈F

αij (p · yj )

p ·
∑
i∈H

xi ≤ p ·
∑
i∈H

ri + p ·
∑
j∈F

∑
i∈H

αijyj .

Note the changed order of summation in the last term. Recall that
∑

i∈H αij = 1
for each j and that r =∑

i∈H ri . We have then

p ·
∑
i∈H

xi ≤ p · r + p ·
∑
j∈F

yj .

Transposing the right-hand side to the left and recalling that z =∑
i∈H xi −∑

j∈F yj − r , we get

p ·
[∑

i∈H

xi −
∑
j∈F

yj − r

]
= p · z ≤ 0.

The left-hand side in this expression is∑
i∈H

[p · xi] −
∑
i∈H

[M̃i(p)].

If p · z < 0 then for some i ∈ H, p · xi < M̃i(p). In that case, by Lemma 24.5,
|xi | = c, and hence xi is not attainable. Unattainability implies zk > 0 for some
k = 1, 2, . . . , N . QED
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Lemma 24.7 Assume C.I–C.V, C.VI(C), C.VII, and P.I–P.IV. The range of Z̃(p) is
bounded. Z̃(p) is upper hemicontinuous and convex valued.

Proof Z̃(p) =∑
i∈H D̃i(p) −∑j∈F S̃j (p) − {∑i∈H ri} is the finite sum of

bounded sets and is therefore bounded. It is a finite sum of upper hemicontin-
uous convex correspondences and is hence convex and upper hemicontinuous.

QED

As an artificial construct to allow us to prove the existence of equilibrium in the
market economy, we introduce an artificially restricted economy.

24.5 The artificially restricted economy

We will describe the artificially restricted economy by taking the production tech-
nology of each firm j to be Ỹ j rather than Y j , thus making the supply correspon-
dence S̃j (p) rather than Sj (p), and by taking the demand correspondence of each
household i to be D̃i(p) rather than Di(p). In this special restricted case we will
refer to the excess demand correspondence of the economy as Z̃(p). By Theorems
24.1 and 24.3, the artificially restricted excess demand correspondence is well
defined for all p ∈ P :

Z̃ : P → RN.

We use this artificially restricted economy as a mathematical construct, which
is convenient because supply, demand, and excess demand are everywhere well
defined. The unrestricted economy is defined by Y j , Di , and Z. As demonstrated
in Theorem 24.1 and Lemma 24.6, Z(p) and Z̃(p) will coincide for elements
of Z(p) corresponding to attainable points in S̃j (p) and D̃i(p). The set Z̃(p) is
nonempty for all p ∈ P , whereas Z(p) may not be well defined (nonempty) for
some elements of p ∈ P .

Recall the following properties of Z̃(p):

(1) Weak Walras’s Law (Theorem 24.6): Assuming P.I–P.IV, C.IV, and C.VI(C),
we have z ∈ Z̃(p) implies p · z ≤ 0. Further, if p · z < 0, then there is k =
1, 2, 3, . . . , N , so that zk > 0.

(2) Z̃(p) is well defined for all p ∈ P and is everywhere upper hemicontinuous
and convex valued, assuming C.I–C.V, C.VI(C), C.VII, and P.I–P.IV. This is
Theorems 24.1 and 24.3 and Lemma 24.7.

We will use these properties to prove the existence of market clearing prices in
the artificially restricted economy. We will then use Theorems 24.1 and 24.6 and
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C.VI(C) to show that the equilibrium of the artificially restricted economy is also
an equilibrium of the unrestricted economy. To start the process of establishing the
existence of an equilibrium for the artificially restricted economy, we need a price
adjustment function. We plan to use the Kakutani Fixed-Point Theorem, and thus
we hope to construct an upper hemicontinuous, convex-valued price adjustment
correspondence.

Let ρ(z) ≡ {p∗|p∗ ∈ P, p∗ · z maximizes p · z for all p ∈ P }. Then ρ(z) is the
price adjustment correspondence. For each excess demand vector z, ρ chooses
a price vector based on increasing the prices of goods in excess demand while
reducing the prices of goods in excess supply. Choose positive real C so that
|Z̃(p)| < C for all p ∈ P . We know that C exists (by Lemma 24.7) because #F

and #H are finite and each of the D̃i(p), S̃j (p) is chosen from a bounded set (the
set of attainable allocations is bounded by Theorem 15.2). Then let � = {x|x ∈
RN, |x| ≤ C}. Note that � is compact and convex:

ρ : � → P

Z̃ : P → �.

Lemma 24.8 ρ(z) is upper hemicontinuous for all z ∈ �; ρ(z) is convex and
nonnull for all z ∈ �.

Proof Exercise 24.6. QED

24.6 Existence of competitive equilibrium

We are now ready to establish existence of competitive general equilibrium. We
focus first on the artificially restricted economy and then extend our results to the
unrestricted economy.

Definition p◦ ∈ P is said to be a competitive equilibrium price vector (of the
unrestricted market economy) if there is z◦ ∈ Z(p◦) so that z◦ ≤ 0 (coordinatewise)
and p◦

k = 0 for k so that z◦k < 0.

Theorem 24.7 Let the economy fulfill C.I–C.V, C.VI(C), C.VII, and P.I–P.IV. Then
there is a competitive equilibrium p◦ for the economy.

The strategy of proof is to create a grand upper hemicontinuous convex-valued
mapping, �(·), from � × P , the Cartesian product of (artificially restricted) excess
demand space, �, with price space, P , into itself. The mapping takes prices and
maps them into the corresponding excess demands and takes excess demands and
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maps them into corresponding prices. The mapping � will have a fixed point
by (the corollary to) the Kakutani Fixed-Point Theorem. The fixed point of the
price adjustment correspondence, ρ(·), will take place at a market equilibrium
of the artificially restricted economy. We will then use Theorems 24.1 and 24.6
and Lemma 24.6 to show that the equilibrium of the artificially restricted econ-
omy is also an equilibrium of the original (unrestricted) economy. This follows
because the equilibrium of the artificially restricted economy is attainable. Hence,
at the artificially restricted economy’s equilibrium prices, artificially restricted and
unrestricted demands and supplies coincide.

Proof Let (p, z) ∈ P × �, �(p, z) ≡ {(p̄, z̄)|p̄ ∈ ρ(z), z̄ ∈ Z̃(p)}. Then � : P ×
� → P × �. The correspondence � is nonnull, upper hemicontinuous, and convex
valued. P × � is compact and convex. Then by Corollary 23.1 to the Kakutani
Fixed-Point Theorem there is (p◦, z◦) ∈ P × � so that (p◦, z◦) is a fixed point
of �:

(p◦, z◦) ∈ �(p◦, z◦),

p◦ ∈ ρ(z◦),

z◦ ∈ Z̃(p◦).

We will now demonstrate that (p◦, z◦) represents an equilibrium of the artificially
restricted economy. For each i ∈ H , and for each j ∈ F , there is x◦i ∈ D̃i(p◦),
y◦j ∈ S̃j (p◦), so that x◦ =∑

i x
◦i , y◦ =∑

j y◦j , with z◦ = x◦ − y◦ − r , and by
the Weak Walras’s Law, p◦ · z◦ ≤ 0. But p◦ maximizes p · z◦ for p ∈ P . This
implies z◦ ≤ 0, because, if there were any positive coordinate in z◦, then the
maximum value of p · z◦ would be positive. Moreover, we have either (Case 1)
p◦ · z◦ = 0 (in which case it follows that z◦ = 0 or z◦k < 0 implies p◦

k = 0) or (Case
2) p◦ · z◦ < 0 (in which case the Weak Walras’s Law implies z◦k > 0 some k). But
in Case 2, max p · z◦ would then be positive, which is a contradiction. Hence, Case
2 cannot arise, and we have p◦ · z◦ = 0, with either z◦ = 0 or, if for some k, z◦k < 0,
then p◦

k = 0. This establishes (p◦, z◦) as an equilibrium for the artificially restricted
economy. Now we must demonstrate that it is an equilibrium for the unrestricted
economy as well. We have

z◦ = x◦ − y◦ − r

or

x◦ − z◦ = y◦ + r.

Because z◦ ≤ 0, x◦ − z◦ ≥ x◦ ≥ 0. Thus, y◦ + r ≥ 0. Therefore, y◦ is attainable;
this implies, by Theorem 24.1, that y◦j ∈ Sj (p◦) for all j ∈ F . Furthermore,
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because y◦ + r ≥ x◦, x◦ is attainable. Hence, by Lemma 24.6, x◦i ∈ Di(p◦)
for all i ∈ H . Thus we have p◦ ∈ P, y◦j ∈ Sj (p◦), and x◦i ∈ Di(p◦), so that∑

i∈H x◦i −∑j∈F y◦j −∑i∈H ri ≤ 0, with pk = 0 for all k such that z◦k < 0.
Hence (p◦, z◦) is an equilibrium for the unrestricted economy. QED

Theorem 24.7 completes the treatment of the existence of equilibrium with set-
valued demand and supply behavior. We have demonstrated that all of the results
on continuity of demand and supply and existence of equilibrium demonstrated
for continuous point-valued demand and supply have counterparts in upper hemi-
continuous convex-valued demand and supply. The essential elements that carry
over are continuity and convexity in both settings. Note that because the efficiency
results of Chapter 19 nowhere depend on point valuedness of demand or supply
they are immediately applicable to the correspondence-valued demand and supply
behavior studied here in Chapter 24.

24.7 Bibliographic note

The use of set-valued supplies and demands in a general equilibrium model, allow-
ing for flat segments in preferences and technologies, first appears in Arrow and
Debreu (1954). It is thoroughly expounded in Debreu (1959).

Exercises

24.1 Prove Lemma 24.3 (homogeneity of degree 0): Assume P.I–P.IV. Let λ > 0,
p ∈ RN

+ . Then S̃j (λp) = S̃j (p) and Sj (λp) = Sj (p).
24.2 Prove part of Theorem 24.2: Assume P.I–P.IV, C.I, C.II, C.III, and C.VII.

Then B̃i(p) ∩ Xi is upper hemicontinuous for all p ∈ P .
24.3 Prove Theorem 24.4: Assume P.I–P.IV, C.I, C.III, C.V, C.VI(WC), and

C.VII. Then B̃i(p) and D̃i(p) are convex valued.
24.4 Prove Lemma 24.4: Under C.I–C.V, C.VI(C), x ∈ Di(p) implies p · x =

Mi(p).
24.5 Prove Lemma 24.5: Under C.I–C.V, C.VI(C) (assuming the existence of

c > 0), if x ∈ D̃i(p) and p · x < M̃i(p), then |x| = c. This result fol-
lows from nonsatiation (C.IV) and convexity C.VI(C). See the proof of
Theorem 13.2.

24.6 Prove Lemma 24.8: ρ(·) is upper hemicontinuous throughout �; ρ(z) is
convex and nonnull for any z ∈ �.

24.7 The arrow corner is a failure of lower hemicontinuity of the budget cor-
respondence and of upper hemicontinuity of the demand correspondence.
It occurs when some prices are zero and when income is just sufficient to
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achieve the boundary of the consumption set Xi (in a typical example, this
will occur at a zero income where Xi is the nonnegative orthant). Consider
the following example. Let N = 2, Xi = R2

+, and

pν = (1 − 1/ν, 1/ν), ν = 1, 2, 3, . . . .

Then we have pν → p◦ = (1, 0). Let c (the bound on the size of the demand
vector) be chosen so that 100 < c < ∞. Let household i’s endowment
vector ri equal (0, 100), with sale of ri being i’s sole source of income.
Then we have

B̃i(p) = {x|x = (x1, x2), |x| ≤ c, p · x ≤ p · ri}.
Let i’s utility function be ui(x1, x2) = x1+x2 so that D̃i(p) = {x ′|x′ ∈
B̃i(p) ∩ R2

+, x ′ maximizes ui(x) for all x ∈ B̃i(p) ∩ R2
+}. Demonstrate

the following points:
(i) Show that (0, c) ∈ B̃i(p◦).

(ii) Show that x ∈ B̃i(pν), x = (x1, x2), implies x2 ≤ 100.
(iii) Show that D̃i(p◦) = {(0, c)}.
(iv) Show that B̃i(p) is not lower hemicontinuous at p = p◦.
(v) Show that D̃i(p) is not upper hemicontinuous at p = p◦.

Discuss this example with regard to the Maximum Theorem (Theo-
rem 23.2).
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U-shaped cost curves and concentrated preferences

25.1 U-shaped cost curves and concentrated preferences

In intermediate microeconomic theory, a firm’s cost function is often described as
U-shaped. The notion is that firms producing at low volume have high marginal
costs. The marginal costs decline as volume increases and then start to rise again.
There is a region of declining marginal costs. But declining marginal costs are
inconsistent with convexity of technology, and convex technology is one of the
assumptions used to show the existence of general equilibrium in Chapters 14,
18, and 24. Can we reconcile the elementary U-shaped cost curve model with the
existence of general equilibrium?

Convexity of preferences was one of the assumptions used to demonstrate conti-
nuity or convexity of demand behavior needed for the proofs of existence of general
equilibrium in Chapters 14, 18, and 24. But surely there are instances where con-
vexity does not hold. A household might be equally pleased with a blue suit and a
gray suit but half a blue suit and half a gray suit is not so satisfactory. A resident
may be equally satisfied with an apartment in San Francisco or one in Boston; half
time in each is less satisfactory. The household has concentrated preferences (or
a preference for concentrating consumption). Can these preferences be reconciled
with the existence of general economic equilibrium?

We’ll argue in this chapter that the answer is “yes.” Using the Shapley-Folkman
theorem we’ll establish the existence of approximate equilibrium in these settings.
The approximation will depend on the dimension of the commodity space, N .
Holding N fixed while the number of firms #F and households #H becomes large
(as in a fully competitive model) will allow the approximate equilibrium to be
arbitrarily close to a full equilibrium as a proportion of the size of the economy.

The strategy of proof is to consider a fictional mathematical construct of an
economy where we replace the (possibly nonconvex) typical firm’s production
technology Y j with its convex hull, con(Y j ). We replace the households’, i ∈ H ,

312
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nonconvex preference contour sets, Ai(x), by their convex hulls, con(Ai(x)). This
fictional construct will fulfill the model of Chapter 24. It will have a market-
clearing general equilibrium price vector p∗. The artificial convex-valued supply
and demand correspondences are formed from the convex hulls of the true under-
lying non-convex-valued supply and demand correspondences. Then the Shapley-
Folkman Theorem implies that the market-clearing plans of the fictional convex-
valued supply and demand correspondences are within a small bounded distance
of the the true economy’s underlying nonconvex-valued supply and demand corre-
spondences. That is, the non-convex-valued demand and supply correspondences
at p∗ are nearly market clearing. Further, the bound depends on the size of non-
convexities in the original economy’s sets, L, and on the dimension of the space, N ,
not on the number of firms or households in the economy. Thus, in a large economy,
where the number of households in H becomes large, the average disequilibrium
per household becomes small. Thus, in the limit as the economy becomes large (the
setting where we expect the economy to behave competitively), the approximation
to market clearing can be as close as you wish.

25.1.1 U-shaped cost curves versus natural monopoly

Our economic intuition tells us that U-shaped cost curves – a small bounded-scale
economy – for the firms in an economy should be consistent with the existence of a
competitive equilibrium. But unbounded-scale economies – a natural monopoly –
are inconsistent with competitive equilibrium. The intuition is correct. It shows up
in the mathematics of the problem in the following way: con(Y j ) will typically be
closed for Y j representing a firm with a U-shaped cost curve. For Y j ′

representing
a natural monopoly, con(Y j ′

) will not be closed. Closedness of con(Y j ) will be one
of the assumptions of the convexified model, ruling out natural monopoly in the
underlying nonconvex economy.

25.2 The nonconvex economy

We start with a model of the economy with the same notation and same assumptions
as in Chapter 24 with the omission of two assumptions, P.I and C.VI(C). Neither
technology nor preferences are assumed to be convex.

25.2.1 Nonconvex technology and supply

Supply behavior of firms, Sj (p), when it is well defined, may no longer be convex
valued. Because Y j admits scale economies Sj (p) may include many distinct
points and not the line segments connecting them. A supply curve might look like
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Figure 24.2. Alternatively, Sj (p) might include 0 and a high level of output, but
none of the values in between. This is, of course, the U-shaped cost curve case.

25.2.2 Nonconvex preferences and demand

Demand behavior of households, Di(p), when it is well defined, may no longer
be convex valued. Thus it is possible that x, y ∈ Di(p) but that αx + (1 − α)y �∈
Di(p) for 0 < α < 1.

25.2.3 Nonexistence of market equilibrium

The proof of Theorem 24.7, relying on the Kakutani Fixed-Point Theorem, requires
convexity of Sj (p) for all j ∈ F and of Di(p) for all i ∈ H . Theorem 24.7 cannot
be applied to the nonconvex economy. We cannot rely on the existence of gen-
eral competitive equilibrium. What can go wrong? Roughly, a demand curve (or
correspondence) can run through the holes in a supply curve (or correspondence),
resulting in no nonull intersection and no equilibrium prices.

25.3 Artificial convex counterpart to the nonconvex economy

We now form a convex counterpart to the nonconvex economy. This artificial convex
economy will be designed to fulfill the conditions of Chapter 24 and sustain com-
petitive general equilibrium prices. We will then show, using the Shapley-Folkman
Theorem, that the equilibrium price vector of the artificial convex economy sup-
ports an approximate equilibrium allocation of the original nonconvex economy.
The remaining disequilibrium (unsatisfied demand and supply at these prices) is
independent of the size of the economy, as measured by the number of households,
total output, or number of firms. Hence, as a proportion of a large economy the
remaining disequilibrium can be arbitrarily small.

25.3.1 Convexified technology and supply

Starting from the nonconvex technology set Y j , we merely substitute its convex
hull, con(Y j ), for each j ∈ F . Then substitute the convex hull of the aggregate
technology set for the aggregate set Y, con(Y ) = con(

∑
j∈F Y j ) =∑

j∈F con(Y j ).
Then we assume the convexified counterpart to P.III (the notation K is intended as
a nmemonic for “convex”)

PK.III con(Y j ) is closed for all j ∈ F .

The economic implication of PK.III is that scale economies are bounded – as
in the U-shaped cost curve case; average costs are not indefinitely diminishing.



25.3 Artificial convex counterpart to the nonconvex economy 315

Assumption PK.III rules out natural monopoly in the underlying non-
convex economy. Thus, for example, Y j = {(x, y)|y ≤ (−x)2, x ≤ 0} would
not fulfill PK.III, but Y ′j = {(x, y)|y ≤ (−x)2, for − 1 ≤ x ≤ 0, y ≤ √−x for
x ≤ −1} would fulfill PK.III.

Now we introduce a counterpart to P.IV for the convexified economy.

PK.IV (a) if y ∈ con(Y ) and y �= 0, then yk < 0 for some k.

(b) if y ∈ con(Y ) and y �= 0, then − y �∈ con(Y ).

Then we consider a production sector characterized by firms with technologies
con(Y j ) for all j ∈ F . We assume P.II, PK.III, PK.IV. Because the technology of
each firm j is con(Y j ), P.I is trivially fulfilled. Then the production sector fulfills
all of the assumptions of Theorem 24.7.

The artificially convex supply behavior of firm k then is

Skj (p) ≡ {yo ∈ con(Y j )|p · yo ≥ p · y for all y ∈ con(Y j )}.
The artificially convex profit function of firm j is

πkj (p) ≡ p · yo, where yo ∈ Skj (p).

Under PK.III, a typical point of Skj (p) will be a point of Sj (p) or a convex
combination of points of Sj (p).

Lemma 25.1 Assume P.II, PK.III, and PK.IV, and suppose Skj (p) is nonempty
(exists and is well defined). Then yj ∈ Skj (p) implies yj ∈ con(Sj (p)) and
πkj (p) = πj (p).

Proof yj ∈ Skj (p) implies yj ∈ con(Y j ), yj =∑
αηyη where yη ∈ Y j , 0 ≤ αη ≤

1, and
∑

αη = 1. We claim for each η such that αη > 0, that p · yη = p · yj . yη ∈
con(Y j ) so if p · yη > p · yj then yj �∈ Skj (p) contrary to assumption. So p · yη ≤
p · yj for each η. But if for any η so that αη > 0, p · yη < p · yj then there is
another η′ with αη′

> 0 so that p · yη′
> p · yj , a contradiction. So p · yη = p · yj

for all η so that αη > 0 and yη ∈ Sj (p). But yj =∑
αηyη, so yj ∈ con(Sj (p)),

p · yη = πj (p), but p · yj = p · yη = πj (p), so πkj (p) = πj (p). QED

25.3.2 Artificial convex preferences and demand

Household i’s budget set Bi(p) is described in Chapter 24, and as in Chapter 24,
there may be price vectors where Bi(p) is not well defined.

The formal definition of i’s demand behavior Di(p) is precisely the same as
in Chapter 24. However, without the convexity assumption, C.VI(C), on �i the
demand correspondence Di(p) may look rather different. Di(p) will be upper
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hemicontinuous in neighborhoods where it is well defined, but it may include gaps
that look like jumps in demand behavior. That’s because Di(p) may not be convex
valued.

To pursue the plan of the proof we need to formalize the notion of artificially
convex preferences.

Definition Let x, y ∈ Xi . We say x �ki y if for every w ∈ Xi , y ∈ con(Ai(w))
implies x ∈ con(Ai(w)).

This definition creates a convex preference ordering �ki for household i, by
substituting the family of convex hulls of i’s upper contour sets con(Ai(w)) for i’s
original upper contour sets Ai(w). Without going more deeply into the geometry
of these new upper contour sets, it is sufficient to assume

(CK.0) �ki is a complete quasi-order on Xi .
(CK.IV) For each i ∈ H , �ki fulfills C.IV.
(CK.V) For each i ∈ H , �ki fulfills C.V.
(CK.VI) For each i ∈ H , �ki fulfills C.VI(C).

We need to develop the notion of a convex-valued counterpart to Di(p).
Define Dki(p) ≡ {xo|xo ∈ Bi(p), xo �ki x for all x ∈ Bi(p)}. Under assumptions
C.I–C.III, CK.0, CK.IV, CK.V, CK.VI, and C.VII, Dki(p) is very well behaved
in neighborhoods where it is well defined: upper hemicontinuous, convex valued.
Using �ki as the preference ordering, rather than the nonconvex ordering �i , fills
in the gaps left in Di(p) by the nonconvex ordering.

Lemma 25.2 Assuming C.I–C.III, CK.0, CK.IV, CK.V, CK.VI, and C.VII, for
each i ∈ H, xi ∈ Xi , there is ξ i ∈ Xi so that Aki(xi) = con(Ai(ξ i)). Further,
if Mi(p) > infx∈Xi p · x (consistent with C.VII), and if Dki(p) is nonempty, then
Dki(p) = con(Di(p)).

Proof The presence of ξ i as specified, follows directly from definition of �ki under
completeness and continuity, CK.0 and CK.V.

Let xi ∈ Dki(p); xi minimizes p · x in Xi subject to x �ki xi . xi ∈
con(Ai(ξ i)) ⊇ Ai(ξ i). Then there is a finite set {wν} ⊂ Ai(ξ i) so that xi =∑

ν ανwν; 0 < αν ≤ 1;
∑

ν αν = 1. Note that we disregard any wν with αν = 0.

Then p · xi = p ·∑ν ανwν =∑
ν ανp · wν . We claim that, for each ν, p · wν =

p · xi. If not, then for some ν′, ν ′′, p · wν′ > p · xi > p · wν ′′
. But this is a con-

tradiction: xi is then no longer the minimizer of p · x in Aki(xi). Note then that
even though xi may not be an element of Ai(ξ i), p · xi = infx∈Ai (ξ i ) p · x. Thus,
Dki(p) = con(Di(p)). QED
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25.3.3 Competitive equilibrium in the artificial convex economy

One of the great powers of mathematics is that you only have to solve a problem
once: When it reappears, you already know the answer. Even when it reappears
under a new wrapping, if it’s the same underneath you can say “reduced to the
previous case.” That’s what we’ve been working on in sections 25.3.1 and 25.3.2:
taking the nonconvex economy of section 25.2 and restating it in a fashion where
we can reduce consideration of its general equilibrium to a “previous case,” the
model of Chapter 24.

Consider a convex economy characterized in the following way:

Firms: j ∈ F , technologies are con(Y j ), fulfilling P.I, P.II, PK.III, PK.IV.
Households: i ∈ H , tastes �ki , fulfilling C.I, C.II, C.III, CK.IV, CK.V, CK.VI,

C.VII; endowments ri , firm shares αij .

Then this economy fulfills all of the assumptions of Theorem 24.7. Applying
that theorem, we know the convex economy has a general competitive equilibrium.
That is,

Lemma 25.3 Assume P.II, PK.III, PK.IV, CK.0, C.I, C.II, C.III, CK.IV, CK.V,
CK.VI, and C.VII. Then there are prices po ∈ P , production plans yoj ∈ Skj (po),
consumption plans xoi ∈ Dki(po), so that markets clear∑

i∈H

ri +
∑
j∈F

yoj ≥
∑
i∈H

xoi,

where the inequality applies coordinatewise, and po
n = 0 for n so that the strict

inequality holds.

Of course, the result of this lemma, in itself, should be of no interest at all.
After all, the convex economy, is a figment of our imagination. The real economy
is nonconvex. But now we can apply the power of mathematics. The Shapley-
Folkman Theorem (Theorem 8.3, Corollary 8.1) tells us that the actual economy is
very near the artificial convex economy previously described. This leads us to the
result in the next section: The equilibrium of the constructed convex economy is
very nearly an equilibrium of the original nonconvex economy.

25.4 Approximate equilibrium

We now use the artificial convex economy set up above and the corollary to the
Shapley-Folkman Theorem to establish the existence of an approximate equilibrium
in an economy with bounded nonconvexities.
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Recall the following definition and the corollary to the Shapley-Folkman
Theorem:

Definition We define the inner radius of S ⊂ RN as

r(S) ≡ sup
x∈con(S)

inf
T⊂S;x∈con(T )

rad(T ).

The essence of this definition is to find the radius of the smallest subset T ⊂ S that
can be sure of spanning (including in its convex hull) an arbitrary point of con(S).

Corollary 8.1 to the Shapley-Folkman Theorem Let F be a finite family of
compact subsets S ⊂ RN and L > 0 so that r(S) ≤ L for all S ∈ F . Then for any
x ∈ con(

∑
S∈F S) there is y ∈∑S∈F S so that |x − y| ≤ L

√
N .

Now we can apply this corollary to establish the existence of an approximate
equilibrium.

Theorem 25.1 Let the economy fulfill P.II, PK.III, PK.IV, and CK.0, C.I, C.II,
C.III, CK.IV, CK.V, CK.VI, C.VII. Let there be L > 0 so that for all i ∈ H , x ∈ Xi ,
j ∈ F ,

r(Ai(x)) ≤ L, and r(Y j ) ≤ L.

Then there are prices p∗ ∈ P , production plans y†j ∈ Y j , y∗j ∈ con(Y j ), con-
sumption plans x∗i ∈ Xi , and x†i ∈ Xi so that∑

i∈H

x∗i ≤ ∑
j∈F

y∗j + r

p∗
k = 0 for k so that

∑
i∈H

x∗i
k <

∑
j∈F

y
∗j
k + rk

p · y†j = sup
y∈Y j

p · y = sup
y∈con(Y j )

p · y = p · y∗j

p∗ · x†i = p∗ · ri + ∑
j∈F

αijp∗ · y†j = p∗ · ri + ∑
j∈F

αijp∗ · y∗j = p · x∗i

x†i maximizes ui(x) subject to p∗ · x ≤ p∗ · ri + ∑
j∈F

αijp∗ · y†j , and∣∣∣∣[ ∑
i∈H

x∗i − ∑
j∈F

y∗j
]
−
[ ∑

i∈H

x†i − ∑
j∈F

y†j
]∣∣∣∣ ≤ L

√
N∣∣∣∣[ ∑

i∈H

x†i − ∑
j∈F

y†j
]
− r

∣∣∣∣ ≤ L
√

N.
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Proof By Lemma 25.3, there is p∗ ∈ P , y∗j ∈ Skj (p∗), x∗i ∈ Dki(p∗) so that∑
i∈H

ri +
∑
j∈F

y∗j ≥
∑
i∈H

x∗i ,

with p∗
k = 0 for k so that a strict inequality holds, and p∗ · x∗i = p∗ · ri +∑

j∈F αijp∗ · y∗j . Using Lemmata 25.1, 25.2, y∗j ∈ con(Sj (p∗)) and x∗i ∈
con(Di(p∗)). Applying Corollary 8.1 to the Shapley-Folkman Theorem, for each
j ∈ F there is y†j ∈ Sj (p∗), and for each i ∈ H there is x†i ∈ Di(p∗) so that∣∣∣∣[∑

i∈H

x∗i −
∑
j∈F

y∗j
]
−
[∑

i∈H

x†i −
∑
j∈F

y†j
]∣∣∣∣ ≤ L

√
N.

∣∣∣∣[∑
i∈H

x†i −
∑
j∈F

y†j
]
− r

∣∣∣∣ ≤ L
√

N.

The last inequality follows because [
∑

i∈H x∗i −∑j∈F y∗j − r] ≤ 0. QED

The theorem says that there are prices p∗ so that households and firms can choose
plans that are optimizing at p∗, fulfilling budget constraint, with the allocations
nearly (but not perfectly) market clearing. The proof is a direct application of
Corollary 8.1 to the Shapley-Folkman Theorem and Lemma 25.3. The lemma
establishes the existence of market clearing prices for an “economy” characterized
by the convex hulls of the actual economy. Then, applying the Corollary 8.1 to
the Shapley-Folkman Theorem, there is a choice of approximating elements in the
original economy that is within the bound L

√
N of the equilibrium allocation of

the artificial convex economy.
That’s not the end of the story. Note that the bound in Theorem 25.1 depends

on the underlying description of the firms and households in the economy but
is independent of the size of the economy, the number of households, #H . The
disequilibrium – gap between supply and demand – in Theorem 25.1 is L

√
N .

Thus the disequilibrium per head is L
√

N
#H

. But L
√

N
#H

→ 0 as #H → ∞. In a large
economy, the disequilibrium attributable to U-shaped cost curves or concentrated
preferences is negligible.

Theorems 22.3 and 25.1 send a strong message. In a large economy, nonconvex
of preferences and bounded nonconvexity in technology are virtually irrelevant to
the existence and efficiency of general equilibrium. The extent of disequilibrium
and the losses of efficiency are bounded – in a large economy, they are negligible.

25.5 Bibliographic note

The treatment here parallels Arrow and Hahn (1971), chapter 7. The demon-
stration of an approximate equilibrium in a pure exchange economy using the
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Shapley-Folkman Theorem appears originally in R. Starr (1969). The limiting
case with a continuum (uncountable infinity) of households is developed in R. J.
Aumann (1966), and in W. Hildenbrand (1974).

Exercises

Questions 25.1, 25.2, and 25.3 are based on this two-person pure exchange economy
(an Edgeworth box). Let there be two households denoted A and B, with different
endowments. Superscripts A and B are used to denote the name of the households.
There are two commodities, x and y.

Household A is characterized as

uA(xA, yA) = xAyA,

for xA, yA ≥ 0, with endowment

rA = (6, 2).

Household B is characterized as

uB(xB, yB) = max[xB, yB]

for xB, yB ≥ 0, where max means the larger of the terms within brackets, with
endowment

rB = (4, 8).

B’s utility function is not of the form we usually encounter. It is not a concave
function. Though B likes both x and y, for any budget with positive prices, B

prefers her consumption either concentrated on good x (with no y) or concentrated
on good y (with no x) rather than mixed between them. B’s utility function violates
assumption C.VI(C) and C.VI(SC).

The usual calculation of for utility maximization subject to budget constraint,
ux/uy = px/py, is not valid for household B. All of B’s optimizing plans are
corner solutions (where consumption of one good is zero). Use the price space
P = {(px, py)|1 ≥ px , py ≥ 0; py = 1 − px}. B’s budget constraint is pxx

B +
pyy

B = px4 + py8. For px > 1
2 , B’s utility maximizing choice of consumption

subject to budget constraint will be xB = 0, yB > 12. For px < 1
2 , B’s utility

maximizing choice of consumption subject to budget constraint will be xB > 12,
yB = 0.

For px < 1
2 , A’s demand vector is (4, 4). For px = 1

2 , B is equally satisfied with
xB = 0, yB = 12, (0,12), or xB = 12, yB = 0, (12,0), both of which are optimizing
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plans. No convex combination of these plans is equally desirable. This Edgeworth
box has no competitive equilibrium.

25.1 Double the size of the economy given in the exercise introduction. Suppose
there are two households A1 and A2 with endowments and preferences
identical to those of household A above. Suppose there are two house-
holds B1 and B2 with endowments and preferences identical to those of
household B above.
(a) Despite the nonconvexity in B1 and B2’s preferences, the price vector

p0 = ( 1
2 ,

1
2 ) is a competitive equilibrium in this economy. Find the

competitive equilibrium consumptions for A1, A2, B1, and B2. B1
and B2 will have different (but equally desirable) consumption plans.
Demonstrate market clearing.

(b) Repeat part (a) for four households identical to A (A1, A2, A3, A4)
and four households identical to B(B1, B2, B3, B4).

25.2 In the economy of the exercise introduction (with only one A and one
B), excess demand at p0 = ( 1

2 ,
1
2 ) is either (12, 0) + (4, 4) − (10, 10) =

(6,−6), or (0, 12) + (4, 4) − (10, 10) = (−6, 6). That is, we have Z̃(p0) =
(6,−6) or Z̃(p0) = (−6, 6).
(a) Now consider the economy with three households identical to A

(A1, A2, A3) and three identical to B (B1, B2, B3). Find demand for
A1, A2, A3, and B1, B2, B3 at p0, so that the excess demand for the
six-household economy is the same (no larger) as in the original two-
household economy. Some of the B-type households have different
consumption plans from the other(s), though they all have the same
utility.

(b) Repeat part (a) for an economy with five households of each type. You
should still be able to arrange that total excess demand is no larger than
in the two-household economy.

25.3 Review the results for questions 25.1 and 25.2. They illustrate a general
theorem:

Approximate Equilibrium Theorem for Nonconvex Economies In a
pure exchange economy with nonconvex preferences, there is an (approxi-
mate equilibrium) price vector p∗ so that the size of excess demand |Z̃(p∗)|
depends on the size of individual household endowments and the number
of commodities N but does not vary with the number of households, #H .
The average size of excess demand, (|Z̃(p∗)|)/#H approaches 0 as the
number of households #H becomes large.

This result means that for large economies we can achieve an approxi-
mate equilibrium without the convexity assumption on preferences. Why
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is general equilibrium theory interested in an approximate equilibrium?
Does weakening the assumptions of the theory (eliminating C.VI(SC) or
C.VI(C)) make the theory more generally applicable? Economics often
concentrates on large economies (#H becoming large). Why? Explain
your answers.

25.4 Prof. Clower writes, “Neowalrasian analysis is limited strictly to convex
economies” (Clower, “Economics as a deductive science,” Southern Eco-
nomic Journal, 1994). Clower means that Walrasian general equilibrium
theory cannot deal with such elementary concepts as U-shaped cost curves.
This is a correct description of Chapters 2–5, 11–18, 23, and 24. Results
contrary to Clower’s statement are those in Chapter 25, Arrow-Hahn chap-
ter 7, and in MasCollel et al. section 17.I.

Consider the model of a large economy (many households, with total
consumption of each good several times larger than the break-even point
of the typical firm with U-shaped cost curve) with firms having U-shaped
marginal cost and U-shaped average cost curves. What does Walrasian
general equilibrium theory have to say about an economy whose firms have
U-shaped cost curves? Is Clower right? Does Walrasian general equilibrium
theory have nothing to say about that model – other than that it doesn’t
fulfill the assumptions?



Part H

Standing on the shoulders of giants

The material presented in Chapters 10–25 represents fulfillment of the research
agenda in Arrow and Debreu (1954). It represents most of the state of the general
equilibrium theory (for economies with a finite number of households) through the
1960s. The next steps in the analysis of the field have used rather more sophisticated
mathematics to develop a more refined class of results. Some of those implications
are briefly illustrated in Chapter 26. In addition, the computational approach has
meant an applied aspect to the general equilibrium theory, an applicability that
would have surprised readers of the original article, Arrow and Debreu (1954),
when it appeared.

What have we learned? The mathematical method formalizing economic con-
cepts is immensely powerful. It gives form and generality to economic ideas and
specifies the scope and limits of their application. Chapter 27 puts the results in
perspective.
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Next steps

This chapter surveys very briefly developments in the general equilibrium theory
of the last several decades. There is no room here for the richness and detail that
these topics merit. They each have a population of books and articles of their own.
Nevertheless, even a beginning student of general equilibrium theory can appreciate
a notion of the scope of the generalizations.

26.1 Large economies

Chapters 22 and 25 emphasized the importance of large numbers of households in
the economy. As the economy becomes large, the core converges to the competitive
equilibrium allocations (Theorem 22.2), and, indeed, this result is true even without
the assumption of convex preferences (Theorem 22.3). Further – concentrating
on the limiting behavior of the economy as the economy becomes large – the
assumptions of convex technology and convex preferences are no longer required
for existence of competitive equilibrium (Theorem 25.1).

These results are stated as limiting behavior as the economy becomes large.
The alternative is to state the results directly for a large economy – an econ-
omy with an infinite number of households. One way to do this is to think of
the set of households as the points on the unit interval [0, 1], an uncountable
infinity of households. Then, instead of summing the demands of the households
to find total demand, it is appropriate to integrate the demand function over the
interval. It is important to emphasize that each point in the interval is negligible
(has wealth infinitesimally small compared to the total). This is formalized by
saying that the size of any subset of the interval is its Lebesgue measure (a for-
malization and generalization of length). And of course, the Lebesgue measure
of a single point in a nonnul continuum is zero. The familiar feasiblity or market
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clearing condition of a pure exchange economy∑
i∈H

Di(p) =
∑
i∈H

ri is restated as
∫

H

D(p) =
∫

H

r,

where the integrals are taken with respect to the nonatomic measure.
This setting, where the set of households is characterized as an uncountable

infinity of individually negligible points leads to the Lyapunov Theorem. That
result is the counterpart in a continuum setting of the Shapley-Folkman Theorem.
The Lyapunov Theorem says that the integral over a continuum of a correspondence
is a compact convex set. Note that the correspondence to be integrated need not be
convex valued. Convexification is provided by the process of integration over the
continuum.

Thus, in an economy whose agents are points of a continuum or of a nonatomic
measure space, with continuity but without assuming convexity, there is a com-
petitive equilibrium and the core and equilibrium set are equivalent. An imprecise
restatement of these results is

Core Equivalence Theorem (Aumann, Hildenbrand, Vind) Consider a pure
exchange economy where H is a nonnull, nonatomic measure space so that almost
every i ∈ H fulfills C.I–C.V, C.VII (omitting C.VI(SC) and C.VI(C)). Then there is a
competitive equilibrium price and allocation. The core of the economy is nonempty,
and the core is equivalent to the competitive equilibrium allocation.

Thus the limiting results of Theorems 22.3 and 25.1 are restated here, not as a
limit to be approached but as an equivalence.

26.1.1 Lebesgue measure and technical issues

Lebesgue measure is an estimate of the size of a subset of RN . It is a generalization
of the concept of length (in R) or volume (in RN ). Not all sets are measurable.

Creating an economy described by a nonatomic measure space is not quite
as simple as merely saying that the economy is characterized as a continuum.
Measure theory is a rich area of mathematics. The notion of measure is the weight
or size attributed to a subset of the measure space in taking an integral. The term
“nonatomic” is mathematician’s terminology meaning there is no single point of
the space with strictly positive measure – there is no indivisibility, no single heavily
weighted point. This quality, that each point is individually negligible, is sometimes
described (confusingly) by economists as “atomistic.”

Functions on the measure space need to be measurable to be integrable. For
the issues of existence of market equilibrium and equivalence of the equilibrium
set to the core, the requirements of nonatomic measure and measurability are
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not onerous. In some applications – particularly in theoretical macroeconomics
or finance – it is desirable in addition that the function values of points in the
space be statistically independent of function values at other points. Combining
independence with measurability requires some care.

26.2 Anything goes!

How informative is the general equilibrium theory about the results (competitive
equilibria) that the economy will actually realize? From one point of view, it is
hardly informative at all. An arbitrary continuous function from price space into
commodity space fulfilling Walras’s Law can be shown to be the excess demand
function of a plausible economy. There are no testable restrictions on an excess
demand function beyond continuity and Walras’s Law. The (purposefully) skeptical
negative way to describe this result is to say that the general equilibrium theory
is completely uninformative about the character of excess demand. Let’s begin to
formalize this result.

Let P++ ≡ {p|p ∈ RN, pn > 0,
∑N

n=1 pn = 1}. That is, P++ is the interior of the
unit price simplex, admitting only strictly positive prices. Use of P++ is designed
to avoid indeterminacies and unlimited demands at the boundary. Then we have

Theorem (Debreu, Mantel, Sonnenschein [Point-valued version]) Let Z:
P++ → RN (N finite), so that Z(p) is continuous throughout P++ and so that
p · Z(p) = 0 for all p ∈ P++. Then there is a pure exchange economy consisting
of h ∈ H, #H > N, #H finite, so that each i ∈ H fulfills C.I–C.V, C.VI(SC), and
C.VII, and Z(p) =∑

i∈H Di(p) −∑i∈H ri for all p ∈ P++.

Theorem (Debreu, Mantel, Sonnenschein [Set-valued version]) Let Z: P++ →
RN (N finite), so that Z(p) is an upper hemicontinuous convex-valued cor-
respondence throughout P++ and so that for each z ∈ Z(p), p · z = 0 for all
p ∈ P++. Then there is a pure exchange economy consisting of i ∈ H, #H >

N, #H finite, so that each i ∈ H fulfills C.I–C.V, C.VI(C), and C.VII, and
Z(p) =∑

i∈H Di(p) − {∑i∈H ri} for all p ∈ P++.

Just about any continuous function (or upper hemicontinuous convex valued
correspondence), fulfilling Walras’s Law, mapping from the interior of the price
simplex into RN can be an excess demand function. The space of excess demand
functions is a pretty big and arbitrary. The general equilibrium theory puts no
meaningful restrictions on the shape of the excess demand function – in that sense,
excess demand functions are arbitrary and the theory is uninformative.

The reply to this rather skeptical and negative view is that it is not really tak-
ing account of enough information. Specifications of individual endowments and
individual optimizations are lost in the summation of the excess demand function.
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E
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2

Fig. 26.1. An economy with an infinite number of equilibria.

Suppose, instead we define the equilibrium manifold as

M ≡
{

(r1, r2, . . . , r#H ; p; x1, x2, . . . , x#H ) ∈ R#H×N
+ × P × R#H×N

+ |

Mi(p) = p · ri, xi = Di(p);
∑
i∈H

ri =
∑
i∈H

xi

}
M is the set of combinations of endowments, prices, and consumptions con-

sistent with market equilibrium in a pure exchange economy. Then under the
usual assumptions, C.I–C.V, C.VI(SC), and C.VII, M is very much restricted. It
includes a very small subset of R#H×N

+ × P × R#H×N
+ . For simplicity, consider a

two-household economy, #H = 2. Let (ro1, ro2; po; xo1, xo2) ∈ M. Then we know
quite a lot about what other points (r ′1, r ′2; p′; x ′1, x′2) may also∈ M. In particular,
if po · xo1 > po · x ′1 then it follows that p′ · xo1 > p′ · x ′1. That is, if household
1 could afford x ′1 at prices po but chose xo1 instead and chooses x′1 at prices p′,
then it must be that 1 cannot afford xo1 at p′. Repeated application of this principle
narrowly defines the equilibrium manifold, making it very informative.

26.3 Regular economies and the determinacy of equilibrium

It is easy to come up with examples of economies with an infinite number of equi-
libria. Figure 26.1 demonstrates an example. But cases like this seem contrived –
a small perturbation of the endowment point reduces the example from an infinite
number of equilibria to a unique equilibrium. In fact, this observation general-
izes. Consider a space of exchange economies characterized by their endowment
vectors. Assume the excess demand functions are smooth (twice differentiable).
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Then, almost all of the economies (endowment points) will have a finite number of
equilibria. “Almost all” here means that the exceptions, endowments of economies
with an infinite number of equilibria, constitute a closed set of Lebesgue measure
zero in the space of all possible endowment arrays. Again, we restrict attention to
pure exchange economies with strictly positive equilibrium price vectors, imply-
ing strictly monotone preferences (at least for some households). Without loss of
generality, we can restate the price space by choosing a numeraire; set pN ≡ 1.
The price space is now P̂ ≡ {p ∈ RN−1|pn > 0, n = 1, 2, . . . , N − 1}. We restate
the excess demand function as ẑ : P̂ → RN−1. A general equilibrium will be char-
acterized by p◦ ∈ P̂ so that ẑ(p◦) = 0. Recall that the Walras’s Law (with strictly
positive prices) implies that market clearing in N − 1 markets implies market clear-
ing in the Nth as well. Assume differentiability of ẑ throughout P̂ , and assume
that the (N − 1) × (N − 1) matrix [ ∂ẑi

∂pj
] is nonsingular. Then, for each general

equilibrium price vector, p◦, the equilibrium is locally unique. In a small neigh-
borhood of p◦, there is no other equilibrium price vector. This is a consequence
of the Implicit Function Theorem. The underlying notion of the implicit function
theorem is that the condition ẑ(p◦) = 0 implicitly defines p◦ as a function of the
parameters of ẑ, those parameters being household endowments. Nonsingularity
of [ ∂ẑi

∂pj
] implies sufficient curvature of ẑ in the neighborhood of p◦ that ẑ is not

locally constant. Further, local uniqueness of p◦ implies that economy has a finite
number of equilibria.

Now let’s generalize this result. Restate ẑ as ẑ(p, r) where p is the N − 1
dimensional price vector and r is the #H × N dimensional vector of household
endowments: ẑ : P̂ × R#H×N

++ → RN−1. Then we can consider the set of equilib-
rium prices in P̂ as a function of r: E (r) ≡ {p◦ ∈ P̂ |ẑ(p◦, r) = 0}.

It is now possible to state a remarkable result. Assume ẑ(p, r) is differentiable
throughout P̂ × R#H×N

++ ; then, for almost every r ∈ R#H×N
++ , E (r) is finite. The

term “almost every” has a precise meaning. It means the entire set R#H×N
++ , with

the possible exception of a closed subset of measure zero. This is a “generic”
result. Finiteness of the equilibrium set is true in r ∈ R#H×N

++ on an open set of full
measure.

26.4 General equilibrium with incomplete markets

In Chapter 20, we noted that the extension of the existence and efficiency results
over time and uncertainty requires a large number of futures markets, many more
markets than are practical, many more than are available in any real economy. In
this sense, most economies, most of the time have markets that are “incomplete”
from the viewpoint of an Arrow-Debreu framework. This arises in two ways. There
may be fewer Arrow insurance contract markets available than there are states of
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the world, or there may be multiple real equilibria ex post in some states of the
world for given Arrow contracts, making price foresight impossible.

There are examples of a mix of real holdings in some states and Arrow insurance
contracts that create nonexistence of ex post equilibrium in some states. Though
the examples are a source of concern, there are results showing that existence
of general equilibrium with incomplete markets is generic – the overwhelming
majority of specifications of an economy with incomplete markets will have a
general equilibrium.

An insufficient number of Arrow securities markets is thought to reflect several
possibilities. Traders may seek to make mutually beneficial contracts contingent
on an uncertain event but may be unable to verify the event to objectively or
satisfactorily to all parties to the bargain. Market making, creating and enforcing
contracts, is a resource-using activity; some contracts though desirable may be too
costly to create, market, and enforce so that they are not sustained in equilibrium.
Credit constraints may prevent some agents from taking positions, resulting in
market inactivity. Whatever the cause, this situation is typically characterized as
an available array of futures markets, fewer than future states of the world, so that
prospective consumption and trading possibilities cannot be fully spanned (traded
across) using available markets.

Most efficiency results will have to be sacrificed in this setting. General equilib-
rium with incomplete markets will typically not result in an efficient allocation of
goods or of risk bearing.

In addition, action and price spaces can become more complex. Consider two
distinct event-asset spaces each covering S states of the world, some of which are
the same, others of which differ. Economic agents’ actions can move between the
two spaces, but a convex combination of actions in each space is in neither. Hence,
the action and price space is not convex; the Brouwer and Kakutani theorems can
no longer be applied to find a market equilibrium. RN is no longer the appropriate
setting for analysis.

26.5 Computing general equilibrium

Economists often wish to forecast the effect of an exogenous change on market
equilibrium prices and allocations. What will happen to quantities and prices of
gasoline and automobiles when the excise tax on gasoline varies? There are some
settings where the answer is conveniently available using the implicit function
theorem: when the change in the exogenous variables is small and the Jacobian of
the system is known and nonsingular.

When changes are large and systematic it is no longer appropriate to apply the
implicit function theorem. Then we wish to compute prices and allocations before
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and after the systemic change takes place. In the Arrow-Debreu model that calcu-
lation consists of searching for a fixed point of the price adjustment process. The
search algorithm of Scarf (1967) finds an approximate fixed point, an approximate
general equilibrium price vector. This approach has successfully been applied to
applied topics, including international trade (forming a customs union) and public
finance (tax incidence, deadweight loss). In the case of general equilibrium with
incomplete markets, the problem of searching for market clearing prices is con-
siderably more complex because the price space is not convex. Nevertheless, that
research program has been successful as well.

26.6 Bibliographic note

An accessible introduction to most topics in this chapter appears in Mas-Colell,
Whinston, and Green (1995). [Section 26.1] The original work on economies char-
acterized as continua is by Aumann (1964, 1966), with generalizations by Vind
(1964) and Hildenbrand (1974). Sufficient conditions for measurability and inte-
grability under statistical independence appear in Feldman and Gilles (1985). For
an overview of the Lyapunov Theorem (Section 26.2), see Loeb and Rashid (1987),
and in relation to the Shapley-Folkman Theorem, see Grodal (2002) and Khan and
Rath (2009). [Section 26.2] Indeterminacy of the excess demand function reflects
the work of Debreu (1974), Mantel (1974), Shafer and Sonnenschein (1982), and
Sonnenschein (1973). Restrictions on the equilibrium manifold are developed in
Brown and Matzkin (1996). [Section 26.3] The generic result on the finiteness
of the number of equilibria found in Debreu (1970), and the regular economy
model is fully described in Balasko (1988) and in MasCollel (1985). [Section 26.4]
Overviews of general equilibrium models with incomplete markets include Magill
and Quinzzi (1996) and Geanakoplos (1990). [Section 26.5] The original compu-
tational algorithm appears in Scarf (1967). Surveys of computation of equilibrium
prices include Scarf (2008) and Kubler (2008).
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Summary and conclusion

We have covered a classic array of topics in this volume: formulation of the
general equilibrium model, existence of general equilibrium, efficiency of general
equilibrium, the core of a market economy, and futures and contingent commodity
markets.

27.1 Overview and summary

The ideas treated in this volume have focused on a single unifying idea as a frame-
work for analyzing economic activity: the general equilibrium of a competitive
market. General equilibrium – treating all markets and their interactions simulta-
neously – is thought here to be the appropriate model to decide whether there are
well-defined solutions to the economic decision-making mechanism and whether
they have efficiency properties making them desirable. This class of questions goes
back well over 200 years in scientific economics. The way we answer them here is
the Arrow-Debreu version of the Walrasian economic model (Arrow and Debreu
[1954], Arrow [1951]).

We have come to several principal conclusions:

(i) The models have well-defined solutions; equilibria exist. Sufficient conditions
for this result are scarcity, continuity, and convexity on both the consumer
and producer sides. This is true both in settings where demand and supply are
characterized as point-valued functions and optimizing behavior is uniquely
well defined (Theorems 5.1, 14.1, and 18.1) and where they are character-
ized as set-valued mappings (Theorem 24.7) recognizing the multiplicity of
equally profitable production plans a firm may have or the variety of equally
satisfactory affordable consumption plans households may consider.

(ii) The Brouwer Fixed-Point Theorem, Kakutani Fixed-Point Theorem, or their
equivalent is necessary to establish the existence of equilibrium result (Uzawa
Equivalence Theorem 18.2).

332
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(iii) General equilibrium allocations are Pareto efficient (First Fundamental
Theorem of Welfare Economics, Theorem 19.1). The market ensures against
the waste of scarce resources. This is a surprisingly robust result, depending
on scarcity and continuity, but not requiring convexity.

(iv) Assuming convexity of tastes and technology, arbitrary Pareto-efficient allo-
cations can be supported by prices; efficient allocations will be sustained
as competitive equilibria subject to an initial redistribution of endowment
(wealth). The market can provide the incentives for production and for the
desired distribution of any technically feasible output if the income to sup-
port it is appropriately distributed (Second Fundamental Theorem of Welfare
Economics, Theorem 19.2, and Corollary 19.1).

(v) In a large economy, the core, which constitutes the outcome of strategic bar-
gaining, is a competitive equilibrium – the long-standing focus on competitive
behavior as typical of large economies is sound (Core Convergence Theorem,
Theorems 22.2, and 22.3).

(vi) We can interpret this family of results as applying across time and under
uncertainty, subject to the availability of well-articulated markets for allocation
over time and across uncertain events.

There it is in modern mathematical form – just what Adam Smith (1776) would
have said. The competitive market can work to effectively decentralize efficient
allocation decisions. But, as Prof. Sonnenschein reminds us, we have learned
something more in the several centuries since Adam Smith:

In 1954, referring to the first and second theorems of classical welfare economics, Gerard
wrote “The contents of both Theorems . . . are old beliefs in economics. Arrow and Debreu
have recently treated these questions with techniques permitting proofs.” This statement is
precisely correct; once there were beliefs, now there was knowledge.

But more was at stake. Great scholars change the way that we think about the world,
and about what and who we are. The Arrow-Debreu model, as communicated in Theory of
Value changed basic thinking, and it quickly became the standard model of price theory. It
is the “benchmark” model in Finance, International Trade, Public Finance, Transportation,
and even macroeconomics. . . . In rather short order it was no longer “as it is” in Marshall,
Hicks, and Samuelson; rather it became “as it is” in Theory of Value.

27.2 Bibliographic note

The comments attributed to Hugo Sonnenschein are reproduced with permission
from his address to the Berkeley Memorial Conference in honor of Gerard Debreu,
2005. For discussion of the scope and interpretation of mathematical models, see
Debreu (1986). The surveys by Geanakoplos (1989) and McKenzie (1981) provide
useful summaries and evaluations of the Arrow-Debreu general equilibrium model.



334 Summary and conclusion

There are excellent bibliographies in Debreu (1982) and Ellickson (1993). For a
discussion of Arrow’s contributions, see Duffie and Sonnenschein (1989) and Starr
(2008).

Exercises

27.1 The style of analysis we have been using is known as “axiomatic,” involv-
ing precisely stated assumptions, detailed modeling, and logically derived
conclusions. What are the strengths and weaknesses of this approach?

27.2 External effects (such as air pollution, water pollution, annoyance due to
neighboring noise, traffic congestion) occur in economic analysis when
one firm or household’s actions affect the tastes or technology of another
through nonmarket means. That is, in an external effect, the interaction
between two firms does not take the form of supply of output or demand for
input going through the market (and hence showing up in price). It would
be characterized rather as the shape of one firm’s available technology
set depending on the output or input level of another firm. Or it might
be characterized as one firm’s inputs (like clean air at a tourist resort)
being nonmarketed but their availability being affected by the production
decisions of another firm.

Does the Arrow-Debreu general equilibrium model (as presented in
this volume) treat external effects? Explain your answer. How does the
treatment of externalities (or lack of treatment) show up in the specification
of the model?

27.3 Describe the significance of the following results:
(a) The Uzawa Equivalence Theorem, Theorem 18.2. Does it have an

implication for the importance of mathematics in economics?
(b) The Existence of General Equilibrium, Theorems 5.1, 14.1, 18.1,

or 24.7.
(c) The First Fundamental Theorem of Welfare Economics, Theorem 19.1.
(d) The Second Fundamental Theorem of Welfare Economics,

Theorem 19.2 and Corollary 19.1.
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