CRM Workshop on Interactions between Algebraic Combinatorics and Algebraic Geometry

Mark Haiman

joint work with lan Grojnowski

Part I

The combinatorial polynomials of

ascoux eclerc

hibon

The k-core and k-quotient of a partition

$$(k=4)$$

...and corresponding standard tableau on the k-quotient.

May 28, 2007 25

...and corresponding standard tableau on the k-quotient.

This also works for semistandard tableaux.

Aligning content lines in the k-quotient is equivalent to remembering the k-core.

Content reading word of a tableau on a tuple of skew shapes:

Inversions in the reading word count if they are on the same line-8 8 6 1 8 4 4 or from above to below on consecutive lines.

Definition. The spin of a ribbon tableau is the sum over its ribbons

$$spin(T) = \sum_{R} (height(R) - 1)$$

Proposition. If

semistandard ribbon tableau T

 \longrightarrow tuple of semistandard tableaux S,

then for some constant **e** depending only on the shape, we have

$$\mathrm{spin}(T) = e - 2\,\mathrm{inv}(S)$$

Definition. Given a tuple of skew shapes ν (with content alignment), the associated **LLT polynomial** is the generating function for semistandard tableaux

$$G_{oldsymbol{
u}}(x;q) = \sum_{T \in ext{SSYT}(oldsymbol{
u})} q^{ ext{inv}(T)} x^T$$

Definition. Given a tuple of skew shapes ν (with content alignment), the associated **LLT polynomial** is the generating function for semistandard tableaux

$$G_{oldsymbol{
u}}(x;q) = \sum_{T \in ext{SSYT}(oldsymbol{
u})} q^{ ext{inv}(T)} x^T$$

[Remark. By the preceding proposition, $q^eG_{\nu}(x;q^{-2})$ is the spin generating function for ribbon tableaux.]

Definition. Given a tuple of skew shapes ν (with content alignment), the associated **LLT polynomial** is the generating function for semistandard tableaux

$$G_{oldsymbol{
u}}(x;q) = \sum_{T \in ext{SSYT}(oldsymbol{
u})} q^{ ext{inv}(T)} x^T$$

[Remark. By the preceding proposition, $q^eG_{\nu}(x;q^{-2})$ is the spin generating function for ribbon tableaux.]

Theorem (L, L & T). $G_{\nu}(x;q)$ is a symmetric function.

Theorem (L, L & T). $G_{\nu}(x;q)$ is a symmetric function.

Leclerc and Thibon conjectured that $G_{\nu}(x;q)$ is always Schur positive, and proved it for straight shapes. In this case, the coefficients in the Schur expansion are parabolic Kazhdan-Lusztig polynomials.

Haglund, H., and Loehr showed that the Macdonald polynomials $\tilde{H}_{\mu}(x;q,t)$ are positive combinations of LLT polynomials for certain skew shapes.

Theorem (L, L & T). $G_{\nu}(x;q)$ is a symmetric function.

Leclerc and Thibon conjectured that $G_{\nu}(x;q)$ is always Schur positive, and proved it for straight shapes. In this case, the coefficients in the Schur expansion are parabolic Kazhdan-Lusztig polynomials.

Haglund, H., and Loehr showed that the Macdonald polynomials $\tilde{H}_{\mu}(x;q,t)$ are positive combinations of LLT polynomials for certain skew shapes.

We prove the Leclerc-Thibon conjecture for all shapes.

Part II LLT Polynomials in the general case Notation:

```
G = \text{reductive algebraic group}
  L = Levi subgroup
 W =  Weyl group of G
W_J =  Weyl group of L (so L =  BwB)
                                  w \in W_J
W^{J} = \{ \text{Minimal representatives of cosets } W_{J} w \}
 X =  Weight lattice
```

Hecke algebra $\mathcal{H}(W)$ has basis $\{T_w : w \in W\}$ and relations

$$T_v T_w = T_{vw} \quad ext{if} \quad l(vw) = l(v) + l(w) \ (T_{s_i} - q)(T_{s_i} + 1) = 0$$

Hecke algebra $\mathcal{H}(W)$ has basis $\{T_w : w \in W\}$ and relations

$$T_v T_w = T_{vw} \quad ext{if} \quad l(vw) = l(v) + l(w) \ (T_{s_i} - q)(T_{s_i} + 1) = 0$$

Bernstein's presentation of the Affine Hecke algebra:

$$\mathcal{H}_{\mathrm{aff}} = \mathcal{H}(W) \cdot \{Y^{\lambda} : \lambda \in X\}$$
 $T_{s_i}Y^{\lambda} - Y^{s_i(\lambda)}T_{s_i} = (q-1)rac{Y^{\lambda} - Y^{s_i(\lambda)}}{1 - Y^{-lpha_i}} \quad (i
eq 0)$

Hecke algebra $\mathcal{H}(W)$ has basis $\{T_w : w \in W\}$ and relations

$$T_v T_w = T_{vw} \quad ext{if} \quad l(vw) = l(v) + l(w) \ (T_{s_i} - q)(T_{s_i} + 1) = 0$$

Bernstein's presentation of the Affine Hecke algebra:

$$\mathcal{H}_{\mathrm{aff}} = \mathcal{H}(W) \cdot \{Y^{\lambda} : \lambda \in X\}$$
 $T_{s_i}Y^{\lambda} - Y^{s_i(\lambda)}T_{s_i} = (q-1)rac{Y^{\lambda} - Y^{s_i(\lambda)}}{1 - Y^{-lpha_i}} \quad (i
eq 0)$

The center of the affine Hecke algebra is

$$Z(\mathcal{H}_{\mathrm{aff}}) = (\mathbb{Q}(q)Y^X)^W$$

Submodule $\mathcal{H}(W)e^+$ affords the "trivial" representation $T_w e^+ = q^{l(w)}e^+$

where
$$e^+ = \sum_{w \in W} T_w$$
.

Submodule $\mathcal{H}(W)e^+$ affords the "trivial" representation $T_we^+=q^{l(w)}e^+$

where
$$e^+ = \sum_{w \in W} T_w$$
.

Theorem (Lusztig). Let w be the maximal element of the double coset $W_{\tau}(\lambda)W \subset W_{\rm aff}$. The corresponding Kazhdan-Lusztig basis element in the affine Hecke algebra is

$$C_w = \chi^{\lambda}(Y)e^+$$

where $\chi^{\lambda}(Y)$ is an irreducible character of G, viewed as an element of the center $Z(\mathcal{H}_{aff})$.

Submodule $e_J^-\mathcal{H}(W_J)$ affords the sign representation

$$e_J^- T_w = (-1)^{l(w)} e_J^-$$
 for $w \in W_J$

of $\mathcal{H}(W_J)$, where

$$e_J^- = \sum_{w \in W_J} (-q)^{-l(w)} T_w$$

Submodule $e_J^-\mathcal{H}(W_J)$ affords the sign representation

$$e_J^- T_w = (-1)^{l(w)} e_J^-$$
 for $w \in W_J$

of $\mathcal{H}(W_J)$, where

$$e_J^- = \sum_{w \in W_J} (-q)^{-l(w)} T_w$$

The elements

$$|\lambda
angle = e_J^- w_\lambda e_+$$

where $\lambda \in X_{++}(L)$ is regular and dominant for L, and $w_{\lambda} \in W_{J}\tau(\lambda)W$ is a minimal double coset representative in $W_{\rm aff}$, form a basis of the space

$$e_J^- \mathcal{H}_{\mathrm{aff}} \, e^+$$

Note that $e_J^- \mathcal{H}_{aff} e^+$ is a $Z(\mathcal{H}_{aff})$ -module.

The operator of multiplication by $\chi^{\lambda}(Y)$ on the basis $|\lambda\rangle$ has matrix entries denoted by

$$ra{eta}{\chi}^{\lambda}(Y)\ket{\gamma}$$

Note that $e_J^- \mathcal{H}_{aff} e^+$ is a $Z(\mathcal{H}_{aff})$ -module.

The operator of multiplication by $\chi^{\lambda}(Y)$ on the basis $|\lambda\rangle$ has matrix entries denoted by

$$ra{eta}{\chi}^{\lambda}(Y)\ket{\gamma}$$

Definition. The generating function of matrix entries

$$\mathcal{L}_{L,eta,\gamma}^{G}(x;q) = \sum_{\lambda} ra{eta} \chi^{\lambda}(Y) \ket{\gamma} \chi^{\lambda}(x)$$

taken over all λ , for fixed β and γ , is an **LLT** polynomial.

Note that $e_J^- \mathcal{H}_{aff} e^+$ is a $Z(\mathcal{H}_{aff})$ -module.

The operator of multiplication by $\chi^{\lambda}(Y)$ on the basis $|\lambda\rangle$ has matrix entries denoted by

$$ra{eta}{\chi}{}^{\lambda}(Y)\ket{\gamma}$$

Definition. The generating function of matrix entries

$$\mathcal{L}_{L,eta,\gamma}^{G}(x;q) = \sum_{\lambda} ra{eta} \chi^{\lambda}(Y) \ket{\gamma} \chi^{\lambda}(x)$$

taken over all λ , for fixed β and γ , is an **LLT** polynomial.

[Remark: it's really an infinite formal q-character of G.]

Proposition. Let ρ_L be such that $\langle \alpha_j^{\vee}, \rho_L \rangle = 1$ for all $j \in J$. Then, formally, at q = 1 we have

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;1)=\operatorname{Ind}_L^G(\chi_L^eta\otimes(\chi_L^\gamma)^*)$$

In other words, the coefficient of $\chi^{\lambda}(x)$ in $\mathcal{L}_{L,\beta+\rho_{L},\gamma+\rho_{L}}^{G}(x;1)$ is equal to the multiplicity of χ_{L}^{β} in $\chi_{L}^{\gamma}\otimes\chi_{G}^{\lambda}|_{L}$.

Proposition. Let ρ_L be such that $\langle \alpha_j^{\vee}, \rho_L \rangle = 1$ for all $j \in J$. Then, formally, at q = 1 we have

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;1)=\operatorname{Ind}_L^G(\chi_L^eta\otimes(\chi_L^\gamma)^*)$$

In other words, the coefficient of $\chi^{\lambda}(x)$ in $\mathcal{L}_{L,\beta+\rho_{L},\gamma+\rho_{L}}^{G}(x;1)$ is equal to the multiplicity of χ_{L}^{β} in $\chi_{L}^{\gamma}\otimes\chi_{G}^{\lambda}|_{L}$.

For $G = GL_n$, $L = GL_{m_1} \times \cdots \times GL_{m_k}$, we get a product of skew Schur functions

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;1)_{ ext{pol}} = S_{eta_1/\gamma_1}\cdots S_{eta_k/\gamma_k}$$

where $\gamma = \gamma_1 | \cdots | \gamma_k$ and $\beta = \beta_1 | \cdots | \beta_k$.

Proposition. Let ρ_L be such that $\langle \alpha_j^{\vee}, \rho_L \rangle = 1$ for all $j \in J$. Then, formally, at q = 1 we have

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;1)=\operatorname{Ind}_L^G(\chi_L^eta\otimes(\chi_L^\gamma)^*)$$

In other words, the coefficient of $\chi^{\lambda}(x)$ in $\mathcal{L}_{L,\beta+\rho_{L},\gamma+\rho_{L}}^{G}(x;1)$ is equal to the multiplicity of χ_{L}^{β} in $\chi_{L}^{\gamma}\otimes\chi_{G}^{\lambda}|_{L}$.

Warning: when $q \neq 1$, the LLT polynomial

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;q)$$

depends on the choice of PL!

Theorem. For $G = GL_n$, $L = GL_{m_1} \times \cdots \times GL_{m_k}$, $\gamma = \gamma_1 | \cdots | \gamma_k$ and $\beta = \beta_1 | \cdots | \beta_k$, if we take $\rho_L = \rho_{m_1} | \cdots | \rho_{m_k}$, where $\rho_m = (0, -1, \ldots, 1-m)$, then

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;q)_{ ext{pol}}=q^?G_{(eta_1/\gamma_1,...,eta_k/\gamma_k)}(x;1/q)$$

Theorem. For $G = GL_n$, $L = GL_{m_1} \times \cdots \times GL_{m_k}$, $\gamma = \gamma_1 | \cdots | \gamma_k$ and $\beta = \beta_1 | \cdots | \beta_k$, if we take $\rho_L = \rho_{m_1} | \cdots | \rho_{m_k}$, where $\rho_m = (0, -1, \ldots, 1 - m)$, then

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;q)_{ ext{pol}}=q^?G_{(eta_1/\gamma_1,...,eta_k/\gamma_k)}(x;1/q)$$

Corollary. The coefficients in the expansion through Schur functions of any LLT polynomial $G_{\nu}(x;q)$ are positive (i.e., lie in $\mathbb{N}[q]$).

Theorem. For $G = GL_n$, $L = GL_{m_1} \times \cdots \times GL_{m_k}$, $\gamma = \gamma_1 | \cdots | \gamma_k$ and $\beta = \beta_1 | \cdots | \beta_k$, if we take $\rho_L = \rho_{m_1} | \cdots | \rho_{m_k}$, where $\rho_m = (0, -1, \ldots, 1 - m)$, then

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;q)_{ ext{pol}}=q^?G_{(eta_1/\gamma_1,...,eta_k/\gamma_k)}(x;1/q)$$

Corollary. The coefficients in the expansion through Schur functions of any LLT polynomial $G_{\nu}(x;q)$ are positive (i.e., lie in $\mathbb{N}[q]$).

Corollary. The coefficients in the expansion through Schur functions of the Macdonald polynomials $\tilde{H}_{\mu}(x;q,t)$ are positive.

Part III A few words about proofs—

Two things to prove...

Part III A few words about proofs—

Two things to prove...

First, theorem from previous slide: for $G = GL_n$,

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;q)_{ ext{pol}}=q^?G_{(eta_1/\gamma_1,...,eta_k/\gamma_k)}(x;1/q)$$

Part III A few words about proofs—

Two things to prove...

First, theorem from previous slide: for $G = GL_n$,

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;q)_{ ext{pol}}=q^?G_{(eta_1/\gamma_1,...,eta_k/\gamma_k)}(x;1/q)$$

We adapt the method of Leclerc and Thibon.

Rename the basis of $e_J^- \mathcal{H}_{aff} e^+$, denoting basis elements by $|\mu\rangle$, where μ is a partition with fixed k-core and at most n parts. When $|\mu\rangle$ is expressed using the Bernstein generators, its definition extends naturally to all μ in a W_{aff} -orbit, with simple straightening relations.

Two things to prove...

First, theorem from previous slide: for $G = GL_n$,

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;q)_{ ext{pol}}=q^?G_{(eta_1/\gamma_1,...,eta_k/\gamma_k)}(x;1/q)$$

It's enough to show that the operator $e_r(Y)$ acts by adding a vertical ribbon strip R to μ , with coefficient

$$q^{-\mathrm{spin}(T)/2}$$

This follows easily from the straightening relations.

Everything but the combinatorial action of $e_r(Y)$ works for any G and L.

Two things to prove...

First, theorem from previous slide: for $G = GL_n$,

$$\mathcal{L}_{L,eta+
ho_L,\gamma+
ho_L}^G(x;q)_{ ext{pol}}=q^?G_{(eta_1/\gamma_1,...,eta_k/\gamma_k)}(x;1/q)$$

It's enough to show that the operator $e_r(Y)$ acts by adding a vertical ribbon strip R to μ , with coefficient

$$q^{-\mathrm{spin}(T)/2}$$

This follows easily from the straightening relations.

Problem. Find a combinatorial formula for $\mathcal{L}_{L,\beta,\gamma}^{G}(x;q)$ for general G and L.

Two things to prove...
Second,

Theorem (Grojnowski, H.). The matrix coefficient $\langle \beta | \chi^{\lambda}(Y) | \gamma \rangle$

(the coefficient of $\chi^{\lambda}(x)$ in $\mathcal{L}_{L,\beta+\rho_L,\gamma+\rho_L}^G(x;q)$) is always positive, i.e., in $\mathbb{N}\langle\langle q \rangle\rangle$.

Theorem (Grojnowski, H.). The matrix coefficient $\langle \beta | \chi^{\lambda}(Y) | \gamma \rangle$

(the coefficient of $\chi^{\lambda}(x)$ in $\mathcal{L}_{L,\beta+\rho_{L},\gamma+\rho_{L}}^{G}(x;q)$) is always positive, i.e., in $\mathbb{N}\langle\langle q \rangle\rangle$.

which is a corollary to—

Theorem (G & H). Given any (possibly infinite) Weyl group W and parabolic $W_J \subseteq W$, define $TC_w = T_xC_y$, where w = xy, $x \in W^J$ and $y \in W_J$. The matrix coefficients of a KL basis element C_v , acting by left multiplication on the basis $\{TC_w\}$ of $\mathcal{H}(W)$, are positive.

Theorem (G & H). Given any (possibly infinite) Weyl group W and parabolic $W_J \subseteq W$, define $TC_w = T_xC_y$, where w = xy, $x \in W^J$ and $y \in W_J$. The matrix coefficients of a KL basis element C_v , acting by left multiplication on the basis $\{TC_w\}$ of $\mathcal{H}(W)$, are positive.

Proof uses the standard picture of $\mathcal{H}(W)$ as convolution algebra of MHM's or étale perverse sheaves (take your pick) on the flag variety...

...plus a maximally delicate variant of the usual reasoning [Springer, Lusztig], using purity of hyperbolic restriction [Braden, others].

The Moral

Although many KL-polynomials are mean...

The Moral

Although many KL-polynomials are mean...

...some are friendly!

