

Unit 1

General Knowledge, CPUs, and Safety

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

Charles Babbage's Analytical Engine

First Electronic Digital Computer

John Vincent Atanasoff

ENIAC

Colossus

Prior to the Personal Computer

- Computers were very large.
- Computers were very expensive.
- Computers were quite rare.

History of the PC

- Before the IBM PC 1975 to 1981
- The IBM PC 1981
- The IBM XT 1983
- The IBM AT 1984
- The IBM PS/2 1987
- Waning of IBM as the pace setter 1987 to present

The First PC

- Generally considered the MITS Altair
- Introduced in January 1975
- Based on the 8080 Intel Processor
- Sold for \$395 in kit form

Before the IBM PC, personal computers used:

- A variety of microprocessors
- Many different architectures
- A variety of operating systems

The IBM PC

- Introduced on August 12, 1981
- Used the Intel 8088 microprocessor
- Operated at 4.77 MHz
- No hard drive
- One or two single-sided floppy drives
- Used MS-DOS 1.0
- Introduced the 8-bit ISA bus

The IBM PC brought standardization

- Intel Microprocessors
- Microsoft Disk Operating System (MS-DOS)
- Architecture

The IBM XT

- Introduced in 1983
- Included a 10 MB hard drive
- Used MS-DOS 2.0
- 16-bit ISA Bus

The IBM AT

- Introduced in 1984
- Based on Intel's 80286 microprocessor
- Operated at 6 MHz
- 20 MB hard drive
- Used MS-DOS 3.0

The IBM PS/2

- Introduced in 1988
- IBM abandoned its own standard
- Microchannel replaces the ISA bus
- Introduced the VGA graphics standard
- New OS called OS/2 is DOS compatible, allows multitasking.

From 1981 to 1987

- IBM dominated the personal computer business
- IBM set the standards for:
 - Microprocessor used
 - -Bus structure
 - Architecture
 - Video
 - Disk Drives

From 1987 to Present

- IBM's influence gradually waned
- Software standards set, largely, by Microsoft
 - MS-DOS
 - Windows 3.xx
 - Windows 95, 98, Me
 - Windows NT, 2000, XP
- Hardware standards set, largely, by Intel
 - Microprocessor, Chipset, Motherboard

The Language

of a Computer

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

The Telegraph

- Samuel F.B. Morse
- 1838
 - A –
 - B •••
 - C • •

()):

Analog vs. Digital

 Analog Signals vary over a continuous range

 Digital signals vary between two fixed levels

Analog vs. Digital Analog Signals are

continuously variable

Analog vs. Digital Analog Signals are

continuously variable

two levels; on or off

Analog vs. Digital Digital Signals have

Decimal Numbers

• 0,1,2,3,4,5,6,7,8,9

• called a "base 10" system

Binary

- Either 0 or 1
- Requires more digits than decimal for a given value
- Bit: single digit
- Byte: eight bits together
- Word: multiple bytes together

Binary

Position	8	7	6	5	4	3	2	1
Decimal value of a "1" in this position	128	64	32	16	8	4	2	1
Power of 2	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

Hexadecimal

- 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Called a "base 16" numbering system
- Requires fewer digits than decimal for a given value
- Primarily used to make binary easier

Decimal Number	Binary Number	Hex Number
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F
16	10000	10
17	10001	11
50,096	1100001110110000	C3B0

Identifying Numbers

- 330H is *Hex*
- 3F8 is *Hex*
- 256 is *Decimal*
- 1010 is *Binary*

"⇔menu

American Standard Code for Information Interchange (ASCII)

0	NUL	1	SOH	2	STX	3	ETX	4	EOT	5	ENQ	6	ACK	7	BEL
8	BS	9	HT	10	NL	11	VT	12	NP	13	CR	14	SO	15	SI
16	DLE	17	DC1	18	DC2	19	DC3	20	DC4	21	NAK	22	SYN	23	ETB
24	CAN	25	EM	26	SUB	27	ESC	28	FS	29	GS	30	RS	31	US
32	SP	33	!	34	TT	35	#	36	\$	37	9	38	&	39	Ţ
40	(41)	42	*	43	+	44	1	45	-	46	•	47	/
48	0	49	1	50	2	51	3	52	4	53	5	54	6	55	7
56	8	57	9	58	•	59	;	60	<	61	=	62	>	63	?
64	0	65	A	66	В	67	С	68	D	69	E	70	F	71	G
72	H	73	I	74	J	75	K	76	L	77	М	78	N	79	0
80	Р	81	Q	82	R	83	S	84	Т	85	U	86	v	87	W
88	X	89	Y	90	Z	91	[92	١	93]	94	^	95	_
96	Ì,	97	a	98	b	99	С	100	d	101	е	102	f	103	g
104	h	105	i	106	j	107	k	108	1	109	m	110	n	111	ο
112	р	113	q	114	r	115	S	116	t	117	u	118	v	119	W
120	x	121	У	122	Z	123	{	124		125	}	126	~	127	DEL
										••••••••••••••••••••••••••••••					

The Computer Bus

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

Computer Components

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

The Ultimate Processing Components

ATX Motherboard

Processing Components

Input Devices Scanner Keyboards Mice Microphone **CD-ROM** Trackballs J-mice Touchpads **Biometric** Scanner

Output Devices

- Monitors
- Printers
 - Inkjet, Laser, Dot-matrix,
 Plotters
- Speakers

Input/Output Devices

- Floppy Drive
- Hard Drive
- Modem
- Network Interface Card
- CD-R/W
- Other Storage Media

Support Hardware

- Power Supply
- UPS
- Surge Arrestor
- Switch Box

CPU Support Components

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

Transistors

Color Codes

Color	First Band	Second Band	Third Band (optional)	Fourth Band (multiplier)	Tolerance Band
Black	0	0	0	1	
Brown	1	1	1	10	
Red	2	2	2	100	
Orange	3	3	3	1,000	
Yellow	4	4	4	10,000	
Green	5	5	5	100,000	
Blue	6	6	6	1,000,000	
Violet	7	7	7	(silver) .01	(silver) 10%
Gray	8	8	8	(gold) .1	(gold) 5%
White	9	9	9		(brown) 1%

Potentiometers

Capacitors

More Capacitors

The History

of Processors

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

The First Microprocessor

- **4004** by Intel in 1971
- Designed as the core logic of a calculator
- Handled data 4 bits at a time
- Ran at 108 KHz
- 2300 transistors
- Memory: 640 bytes

- Date Introduced
- April 1972
- Number of Transistors 3,500
- Internal Register Size 8-bits
- Data I/O Bus Width 8-bits
- Maximum Memory
- Typical Speed

0.2 MHz

16 KB

Date Introduced

April 1974

64 KB

2 MHz

- Number of Transistors 6000
- Int Register Size 8-bits
- Data I/O Bus Width 8-bits
- Maximum Memory
- Typical Speed

59

- Date Introduced June 1979
- Number of Transistors 29,000
- Int Register Size 16 bits
- Data I/O Bus Width
- Maximum Memory
- Typical Speed

8 bits

1 MB

8 MHz

The 8088 was used in the first IBM Personal Computer

- Date Introduced May 1982
- Number of Transistors 134,000
- Int Register Size 16 bits
- Data I/O Bus Width
- Maximum Memory
- Typical Speed

16 bits

16 MB

12 MHz

- Date Introduced Oct. 1985
- Number of Transistors 275,000
- Internal Register Size 32 bits
- Data I/O Bus Width 32 bits
- Maximum Memory
- Typical Speed

16/20/25/33 MHz

4 GB

80386sx

Int Register Size 32-bits
Data I/O Bus Width 16-bits
Typical Speed 16/20/25/33 MHz

Math Coprocessors

- Fast circuits to perform floating point math
- For 8088 through 80386, a separate device
- As complicated as the CPU itself

CPU and Coprocessor

80386 ----> 80387

- Date Introduced Ap
- Transistors
- Int Register Size
- Bus Width
- Max Memory
- Typical Speed
- L1 Internal Cache
- Math Coprocessor

April 1989 1,200,000 32-bits 32-bits **4 GB** 66 MHz **8 KB** Internal

Internal Cache

• A small memory inside the CPU that runs at the same speed as the CPU

Also called an L1 cache

Today's CPU Standard

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

Pentium®

- Date Introduced
- Transistors
- Int Register Size
 - Data I/O Bus Width
 - Maximum Memory
 - Typical Speed
 - L1 Internal Cache
 - Internal Coprocessor Yes

- March 1993 3,100,000 32-bits 64-bits **4 GB**
- 100 MHz
- $2 \times 8 \text{ KB}$

Number of clock cycles needed to execute a typical instruction

intel_® pentium®

621

2

A80502100 SY007 ICOMP® 2 #=90 L6503229-1033 INTEL®©'92'93

Pentium MMX

- Date Introduced January
- Transistors
- Internal Register Size 32 bi
- Data I/O Bus Width
- Maximum Memory
- Typical Speed
- L1 Internal Cache
- Math Coprocessor
- MMX Instructions

- January 1997 4,100,000
- 32 bits64 bits
 - 4 GB
- 200 MHz 2×16 KB

Yes

Pentium Pro®

- Date Introduced
- Transistors
- Internal Register Size
- Data I/O Bus Width
- Maximum Memory
- Typical Speed
- L1 Internal Cache
- Math Coprocessor
- L2 Cache

November 1995 5,500,000 32 bits 64 bits 64 GB 200 MHz $2 \times 8 \text{ KB}$ Yes 256 KB

Pentium Pro®

Pentium II®

- Date Introduced
- Number of Transistors
- Int Register Size
- Data I/O Bus Width
- Maximum Memory
- Typical Speed
- L1 Internal Cache
- Math Coprocessor
- L2 Cache

May 1997 7,500,000 32 bits 64 bits 64 GB 300 MHz $2 \times 16 \text{ KB}$ Yes 512 KB

Pentium II Single Edge Contact (SEC) Cartridge

Internal View (Front)

Pentium III ®

- 0.25 Micron Technology
- 450 MHz to 1.4 GHz
- 1.8V core voltage
- Dissipates less heat
- Supports multi-processing

Pentium 4 ®

- 0.18, 0.13, 0.09 Micron Technology
- 1.3 GHz to 4 GHz and higher
- 1 V to 1.8 V core voltage
- Dissipates lots of heat (up to 100 W)
- Supports multi-processing

AMD's K6-2

AMD-K6-2 FCCAR 2.2V-CORE 3.4V /0 A 0014 AFE # @ @ 1998 AHD

ASSEMBLEE IN MALLY STA

響

Power and Connectors

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

Standard Power Supply

CD CV

Power Selection Switch

WARNING! Hazardous voltages contained within this power supply, not user serviceable. Return to service center for repair.

Power Supply Connectors

Power Supply Output Voltages AT-Type

• +5 Volts

• +12 Volts

-12 Volts

• -5 Volts

AT power connector

SMO

0

BC 1

CN3

Edge View of Motherboard

Motherboard Power Connectors

The Power Good Signal

- +5 Volt signal generated by the power supply
- Indicates that the power supply passed its self test and its output has stabilized
- Occurs within first 0.5 seconds
- Prevents system from running under bad or unstable power conditions

Large Molex Connector

4-Pin Molex Connector

Berg Connector

4-Pin Berg Connector

Grasp the connector by the shell...

never by the leads

Power Supply Output Voltages ATX-Type

- +5 Volts
- +12 Volts
- -12 Volts
- -5 Volts
- +3.3 Volts

ATX Power Connector

ATX Power Connector

When Things go Wrong!

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

The Power Supply

- Don't fix it
- Don't open it
- It isn't worth it!
- Only use UL or CSA approved supplies

Power Surges and Sags are both serious problems...

Static Electricity and the Computer

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

Your greatest enemy when working in the computer is **Electrostatic Discharge or** ESD.

Your best defense against ESD is the anti-static wrist strap.

Switch off power at the computer and at the workbench...

...but leave the computer plugged in.

Use anti-static mats on the workbench and floor.

Hold Circuit Boards by their edges

Store Circuit Boards in Anti-static Bags.

118

General Safety Tips

- Look for UL or CSA labels
- Be careful around fans
- Watch for sharp edges
- Double-check the power before removing or replacing anything

The Power Supply

- Don't fix it
- Don't open it
- It isn't worth it!
- Only use UL or CSA approved supplies

Respect... not fear.

Disassembling and Reassembling a Computer

Copyright © 2002 Heathkit Company, Inc. All rights reserved.

Why Disassemble the Computer?

- To upgrade.
- To repair.
- To add to it.

The three most important things to remember when disassembling a computer are:

- Document
- Document
- Document!

Document

- Where cards are located.
- How cables are routed.
- Orientation of cables and connectors.
- Hardware used to secure each component.
- Anything else that might cause confusion when reassembling.

Turn off power to the computer and everything connected to it.

Disconnect the monitor and set it aside.

Disconnect the keyboard and set it aside.

Disconnect the mouse and set it aside.

... not these.

The Motherboard

Power Supply Input Voltage 100 to 125 VAC @ 60 Hz

• 200 to 250VAC @ 50 Hz

Some connectors are held in place by a latch.

Grasp the
connector
by the
shell

...never by the leads.

The Power Supply is held in place by four screws.

The Hard Drive may be located here ...

... Or here.

The Floppy Drive

Keep these tips in mind

- Document everything.
- Shut off power.
- Protect against ESD.
- Grasp connectors by shells-not leads.
- Never use force.
- Release latches on connectors.
- Rock boards end to end.