ЕНЕАТНKIT
 E D U C A T I O N A L S Y S TE M S

 Unit 1

 Unit 1}

General

Knowledge,

Charles Babbage's Analytical Engine

The Hollerith Machine

(a)

Prior to the Personal Computer

- Computers were very large.
- Computers were very expensive.
- Computers were quite rare.

History of the PC

- Before the IBM PC - 1975 to 1981
- The IBM PC - 1981
- The IBM XT - 1983
- The IBM AT - 1984
- The IBM PS/2-1987
- Waning of IBM as the pace setter 1987 to present

The First PC

- Generally considered the MITS Altair

Introduced in January 1975

- Based on the 8080 Intel Processor
- Sold for $\$ 395$ in kit form

Before the IBM PC,

personal computers used:

- A variety of microprocessors
- Many different architectures
- A variety of operating systems

The IBM PC

- Introduced on August 12, 1981
- Used the Intel 8088 microprocessor
- Operated at 4.77 MHz
- No hard drive
- One or two single-sided floppy drives
- Used MS-DOS 1.0
- Introduced the 8 -bit ISA bus

The IBM PC brought standardization

- Intel Microprocessors
- Microsoft Disk Operating System (MS-DOS)
- Architecture

The IBM XT

- Introduced in 1983
- Included a 10 MB hard drive
- Used MS-DOS 2.0
- 16-bit ISA Bus

The IBM AT

- Introduced in 1984
- Based on Intel's 80286 microprocessor
- Operated at 6 MHz
- 20 MB hard drive
- Used MS-DOS 3.0

The IBM PS/2

- Introduced in 1988
- IBM abandoned its own standard
- Microchannel replaces the ISA bus
- Introduced the VGA graphics standard
- New OS called OS/2 is DOS compatible, allows multitasking.

From 1981 to 1987

- IBM dominated the personal computer business
- IBM set the standards for:
- Microprocessor used
- Bus structure
- Architecture
- Video
- Disk Drives

From 1987 to Present

- IBM's influence gradually waned
- Software standards set, largely, by Microsoft - MS-DOS
- Windows 3.xx
- Windows 95, 98, Me
- Windows NT, 2000, XP
- Hardware standards set, largely, by Intel
- Microprocessor, Chipset, Motherboard

The Language
 of a Computer

The Telegraph

- Samuel F.B. Morse
- 1838

A•-
B-•••
C-•-•
D -•••

Analog vs. Digital

- Analog Signals vary over a continuous range
- Digital signals vary between two fixed levels

Analog vs. Digital Analog Signals are

Analog vs. Digital Analog Signals are

continuously variable

Analog vs. Digital Digital Signals have

Analog vs. Digital Digital Signals have

two levels; on or off

Parallel vs. Serial

Decimal Numbers

-0,1,2,3,4,5,6,7,8,9

- called a "base 10 " system

Binary

- Either 0 or 1
- Requires more digits than decimal for a given value
- Bit: single digit
- Byte: eight bits together
- Word: multiple bytes together

Binary

Position	8	7	6	5	4	3	2	1
Decimal value of a "1" in this	128	64	32	16	8	4	2	1
position	Power of 2	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}

Hexadecimal

- 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Called a "base 16" numbering system
- Requires fewer digits than decimal for a given value
- Primarily used to make binary easier

Decimal Number	Binary Number	Hex Number
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	10000	10
17	10001	11
50,096	1100001110110000	C3B0

Identifying Numbers

- 330 H is Hex
- 3 F 8 is Hex
- 256 is Decimal
- 1010 is Binary

American Standard Code for Information Interchange (ASCII)

0	NUL		SOH	2	STX	3	ETX	4	EOT	5	ENQ	6	ACK	7	BEL
8	BS	9	HT	10	NL	11	VT	12	NP	13	CR	14	SO	15	SI
16	DLE	17	DC1	18	DC2	19	DC3	20	DC4	21	NAK	22	SYN	23	ETB
24	CAN	25	EM	26	SUB	27	ESC	28	FS	29	GS	30	RS	31	US
32	SP	33	!	34	"	35	\#	36	\$	37	\%	38	\&	39	1
40	1	41)	42	*	43	+	44	,	45	-	46	-	47	1
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	:	59	;	60	$<$	61	=	62	$>$	63	?
64	@	65	A	66	B	67	C	68	D	69	E	70	F	71	G
72	H	73	I	74	J	75	K	76	L	77	M	78	N	79	0
80	P	81	Q	82	R	83	S	84	T	85	U	86	V	87	W
88	X	89	Y	90	Z	91	[92	1	93]	94	\wedge	95	
96		97	a	98	b	99	C	100	d	101	e	102	f	103	g
104	h	105	i	106	j	107	k	108	1	109	m	110	n	111	\bigcirc
112	p	113	q	114	r	115	5	116	t	117	u	118	v	119	w
120	x	121	Y	122	z	123	\{	124		125	\}	126	\sim	127	DEL

The Computer Bus

CPU

Parallel Port

Memory

Video
 Adapter

CPU

Video
 Adapter

 ，7 7 7 － 4 对 ค月 双 OH H ユ 2 2 2 2 みみ ユ ユ ヵみ ユ
砗 ユ ユ 3 HC 68 凡 凡 － Memory

CPU Socl

 socket (Slot 1) $B_{u_{S}} W_{i_{\text {res }}}$

Inan!

Computer
 Components

The Ultimate Processing Components

ATX
 Motherboard

Processing Components

Input Devices

Keyboards

Mice
Trackballs
J-mice

Biometric
Scanner

Scanner

Microphone
CD-ROM
Touchpads

Output Devices

- Monitors
- Printers
-Inkjet, Laser, Dot-matrix, Plotters
- Speakers

Input/Output Devices

- Floppy Drive
- Hard Drive
- Modem
- Network Interface Card
- CD-R/W
- Other Storage Media

Support Hardware

- Power Supply
- UPS
- Surge Arrestor
- Switch Box

CPU Support
 Components

Color Codes

Color	First Band	Second Band	Third Band (optional)	Fourth Band (multiplier)	Tolerance Band
Black	0	0	0	1	
Brown	1	1	1	10	
Red	2	2	2	100	
Orange	3	3	3	1,000	
Yellow	4	4	4	10,000	
Green	5	5	5	100,000	
Blue	6	6	6	$1,000,000$	
Violet	7	7	7	(silver) .01	(silver) 10\%
Gray	8	8	8	(gold) .1	(gold) 5\%
White	9	9	9		(brown) 1\%

Potentiometers

Capacitors

The Clock

14.318 MHz
Crystal

14.318 MH Crystal

Clock Chip

The History

of Processors

The First Microprocessor

- 4004 by Intel in 1971
- Designed as the core logic of a calculator
- Handled data 4 bits at a time
- Ran at 108 KHz
- 2300 transistors
- Memory: 640 bytes

8008

- Date Introduced
- Number of Transistors 3,500
- Internal Register Size
- Data I/O Bus Width
- Maximum Memory
- Typical Speed

April 1972

8 -bits
8 -bits
16 KB
0.2 MHz

8080

- Date Introduced
- Number of Transistors
- Int Register Size
- Data I/O Bus Width
- Maximum Memory
- Typical Speed

April 1974
6000
8 -bits
8 -bits
64 KB
2 MHz

8088

- Date Introduced

June 1979

- Number of Transistors 29,000
- Int Register Size
- Data I/O Bus Width

16 bits
8 bits

- Maximum Memory

1 MB

- Typical Speed

8 MHz

The 8088 was used in the first IBM
 Personal Computer

80286

- Date Introduced

May 1982

- Number of Transistors
- Int Register Size
- Data I/O Bus Width

16 bits

- Maximum Memory

16 MB

- Typical Speed

12 MHz

80386

- Date Introduced Oct. 1985
- Number of Transistors 275,000
- Internal Register Size 32 bits
- Data I/O Bus Width 32 bits
- Maximum Memory 4 GB
- Typical Speed $16 / 20 / 25 / 33 \mathrm{MHz}$

80386sx

- Int Register Size
 32-bits

- Data I/O Bus Width 16-bits
- Typical Speed $16 / 20 / 25 / 33 \mathrm{MHz}$

Math Coprocessors

- Fast circuits to perform floating point math
- For 8088 through 80386, a separate device
- As complicated as the CPU itself

CPU and Coprocessor

8088

 8087
 80286

 80287
 80386

 80387

80486

- Date Introduced
- Transistors
- Int Register Size
- Bus Width
- Max Memory
- Typical Speed
- L1 Internal Cache
- Math Coprocessor Internal

April 1989
1,200,000
32-bits
32-bits
4 GB
66 MHz
8 KB

Internal Cache

- A small memory inside the CPU that runs at the same speed as the CPU
- Also called an L1 cache

Today's CPU Standard

Pentium®

- Date Introduced
- Transistors
- Int Register Size
- Data I/O Bus Width
- Maximum Memory 4 GB
- Typical Speed
- L1 Internal Cache 2×8 KB
- Internal Coprocessor Yes

Number of clock cycles needed to execute a typical instruction

Pentium MMX

- Date Introduced
- Transistors
- Internal Register Size 32 bits
- Data I/O Bus Width 64 bits
- Maximum Memory 4 GB
- Typical Speed
- L1 Internal Cache
- Math Coprocessor
- MMX Instructions Yes

Pentium Pro ${ }^{\circledR}$

- Date Introduced
- Transistors
- Internal Register Size
- Data I/O Bus Width
- Maximum Memory
- Typical Speed
- L1 Internal Cache
- Math Coprocessor
- L2 Cache

November 1995
5,500,000
32 bits
64 bits
64 GB
200 MHz
$2 \times 8 \mathrm{~KB}$
Yes
256 KB

Pentium Pro ${ }^{\circledR}$

Pentium II®

- Date Introduced
- Number of Transistors
- Int Register Size
- Data I/O Bus Width
- Maximum Memory
- Typical Speed
- L1 Internal Cache
- Math Coprocessor
- L2 Cache

May 1997
7,500,000
32 bits
64 bits
64 GB
300 MHz
2×16 KB
Yes
512 KB

Pentium II Single Edge Contact (SEC) Cartridge

Internal View (Front)

Pentium III ${ }^{\circledR}$

- 0.25 Micron Technology
- 450 MHz to 1.4 GHz
- 1.8 V core voltage
- Dissipates less heat
- Supports multi-processing

Pentium $4{ }^{\circledR}$

- 0.18, 0.13, 0.09 Micron Technology
- 1.3 GHz to 4 GHz and higher
- 1 V to 1.8 V core voltage
- Dissipates lots of heat (up to 100 W)
- Supports multi-processing

AMD's K6-2

AMD $-K 5^{T m-2}$
$448-\times 6-25 \cos =48$
2.2: corre cas max
a colaman
(31) (c) 128

ASSEMBLEL 8 dixt S 3 ?

- 26351

Power and

Connectors

Power Selection Switch

Hlazardous voltages

 contained within thispower supply, not user serviceable. Return to service center for repair.

Power Supply Output Voltages AT-Type

- +5 Volts
-+12 Volts
- -12 Volts
- -5 Volts

Edge View of Motherboard

Motherboard Power Connectors

$$
-5 \mathrm{~V} \longrightarrow \square+5 \mathrm{~V}
$$

$$
\text { Ground }-\quad \square+5 \mathrm{~V}
$$

Ground

$$
\begin{gathered}
+12 \mathrm{~V} \square \\
+5 \mathrm{~V} \square
\end{gathered} \quad \begin{aligned}
& -12 \mathrm{~V} \\
& \square
\end{aligned}
$$

Power Good

P8

The Power Good Signal

- +5 Volt signal generated by the power supply
- Indicates that the power supply passed its self test and its output has stabilized
- Occurs within first 0.5 seconds
- Prevents system from running under bad or unstable power conditions

Large Molex Connector

4-Pin Molex Connector

Berg Connector

4-Pin Berg Connector

Grasp the connector by the shell...
 never by
 the leads

Power Supply Output Voltages ATX-Type

- +5 Volts
- + 12 Volts
- - 12 Volts
- -5 Volts
- +3.3 Volts

ATX Power Connector

ATX Power Connector

When Things go Wrong!

The Power Supply

- Don't fix it
- Don't open it
- It isn't worth it!
- Only use UL or CSA approved supplies

Check Fan Operation

Power Surges and Sags are both serious problems...

Static Electricity

and the Computer

Your greatest enemy when

 working in the computer is Electrostatic Discharge or

Your best defense against ESD is the anti-static

wrist strap.

An internal resistor provides

 shock protection.
Switch off power at the computer and at the workbench...

...but leave the

computer plugged in.

Use anti-static mats on the workbench and floor.

Hold Circuit Boards by their edges

Store Circuit Boards in Anti-static

Bags.

General Safety Tips

- Look for UL or CSA labels
- Be careful around fans
- Watch for sharp edges
- Double-check the power before removing or replacing anything

The Power Supply

- Don't fix it
- Don't open it
- It isn't worth it!
- Only use UL or CSA approved supplies

Respect... not fear.

Disassembling

and Reassembling

a Computer

Why Disassemble the Computer?

- To upgrade.
- To repair.
- To add to it.

The three most important things to remember when
 disassembling a computer are:

- Document
- Document
-Document!

Document

- Where cards are located.
- How cables are routed.
- Orientation of cables and connectors.
- Hardware used to secure each component.
- Anything else that might cause confusion when reassembling.

Turn off power to the computer and everything connected to it.

Disconnect the monitor and set it aside.

Disconnect the keyboard and set it aside.

Disconnect the mouse and set it aside.

Remove these

 screws...
... not these.

The Motherboard

Power Supply Input Voltage

- 100 to 125 VAC @ 60 Hz
- 200 to 250 VAC @ 50 Hz

Some connectors are held in place by a latch.

Grasp the connector

 by the shell......never
by the
leads.

The Power Supply is held in place by four screws.

The Hard Drive may be located here ...

... Or here.

The Floppy Drive

Keep these tips in mind

- Document everything.
- Shut off power.
- Protect against ESD.
- Grasp connectors by shells-not leads.
- Never use force.
- Release latches on connectors.
- Rock boards end to end.

