

Natural Resources Conservation Service (NRCS) National Engineering Manual (NEM)

- Part 501 Authorizations
 - Subpart A Review and Approval
 - Amendment NC1, April 2010
- State Law regarding the practice of engineering in North Carolina
 - General Statutes of North Carolina, Chapter 89C
 - NC Board of Examiners for Engineers and Land Surveyors has determined that
 - Certain Conservation Practices contained in Section IV of the NRCS Field
 Office Technical Guide (FOTG) are considered the "practice of engineering"
 in NC and require approval of a Professional Engineer currently registered
 to practice in NC

Limitations on NC G.S., Chapter 89C

- House Bill 810 (SL2007-536)
- G.S. 89C-25 rewritten
- Provides limitations on applications of professional engineering law so that it cannot prevent practice by "employees of the Natural Resources Conservation Service, county employees, or employees of the SWCDs who have federal engineering job approval authority that involves the planning, designing, or implementation of best management practices on agricultural lands."

Implications of House Bill 810 (Session Law 2007-536)

Allows NRCS to assign job approval authority to NRCS and district employees for engineering and non-engineering practices when these individuals are:

·Working in compliance with NRCS policies and procedures

•Qualified and have demonstrated competence to perform the practices

•Working under the technical supervision of an NRCS employee

NRCS ENGINEERING JOB APPROVAL AUTHORITY (JAA)

- The NRCS District Conservationist (DC) is responsible for all NRCS activities in his/her service center
 - The DC is responsible for insuring that all employees, NRCS and non-NRCS, under their technical supervision are competent to carry out their assigned tasks
- The Engineering JAA system provides a level of liability protection for both individuals and organizations that provide technical assistance in coordination with USDA
 - All employees who desire JAA will be evaluated for technical competency to properly plan, design, and implement the conservation practice for which JAA is being requested.

How do non-NRCS employees request JAA?

- Submit a "Request for Assignment of Engineering JAA"
 - The District Chairperson, the employee, and the employee's administrative supervisor must sign the request before submittal to NRCS.
 - The request must include the practices and Engineering Job Class level being requested for each practice
- Submit completed request form to the District Conservationist who serves as the employee's Technical Supervisor
- The DC will review the request and forward the request and his/her recommendations to the responsible NRCS engineer

REQUEST FOR ASSIGNMENT OF ENGINEERING JOB APPROVAL AUTHORITY

The need arise, the determination afT	requests that NRCS assign Job		
Name of requesting SWCD	Federal Tort Claims Act coverage or pr		
Approval Authority to	for the planning, design, and		
implementation of conservation practices as sho	wn on the attached list of practices.		
ni od tsum vtirodiu A lever is a dol 20	, employed by the		
Name of employee	Job Title		
Name of requesting SWCD	al laws that address special environment		

We understand and agree that Job Approval Authority (JAA) will be assigned based upon training, experience and demonstrated competence in accordance with NRCS policy for the purpose of implementing conservation programs on agricultural lands (irrespective of funding sources) and that all work performed under this assigned Job Approval Authority will be:

- Completed under the direct technical supervision and oversight of an NRCS employee.
- Supported by a sound conservation plan meeting the requirements of:
 North Carolina Division of Soil and Water Conservation memo regarding conservation planning requirements for Agriculture Cost Share Program contracts dated July 31, 2007 (copy attached); and
 USDA planning policy requirements contained in the NRCS National Planning Procedures Handbook, General Manual, and supplemental state policies.
- 3. Completed according to NRCS policies, procedures, standards and specifications; as more specifically defined in the Field Office Technical Guide, National Engineering Manual, the National Planning Procedures Handbook and its North Carolina Supplements.
- 4. In compliance with the requirements of NC General Statutes GS 89C-25. The certification of engineering practices (as defined by the PE Board) will be restricted to engineering practices installed on agricultural lands.

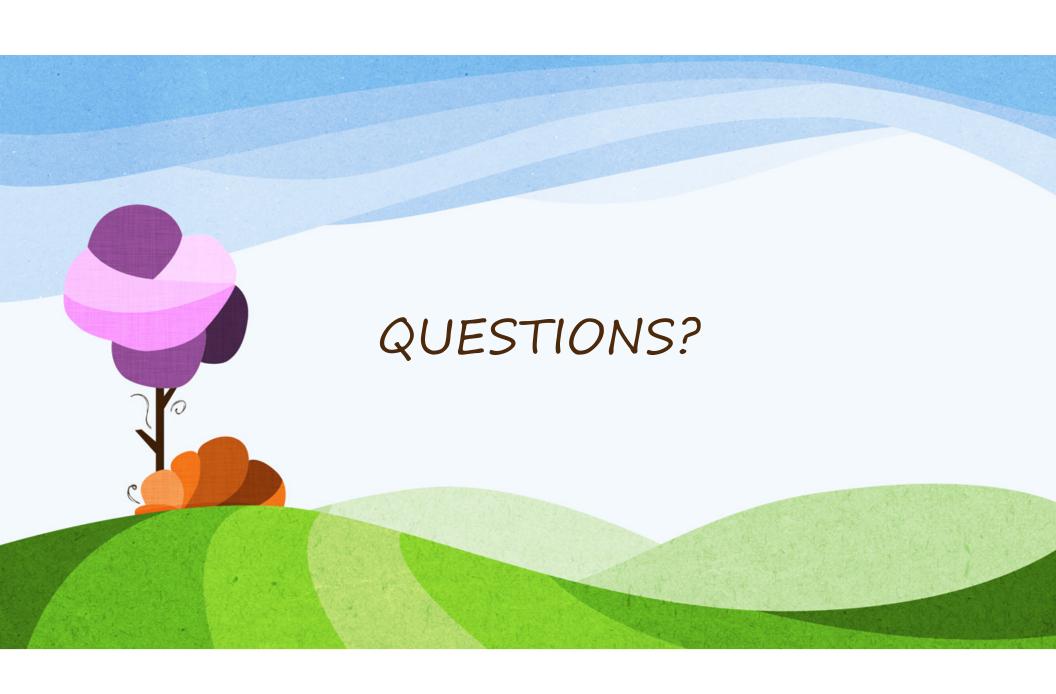
NC501.09
Request for
Assignment of
Engineering Job
Approval
Authority

Form can be requested from DC

~ or ~

NC Amendment 1 (April 2010) to the National Engineering Manual, Part 501-Authorizations, Subpart A-Review and Approval, pages NC501-5 and NC501-6.

How do non-NRCS employees request JAA?

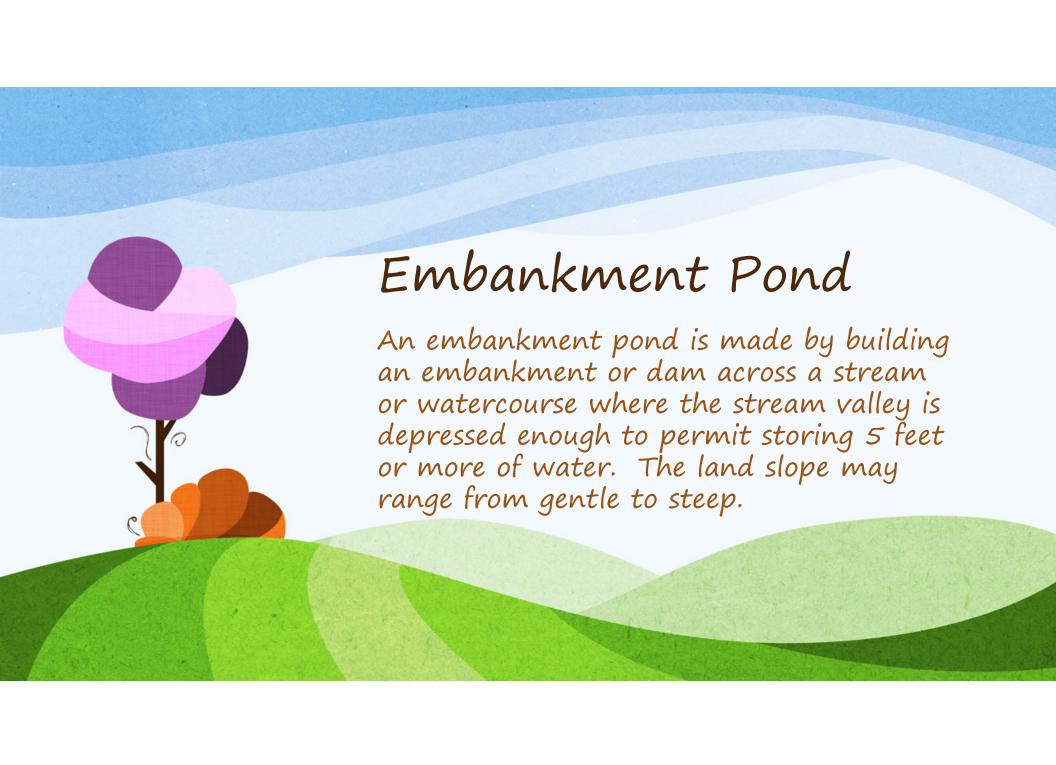

- The responsible engineer will provide a Technical Competency Determination for the non-NRCS employee to the DC on NC Form ENG-NC-33, Conservation Practice Job Approval Authority - ENGINEERING
- After the Administrative Supervisor of the non-NRCS employee
 CONCURS in the JAA, The DC will ISSUE the Engineering JAA
- NOTE: For non-engineering JAA, the NRCS Area Resource Conservationist (ARC) or the DC, as applicable, will provide a Technical Competency Certification for each non-engineering practice. For non-NRCS employees, the DC will ISSUE the non-engineering JAA after the employee's Administrative Supervisor concurs with the JAA.

Conservation Practice Job Approval Authority – ENGINEERING FOR

Name:		Title: SWCD Technician			Office:					
ENGINEERING Practices ³										
Practice Code	Practice Name	Controlling Factor	Units	Class I	Class II	Class III	Class IV	Class V	Job Approval Dsn/Constr *	Foot note #
402	Dam			None	None	None	None	All	*/*	2
378	Pond	Conduit	Inches	12	24	36	42	48	I/I	
		Effective Height	Feet	15	20	25	30	35	I/I	2, 5
		Storage x Effective Height	Ac-ft x Ft	500	1000	2000	2500	3000	I/I	5
		Drainage Area	Acres	100	400	1000	2500	4000	I/I	
		Hazard Class		a	a	a	a	a	I/I	5

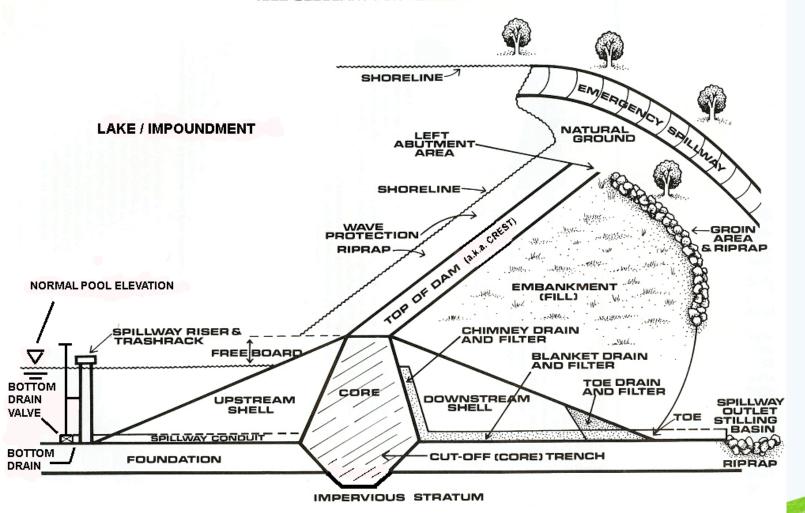
Engineering Practice Job Approval Authority Footnotes that pertain to PC-378 and PC-402

- 2. Any embankment that is 25 feet in height as measured from the highest point on the top of the dam to the lowest point along the downstream toe and impounds 50 acre feet or more of water or effluent as measured from the top of the embankment must have a dam safety permit in accordance with the North Carolina Dam Safety Law of 1967. All designed dams subject to this law must have the approval of an engineer with appropriate approval authority.
- 3. It is intended for any employee, who is capable, to gather basic data and prepare engineering plans and designs outside his approval authority. However, review and approval of all such plans by a person with appropriate authority is required.
- 5. Hazard Class, Effective Height, and Storage are defined in Practice Code 378 Pond.


Ponds in Conservation

- · A pond is a water impoundment made by constructing an embankment or by excavating a pit or dugout.
- Ponds are used to store water or effluent. For this training, the focus is on ponds used to store clean water.
- The criteria and recommendations covered in this class are for dams that are less than 35 feet high and located where failure of the structure would not result in:
 - · Loss of life
 - Damage to homes, commercial or industrial buildings, main highways, or railroads
 - Interrupted use of public utilities

Ponds in Conservation

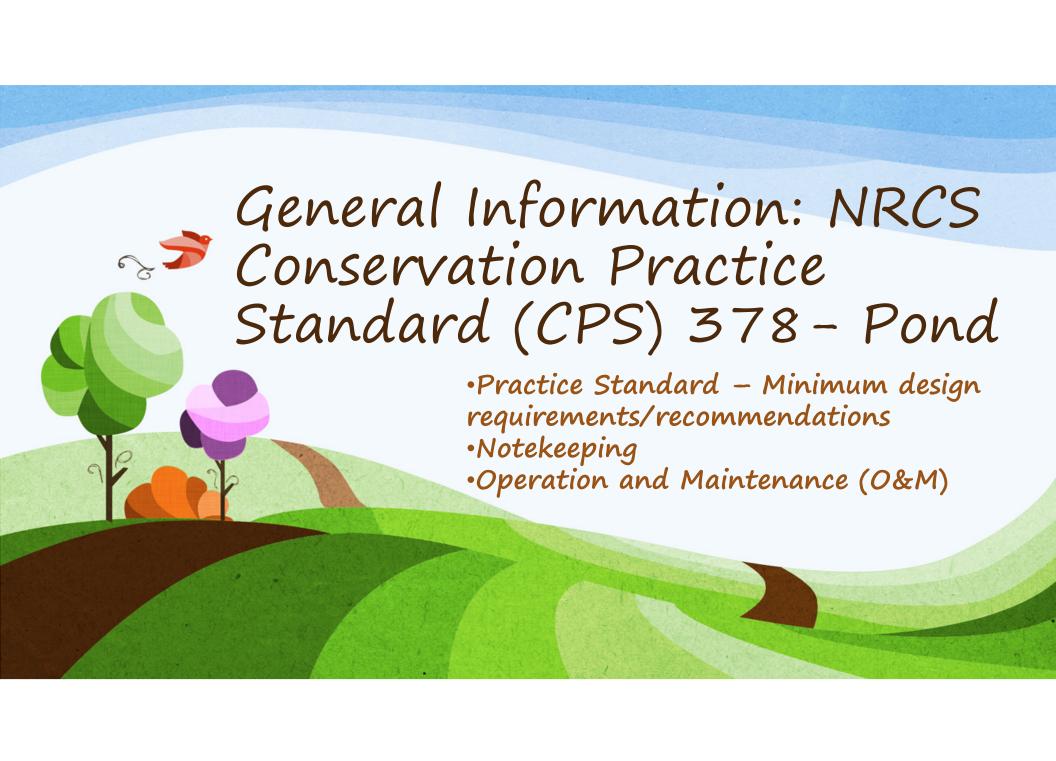

- Livestock water
- Irrigation
- Fish production (Aquaculture)
- · Crop and Orchard spraying
- Fire Protection

- Energy conservation
- · Wildlife habitat
- Recreation
- Erosion Control
- · Landscape Improvement

PARTS OF AN EARTH DAM

(SEE GLOSSARY FOR TERM DEFINITIONS)

NC Dam Safety Graphic of an Earthen Dam


Excavated Pond

An excavated pond is made by digging a pit or dugout in a nearly level area. Because the water capacity is obtained almost entirely by digging, excavated ponds are normally used where only a small supply of water is needed.

Ponds built in gently to moderately sloping land are often built by both excavating and by building a dam.

Ponds constructed by both the excavation and embankment methods are classified as embankment ponds if the depth of water impounded against the embankment at the auxiliary spillway (ASW) elevation is 3 feet or more.

NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD

POND

(No.)

CODE 378

DEFINITION

A water impoundment made by constructing an embankment or by excavating a pit or dugout.

In this standard, ponds constructed by the first method are referred to as embankment ponds, and those constructed by the second method are referred to as excavated ponds. Ponds constructed by both the excavation and the embankment methods are classified as embankment ponds if the depth of water impounded against the embankment at the auxiliary spillway elevation is 3 feet or more.

PURPOSE

To provide water for livestock, fish and wildlife, recreation, fire control, develop renewable

less.

The NRCS classification of the dam is Class (a).

General Criteria Applicable to All Ponds

All federal, State and local requirements shall be addressed in the design.

A protective cover of vegetation shall be established on all exposed areas of embankments, spillways and borrow areas as climatic conditions allow, according to the guidelines in conservation practice standards 342, Critical Area Planting or 327, Conservation Cover, as applicable.

The downstream area below the dam must be evaluated carefully to determine what impact a sudden breach of the proposed dam would NRCS CPS 378
provides
minimum
planning and
design criteria for
ponds

DEFINITION

A water impoundment made by constructing an embankment or by excavating a pit or dugout.

In this standard, ponds constructed by the first method are referred to as embankment ponds, and those constructed by the second method are referred to as excavated ponds. Ponds constructed by both the excavation and the embankment methods are classified as embankment ponds if the depth of water impounded against the embankment at the auxiliary spillway elevation is 3 feet or more.

PURPOSE

To provide water for livestock, fish and wildlife, recreation, fire control, develop renewable energy systems, and other related uses, and to maintain or improve water quality.

PURPOSE

CONDITIONS WHERE PRACTICE APPLIES

This standard establishes the minimum acceptable quality for the design and construction of low-hazard ponds where:

Failure of the dam will not result in loss of life; damage to homes, commercial or industrial buildings, main highways, or railroads; or in interruption of the use or service of public utilities.

The product of the storage times the effective height of the dam is less than 3,000. Storage is the volume, in acre-feet, in the reservoir below the elevation of the crest of the auxiliary spillway. The effective height of the dam is the difference in elevation, in feet, between the auxiliary spillway crest and the lowest point in the cross section taken along the centerline of the dam. If there is no auxiliary spillway, the top of the dam is the upper limit.

The effective height of the dam is 35 feet or

The NRCS classification of the dam is Class (a).

DEFINITION

CONDITIONS
WHERE PRACTICE
APPLIES

General Criteria Applicable to All Ponds

All federal, State and local requirements shall be addressed in the design.

A protective cover of vegetation shall be established on all exposed areas of embankments, spillways and borrow areas as climatic conditions allow, according to the guidelines in conservation practice standards 342, Critical Area Planting or 327, Conservation Cover, as applicable.

The downstream area below the dam must be evaluated carefully to determine what impact a sudden breach of the proposed dam would have. This evaluation must consider all existing improvements and those improvements that may reasonably be expected to be made during the useful life of the structure. The results of this examination provide for the proper hazard class of the dam. See Pond, Engineering Notekeeping (N378 - 1) for documentation of hazard class determination

Any dam that is 25 feet or over in height and has an impoundment capacity of 50 acre-feet or more (as defined by the NC Dam Safety Law) will require a permit under the North Carolina Dam Safety Law. NRCS hazard classification may differ from that of the NC Department of Environment and Natural Resources (DENR). Pipe materials for dams constructed under a dam safety permit will meet the requirements of DENR when they are more stringent than NRCS requirements.

General Criteria Applicable to All Ponds

Site conditions. Site conditions shall be such that runoff from the design storm can be safely passed through (1) a natural or constructed auxiliary spillway, (2) a combination of a principal spillway and an auxiliary spillway, or (3) a principal spillway.

Drainage area. The drainage area above the pond must be protected against erosion to the extent that expected sedimentation will not shorten the planned effective life of the structure. The drainage area shall be large enough so that surface runoff and groundwater will provide an adequate supply of water for the intended purpose unless an alternate water source exists to serve this purpose. The quality shall be suitable for the water's intended use.

Reservoir area. The topography and geology of the site shall permit storage of water at a depth and volume that will ensure a dependable supply, considering beneficial use, sedimentation, season of use, and evaporation and seepage losses. If surface runoff is the primary source of water for a pond, the soils shall be impervious enough to prevent excessive seepage losses or shall be of a type that sealing is practicable. Areas at design normal pool and top of dam should be measured and not estimated. This is critical in determining storage volumes for flood routing and for determining Dam Safety Law requirements.

Design Criteria for Embankment Ponds

Design Criteria for Embankment Ponds

Geological Investigations. Pits, trenches, borings, review of existing data or other suitable means of investigation shall be conducted to characterize materials within the embankment foundation, auxiliary spillway and borrow areas. Soil materials shall be classified using the Unified Soil Classification System.

Foundation cutoff. A cutoff of relatively impervious material shall be provided under the dam if necessary to reduce seepage through the foundation. The cutoff shall be located at or upstream from the centerline of the dam. It shall extend up the abutments as required and be deep enough to extend into a relatively impervious layer or provide for a stable dam when combined with seepage control. The cutoff trench shall have a bottom width adequate to accommodate the equipment used for excavation, backfill, and compaction operations. Side slopes shall not be steeper than one horizontal to one vertical.

Seepage control. Seepage control is to be included if (1) pervious layers are not intercepted by the cutoff, (2) seepage could create swamping downstream, (3) such contro is needed to insure a stable embankment, or (4) special problems require drainage for a stable dam. Seepage may be controlled by (1) foundation, abutment, or embankment filters and drains; (2) reservoir blanketing; or (3) a combination of these measures.

Embankment. The minimum top width for a dam is shown in table 1. If the embankment top is to be used as a public road, the minimum width shall be 16 feet for one-way traffic and 26 feet for two-way traffic. Guardrails or other safety measures shall be used where necessary and shall meet the requirements of the responsible road authority. For dams less than 20 feet in height, maintenance considerations or construction equipment limitations may require increased top widths from the minimum shown in Table 1. The total height of embankment is the difference in elevation, in feet, between the top of the dam and the lowest point in the cross section taken along the centerline of the dam.

Table 1. Minimum top width for dams

Total height of embankment	Top width
feet	feet
Less than 10	8
10 - 19.9	10
20 - 24.9	12
25 - 34.9	14
35 or more	15

Side Slopes. The combined upstream and downstream side slopes of the settled embankments shall not be less than five horizontal to one vertical, and neither slope shall be steeper than two horizontal to one vertical. All slopes must be designed to be stable, even if flatter side slopes are required. Downstream or upstream berms can be used to help achieve stable embankment sections. Dams to be mowed shall have side slopes of three horizontal to one vertical (3:1) or flatter.

Slope Protection. If needed to protect the slopes of the dam from erosion, special measures, such as berms, rock riprap, sand-gravel, soil cement, or special vegetation, shall be provided (Technical Releases 56, "A guide for Design and Layout of Vegetative Wave Protection for Earth Dam Embankments" and 69, "Riprap for Slope Protection Against Wave Action" contain design guidance).

Freeboard. The minimum elevation of the top of the settled embankment shall be 1 foot above the water surface in the reservoir with the auxiliary spillway flowing at design depth. The minimum difference in elevation between the crest of the auxiliary spillway and the settled top of the dam shall be 2 feet for all dams having more than a 20-acre drainage area or more than 20 feet in effective height.

Settlement. The design height of the dam shall be increased by the amount needed to insure that after settlement the height of the dam equals or exceeds the design height. This increase shall not be less than 10 percent unless the maximum thickness of layer before compaction is 9 inches or less and compaction is equivalent to or better than the following: The routing of the loaded hauling and spreading equipment over the fill in such a manner that every point on the surface of each layer of fill will be traversed by not less than one tread track of the loaded equipment. traveling in a direction parallel to the main axis of the fill. Under these conditions, the allowance for settlement may be reduced to 5 percent. The allowance for settlement may be reduced below 5% where detailed soil testing and laboratory analyses or experience in the area show that a lesser amount is adequate. A sheeps foot roller shall be used when the backfill has a moderate to high clay content.

Principal spillway. A pipe conduit, with needed appurtenances, shall be placed under or through the dam, except where rock, concrete, or other types of lined spillways are used, or where the rate and duration of flow can be safely handled by a vegetated or earth spillway.

The minimum detention storage and principal spillway capacity shall be as shown in Table 2. This may be accomplished by one of the following design options: (1) The principal spillway design storm runoff may be impounded as detention storage in the reservoir, or (2) the principal spillway design storm runoff may be flood routed through the reservoir using a combination of detention storage and pipe flow without flow through the auxiliary spillway. Current NRCS methods and programs for flood routing shall be used when flooding routing is required.

Design Criteria for Embankment Ponds (Continued) For dams with a drainage area of 20 acres or

Table 2. Minimum Spillway Capacity

	Principal Spillw ay	Auxiliary Spillway
	Design Storm ²	Design Storm ²
Job Class ¹	or Detention Storage	

	(years)	(years) (years)
181	1	25 50
III	2	50 ⁶ 50
IV	5	50 ⁶ 50
V	10	50 ⁶ 50

National Engineering Manual - Part 501 and NC Bulletin. 210-2-1, NC-ENG-33. When job class is raised because of pipe size, it is not required that the hydrologic design criteria be raised.

less, the principal spillway crest elevation shall not be less than 0.5 feet below the auxiliary spillway crest elevation. For dams with a drainage area over 20 acres, this difference shall not be less than 1.0 feet.

When design discharge of the principal spillway is considered in calculating peak outflow through the auxiliary spillway, the crest elevation of the inlet shall be such that the design discharge will be generated in the conduit before there is discharge through the auxiliary spillway.

Pipe conduits designed for pressure flow must have adequate anti-vortex devices. The inlets and outlets shall be designed to function satisfactorily for the full range of flow and hydraulic head anticipated.

The capacity of the pipe conduit shall be adequate to discharge long-duration, continuous, or frequent flows without flow through the auxiliary spillways. The diameter of the principal spillway pipe shall not be less than 4 inches. Pipe conduits used solely as a supply pipe through the dam for watering troughs and other appurtenances shall not be less than 1-1/4 inches in diameter. Supply pipes shall be equipped with valves and seepage control.

^{2 24-}hour

³ When storage is less than 50 acre-feet

When storage is 50 acre-feet or more.

Where drainage area is less than 20 acres and total dam. height is less than 20 feet, design storm may be reduced to

⁶ Where drainage area is less than 20 acres, design storm. may be reduced to 25 year.

If the pipe conduit diameter is 10 inches or greater, its design discharge may be considered when calculating the peak outflow rate through the auxiliary spillway.

Pipe conduits shall be ductile iron, welded steel, corrugated steel, corrugated aluminum, reinforced concrete (pre-cast or site-cast), or plastic. Pipe conduits through dams of less than 20 feet total height may also be cast iron or unreinforced concrete.

Dissimilar metals, such as aluminum and steel. must not be installed in direct contact with each other.

Pipe conduits shall be designed and installed to withstand all external and internal loads without yielding, buckling, or cracking. Rigid pipe shall be designed for a positive projecting condition. Flexible pipe shall be designed for a maximum deflection of 5 percent. The modulus of elasticity for PVC pipe shall be assumed as one-third of the amount designated by the compound cell classification to account for long-term reduction in modulus of elasticity. Different reductions in modulus may be appropriate for other plastic pipe materials.

The minimum thickness of flexible pipe shall be SDR 26. Schedule 40. Class 100. or 16 gage as appropriate for the particular pipe material. Connections of flexible pipe to rigid pipe or other structures shall be designed to accommodate differential movements and stress concentrations. Pipe strengths shall not be less than the values shown in Tables 3 and 4 for polyvinyl chloride (PVC), steel, and aluminum pipe.

Table 3 Acceptable PVC pipe1

Nominal	Schedule or	Maximum
Pipe size	Standard	depth of fill
(in)	Dimension Ratio	(ft)
4 or less	Schedule 40	15
	Schedule 80	20
	SDR 26	10
6,8,10,12	Schedule 40	10
	Schedule 80	15
	SDR 26	10

Polyvinyl chloride pipe, PVC 1120 or PVC 1220, conforming to ASTM D-1785 or ASTM D-2241.

Table 2. Minimum Spillway Capacity

Principal Spilly ay

	Design Storm ²	Design Storm ²			
Job Class ¹	or Detention Storage	on Storage			
	(years)	(years)3	(years)		
181	1	25	50	-	
III	2	50 ⁶	50		
IV	5	50 ⁶	50		
V	10	50 ⁶	50		

Auxiliary Spillway

National Engineering Manual - Part 501 and NC Bulletin 210-2-1, NC-ENG-33. When lob class is raised because of pipe size, it is not required that the hydrologic design criteria. be raised

^{2 24-}hour.

³ When storage is less than 50 acre-feet

When storage is 50 acre-feet or more.

⁵ Where drainage area is less than 20 acres and total dam. height is less than 20 feet, design storm may be reduced to 10 year

Where drainage area is less than 20 acres, design storm. may be reduced to 25 year.

All pipe conduits shall be designed and installed to be water tight by means of couplings, gaskets, caulking, waterstops, or welding. Joints shall be designed to remain watertight under all internal and external loading including pipe elongation due to foundation settlement. "Dimple" connecting bands shall not be used.

Pipe conduits shall have a concrete cradle or bedding if needed to provide improved support for the pipe to reduce or limit structural loading on pipe to allowable levels.

Cantilever outlet sections, if used, shall be designed to withstand the cantilever load. Pipe supports shall be provided when needed. Other suitable devices such as a Saint Anthony Falls stilling basin or an impact basin may be used to provide a safe outlet.

All steel pipe and couplings shall have protective coatings in areas that have traditionally experienced pipe corrosion, or in embankments with saturated soil resistivity less than 4000 ohms-cm or soil pH less than 5. Protective coatings shall be asphalt, polymer over galvanizing, aluminized coating or coal tarenamel as appropriate for the pipe type. Plastic pipe that will be exposed to direct sunlight shall be ultraviolet-resistant and protected with a coating or shielding, or provisions provided for replacement as necessary. Aluminum surfaces to be covered with concrete shall be coated with an appropriate material such as bituminous coating.

Renewable Energy. For detailed criteria where the purpose is to develop renewable, energy systems refer to interim conservation practice standard Renewable Energy Production (716).

Cathodic Protection. Cathodic protection is to be provided for coated welded steel and galvanized corrugated metal pipe where soil and resistivity studies indicate that the pipe needs a protective coating, and where the need and importance of the structure warrant additional protection and longevity. If cathodic protection is not provided for in the original design and installation, electrical continuity in the form of joint-bridging straps should be considered on pipes that have protective coatings. Cathodic protection should be added later if monitoring indicates the need.

Outlet Works. The principle spillway shall outlet into a plunge basin or other energy dissipating device. The outlet channel shall be of adequate size and capacity to convey the pipe discharge without submerging the pipe outlet and shall be aligned with the barrel.

Seepage Control. Seepage control along a pipe conduit spillway shall be provided if any of the following conditions exist:

- The effective height of dam is greater. than 15 feet
- The conduit is of smooth pipe larger than 8 inches in diameter.
- The conduit is of corrugated pipe larger than 12 inches in diameter.

Seepage along pipes extending through the embankment shall be controlled by use of a drainage diaphragm, unless it is determined that anti-seep collars will adequately serve the purpose.

Drainage Diaphragm. The drainage diaphragm shall function both as a filter for adjacent base soils and a drain for seepage that it intercepts. The drainage diaphragm shall consist of sand meeting the requirements of ASTM C-33, for fine aggregate. If unusual soil conditions exist such that this material may not meet the required filter or capacity requirements, a special design analysis shall be made.

The drainage diaphragm shall be a minimum of 2 feet thick and extend vertically upward and horizontally at least three times the outside pipe diameter, and vertically downward at least 18 inches beneath the conduit invert. The drainage diaphragm shall be located immediately downstream of the cutoff trench, but downstream of the centerline of the dam if the cutoff is upstream of the centerline. The minimum cover on the diaphragm shall be at least 2 feet as measured to the nearest surface of the embankment.

The diaphragm shall be located downstream of the core zone and/or cutoff trench, maintaining the minimum cover as indicated above. For zoned embankments, if the downstream shell is more pervious than the diaphragm material, the diaphragm shall be located at the downstream face of the core zone.

The drainage diaphragm shall be outletted at the embankment downstream toe using a drain backfill envelope continuously along the pipe to where it exits the embankment or by use of an adequate pipe drain. Drain fill shall be protected from surface erosion by using filter fabric covered by small riprap. Adequate protection of the outlet, including adequate animal guards, shall be provided.

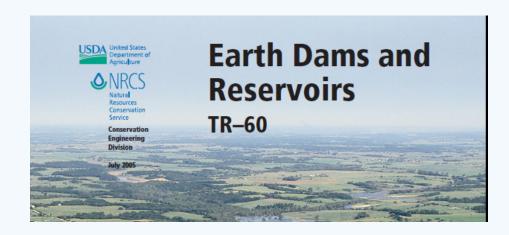
Anti-seep Collars. When anti-seep collars are used in lieu of a drainage diaphragm, they shall have a watertight connection to the pipe. Maximum spacing shall be approximately 14 times the minimum projection of the collar measured perpendicular to the pipe but not more than 25 feet. The minimum spacing shall be 10 feet. The anti-seep collars shall be located in the normal saturation zone. Collar material shall be compatible with pipe materials. The anti-seep collar(s) shall increase by at least 15 percent the seepage path along the pipe.

Trash Guard. To prevent clogging of the conduit, an appropriate trash guard shall be installed at the inlet or riser unless the watershed does not contain trash or debris that could clog the conduit. Other Outlets. A pipe with a suitable valve shall be provided to drain the pool area if needed for proper pond management or if required by state law. The principal spillway conduit may be used as a pond drain if it is located where it can perform this function.

Auxiliary spillways. Auxiliary spillways convey large flood flows safely past earth embankments and have historically been referred to as "Emergency Spillways".

An auxiliary spillway must be provided for each dam, unless the principal spillway is large enough to pass the peak discharge from the routed design hydrograph and the trash that comes to it without overtopping the dam. The following are minimum criteria for acceptable use of a closed conduit principal spillway without an auxiliary spillway: a conduit with a cross-sectional area of 3 ft² or more, an inlet that will not clog, and an elbow designed to facilitate the passage of trash.

The minimum capacity of a natural or constructed auxiliary spillway shall be that required to pass the peak flow expected from a design storm of the frequency and duration shown in Table 2, less any reduction creditable to conduit discharge and detention storage.


The auxiliary spillway shall safely pass the peak flow, or the storm runoff shall be routed through the reservoir. The routing shall start either with the water surface at the elevation of the crest of the principal spillway or at the water surface after 10 days' drawdown, whichever is higher. The 10-day drawdown shall be computed from the crest of the auxiliary spillway or from the elevation that would be attained if the entire design storm were impounded, whichever is lower. Auxiliary spillways shall provide for passing the design flow at a safe velocity to a point downstream where the dam will not be endangered.

Constructed auxiliary spillways are open channels that usually consist of an inlet channel, a control section, and an exit channel. They shall be trapezoidal and shall be located in undisturbed or compacted earth or in-situ rock. The freeboard portion of the spillway depth may be against compacted fill for Job Class I and II ponds. A portion of the design flow may be located in compacted earth, if approved by the engineer. The side slopes shall be stable for the material in which the spillway is to be constructed. For dams having an effective height exceeding 20 feet, the auxiliary spillway shall have a bottom width of not less than 10 feet.

Upstream from the control section, the inlet channel shall be level for the distance needed to protect and maintain the crest elevation of the spillway. The inlet channel may be curved to fit existing topography. The grade of the exit channel of a constructed auxiliary spillway shall fall within the range established by discharge requirements and permissible velocities.

Structural auxiliary spillways. If chutes or drops are used for principal spillways or auxiliary spillways, they shall be designed according to the principles set forth in the Part 650, Engineering Field Handbook and the National Engineering Handbook, Section 5, Hydraulics; Section 11, Drop Spillways; and Section 14, Chute Spillways. The minimum capacity of a structural spillway shall be that required to pass the peak flow expected from a design storm of the frequency and duration shown in table 2, less any reduction creditable to conduit discharge and detention storage.

Ponds in Series. Hydrology for all ponds in series will be evaluated by an engineer with adequate expertise in this field. The hydrologic criteria and procedures for the design of an upper dam shall not be less than that used for dams downstream if failure of the upper dam would contribute to failure of the lower dam. For dams not flood routed, the volume of detention storage in the lower dam shall be based on runoff from the entire drainage area with appropriate reduction due to detention storage in the upper pond. The release rate of the pipe spillway in the downstream pond shall be greater than the pipe spillway of the upstream pond. The emergency spillway of the lower site shall be designed to safely pass the peak flow from the entire drainage area as if the upper pond was not in place. For ponds which are flood routed, procedures as outlined in Technical Release 60, "Earth Dams and Reservoirs" shall be followed.

When needed, flood routing procedures are outlined in Technical Release 60

Reservoir Clearing. Reservoir areas shall be cleared at least to the elevation of the crest of the principle spillway; however, less clearing may be approved for a specific site if the structure incorporates fish and other wildlife features and the owner requests that the area not be cleared. The minimum area cleared must extend the full length of the dam for a distance of at least 400 feet upstream from the principal spillway and of the auxiliary spillway. When the reservoir area exceeds 100 acres, North Carolina law requires complete clearing of the reservoir area.

Criteria for Excavated Ponds

course

Criteria for Excavated Ponds

Runoff. Provisions shall be made for a pipe and auxiliary spillway if the planned depth of water in the excavated pond is increased due to a planned embankment, and the embankment shall meet the requirements listed for Embankment Ponds. Runoff flow patterns shall be considered when locating the excavated pond and placing the spoil.

Side slopes. Side slopes of excavated ponds shall be stable and shall not be steeper than one horizontal to one vertical. If livestock will water directly from the pond, a watering ramp of ample width shall be provided. The ramp shall extend to the anticipated low water elevation at a slope no steeper than five horizontal to one vertical. A wearing coarse on the surface of the ramp shall be considered and planned when needed.

Inlet protection. If surface water enters the pond in a natural or excavated channel, the side slope of the pond shall be protected against erosion.

Excavated material. The material excavated from the pond shall be placed so that its weight will not endanger the stability of the pond side slopes and it will not be washed back into the pond by rainfall. It shall be disposed of in one of the following ways:

- Uniformly spread to a height that does not exceed 3 feet, with the top graded to a continuous slope away from the pond.
- Uniformly placed or shaped reasonably well, with side slopes assuming a natural angle of repose. The excavated material will be placed at a distance equal to the depth of the pond but not less than 12 feet from the edge of the pond.
- Shaped to a designed form that blends visually with the landscape.
- Used for low embankment construction and leveling of surrounding landscape.
- Hauled away.

Considerations for Pond

CONSIDERATIONS

Visual resource design. The visual design of ponds should be carefully considered in areas of high public visibility and those associated with recreation. The underlying criterion for all visual design is appropriateness. The shape and form of ponds, excavated material, and plantings are to relate visually to their surroundings and to their function.

The embankment may be shaped to blend with the natural topography. The edge of the pond may be shaped so that it is generally curvilinear rather than rectangular. Excavated material can be shaped so that the final form is smooth, flowing, and fitting to the adjacent landscape rather than angular geometric mounds. If feasible, islands may be added for visual interest and to attract wildlife.

Considerations for Pond (Continued)

Cultural Resources. Consider existence of cultural resources in the project area and any project impacts on such resources. Consider conservation and stabilization of archeological, historic, structural, and traditional cultural properties when appropriate.

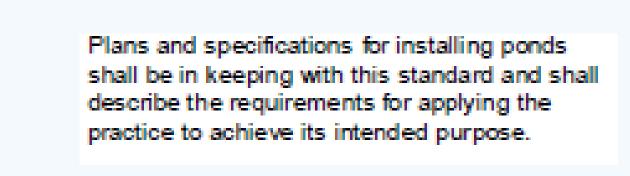
Fish and Wildlife. Project location and construction should minimize the impacts to existing fish and wildlife habitat.

When feasible, structure should be retained, such as trees in the upper reaches of the pond and stumps in the pool area. Upper reaches of the pond can be shaped to provide shallow areas and wetland habitat.

If fish are to be stocked, consider criteria and guidance in conservation practice standard 399, Fishpond Management. Vegetation. Stockpiling topsoil for placement on disturbed areas can facilitate revegetation.

Consider placement and selection of vegetation to improve fish and wildlife habitat and species diversity.

Water Quantity. Consider effects upon components of the water budget, especially:


- Effects on volumes and rates of runoff, infiltration, evaporation, transpiration, deep percolation, and ground water recharge.
- Variability of effects caused by seasonal or climatic changes.
- Effects on downstream flows and impacts to environment, such as wetlands, aquifers, and social and economic impacts to downstream uses or users.
- Potential for multiple purposes.

Considerations for Pond (Continued)

Water Quality. Consider effects on erosion and the movement of sediment, pathogens, and soluble and sediment-attached substances that are carried by runoff.

- Effects on the visual quality of onsite and downstream water resources.
- Short-term and construction-related effects of this practice on the quality of downstream water courses
- Effects of water level control on the temperatures of downstream water to prevent undesired effects on aquatic and wildlife communities
- Effects on wetlands and water-related wildlife habitats
- Effects of water levels on soil nutrient processes such as plant nitrogen use or denitrification
- Effects of soil water level control on the salinity of soils, soil water, or downstream water.
- Potential for earth moving to uncover or redistribute toxic materials such as saline soils.

An operation and maintenance plan shall be developed and reviewed with the landowner or individual responsible for operation and maintenance

Ponds must be adequately maintained if their purposes are to be realized throughout the expected life. Special considerations shall be given for maintenance needs during the planning, design, and construction of the pond.

References

USDA-NRCS Publications:

National Engineering Manual

Engineering Field Handbook

National Engineering Handbook

Technical Releases

SITES - Dam Spillway Evaluation

NC Field Office Technical Guide Section IV

NC Bulletin 210-2-1(NC-ENG-33)

NC Dam Safety Law - G.S. 143-215.24

NC Administrative Code - 15A NCAC 02K.0100

NC Administrative Code - 15A NCAC 18B.0100

American Society for Testing and Materials

CONSTRUCTION & MATERIAL SPECIFICATIONS

S378 - 1

NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE SPECIFICATION

POND

CODE 378

EMBANKMENT POND SPECIFICATIONS

FOUNDATION PREPARATION

The foundation area of the embankment shall be cleared and grubbed of trees, logs, stumps, roots, brush, boulders, sod, and rubbish. If needed to establish vegetation, the

FILL PLACEMENT

The material placed in the fill shall be free of sod, roots, frozen soil, stones more than 6 inches in diameter (except for rock fills), and other objectionable material.

NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE SPECIFICATION

POND

CODE 378

EXCAVATED POND SPECIFICATIONS

EXCAVATION

The completed excavation shall conform to the lines, grades and elevation shown on the drawings or as staked in the field.

Spoil shall be uniformly shaped, spread, or hauled away.

RUNOFF

Provisions shall be made for a pipe and emergency spillway if necessary. Runoff flow patterns shall be considered when locating the pit and placing the spoil.

slope of the pond shall be protected against erosion.

EXCAVATED MATERIAL

The material excavated from the pond shall be placed so that its weight will not endanger the stability of the pond side slopes and so that it will not be washed back into the pond by rainfall. It shall be disposed of in one of the following ways:

 Uniformly spread to a height that does not exceed 3 ft, with the top graded to a continuous slope away

EMBANKMENT POND SPECIFICATIONS

EXCAVATED POND SPECIFICATIONS

N378 - 1

NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE ENGINEERING NOTEKEEPING

POND

CODE 378

EMBANKMENT POND

Hazard Classification

- A) Record the following hazard classification information:
 - Using the hazard classification data sheet (Form NC-ENG-34), evaluate the proposed impoundment for potential downstream hazards. Retain the data sheet as a permanent part of the design records for the pond. In addition, record the hazard class in the engineering field book.
 - For inventory size dams, a potential impact area study shall be made in accordance with NEM 520.28.
 - Make a re-evaluation of the hazard classification prior to construction for all ponds where construction begins one year or more after the initial evaluation was made. Record re-evaluation on Form NC-ENG-34 and the engineering field book.

Planning and Design Survey

- A) Record the following information on Form NC-ENG-13:
 - 1) Hazard classification of the proposed pond.
 - If construction of the pond requires a NC Dam Safety permit, place the following statement on the plan: "Before beginning construction obtain a permit from the North Carolina Department of Environment and Natural Resources."
 - A statement that the plan is void until re-evaluation of flood plain for safety hazards if construction begins later than one year after the date of the plan.

Design Survey and Construction Layout

- A) Obtain and record the following information in a standard engineering field book. This is the minimum design survey and construction layout required for a pond. For large ponds or special conditions, additional information may be needed.
 - 1) Location description and sketch.
 - Location and description of benchmark.
 - 3) Profile on centerline of dam site.
 - Profile on centerline of auxiliary spillway including inlet section, level section, and outlet section when needed for spillway design.
 - 5) Profile on centerline of pipe spillway, if needed for design.

ENGINEERING NOTEKEEPING EMBANKMENT POND

N378 - 2

- Elevation of old channel bottom or natural low area at the downstream toe of the dam.
- Topographic information downstream of dam for use in design of stilling basin, if needed.
- 8) Determination of pool areas and volumes.
- B) Record the following soils investigation on Form SCS-538:
 - 1) Record the foundation and cutoff trench borings.
 - 2) Record the borrow and auxiliary spillway excavation borings.
- C) Provide the following information and slope stakes as needed by the contractor:
 - 1) Embankment slide slopes and top width.
 - 2) Cutoff trench depth and minimum cut slope.
 - Elevation and location of the pipe spillway, drain device, and seepage control measures (if required).
 - Auxiliary spillway side slopes and bottom width.

Construction Check

- A) Make and record the following construction check items.
 - 1) Record profile and cross-section of foundation cutoff trench.
 - 2) Profile along centerline of top of completed embankment.

- Cross-section of completed embankment to determine top width and side slopes.
- 4) Profile along centerline of constructed part of auxiliary spillway.
- 5) Cross-section at crest of auxiliary spillway.
- Elevation of crest of principal spillway.
- 7) Statement concerning adequacy of trash guards for all pipes.
- Dimensions and kind of material used for principal spillway and other pipe conduits.
- 9) Data on seepage control measures. Include type, number and materials.
- 10) Comparison of actual pool area with areas used for design.
- Record a statement concerning adequacy of embankment and spillway seeding.
- Record the date and signature of person making construction check.

As-Builts and Certification

- A) Develop as-built documentation and retain permanently.
- B) If applicable, submit the Dam Inventory Form to the State Conservation Engineer.
- C) Record a statement that the installation meets the requirements of the plans and specifications by a person with proper Construction Job Approval Authority.

NRCS, NC

September 2004

ENGINEERING NOTEKEEPING EMBANKMENT POND

NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE ENGINEERING NOTEKEEPING Construction Check POND A) Determine if the following meet the design and layout: **CODE 378** 1) Length, depth and width of excavation. EXCAVATED POND 2) Side slopes. Recording Data 3) Berm width. Record field notes in a standard engineering field book. Follow standard engineering survey and notekeeping procedures contained in Technical Release 62, and in 4) All dimensions of fill, if any. Engineering Field Handbook Chapter 1. Spoil disposal. **Design Survey and Construction Layout** Adequacy of surface water control. A) Complete all information on Form NC-ENG-14, or on a special drawing, showing the same information and record yardage calculations when standard tables Record a statement concerning the condition of vegetation if applicable. cannot be used. Record the date and signature of person making construction check. B) Locate centerline and settled top of fill and all other dimensions. Describe provisions for surface water control.

ENGINEERING NOTEKEEPING EXCAVATED POND

United States Department of Agriculture

Natural Resources Conservation Service

STATEMENT OF WORK

Pond (378)

North Carolina

These deliverables apply to this individual practice. For other planned practice deliverables refer to those specific Statements of Work.

DESIGN

Deliverables:

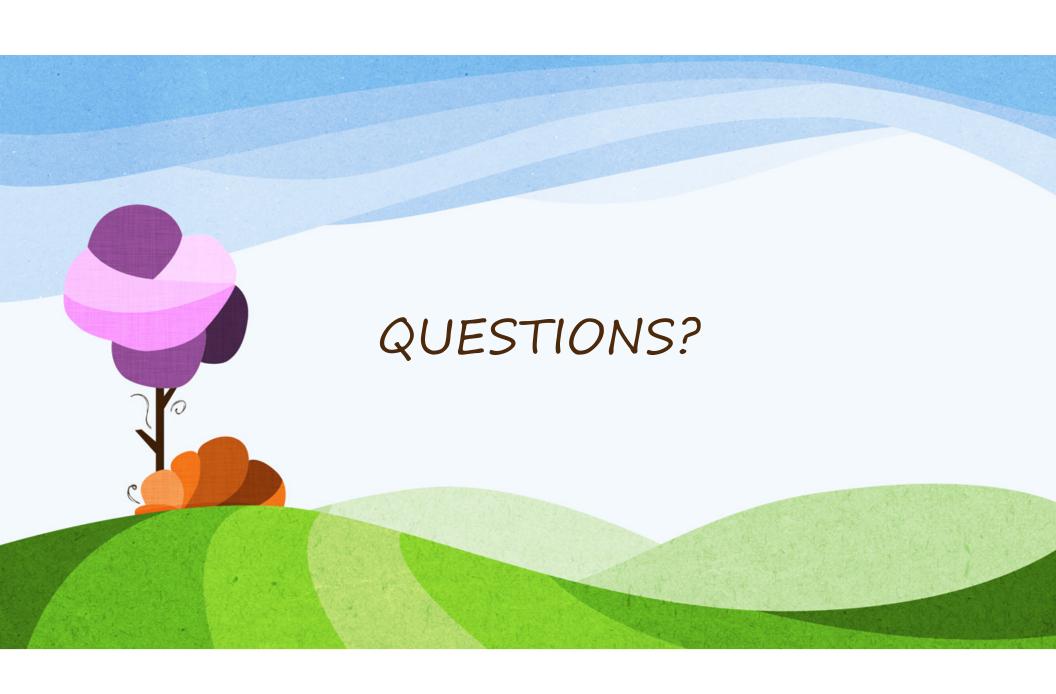
- Design documents that comply with the purpose of the practice selected by the decision-maker and the applicable
 criteria in the NRCS practice standard, and are compatible with other planned and applied practices.
 - a. Practice purpose(s) as identified in the conservation plan.
 - b. List of required permits to be obtained by the client.
 - c. Impacts on adjacent properties and structures.
 - d. Compliance with NRCS national and state utility safety policy (NEM Part 503-Safety, Subpart A -Engineering Activities Affecting Utilities 503.00 through 503.08).
 - Practice standard criteria related computations and analyses to develop plans and specifications including but not limited to:
 - i. Geology and Soil Mechanics (NEM Subpart 531a)
 - ii. Hydrology/Hydraulics
 - iii. Structural including hazard class as appropriate
 - iv. Vegetation
- Written plans and specifications including sketches and drawings shall be provided to the client that adequately describes the requirements to install the practice and obtain necessary permits.
- Design Report and Inspection Plan as appropriate (NEM Part 511, Subpart B Documentation, 511.11 and Part 512, Subpart D Quality Assurance Activities, 512.30 through 512.32).
- 4. Operation and Maintenance Plan
- Certifications that the design meets practice standard criteria and comply with applicable laws and regulations (NEM Subpart A, 505.03(b)(2)).
- 6. Design modifications during installation as required.

INSTALLATION

Deliverables

- Pre Installation conference with client and contractor.
- 2. Verification that client has obtained required permits.
- 3. Staking and layout according to plans and specifications including applicable layout notes.
 - Installation inspection (according to inspection plan as appropriate).
 - a. Actual materials used.
 - b. Inspection records
- 5. Facilitate and implement required design modifications with client and original designer.
- Advise client/NRCS on compliance issues with all federal, state, tribal, and local laws, regulations and NRCS policies during installation.
- Certification that the installation process and materials meets design and permit requirements.

CHECK OUT


Deliverables

- 1. As-Built documentation.
 - a. Extent of practice units applied
 - b. Drawings
 - c. Final quantities
- Certification that the installation meets NRCS standards and specifications and is in compliance with permits (NEM Subpart A, 505.03(c)(1)).
- Progress reporting.

September 30, 2004

1

POND (378) STATEMENT OF WORK

