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0 Introduction

These notes are intended to summarize and explain the topics discussed dur-
ing class in the Fall 2017 section of AST551, General Plasma Physics I. I am
writing these notes primarily as a learning experience. I find that in order to
learn physics topics, I need to examine that topic in detail, going through any
derivations myself step by step. Thus, you will see that I try not to skip steps
as much as possible. I also find that to really understand something, I need to
explain it to someone else. Thus, I will do my best to not only include the math,
but do my best to explain the physics behind the math, opting for wordiness
over brevity. If I do not fully explain a concept, it is probably because I do not
understand the physics behind that concept yet. I’ve found that with many of
the plasma physics books I’ve looked at, I understand the math and the deriva-
tions, but walk away without an understanding of the physics. My goal with
these notes is for that not to be the case.

Obviously, these notes are a work in progress. I have yet to write on many
important sections from the course, and many sections need to be expanded
or explained in more depth. However, my hope is that when these notes are
completed, they might be useful for me and possibly future students as they
prepare for generals or take AST551. If you are reading these notes and find a
typo or an error, please shoot me an email at mcgreivy@princeton.edu so I can
fix it.

Speaking of generals, I’ve attached a picture with the cover of the a previous
written section of the generals exam. Of the 360 points in the written section
of this generals exam, 190 of the points are from a topic which is covered in this
class. Many of these topics are covered again in more advanced courses, so one
might argue that learning this material well after GPP1 isn’t essential. I’m not
convinced.

These notes are divided into 6 chapters, not necessarily correlated with the or-
der the topics were covered in class. The first chapter covers the most basic
topics in plasma physics, including plasma oscillations, Debye shielding, space-
time scales, and a bit on collisions. The second chapter covers single particle
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motion, including particle drifts, adiabatic invariants, mirror machines, and
the iso-rotation theorem. The third chapter will introduce kinetic theory, the
Vlasov equation and discuss collision operators. The fourth chapter will cover
fluid equations and MHD, including 1D MHD equilibrium. Chapter 5 will cover
some fundamental waves in plasmas, from kinetic, fluid, and MHD perspectives.
Chapter 6 will cover Landau damping, to the extent it was covered in class.

So far, the best resource I have found for learning the fundamentals of plasma
physics is Paul Bellan’s book, Fundamentals of Plasma Physics. Every deriva-
tion is done step-by-step in great detail, so that the reader is not lost, and
each concept is explained thoroughly and often with good physical insight. The
downside of the book is that it is quite long. Everything Professor Bhatacharjee
does is exceptional, and his textbook Introduction to Plasma Physics with Space,
Laboratory, and Astrophysical Applications is no exception. His book contains
many of the same topics covered in these notes, plus many more. It would be
a great reference book for this course, and less time and algebra intensive than
Bellan. Physics of Fully Ionized Plasmas by Lyman Spitzer is a really old, fairly
short book, with an old-fashioned take to the subject. Sam Cohen once told
me it’s the only book I need to read to understand plasma physics. I don’t
believe him. Introduction to Plasma Physics and Controlled Fusion by Fran-
cis Chen is often referenced as a good book for beginning students - however, I
think the level is appropriate for an undergraduate starting a summer of research
into plasma physics, not for a graduate student concentrating in plasma physics.

Greg Hammett imbued us first-year students with three pieces of wisdom during
the first lecture for GPP1 way back in September. I figure I should pass that
advice on. The first piece of advice is to remember how fortunate we are to
be at this wonderful university, and to make the most of this experience. The
second piece of advice is to find meaning and purpose in our lives outside of
work. The third piece of advice is to get some sleep.

5



1 Basics

It’s unbelievable how much you
don’t know about the game
you’ve been playing all your life.

Mickey Mantle

Plasma physics, as you may or may not have been told (once you are im-
mersed in the field for long enough, you will inevitably be told this at some
point), is a rich, varied subject. This richness comes mathematically, experi-
mentally, as well as through the numerous applications of plasma physics re-
search.

Research in plasma physics draws knowledge from of a huge number of ar-
eas of physics, including electromagnetics, thermodynamics, statistical mechan-
ics, nuclear physics, and atomic physics. Experiments in plasma physics of-
ten involve vacuum systems, superconducting coils, cryogenic systems, complex
optical instruments, advanced materials for plasma-facing components, wave-
guides, and much much more. Computational plasma physics involves devel-
oping and implementing numerical algorithms, linking computational work to
physical models, theory, and experiment, and often uses some of the most pow-
erful supercomputers in existence.

There are lots of applications of plasma physics. A few of the numerous
applications of plasma physics include astrophysics (where over 99% of the vis-
ible universe is in the plasma state), plasma thrusters, water processing, and
fusion energy. Fusion energy, which is easily one of the most challenging sci-
entific endeavors today, also holds one of the greatest rewards. The long-term
promise and allure of fusion energy comes from the immense energy bound up
in the atomic nucleus and the readily available fuel sources1 which release that
energy which could power humanity for many millions of years. In addition,
fusion power is carbon-dioxide free, does not have the risk of nuclear meltdown,
doesn’t require large land usage, and is a steady power source.

Throughout these notes, we will start to see some of this mathematical and
physical richness come to play. However, as we did in class, these notes will focus
on the theoretical foundations of the subject rather than concentrate heavily on
any particular application of plasma physics.

1.1 Finals words before the onslaught of equations

One important question has not been answered so far - what is a plasma? Most
briefly, a plasma is an ionized gas. But of course this response leaves much to
the imagination. How ionized does it need to be to be a plasma? A gas of what?

1Deuterium is readily available in seawater. It should be emphasized that tritium, while
theoretically capable of being generated from lithium, does not exist in significant quantities
naturally and the process of creating tritium has not been demonstrated on a large scale. This
is one of the most challenging tasks facing developers of future D-T reactor.

6



As Nat Fisch points out, states of matter are really approximations of reality.
Take, for example, a closed box stuffed chock full of gravel. Each individual rock
in that gravel certainly behaves like a solid when we observe it. If we were to
take that box and throw it in the air, it would rotate approximately like a solid
body. But when we open that box and pour that gravel into a funnel, the
behavior of the gravel is better described with a fluid approximation. Similarly,
the tectonic plates which makes up the earth’s continents are certainly solid
when we look at them over the course of a day or a month or a year. But when
we look at them over a timescale of millions of years, the plates travel, flow, and
merge, certainly unlike a solid.

Thus, whether some real physical system can be treated as one of the ide-
alized states of matter depends on how we are observing that system. Alter-
natively, in the language of plasma physics, the state of matter some system
is in depends on the the timescales and length scales which we are observing
the system over. For example, in gas clouds in the interstellar medium, the
degree of ionization is very low and the magnetic fields are very small, but over
large enough scales and over long enough times, their evolution is apparently
well-described by the equations of plasma physics.

In some sense, plasmas fit somewhere along an energy spectrum, where the
spectrum ranges over the energy per particle (i.e. temperature). At one end of
the spectrum is condensed matter physics, i.e. solids. These are at the lowest
temperature. As we increase the temperature, eventually the solids become
fluids, fluids become gases, and at some point they become plasma-like. In
the temperature range where the gas becomes fully ionized, we have an ideal
classical plasma (∼10eV to ∼100KeV). If we were to turn up the temperature
even further, then at ∼1MeV positrons start to become produced, and we have
a relativistic QED plasma (something I know nothing about!), and we have to
develop other equations to understand this system. In this energy range, we
are already out of the realm of classical plasma physics. If we really crank up
the energy dial, up to ∼100MeV, then we’ll have a quark-gluon plasma, which
is confined by the strong force rather than the Electromagnetic force. What we
see from this illustration is that plasma physics is the physics of matter within
a certain restricted temperature range.

This still doesn’t answer our question of “what is a plasma”! It turns out
that this definition is a bit technical, but I’ll state is here. Some system is a
plasma if the number of plasma particles in a Debye sphere is much greater than
1, or n0

4
3πλ

3
D � 1. In effect, this means that the plasma is electrically neutral

on scales larger than the Debye length. We will explore these ideas more in
section 1.4.

1.1.1 Logical framework of Plasma Physics

Here is a half-truth: Plasma physics has been fully solved. Suppose we have
a large number of particles, each of which has charge qi and mass mi. These
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particles interact via the Lorentz force,

mi
d2~xi
dt2

= qi( ~E +
d~xi
dt
× ~B) (1.1)

The initial conditions for the electric and magnetic fields are given by two of
Maxwell’s equations,

~∇ · ~B = 0 (1.2)

~∇ · ~E =
ρ

ε0
(1.3)

while the time-evolution of the electric and magnetic fields are determined by
the other two Maxwell equations,

~∇× ~E = −∂
~B

∂t
(1.4)

~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
(1.5)

Given a set of initial conditions for the particles, we can solve for the time
evolution of these particles. If we really wanted to be precise, we could even use
the Lorentz-invariant Lorentz force law, and calculate the time-evolution of the
plasma particles to arbitrary precision. Unfortunately, this simplistic approach
doesn’t work for a myriad of reasons, both physical and practical.

Practically, such an approach is not solvable analytically, and requires so
much computing power that even on the most powerful supercomputers, it would
take something on the order of the age of the universe to simulate even the most
basic plasma configurations. And this is only the simplest model of a plasma
possible! To make any practical progress in plasma physics, we obviously need
a description of a plasma which can be practically solved. Thus, we will need
to approximate somehow in order to get a tractable solution.

Physically, this simple model described in equations 1.1 through 1.5 is wrong.
Firstly, there is no consideration of boundary conditions. In any terrestrial
plasma, the plasma will be confined to some region by a solid2 boundary, and
the plasma particles will interact with the boundary in some complex way. Much
of plasma physics research involves understanding the effects of plasmas as they
interact with materials. These notes will not cover plasma-material interactions.
In astrophysical plasmas, the boundaries are either ignored, not well-defined, or
do not exist. In practice, periodic or open boundary conditions are often used
to understand astrophysical plasmas.

Secondly, not every particle is ionized, and neutral particles would (rigor-
ously) need to be treated with quantum mechanics. Indeed, a proper treatment
of collisions between even ionized particles in plasmas would (rigorously) involve
quantum mechanics. Atomic physics, including collision cross sections and reac-
tion rates, needs to be included to understand collisions as well as the ionization

2Or, in some applications, a fluid boundary
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and recombination of particles. We also need to account for the radiation emit-
ted through these atomic processes and through particle acceleration.

As you can imagine, a rigorous, complete description of a plasma would
get extremely complicated extremely quickly. Thus, approximation will be our
friend as we study this subject. With the approximation schemes we make in
these notes and throughout our study of plasmas, we will need to keep track of
when the approximations we make are valid, so as not to apply some equation
to a physical situation where it is not applicable.

There are a number of theoretical models for plasma physics. These include
considering only single-particle dynamics (particle drifts, the subject of section
2), many particle dynamics (particle-in-cell computing, not covered in these
notes), and using various statistical models and fluid models.

One such statistical model involves averaging over all possible ensembles3,
to get a 6-dimensional4 time-evolving distribution function f , which tells us the
number of particles at a given position with a given velocity. This distribution
function f is called the Vlasov distribution, and this model is known as kinetic
theory, which will be further discussed in section 3.

Another model involves treating each species5 in the plasma as a fluid. This
requires taking moments of f , and replacing an arbitrary velocity distribution
with, at each position in space, a mean velocity, temperature, and a pressure
tensor. Alternatively, instead of treating the each species as a fluid, we can
treat the plasma as a single fluid, and calculate an overall mean velocity, a total
current, and a single temperature and pressure tensor. This approximation is
called Magnetohydrodynamics, or MHD. These fluid models of a plasma will be
further discussed in chapter 4.

1.2 Plasma Oscillations

We will start our investigation of plasma physics by looking at plasma oscilla-
tions. We start here for a couple reasons. Firstly, plasma oscillations illustrate
many of the equations and techniques used throughout our study of this field.
Secondly, plasma oscillations are the most simple example of what is called col-
lective dynamics. Dynamics is the study of how a system evolves over time.
Collective dynamics simply means that when interacting, many plasma parti-
cles can conspire to create macroscopic behavior which is different than what
would be observed if the particles were not interacting. Our study of waves and
Landau damping are other examples of collective behavior.

Intuitively, plasma oscillations arise due to the electrostatic force which arises
when electrons are displaced from an equilibrium. Suppose some number of
electrons are displaced to the right, as in figure 1. Since there is now a positive
charge density to the left and a negative charge density to the right, an electric

3What is an ensemble? We will explain this again in chapter 3, but I will include a definition
here. Suppose we know the macrostate of a system but nothing about any given particle. An
ensemble is a microstate of a system consistent with the known macrostate.

43 spatial dimensions, 3 velocity dimensions
5Species means the types of ions, electrons, and various neutral atoms
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Figure 1: An initial electron density configuration. Perturbation is exaggerated
for illustration.

Figure 2: Electric field due to density perturbation.

field is setup which points towards the right, as in figure 2. Thus, the electrons
on the right side will feel a force to the left, and will be accelerated leftwards.
Thus, eventually the higher electron density will change from right to left. This
process will repeat itself, and the net effect is that the density perturbations
will oscillate in time (with zero group and phase velocity). These oscillations
are called plasma oscillations.

To derive these plasma oscillations, we have to start somewhere. For sim-
plicity, we will assume that a multi-species fluid approximation is valid. Instead
of looking at the density individual particles, we will treat the density of parti-
cles as a continuous smooth field. Thus, for each species we have a continuity
equation and a momentum equation. We will also use Poisson’s equation and
assume that any electric fields are curl-free ( ~E = −~∇φ), and that the magnetic
field is zero. We’re looking for oscillations of the electrons, which we expect to
be much faster than any oscillations of the ions because the electrons are much
lighter6. We will therefore assume that the ions are stationary (~vi = 0) and
have a constant and static density n0. Thus, we have

~∇ · ~E = e(n0 − ne) (1.6)

∂ne
∂t

+ ~∇ · (ne ~ve) = 0 (1.7)

6This differentiation of timescales between electrons and ions due to their different masses
will be a recurring theme throughout our study of plasma physics
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mene
∂ ~ve
∂t

+me(~ve · ~∇)(ne ~ve) = −ene ~E (1.8)

This is our first experience with fluid equations, which we have obviously not
derived. Equation 1.7 is a continuity equation for electron density, similar to
the charge conservation equation in electrodynamics. It just means that if the
electron density inside a fixed infinitesimal volume changes in time, it is because
there are electrons flowing across the boundary of that infinitesimal volume.
Equation 1.8 is a momentum equation for the electrons. Essentially, it means
that the mass times acceleration of electrons is equal to the force they feel due
to the electric field.

For those who have seen fluid equations before, note that there is no pressure
term in the momentum equation. Pressure, as you will remember from elemen-
tary kinetic theory of gases, is an effect which comes about due to the motion of
molecules. Thus, whatever results we will derive are technically applicable only
in the approximation of a zero-temperature plasma, where the molecules do not
have thermal velocities. For a plasma with a non-zero temperature, we will see
in chapter 5 that the wave dispersion relation changes, such that the wave has
a non-zero group and phase velocity.

From these equations, we will introduce a method, called linearization, which
will prove useful throughout our understanding of plasma waves. With this
method, we take some equilibrium ( ∂∂t → 0) solution to the equations, and
call the values of the relevant variables the 0th order solution to the equations.
From there, we will assume there is some perturbation to equilibrium solution,
and call the perturbations to the relevant variables the first-order quantities.
We plug the linearized quantities into the equations we have, ignore any terms
which are second-order or higher, and then look for oscillatory solutions.

Let’s see linearization in action. For plasma oscillations, we start with the
most basic equilibrium possible: a zero-velocity plasma (~v0 = 0), with a uniform
density of electrons and ions (n0(~x) = n0) and zero electric field (φ0 = constant).
Then, we apply a small perturbation to all relevant quantities, except ion density
which is assumed to be constant over the timescales we are interested in. Thus,
~ve = v1, ne = n0 + ne,1, φ = φ1. By ignoring all terms second-order or higher,
we have

~∇2φ1 = − e

ε0
(n0 − n0 − ne,1) = ene,1/ε0 (1.9)

Thus,
∂ne,1
∂t

= −~∇ · (n0~v1) = −n0
~∇ · ~v1 (1.10)

where

men0
∂ ~v1

∂t
= en0

~∇φ1 (1.11)

Now taking the divergence of the linearized momentum equation, we have

men0
∂~∇ · ~v1

∂t
= −me

∂2ne,1
∂t2

= en0
~∇2φ1 =

e2n0

ε0
ne,1 (1.12)
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∂2ne,1
∂t2

= −ω2
pne,1(~x, t) (1.13)

ω2
p =

e2n0

ε0me
(1.14)

Because the derivative is a partial derivative with respect to time, this equation
gives a solution for the density perturbation which oscillates in time, but not
in space. The way we visualize this is as follows: imagine we take some elec-
trons from one point in space and displacing them slightly to another position.
This electron density is shown graphically in Figure 3. At each point in space,
the perturbation will oscillate sinusoidally, so at some later time t = 2π/4ωp,
the density will be instantaneously constant, and another quarter-period later
the leftmost electron density perturbation will have a higher electron density.
Remember: physically, we can think of plasma oscillations as arising due to

Figure 3: Initial electron density perturbation. Over time, these bumps will rise
and fall but stay at constant position in space in a cold plasma.

electrostatic forces which cause the electrons to accelerate back and forth. In
between the leftward and rightward bumps in Figure 3, there is an electrostatic
electric field which pushes the electrons between the two bumps back and forth,
creating the density oscillation. We will see later that in a warm plasma, the
temperature allows for plasma waves with some non-zero group velocity.

Although we are focused on the density here, note that the electron fluid
velocity oscillates in time, as does φ.

1.3 Debye Shielding

As we remember from electromagnetism, the electric field inside a conductor is
0. Otherwise, charges would move around, causing the electric field to change,
until the electric field eventually became 0.

Plasmas, in general, are highly conducting. Thus, we should expect that
the electric field inside a plasma is 0, right? Well, not exactly. Indeed plasmas,
like conductors, screen external electric fields quite well. However, the electric
field inside a plasma is not necessarily zero. If we place a charge Ze in a warm
plasma and make it stay there, then the electric potential a distance r away
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from the charge is
Ze

4πε0r
e−r/λD (1.15)

where λD is a constant called the Debye length which depends on, among other
things, temperature. Note that the potential falls off in a plasma faster than
1/r, due to the exponential dependence. This faster-than-exponential falloff of
the plasma potential is what is called Debye shielding or Debye screening. Over
distances significantly longer than a couple Debye lengths, the plasma potential
due to a charge in the plasma is very small. Loosely speaking, plasmas are net
neutral over distances longer than a Debye length.

Let’s derive this. Imagine inserting a test particle of infinitesimal charge Q
into a plasma. Assume that each species (represented by σ) in the plasma is in
thermal equilibrium with temperature Tσ, and that each species can be treated
as a fluid with density nσ. Now, it is true that

nσ = n0e
−qσφ
kBTσ (1.16)

This was argued to be true in class based on statistical mechanics, but I am
having trouble deriving it using the Grand Canonical Ensemble. The simplest
way to derive this follows Bellan section 1.6. We start with a fluid equation for
each species.

mσ
d ~vσ
dt

= qσ ~E −
1

nσ
~∇Pσ (1.17)

Assuming the inertial term is negligible (which physically means the changes in

the plasma are slow), the electric field is electrostatic ( ~E = −~∇φ), the temper-
ature is spatially uniform, and the ideal gas law Pσ = nσkBTσ holds, then this
reduces to

0 = −nσqσ ~∇φ− kBTσ ~∇nσ (1.18)

which has the solution
nσ = n0e

−qσφ/kBTσ (1.19)

These assumptions are all consistent with the plasma being in it’s maximum-
entropy state, which is the assumption used to derive it from statistical mechan-
ics. Now, we assume that kBTσ � qσφ, which is true assuming the test particle
is of infinitesimal charge so that φ is small as well. Thus

nσ ≈ n0(1− qσφ

kBTσ
) (1.20)

.
The second equation we will use is Poisson’s equation. Assuming the test

charge is at the origin, we have that

−~∇2φ =
1

ε0
(Qδ(3)(~r) +

∑
σ

nσ(~r)qσ) (1.21)

Using equation 1.20 and the fact that the plasma is net neutral to zeroth order,
this simplifies to
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−~∇2φ+
φ

λ2
D

=
1

ε0
Qδ(3)(~r) (1.22)

where
1

λ2
D

=
∑
σ

1

λ2
σ

(1.23)

λσ =

√
ε0kBTσ
q2
σn0

(1.24)

Now, ~∇2φ = 1
r2

∂
∂r (r2 ∂φ

∂r ). We look for a solution of the form φ = f(r)Q
4πε0r

where

f(0) = 1. Remembering that ~∇2( 1
r ) = −4πδ(3)(~r), we find that f ′′ = f

λ2
D

so f(r) = e−r/λD , where the positive exponential solution is ruled out due to
boundary conditions at infinity - the potential at infinity can’t be infinity. Thus,
we have our Debye shielding equation for a test charge Q in a plasma,

Q

4πε0r
e−r/λD (1.25)

Note that the Debye length is larger for larger values of Tσ, and smaller for
larger values of qσ. This makes sense, since Debye screening is an effect we see
due to the thermal motion of charged particles in tandem with the electrostatic
forces they feel. Loosely speaking, a species’ charge causes it to want to stay
close to any test charge Q in the plasma, thus large qσ should decrease the
Debye length, by increasing the electrostatic force on these particles. On the
other hand, a species’ thermal motion causes it to zoom around randomly, thus
large Tσ should increase the Debye length by increasing these random speeds.
A zero temperature plasma has zero Debye length, because (in equilibrium) the
particles will have no thermal velocity and thus exactly cancel the potential due
to any test charges.

Note also the following nifty little relation, neglecting a factor of
√

3 in the
thermal velocity vT,σ :

λσ =
vT,σ
ωp,σ

=

√
kBTσ
mσ

√
mσε0
q2
σn0

(1.26)

This is something you’ll want to remember!
Here’s something seemingly contradictory that confused me: the electric

field inside a plasma is not always 0! But we learned in freshman physics that
the electric field inside a conductor is 0. We also know that plasmas are highly
conducting. So what is it about a plasma which is different than a typical
conductor, such as a metal? Actually, in terms of shielding of electric fields,
nothing! In an idealized metal, the electrons are at a temperature T and are
free to move around as they please. Their behavior obeys Poisson’s equation
and the Boltzmann relation. Therefore, we must see Debye shielding in a metal!
In fact, if we were to put a test charge in a metal and hold it there, we would see
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a potential quite like the Debye potential. At the edge of a charged conductor,
where there is a surface charge, the electric field will not go to 0 immediately
inside the conductor! Instead, it will fall to from σ/ε0 to 0 over a couple debye
lengths.

1.4 Collisions in Plasmas

We discussed an extremely simple model of collisions in a plasma, to get a
rough estimate for the mean free path, the distance of closest approach, and the
collision cross-section between two plasma particles.

The distance of closest approach is approximately the distance at which the
average kinetic energy equals the electrostatic potential energy. This would oc-
cur if we had a particle with energy 3

2kBT moving directly towards a stationary

particle, until the electrostatic potential energy is 1
4πε0

q2

b , where b is the distance
of closest approach. Solving for b, we get

b =
q2

6πε0kBT
(1.27)

.
The collision cross-section is roughly σ = πb2, so

σ =
q4

36πε20(kBT )2
(1.28)

The mean free path is defined as

l =
1

σn
(1.29)

. This is a basic result from statistical mechanics.
Until we get into the collision operator in chapter 3, this is all that we say in

this course about collisions, which is a bit unfortunate. Hopefully future courses
will cover collisions in depth, as they are certainly important.

1.5 Plasma Length and Time Scales

There are numerous length scales in plasmas:

• Distance of closest approach, b = e2

6πε0kBT

• Interparticle spacing, n−1/3

• Mean free path, λmfp = 1
nπb2

• Electron gyroradius, ρe =
mevT,e
eB =

√
kBTeme
eB

• Ion gyroradius, ρi =
√
kBTimi
ZeB
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• Debye Length, λD =
√

ε0kBT
e2n0

The electron and ion gyroradius size depends on the local magnetic field, which
can vary dramatically between different plasmas. We can, however, say that the
ion gyroradius is nearly always significantly higher than the electron gyroradius,
as long as the electron temperature is not dramatically smaller than the ion
temperature, which almost never is the case. However, in a plasma (where the
number of particles in a debye sphere is much greater than 1), we have the
following ordering of scale lengths:

• b� n−1/3 � λD � λmfp

We can prove this as follows: Suppose we define Λ as the number of particles
in a debye sphere, Λ = 4π

3 nλ
3
D � 1. Then if we define our scale length in units

of b, such that b = 1, we have that

λ2
D =

ε0kBT

e2n0
=

1

6πn0b
(1.30)

and thus
b

λD
=

1

6πn0λ3
D

= O(
1

Λ
) (1.31)

We also have that

n−1/3

b
=
n−1/3

λD

λD
b

= O(Λ−1/3)O(Λ) = O(Λ2/3) (1.32)

Finally, we have that

λmfp

λD
=

1

nπb2λD
=
λ2
D

πb2
1

nλ3
D

= O(Λ2)O(1/Λ) = O(Λ) (1.33)

Thus, we have b : 1, n−1/3 : Λ2/3, λD : Λ, λmfp : Λ2, which gives our
ordering of scale lengths in a plasma where the number of particles in a debye
sphere is much greater than 1.

We can see now why we’ve chosen our definition of a plasma to be where the
number of particles in a Debye sphere, Λ, is much greater than 1. If we choose
this definition, then we have a definite ordering of scale lengths, meaning we
can use the same equations to treat a wide variety of different plasmas.

This condition, the number of particles in a Debye sphere, also implies that
the plasma is quasineutral over length scales larger than a Debye length. How
do we know this? Well, there’s an ingenious calculation we can do which shows
that this is the case. Imagine that all of the electrons in some region of space
were to all move radially outwards from a point until their velocity becomes zero,
as in figure 4. How large of a spherical region could the electrons evacuate, such
that we are quasineutral over that region? Well, the trick is to set the thermal
energy of the electrons inside the volume (which all end up at the surface of
the sphere) equal to the energy stored in the electromagnetic field created by
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Figure 4: Illustration of the electrons evacuating a region of space with radius r,
leaving ions behind. This calculation is used to show why the number of particles
in a Debye sphere being much greater than 1 implies overall quasineutrality over
distances larger than a Debye length.

ions left behind in the absence of the electrons. The electric field is created by

the ions left behind, and from Gauss’s law Er4πr
2 = ne4πr3

3ε0
, so Er = ner

3ε0
. The

electromagnetic field energy is
∫
ε0
2 E

2dV = 2πn2e2

9ε0

∫
r′4dr′ =

2πn2e2r5max
45ε0

. The

thermal energy per particle is 3
2kBT , so the total thermal energy of the electrons

in that volume is 2πnkBTr
3
max. Setting these equal, we have

2πnkBTr
3
max =

2πn2e2r5
max

45ε0
(1.34)

so the maximum radius rmax that the thermal energy of the electrons could
evacuate is

rmax =

√
45ε0kBT

ne2
≈ 7λD (1.35)

Thus, the largest region of space that can be evacuated of electrons is a few
Debye length. Now, the logic goes like this. If the number of particles in
a Debye sphere is much greater than 1, then the situation required to make
this happen (where all of the electrons are moving radially outwards) would be
extremely unlikely, as the number of particles is large. Thus, if there are many
particles in a Debye sphere, our plasma is extremely likely to be quasineutral.
If there is less than 1 particle in a Debye sphere, then it is possible that the
plasma will be non-neutral over length scales larger than a Debye sphere.

What about timescales? Here are some of the most important frequencies:

• Electron gyrofrequency, eB
me

• Ion gyrofrequency, qiB
mi

• Plasma frequency,
√

e2n0

ε0me
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• Momentum collision frequency

• Energy collision frequency
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2 Single Particle Motion

The human mind is more attuned
to thinking geometrically rather
than thinking analytically. We
may be able to solve an equation
describing a process, but only
when we are able to make a
mental picture of how the process
proceeds, do we feel that we have
understood the process.

Arnab Rai Choudhuri

As we have seen, the mean free path of particles in a plasma is significantly
longer than any of the other scale lengths, assuming the number of particles in
a debye sphere is much greater than 1 (which is how we are defining a plasma).
Thus, particles often travel a long distance before colliding with other parti-
cles. For many plasmas, the collision timescale (1/ν) is much longer than other

relevant timescales. In these plasmas, an ion or electron might ~v × ~B rotate
(sometimes called gyromotion or Larmor motion) many times before it collides
with another plasma particle, changing it’s trajectory.

Thus, for many plasmas, analyzing the motion of individual charged particles
gives valuable insight into the behavior of the plasma as a whole. We will first
investigate the motion of particles in prescribed electric and magnetic fields.
We will also see that periodic motion in the absence of collisions leads to the
existence of conserved quantities for individual particles, which can be helpful
for analyzing the motion of particles in complicated electromagnetic fields. We
will then analyze the magnetic mirror machine, the classic example of single-
particle motion. Lastly, we’ll discuss the isorotation theorem, an example of
single-particle motion not typically found in textbooks which Nat covered in
class.

2.1 Guiding Center Drifts

Imagine we have a constant, static magnetic field in the z-direction, ~B = B0ẑ.
If we put a charged particle of charge q and mass m in that magnetic field,
then the particle will spiral around the magnetic field, while it’s velocity in
the z-direction will remain constant. Let’s see this. The force on the particle
will be ~v × ~B, which always points perpendicular to the motion. This is the
condition for uniform circular motion. Thus, we have a centripetal acceleration
v2
⊥/R = qv⊥B0/m. This is easily solved, as in freshman physics, to give a

frequency Ω = qB0/m and a gyroradius mv⊥
qB0

.
In many plasmas, there exists some sort of uniform background magnetic

field7. Thus, the most basic, ubiquitous behavior of single particles in a plasma

7Usually due to some external magnetic coils, internal current, or a background field in
outer space.
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is gyromotion around this background magnetic field. However, the behavior
of particles in spatially, time-varying fields is much more complicated. We will
see that the guiding center (center of the gyromotion) motion involves various
drifts in addition to the gyromotion.

Suppose there exists a charged particle of mass m and charge q in arbitrary
electric and magnetic fields, ~E(~r, t) and ~B(~r, t)8. The equation of motion for
the charged particle is

~̈r =
q

m
( ~E(~r, t) + ~̇r × ~B(~r, t)) (2.1)

Let us assume that ~E and ~B are known. In general, this expression cannot
be integrated exactly to solve for the motion. However, we will make a few
approximations for this problem to become solvable. Firstly, we will assume
that the particle gyro-orbits around the magnetic field, and that the gyroradius
of the particle is small relative to the length scales ( B

~∇B
) over which the electric

and magnetic fields change. Thus, ~r(t) = ~rgc(t) +~rc(t) where ~rgc is the position
of the guiding center of the particle, and ~rc is the vector from the guiding center
to the particles position. We will see that there are a number of drifts of ~rgc
which add to each other in the limit that the gyroradius is much smaller than
the relevant lengthscales of the magnetic and electric fields.

We define ~rc as mb̂×~̇r
qB , where the magnetic field is evaluated at the position

of the guiding center. Note that this definition makes sense intuitively9. Why?
Well, remember when we had a constant magnetic field, such that the gyroradius
was mv⊥

qB ? Well, notice that our definition is essentially the same - it points in

the direction we want it to (perpendicular to both ~B and ~v) and reduces to our
previous expression in the limit that the magnetic field is constant in space.

Figure 5: A negatively charged particle moving in a magnetic field. The gyro-
radius, ~rc, and guiding center position, ~rgc, are shown.

8Bellan’s book does a wonderfully rigorous, although not particularly physically enlighten-
ing derivation of the drift equations. Spitzer and Chen, on the other hand, give wonderfully
intuitive but less rigorous explanations of these drifts. These notes aim for somewhere in the
middle.

9How we decide to split ~r between the guiding center drift and the cyclotron orbit is
somewhat arbitrary, but this definition makes things easier mathematically.
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Figure 6: Illustration of the ~E× ~B drift for a particle which starts at rest at the
origin. For particles with other initial velocities, the motion will have a different
trajectory but the same net guiding center velocity.

2.1.1 ~E × ~B Drift

The first guiding center drift we will examine is called the E cross B drift.

~vE×B =
~E × ~B

B2
(2.2)

First off, we know that if there is an electric field in the same direction as the
local magnetic field, our particle will accelerate in that direction without feeling
any magnetic force. What about for electric fields perpendicular to the local
magnetic field direction? Well, this gives rise to the ~E × ~B drift which is under
study at the moment. How do we understand this intuitively? Well, imagine
we have a static constant B field in the z-direction, and a static constant E
field in the y-direction. Now imagine at t = 0 putting a charge +q at the origin
with zero initial velocity. What will happen? The electric field will cause the
charge to initially accelerate in the y-direction. As the charge picks up speed in
the y-direction, the magnetic field puts a force in the x-direction on the charge,
causing it to turn in the positive x-direction. As the particle turns, eventually
it’s velocity is entirely in the x-direction. Now, the magnetic force will be in
the negative y-direction, and it turns out that this force will be stronger than
the electric force in the positive y-direction. Thus, the particle starts to curve
downwards, in the negative y-direction. At some point, the particle will come
to rest at y = 0,10 and then the process will repeat itself. However, the particle
will have been displaced in the x-direction, which is also the ~E × ~B direction.
This process is illustrated in figure 6.

For negatively charged particles (i.e. electrons), they will initially acceler-
ate in the opposite direction, but the magnetic force will cause them to curve
towards the right in figure 6, again creating a ~E × ~B drift.

Mathematically, we derive this as follows. For simplicity, we will assume

10It must come to rest at y = 0, by conservation of energy
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Figure 7: Illustration of the motion of a negatively charged particle in a magnetic
field gradient.

that the magnetic field is constant over the gyroorbit of the particle. We have

~rgc(t) = ~r − ~rc = ~r − mb̂× ~̇r
qB

(2.3)

Taking the time-derivative, we have

~̇rgc = ~̇r − mb̂

qB
× ~̈r (2.4)

Inserting the equation of motion into ~̈r, we have

~̇rgc = ~̇r − b̂× ~E

B
− b̂× (~̇r × b̂) (2.5)

Now, we can recognize that the rightmost term is ~̇r⊥, the velocity perpendicular
to the local magnetic field. We also know that ~̇r = ~̇r‖ + ~̇r⊥. Thus, we have

~̇rgc = ~̇r‖ +
~E × ~B

B2
(2.6)

This is the E cross B drift we described earlier.
Notice that if we replaced q ~E with an arbitrary force F , we would get a drift

velocity vF =
~F× ~B
qB2 . For example, this force could be the force of gravity, F =

−mgẑ. In laboratory plasmas, gravity causes positive and negative particles to
drift in opposite directions, until a small electric field arises which cancels this
force. In general, the force of gravity is ignored in laboratory plasmas, as it is
essentially negligible.

2.1.2 Grad-B drift

The grad-B drift is an effect that arises due to changes in the magnetic field
strength perpendicular to the magnetic field direction. The grad-B drift is equal
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Figure 8: Illustration of the motion of a positively charged particle in a magnetic
field gradient.

to

~v~∇B =
v⊥
2

rcb̂× ~∇B
B2

=
mv2
⊥

2

~B × ~∇B
qB3

(2.7)

The grad-B drift arises due to the decreased radius of curvature in regions
of stronger magnetic field. This effect is shown in Figures 8 and 7.

The grad-B drift was derived in class by getting an equation for the particle
drift to 1st order, then plugging in the 0th order motion to that equation. This
is a classic technique from classical mechanics, which I remember using multiple
times in my classical mechanics course.

Suppose we integrate the vector gyroradius ~vc over one orbit. To 0th order
in ε = rc/L, where L is the length scale over which the magnetic field changes,
we have the relation ∫ 2π

0

~rcdθ = b̂×∆~r (2.8)

where ∆~r is the distance the guiding center travels in one rotation along the
magnetic field. You could argue this on geometric grounds, as the sum over
the gyroradius vectors tells us how much the gyrocenter has shifted. However,
this geometric interpretation wasn’t immediately obvious to me, so it’s probably

easier to justify it algebraically. Equation 2.8 is true because ~vc = mb̂×~̇r
qB , and∫

~vcdt = mb̂×∆~r
qB , since b̂ and B are constant over a gyroorbit to 0th order in ε.

But dθ
dt = Ω = qB

m , so dt = mdθ/qB. Changing variables to θ gives equation 2.8.
Now, to 1st order in ε, we allow the possibility that the magnetic field is not

constant over a gyroperiod. Thus, we have B(~rgc + ~rc) ≈ B(~rgc) + (~rc · ~∇)B.
Assuming the magnetic field direction is constant over a gyroperiod, to 1st order
in ε, we get

~vc(~r) =
m

q

b̂× ~̇rc
B(~rgc + ~rc)

≈ m

qB(~rgc)
(b̂× ~̇rc)(1−

(~rc · ~∇)B

B(~rgc)
) (2.9)

Equations 2.8 and 2.9 together give equations for our drift motion to 1st

23



order in ε. Now, we plug in our 0th order solution to the 1st order equations to
solve for the perturbed motion.

Assume we have a positive particle and we set our coordinate system to
point along the local magnetic field, such that ~B = Bz(~r)ẑ. To 0th order,

~rc(θ) = rc(cos θx̂− sin θŷ). Similarly, ~̇rc = v⊥(− sin θx̂− cos θŷ). Integrating ~vc
from 0 to 2π, the first term in equation 2.9 integrates to 0. From our 0th order
cyclotron motion, (~rc · ~∇)B = rc cos θ ∂Bz∂x − rc sin θ ∂Bz∂y . Thus, the second term
in ~rc, integrated over 2π, becomes

mrcv⊥
qB2(~rgc)

b̂×
∫ 2π

0

dθ[(sin θ cos θ
∂Bz
∂x
−sin2 θ

∂Bz
∂y

)x̂+(cos2 θ
∂Bz
∂x
−sin θ cos θ

∂Bz
∂y

)ŷ]

(2.10)
The first and fourth terms integrate to 0, and the second and third terms

integrate to −π ∂Bz∂y x̂+ π ∂Bz∂x ŷ which equals πb̂× ~∇B. Using equations 2.8 and
2.10, we get

∆~r =
πmrcv⊥
qB2(~rgc)

b̂× ~∇B (2.11)

. Now, ~v~∇B = ∆~r/T = ∆~rqB
2πm . This gives

~v~∇B =
rcv⊥
2B

b̂× ~∇B =
mv2
⊥

2

b̂× ~∇B
qB2

(2.12)

This is the promised result.

2.1.3 Curvature Drift

In a magnetic field which changes direction slowly, charged particles (approx-
imately) follow the field lines11. Although this statement is fundamental to
plasma physics, it really is a remarkable fact when you think about it! Why
should particles trajectories curve and twist with a magnetic field?

Frankly, I don’t have a compelling answer for this, and if someone does
please let me know! Here is the best answer I could come up with: Imagine that
in some region in space, the local magnetic field curves. If a charged particle
travels along the field line with components parallel and perpendicular to the
magnetic field, any motion perpendicular to the field will get washed out by
the gyromotion, while any motion parallel to the field will not be affected. Try
a particle might to move perpendicular to the magnetic field line, it can’t get
very far away from the field line it was originally on because any motion in one
of the directions perpendicular to the field will be transferred into motion in
the other perpendicular direction by the Lorentz force. Thus, the vast majority
of the motion by our particle in a curved magnetic field will be in the parallel
direction.

Now, the curvature drift is a drift which arises whenever the magnetic field
lines are not straight. Unlike for the ~E × ~B drift or the grad-B drift, as far

11Technically, their guiding centers follow the field lines to 0th order in ε = rc/L.
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Figure 9: Curved magnetic field lines. Particles drifting along the field lines will
drift upwards or downwards depending on their charge due to the curvature
drift.

as I know textbooks don’t paint a clear physical picture for what the particle
does as it drifts due to the curvature drift. However, there is simple, physically
enlightening way of deriving the curvature drift, based on the derivation of the
curvature drift in Spitzer’s book. Imagine a particle spiraling around field lines
in a curved, constant-strength magnetic field, as in figure 9. In the rotating
frame of the particle, there is some centrifugal pseudo-force in the radial direc-

tion, equal to ~F = m
v2‖
R r̂. Plugging this force into the

~F× ~B
qB2 drift, we get the

drift

~vD =
mv2
‖

qB

r̂

R
× b̂ (2.13)

This is the curvature drift for a magnetic field which has a radius of curvature
R! For a more general magnetic field, the curvature drift is

~vc =
mv2
‖

qB
b̂× (b̂ · ~∇)b̂ (2.14)

So what is the physical picture we should have in mind? I suggest that the
physical picture we should have is that the particles feel a force outwards due
to the centrifugal force in the particles reference frame, and because of that
outwards force they initially move ‘outwards’ slightly (in the same way that the

electric field in the ~E × ~B drift causes particles to initially move slightly in the
direction of the electric field). However, the magnetic field causes particle then
to drift in a direction perpendicular to both B and the ‘outwards’ direction,
with the sign depending on the charge. In figure 9, the particles would first
have some radial velocity outwards, before the magnetic field causes them to
drift upwards in the same way that it does for the ~E × ~E drift.

Let’s derive the curvature drift more formally, as was done in class. Suppose
we split the particles position between the guiding center drift ~rgc and the

gyroradius, ~rc, and we expand B around the gyrocenter, such that ~B(~r) =

25



~B( ~rgc)+(~rc · ~∇) ~B. Also suppose that the ~E = 0. Thus, our equation of motion,
equation 2.1, becomes

~̈rgc + ~̈rc =
q

m
(~̇rgc + ~̇rc)× ( ~B(~rgc) + (~rc · ~∇) ~B(~rgc)) (2.15)

We can, in the limit ε� 1, define the gyrotron motion to be the solution to the
equation

r̈c = ~̇rc × ~B(~rgc) (2.16)

Thus, our equation for the drift of the guiding center becomes

~̈rgc =
q

m
(~̇rgc × ~B(~rgc) + ~̇rc × (~rc · ~∇) ~B(~rgc) + ~̇rgc × (~rc · ~∇) ~B(~rgc)) (2.17)

Now, let us average this equation over one gyroperiod. The third term, because
it is linear in ~rc, will integrate to 0 to first order in ε. Thus we have

〈~̈rgc〉 =
q

m
(〈~̇rgc〉 × ~B(~rgc) + 〈~̇rc × (~rc · ~∇) ~B(~rgc)〉) (2.18)

The rightmost term will end up contributing to the ~∇B drift. As we have
calculated this drift, we will not do so again. If we were to calculate this term,

we could show it equals −µ
~∇B
m where µ =

mv2⊥
2B .

〈~̈rgc〉 =
q

m
(〈~̇rgc〉 × ~B(~rgc)) +

−µ~∇B
m

(2.19)

The first term on the right will end up contributing to the curvature drift.
Let us calculate that now. Crossing equation 2.19 with b̂, we have

〈~̈rgc〉 × b̂ =
µb̂× ~∇B

m
+
qB

m
(〈~̇rgc〉 × b̂)× b̂ (2.20)

Now, this last term equals − qBm 〈~̇rgc,⊥〉. This result is actually easy to see
- use the geometric interpretation of the cross product to convince yourself of
this. Solving for 〈~̇rgc,⊥〉, we have

〈~̇rgc,⊥〉 =
µb̂× ~∇B
qB

− m〈~̈rgc〉 × b̂
qB

(2.21)

Hey look, our first term is the ~∇B drift, as promised! The second term
simply requires solving for ~̈rgc. Well, to first-order in ε = ~rc/L, we have

〈~̈rgc〉 =
d

dt
~̇rgc =

d

dt
(v‖b̂+ ~vdrift) +O(ε2) =

dv‖

dt
b̂+ v‖

db̂

dt
+O(ε2) (2.22)

Note that since there is no 0th order electric field, the drift velocity is 1st
order in ε. Thus, it’s time derivative will be second order in ε, so it can be
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ignored. We can also conclude that
dv‖
dt = 0, averaged over a cyclotron period,

is 0, because there is no 0th order electric field. So 〈~̈rgc〉 = v‖
db̂
dt +O(ε2).

Now, db̂
dt = v‖(b̂ · ~∇)b̂. Why is this true? Well, db̂

dt = ∂b̂
∂s

∂s
∂t = v‖

∂b̂
∂s , where

s is the distance along a magnetic field line. Now, ∂b̂
∂s = (b̂ · ~∇)b̂. This is not

proved directly in Bellan or in the class notes, but it makes sense geometrically.
We could also convince ourselves of this by looking at a point in space where

the magnetic field is instantaneously in the z-direction. Then, ∂b̂
∂s = ∂b̂

∂z , and

(b̂ · ~∇)b̂ = ( ∂∂z )b̂. Thus, the two expressions are equivalent, and we have our

result db̂
dt = v‖(b̂ · ~∇)b̂. Thus to 1st order in ε

〈~̈rgc〉 = v2
‖(b̂ · ~∇)b̂ (2.23)

Plugging this into equation 2.21,12 we get

~̇rgc,⊥ =
µb̂× ~∇B
qB

+
mv2
‖

qB
b̂× (b̂ · ~∇)b̂ (2.24)

The second term is the curvature drift, as promised! Why is it called the
curvature drift? Well, imagine we had a magnetic field which at some point
in space, was in the φ̂ direction with a radius of curvature R. Then (b̂ · ~∇)b̂ =

( 1
R

d
dφ )φ̂ = −r̂/R. Thus, the curvature drift here is

mv2‖
qBR r̂×b̂. Thus, the curvature

drift causes a drift in curved magnetic fields, perpendicular to both b̂ and the
vector to the center of curvature.

2.1.4 Polarization Drift

The polarization drift is a drift that arises due to a time-dependent vdrift.
However, if our time-variation in vdrift is mostly due to a time-dependent v~E× ~B ,
then we get a polarization drift due to a time-dependent electric field. This is

vp =
d ~E

dt

m

qB2
(2.25)

Chen explains the polarization drift physically. He writes ”The physical rea-
son for the polarization current is simple. Consider an ion at rest in a magnetic
field. If a field E is suddenly applied, the first thing the ion does is to move in
the direction of E. Only after picking up a velocity v does the ion feel a Lorentz
force ev × B and begin to move downward. If E is now kept constant, there is
no further vp drift but only a vE drift. However, if E is reversed, there is again
a momentary drift, this time to the left. Thus vp is a startup drift due to inertia
and occurs only in the first half-cycle of each gyration during which E changes.
Consequently, vp goes to zero with ω/ωc.” This is a reasonable explanation, but

12Here we remove the brackets because it is understood that this velocity is a drift velocity,
which is by definition a time-averaged quantity.
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there is a curious 180 degree phase difference here. Question: Why is there a
phase difference?

In class, this was derived as follows: Imagine we have a time-dependent
electric field, and a static, constant magnetic field. Our equation of motion for
a single particle, equation 2.1, becomes

~̈rgc + ~̈rc =
q

m
( ~E(~r, t) + (~̇rgc + ~̇rc)× ~B(~r)) (2.26)

Keeping only the terms involving the guiding center motion, and ignoring
any 1st order spatial variation in ~E relative to the 0th order electric field, we
have

~̈rgc =
q

m
( ~E(~rgc, t) + ~̇rgc × ~B(~rgc)) (2.27)

Crossing this with b̂ gives, following the same steps as in the derivation of the
curvature drift,

~̇rgc,⊥ =
~E × ~B

B2
− m

qB
~̈rgc × b̂ (2.28)

This equation is only true for an electric field which doesn’t vary much over

the course of a gyroorbit. Mathematically, this is equivalent to 1
EΩ

∂ ~E
∂t � 1,

rc
E
~∇E � 1.
Now, let’s solve this equation iteratively. To 0th order,

~̇rgc = vgc,‖b̂+
~E × ~B

B2
(2.29)

Taking the time derivative of this 0th order solution, because our magnetic field

is constant and static, we get ~̈rgc =
dvgc,‖
dt b̂+

d~E
dt × ~B
B2 . Plugging this into equation

2.28 gives

~̇rgc,⊥ =
~E × ~B

B2
+

m

qB2

d ~E

dt
(2.30)

The second term is the polarization drift. Note that if we had not assumed the
magnetic field was constant, the curvature and ~∇B drift terms would show up
in this equation as well.

2.1.5 Drift Currents

So far, we’ve derived four main classes of drifts of particles in magnetic fields:

• ~vE×B =
~E× ~B
B2

• ~v~∇B =
mv2⊥

2
b̂×~∇B
qB2

• ~vc =
mv2‖
qB b̂× (b̂ · ~∇)b̂

• ~vp = m
qB2

d~E
dt
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With the exception of the ~E× ~B drift, each of these drifts are linear in q. Thus,
particles of opposite charge will go in different directions due to each of these
three drifts. When particles of opposite charge don’t travel at the same velocity,
we have a current! So these three drifts contribute to currents, ~J =

∑
σ nσqσ~vσ.

It turns out, as we will see in chapter 4, that pressure for the fluid description
of a plasma is a tensor defined as P~

~

=
∑
σmσ

∫
~v′~v′fσd

3~v where ~v′ is defined
as ~v − ~u where ~u is the mean fluid velocity and f is the distribution function
in the Vlasov treatment, to be introduced in chapter 3. Now, if we have a
Maxwellian distribution, such that we have a well-defined temperature in the
direction parallel and perpendicular to the local magnetic field, our pressure
tensor becomes diagonal

P~

~

=

P⊥ 0 0
0 P⊥ 0
0 0 P‖

 (2.31)

where P‖ =
∑
σ nσκTσ,‖ =

∑
σ nσmσ〈v2

σ,‖〉 and P⊥ =
∑
σ nσκTσ,⊥ =

∑
σ

1
2nσmσ〈v2

σ,⊥〉
where the factor of 1/2 comes from the fact that there are two perpendicular
directions.

So we have

• ~JE×B = 0

• ~J~∇B =
∑
σ nσqσ

mσ〈v2⊥,σ〉
2qσ

b̂×~∇B
qB2 =

~B×~∇B
B3

∑
σ

1
2nσmσ〈v2

⊥,σ〉 =
~B×~∇B
B3 P⊥

• ~Jc =
∑
σ nσqσ

mσv
2
‖

qσB
b̂× (b̂ · ~∇)b̂ = b̂×(b̂·~∇)b̂

B P‖

• ~Jp =
∑
σ nσqσ

mσ
qσB2

d~E
dt = ( ρ

B2 )d
~E
dt

There is another current which arises in a plasma due to the effects of
multiple particles, and therefore which we can’t account for just considering
single-particle motion. This is the magnetization current13, ~∇ × ~M , where
~M = −(P⊥b̂B ). Bellan has a nice physical explanation of the magnetization

current.
Why do we care about the drift currents? We can show that ~Jtotal × ~B

gives us, after a bunch of algebra, the MHD equations. Bellan goes through
this algebra, and I won’t. It’s a good exercise, but too long. Thus, the single
particle drift picture (accounting for magnetization current) contains enough
information to get us to the MHD equations.

2.2 Adiabatic Invariants

There are lots of invariants we know of. Energy and momentum are the simplest
examples - in any closed system, the total energy and total momentum are

13This magnetization current has the same physical origin as the magnetization current in
magnetized materials in electromagnetics. Here, the current which gives rise to a maagnetic
moment is the Larmor orbits of particles around a magnetic field, instead of the intrinsic
magnetic moment of molecules.
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constant. It turns out that for collisionless plasma particles, there are a couple
adiabatic invariants which are enormously useful in understanding the motion of
plasma particles in complicated electromagnetic fields. Before we discuss these
adiabatic invariants, we must ask ourselves the obvious question: What even is
an adiabatic invariant?

Suppose we have a system with some canonical14 coordinate Q and it’s
canonical momentum P , and a Hamiltonian H for that system such that ∂H

∂P =

Q̇, and −∂H∂Q = Ṗ . This is what we call a Hamiltonian system - a dynamical

system governed by Hamilton’s equations.15 The most obvious example of a
Hamiltonian system relevant to plasma physics is that of a charged particle in
some electric and magnetic fields.

Now, suppose we have some slowly changing parameter, λ(t), in the Hamil-
tonian, so that H(Q,P, t, λ(t)). Also suppose that the canonical coordinates of
the system undergo some nearly periodic motion. Then, the integral

I =

∮
PdQ (2.32)

is constant over any one period of motion.16 This integral is the general
form of any adiabatic invariant. This explanation, while brief and to the point,
overlooks many of the details (which are certainly important!). Let’s try to
understand these details, before we derive this result.

What does it mean for a system to be nearly periodic? We don’t have a
good mathematical definition of this. Intuitively, however, we have some idea of
what this might mean. As an example, consider the simple pendulum with no
energy losses. It’s frequency is

√
g/l, and it certainly undergoes periodic motion.

Now imagine we slowly change the length of the pendulum, l(t). Although the
canonical P −Q coordinates of the pendulum will not be exactly the same after
each oscillation, the pendulum will nearly return to it’s starting point after each
oscillation. If the length of the pendulum changes slowly, it’s period is

√
g/l(t)

Thus, we say that the motion is nearly periodic.
When we say that λ(t) changes slowly, how slow is slowly? Well, the deriva-

tion we will do depends on λ(t) being differentiable from one period to the next.
So the result that the integral in equation 2.32 is constant will be exact in the
limit that the change in λ(t) over any one period is infinitesimal. In the more
plausible limit that T

λ
dλ
dt � 1, where T is the period of the system’s periodic

motion, then the change in I at any time never becomes greater than some

small value, O(ε). Mathematically, this is I(t)−I(0)
I(0) < O(ε) for all t where ε� 1.

14Don’t worry too much about this word ’Canonical’. It basically just means a set of
coordinates which we can use the Lagrangian or Hamiltonian formalism with.

15Really, I should consider the case of multiple coordinates, such that Q and P are vectors.
However, I’m not sure how to prove adiabatic invariance in this case, since defining the
beginning and end of the nearly periodic motion is trickier. Thus, I’ve kept them as non-
vectors.

16This was not proven in class, unless I missed it in my notes, which is possible. It is proven
in Hong’s supplemental notes. I find Bellan’s derivation easier to understand, thus these notes
will prove this result using his method.
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Figure 10: The change in time of an adiabatic invariant, compared with an
absolute invariant (such as energy) and an asymptotic invariant.

Figure 11: Nearly periodic motion in the P −Q plane.

Hong has a nice visualization of this in Figure 10.
If we are integrating over a period, how do we define the beginning and end

of a period if the endpoint is not the same the starting point? Well, in the
P − Q plane the motion will have some periodic behavior like that in figure
11. We integrate from one turning point Qtp to the next, where Qtp is defined

as the location during the cycle where dQ
dt = 0 and Q has it’s maximum value

during the period. In addition to being physically reasonable, this definition is
mathematically convenient, as we will see now. Let’s derive the invariance of I.
We want to show that dI

dt = 0 - this will require us to be very careful with our
partial derivatives. So pay attention.

dI

dt
=

d

dt

∮ Qtp(t+τ)

Qtp(t)

PdQ (2.33)
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Now, since E(t) = H(P,Q, λ(t), t), we can in principle invert this to write
P (E(t), Q, λ(t)). So

dI

dt
=

∮ Qtp(t+τ)

Qtp(t)

P (E(t), Q, λ(t))dQ (2.34)

Using the chain rule, we have

dI

dt
=

∮ Qtp(t+τ)

Qtp(t)

[(
∂P

∂Q

)
E,λ

dQ

dt
+

(
∂P

∂t

)
Q

]
dQ (2.35)

In the first term, we can replace dQ
dt (∂P∂Q )dQ with d

dQ (P dQ
dt )dQ, as d

dQ
dQ
dt = 0

because we can exchange the order of integration to get d
dt
dQ
dQ = 0. We can

now integrate by parts, and this term becomes [P dQ
dt ]

Qtp(t+τ)

Qtp(t) , which goes to 0

because dQ
dt = 0 at the turning points17. Equation 2.35 becomes

Thus,
dI

dt
=

∫ (
∂P

∂t

)
Q

dQ (2.36)

Now, let’s attack this remaining term.(
∂P

∂t

)
Q

=

(
∂P

∂λ

)
Q,E

dλ

dt
+

(
∂P

∂E

)
Q,λ

dE

dt
(2.37)

Now, we can use some tricks to simplify these two terms. Since E(t) =
H(P, λ(t), t), then we can say that dH

dE = 1 = (∂H∂P )Q,λ(∂P∂E )Q,λ, so ∂P
∂E = (∂H∂P )−1.

Since E is a function only of time, (dEdλ )Q = 0 = (∂H∂λ )Q,P + (∂H∂P )Q,λ(∂P∂λ )Q,E .

Thus, (∂P∂λ )Q,E = −(∂H∂λ )Q,P /(
∂H
∂P )Q,λ. Plugging these results into equation 2.37

and then into equation 2.36, we get

dI

dt
=

∫
1

(∂H∂P )Q,λ

[
dE

dt
− dλ

dt

(
∂H

∂λ

)
Q,P

]
(2.38)

Hey, this looks like something nice! Let’s solve for dE
dt , using E(t) = H(P,Q, λ(t))

and Hamilton’s equations ∂H
∂P = dQ

dt and ∂H
∂Q = −dPdt .

dE

dt
=
∂H

∂λ
+
∂H

∂Q

dQ

dt
+
∂H

∂P

dP

dt
=
∂H

∂λ

dλ

dt
(2.39)

The second and third teams cancel from Hamilton’s equations. Plugging
this into equation 2.38 gives dI

dt = 0. This completes our proof of the adiabatic
invariance of I.

A lot just happened - it might be helpful to recap. Our Hamiltonian depends

17This is where the derivation breaks down when we treat P and Q as vectors, rather than
in one dimension, because we can’t expect that all the Q’s will have their derivatives equal to
0 at the same time. Any ideas on how to solve this?
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on some slowly varying parameter, λ(t). Some particle executes nearly peri-
odic motion in the P − Q plane. We’ve shown, by carefully keeping track of
partial derivatives, that the integral I =

∫
PdQ is invariant, as long as λ(t) is

differentiable from one period to the next.
Question: Where does the differentiability of λ show up in the proof? I can’t

find it.

2.2.1 First Adiabatic Invariant µ

The quantity µ,

µ =
mv2
⊥

2B
=
KE⊥
B

(2.40)

is an adiabatic invariant for single plasma particles. This is the quantity that is
adiabatically conserved due to the periodic motion of particles gyrating around
magnetic field lines. TODO: add intuition - chen has a nice derivation for a
particle in converging field lines I think.

The proof of µ-conservation in class was fairly non-rigorous, but I will re-
produce it here. TODO: Perhaps add in multiple derivations of µ-conservation?
Imagine we have a particle in a magnetic field, ~B(~r, t) which changes slowly in
space and time. If this particle does not collide with other particles, then we
have conservation of energy.

0 =
d

dt
(mv2

⊥/2 +mv2
‖/2) =

d

dt
(µB +

1

2
mv2
‖) (2.41)

Expanding this, we have

dµ

dt
B + µ

dB

dt
+mv‖

dv‖

dt
+O(ε2) = 0 (2.42)

As we argued for in the curvature drift derivation, dB
dt = v‖(b̂ · ~∇)B. Now, we

can take the dot product of b̂ with equation 2.19 to get

b̂ · d
dt

(~̇rgc) =
dv‖

dt
=
−µb̂ · ~∇B

m
(2.43)

Plugging these results into equation 2.42, we get

0 =
dµ

dt
B + µv‖b̂ · ~∇B −mv‖

µb̂ · ~∇B
m

=
dµ

dt
B (2.44)

Thus, µ does not change in time for a single particle moving in a slowly varying
magnetic field. It turns out that µ is also conserved for particles in slowly
varying electromagnetic fields.

2.2.2 Second Adiabatic Invariant J

Imagine we have a particle in arbitrary electromagnetic fields which vary slowly
in time18 whose guiding center undergoes some approximately periodic motion.

18The concept of ”slowly” will be defined in a moment.
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Figure 12: Illustration of the magnetic mirror (top) and the magnetic field
magnitude as a function of z (bottom). The magnetic field is cylindrically
symmetric.

This periodic motion is most often a particle bouncing back and forth between
two regions. Here, we define ”slowly” to mean that the timescale over which the
electromagnetic fields change is much longer than the particle’s bounce period,
τbounce
B

d~B
dt � 1. In such a circumstance, then the quantity J is constant in time

for each particle.

J =

∮
v‖dt (2.45)

This was not derived in class. However, the conservation of this quantity should
not be surprising, as it fits the bill in terms of our general adiabatic invariant
discussed earlier.

2.3 Mirror Machine

The classic illustration of single-particle motion is the magnetic mirror. The
most basic magnetic mirror consists of two cylindrically symmetric current-
carrying coils which set up a cylindrically symmetric magnetic field. This is
shown in Figure 12.

The crucial thing to realize when it comes to magnetic mirrors, is the follow-
ing. Solving for the motion of particles in the mirror machine relies on invariants
of motion of collisionless single particles. For the classic mirror machine, the

invariants are energy E = 1
2mv

2
⊥ + 1

2mv
2
‖ + qφ and µ =

mv2⊥
2B . The second adi-

abatic invariant J is sometimes used as well. Specifically, conservation of J is
used when the fields in the magnetic mirror change slowly in time relative to
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Figure 13: Plot of equation 2.48 showing the particles which are trapped and
which aren’t. As we can see, articles with larger perpendicular velocities are
trapped.

the bounce time between the ends of the mirror.
The strategy is to equate the invariants E and µ at the midplane (z = 0) of

the magnetic mirror to the motion at the maximum z, where v2
‖ = 0. If φ = 0,

and B is minimum at the midplane, then from

E =
(1

2
mv2
⊥
)
z=0

+
(1

2
mv2
‖
)
z=0

=
(1

2
mv2
⊥
)
B=Bmax

(2.46)

and

µ =
1

Bmin

(1

2
mv2
⊥
)
z=0

=
1

Bmax

(1

2
mv2
⊥
)
B=Bmax

(2.47)

we can easily (I promise) solve (try it!) for the condition on the trapped particles,(
v2
⊥
v2
‖

)
z=0

≥ 1

R− 1
(2.48)

where R = Bmax
Bmin

. Make sure you know how to do this calculation, as you will be
asked to do it multiple times over this course, and you will have to do slightly
more complex versions on the homework. They might, for example, introduce
an electric field, or prescribe a magnetic field shape that changes in time, etc
etc.

Our intuition with the equation for the condition on trapped particles, equa-
tion 2.48 is relatively simple: particles with high perpendicular velocities are
trapped in the mirror, while particles with high parallel velocities are lost from
the mirror. The physical picture to have in your head is the following: as a
particle goes into a region with higher magnetic field, the parallel velocity it
has gets converted into larger perpendicular velocity, increasing the gyroradius.
If the particle has enough parallel velocity, then the perpendicular velocity will
increase, but not enough to bring the parallel velocity to zero. Note also: if the
mirror ratio R = 1, then the ratio of perpendicular velocity to parallel velocity
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Figure 14: An illustration of the geometry considered for the isorotation theo-
rem. Here, Bφ = 0, while Br and Bz are cylindrically symmetric. A and B are
two magnetic surfaces, and a and b are two points on these surfaces separated
by a vector ~δab with magnitude δab. a and b are chosen such that ~δab lies in the
r-z plane and is perpendicular to the local magnetic field.

required for trapping goes to infinity, and we don’t have any trapped particles.
Which makes sense, because we don’t have any magnetic field.

2.4 Isorotation Theorem

The iso-rotation theorem is not usually seen in introductory textbooks, but Nat
covers it because it is a relatively simple application of single-particle motion
which has a simple result.

The statement of the isorotation theorem is as follows: in a cylindrically
symmetric region of magnetic fields where Bφ = 0, where ~E × ~B motion domi-
nates the perpendicular particle motion and magnetic surfaces are equipotential
surfaces, then for all the particles on a given magnetic surface, the rotation rate
is constant.

There is a corrolary of the isorotation theorem which is proved in class
as well. The corrolary says that under the same set of assumptions, then as
particles drift from one surface to another, they gain in potential energy equal
to exactly twice the energy lost in azimuthal drift energy, so as to climb up the
potential. I found this to be a rather confusing statement, so we’ll unpack this
corrolary more as we go on.

Why would we expect magnetic surfaces to be equipotential surfaces? Here is
Nat’s answer: It comes down to the ability of particles to stream along field lines,
while their motion is confined perpendicular to the field lines. If E‖ 6= 0, then
the ions and electrons will quickly move in opposite directions to get rid of that
E‖. So we would more or less expect E‖ to be 0, so ~E would be perpendicular
to magnetic field lines.

The importance and application of the isorotation theorem is unclear. I
suspect Nat had been thinking about it for his ‘electric tokamak’ idea, which a
couple grad students have worked on recently, and he thought it would be fun
to discuss in the course. If we have a ‘straight’ electric stellerator (where ∂

∂z is
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not necessarily 0) in a cylindrical geometry, and the poloidal magnetic field is 0,
then the poloidal rotation rate is constant if the particles rotate primarily due
to ~E × ~B rotation.

2.4.1 Magnetic Surfaces

Before we prove the isorotation theorem, we should discuss magnetic surfaces,
since they are introduced in class along with the isorotation theorem and are
referred to in the theorem. The most general definition of a magnetic surface
is a surface in space where all the magnetic field lines on the surface
stay on the surface.

It is also important to note that magnetic field lines are not in any way
guarenteed to form magnetic surfaces. The most general behavior of magnetic
field lines is stochastic (i.e. random) behavior, meaning a given magnetic field
line, if followed forever, will fill a volume in space.

We should also note that magnetic field lines do not necessarily close in
on themselves, even in the special case where we have magnetic surfaces. A
magnetic field line on a magnetic surface might go around the surface forever,
never closing on itself. In principle, magnetic field lines can close on themselves
after some finite distance.

When would we expect to see magnetic surfaces in the first place? Good
question! Magnetic surfaces are, in ideal MHD, predicted to arise in equilibrium
in magnetized plasmas. Starting with the MHD equilibrium equation ~J × ~B =
~∇P (which does a pretty decent job when studying overall plasma stability),

we can dot this equation with ~B to get that ~B · ~∇P = 0. Let’s think about this
equation for a second. The change in P is always perpendicular to ~B, which
implies that as we follow ~B, our field line will have constant P . If the gradient
of P does not vanish anywhere, this implies that ~B field lines lie on surfaces
of constant P . We can perform the same procedure with ~J instead of ~B, to
conclude that the vector field ~J lies on surfaces of constant P as well.

Now, here is a fun result, which is covered in GPP2 but I thought I’d include
in these notes since it’s relatively straightforward mathematically but concep-
tually fun. A theorem from topology says that the simplest topological form
for a non-vanishing vector field which lies on a smooth surface is a torus. I’m
not exactly sure what the word ‘simplest’ means in this context, but for our
purposes, that isn’t what is important. What is important is that if we have an
MHD equilibrium where ~J × ~B = ~∇P , then we have our ~B field on a surface
of constant P , meaning we have a magnetic surface. And if we have magnetic
surfaces, this theorem says the simplest surface we can have is a toroidal one!
In other words, if we want to create a plasma in an MHD equilibrium, we’re
basically stuck using a torus.

In cylindrically symmetric systems (where φ is ignorable), a magnetic surface
is defined as the surface defined by constant rAφ. This comes from the result

that ~B · ~∇(rAφ) = 0, implying (using the same logic we used earlier with P ) that
~B lies on a surface of constant rAφ. This result is easily proved, as shown now.
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We can arbitrarily write ~A for cylindrically symmetric B as ~A = Ar(r, z)r̂ +

Aφ(r, z)φ̂+Az(r, z)ẑ. Thus, we have for ~B,

~B = ~∇× ~A =
(∂Ar
∂z
− ∂Az

∂r

)
φ̂− ∂Aφ

∂z
r̂ +

1

r

∂(rAφ)

∂r
ẑ (2.49)

Thus,

~B · ~∇(rAφ(r, z)) = −∂Aφ
∂z

∂

∂r
(rAφ) +

1

r

∂(rAφ)

∂r

∂(rAφ)

∂z
= 0 (2.50)

Note that the φ-component of ~B doesn’t show up in the dot product because
of cylindrical symmetry. This proves that for cylindrically symmetric systems,
surfaces of constant rAφ are magnetic surfaces.

2.4.2 Proof of Iso-rotation Theorem

Remember our assumptions here: we’ve assumed that we have a cylindrically
symmetric region of electromagnetic fields where Bφ = 0, that ~E × ~B motion
dominates the drift motion and that we have magnetic surfaces which are also
equipotential surfaces. We’ll first prove the isorotation theorem, before proving
it’s corrolary.

The isorotation theorem says that all particles on a given magnetic surface
isorotate, i.e. they all rotate at the same frequency. The rotation rate Ω =

vφ
r , so

we’ll want to find vφ. We have ~B = ~∇× ~A, and we can write ~A as ~A = Aφ(r, z)φ̂,
so that Bφ = 0. Because we assume that the drift velocity is dominated by the
~E × ~B velocity, we have vφ = E

B , where these are just the magnitudes since

we assume our flux surface is also an equipotential surface and hence ~E is
perpendicular to ~B. This is the point in the derivation where we require that
Bφ = 0, for if Bφ were not 0, then a particle’s parallel velocity would give it
some component in the φ-direction, so vφ would not be E

B .
Now imagine, as in figure 14, that there are two nearby magnetic surfaces

A and B and two points a and b on these surfaces separated by a vector ~δab.
Suppose that the distance δab is small. Here, a and b are chosen such that the
vector between the two points lies in the r-z plane and is perpendicular to the
local B-field. This choice will make our integration easier in a moment. In
this case, E = −∆Vba

δ where ∆Vba is the difference in electric potential between

points b and a. Now imagine taking the vector ~δab and rotating it around the
z-axis to form a surface which resembles a bent annulus (i.e. a hollow disk). If

we integrate ~B · d~S over this surface, we get∫
S

~B · d~S =

∮
~A · d~l = ∆

[
2πAφr

]
≈ B2πrδ (2.51)

Note that this is the magnitude of ~B, because we chose points a and b such that
the vector ~δab points perpendicular to B, meaning the area integral picks out
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the magnitude of ~B. Solving for B, we have =
∆[2πAφr]

2πrδ . Solving for Ω, we get

Ω =
vφ
r

=
E

Br
=

−∆Vba
δ

r
∆[2πAφr]

2πrδ

=
−∆Vba
∆[Aφr]

(2.52)

Since magnetic surfaces are, for cylindrically symmetric systems, constant-
(Aφr) surfaces, then the denominator is going to be the same regardless of
which points on A and B we choose. Since we are assuming that A and B are
equipotential surfaces, then the numerator is going to be the same regardless of
which points on A and B we choose. Thus, Ω will be approximately the same
for all particles between surfaces A and B, assuming of course that the distance
between A and B is small.

Note that the isorotation theorem does not say that the rotation rate is the
same for all of the particles everywhere in the system. The electric field might
be very strong on one magnetic surface, but very weak on another magnetic
surface. In this case, the rotation rate Ω will not necessarily be the same for
both surfaces.

TODO: Corrolary doesn’t make sense
Now it is time to prove the corollary of the isorotation theorem. Remember,

the statement of the corrolary is the following: as particles drift from one surface
to another, they gain in potential energy equal to exactly twice the energy lost
in azimuthal drift energy, so as to climb up the potential.

We start our proof with conservation of rotational angular momentum, pφ =
mrvφ+qrAφ. This is a result of Lagrange’s equations in cylindrically symmetric
systems. Since ∆pφ = 0 as a particle drifts between surfaces A and B as in figure
14, we have that m∆(rvφ) = −q∆(rAφ). Now, from the constancy of Ω between
any two magnetic surfaces, we get that r =

vφ
Ω , so between surfaces A and B

we find that

1

Ω
(mv2

φ,B −mv2
φ,A) = −q∆(rAφ) = −q(VA − VB

Ω
) (2.53)

Wφ,A −Wφ,B =
q

2
(VA − VB) (2.54)

I didn’t make a fuss over the minus signs while going through this derivation,
but it turns out they are important in deriving the corrolary and you need to
keep track of them! Here, I picked a convention for positive angular velocity Ω,
and made sure all my signs were consistent with that.

If q is positive, then the energy lost in going from surface A to surface B is
half the energy gained in electric potential energy in changing surfaces. If q is
negative, then huh?

Question: What is going on with charge here? The first theorem has no
reference to charge, while for the second theorem the change in the φ-velocity
depends on the charge.
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3 Kinetic Theory

It is only the plasma itself which
does not understand how
beautiful the theories are and
absolutely refuses to obey them.

Hannes Alfvén

Let’s forget about plasma physics for a second, and think about the field
of classical fluid mechanics. Fluids, like all states of matter, are made up of
individual molecules or atoms. The most fundamental assumption made in
fluid mechanics19 is called the continuum assumption. Under this assumption,
we treat all quantities as continuous and well-defined at each point in space.
Strictly speaking, this requires for each quantity that we set the value of that
quantity at each point in space equal to the average value of that quantity over
a volume large enough to contain many molecules but much smaller than the
relevant macroscopic lengths of the fluid.

Wikipedia phrases this similarly: “The continuum assumption is an idealiza-
tion of continuum mechanics under which fluids can be treated as continuous,
even though, on a microscopic scale, they are composed of molecules. Under
the continuum assumption, macroscopic (observed/measurable) properties such
as density, pressure, temperature, and bulk velocity are taken to be well-defined
at “infinitesimal” volume elements – small in comparison to the characteristic
length scale of the system, but large in comparison to molecular length scale.”
Also, the Navier-Stokes equations for fluids “are based on the assumption that
the fluid, at the scale of interest, is a continuum, in other words is not made up
of discrete particles but rather a continuous substance.” Thus, in an ideal fluid,
there is a well-defined, smooth mass distribution at each point in space, ρ(~r, t),
as well as a well-defined, smooth field which represents the mean velocity, ~v(~r, t).

However, there are cases in classical fluid mechanics where the continuum
assumption is not valid. Wikipedia has this to say: “Those problems for which
the continuum hypothesis fails, can be solved using statistical mechanics. To
determine whether or not the continuum hypothesis applies, the Knudsen num-
ber, defined as the ratio of the molecular mean free path to the characteristic
length scale, is evaluated. Problems with Knudsen numbers below 0.1 can be
evaluated using the continuum hypothesis, but (sic) molecular approach (statis-
tical mechanics) can be applied for all ranges of Knudsen numbers.” Well, as we
showed in section 1, in a plasma the mean free path is significantly longer than
the Debye length, which is the scale length over which a plasma is electrically
neutral. In fact, for a fusion-relevant plasma with number density n ≈ 1020/m3

and temperature 1KeV, we have a mean free path of roughly 3km, much longer
than the relevant scale lengths. Thus, our Knudsen number is very large in
most plasmas, which motivates us to abondon the simple approach used in fluid

19Really, this is the unifying assumption for all of continuum mechanics.
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mechanics.20 Instead, we will use an approach called kinetic theory.
Here is a preview of where we are going with kinetic theory. We will examine

the time-evolution of particles in 6-D phase space21, describing the evolution of
particles with a function called N . We will write down an equation for the time-
evolution of N , called the Klimontovich equation. Combined with the Lorentz
force law and Maxwell’s equations, this set of equations is exactly equivalent to
a bunch of charged particles interacting through electromagnetic forces.

At this point, we go from an approach which tracks each individual particle
to a smooth distribution function which tracks the density of particles in phase
space. We replace N , which is a non-continuous function of delta functions in
phase space (see figure 15), with a smooth, continuous function called f . To
get from N to f , we average N over the ensemble corresponding to N . An
ensemble is defined as all of the possible microstates corresponding to a given
macrostate. Kinetic theory involves the study of f . The equation describing
the evolution of f is called the Vlasov equation. What separates the Vlasov
approach from those used for simple classical fluids is that we are accounting
for the distribution of velocities. By accounting for the distribution of velocities,
we are still accounting for the fact that plasmas are made of discrete particles.
We are not, however, removing the continuum assumption.

In a classical fluid the velocity distribution function is replaced by 3 com-
ponents representing the mean velocity (the mean velocity vector ~u(~r, t)) of
the velocity distribution at each point in space and time and nine components
of the pressure tensor (actually six, since it’s an antisymmetric tensor), which
are found by averaging over the microscopic velocity distribution. By averag-
ing over the velocity distribution, we remove potentially important information
about the plasma (by going from infinity degrees of freedom regarding the ve-
locity distribution to 3 + 6 degrees of freedom), and limit ourselves to the range
of behaviors we can study.

The Vlasov equation is

∂f

∂t
+ ~v · ~∇xf + ~a · ~∇vf = C(f) (3.1)

where C(f) is the collision operator, representing the effects of collisions between
particles. First, we will ensemble-average the Klimontovich equation to get the
Vlasov equation. Next, we will examine some of the properties of the Vlasov
equation and examples of the collision operator.

20Actually, the picture is more complex than this. In some plasmas, a fluid approximation
is justified. When a fluid approximation is justified will be explained in chapter 4.

21Phase space simply means that each particle is labeled by it’s 3 spatial components and
3 velocity components, if you remember your undergraduate classical mechanics course.
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Figure 15: Visualization of N . Each delta function represents the trajectory of
a particle in phase space.

3.1 Klimantovich Equation

Suppose we have N0 particles in some region of space. Suppose N(~x,~v, t) de-
scribes the evolution of those N0 particles in phase space. Thus,

N(~x,~v, t) =

N0∑
i=1

δ(3)(~x− ~xi(t))δ(3)(~v − ~vi(t)) (3.2)

where ~xi(t) and ~vi(t) represent the position and velocity of the ith particle.
Note that the units of N are 1

L3v3 .
Taking the partial derivative with respect to time of N and using the chain

rule we get

∂N(~x,~v, t)

∂t
=

N0∑
i=1

∂~xi
∂t
· ∂N
∂~xi

+
∂~vi
∂t
· ∂N
∂~vi

(3.3)

Using our definition for N (equation 3.2), we get

∂N

∂~xi
=
∂δ(3)(~x− ~xi(t))

∂~xi
δ(3)(~v − ~vi(t)) = −∂δ

(3)(~x− ~xi(t))
∂~x

δ(3)(~v − ~vi(t)) (3.4)

Similarly,
∂N

∂~vi
= −δ(3)(~x− ~xi(t))

∂δ(3)(~v − ~vi(t))
∂~v

(3.5)

In equation 3.3, we can replace ∂~xi
∂t with ~vi, and ∂~vi

∂t with ~ai. Plugging in
3.4 and 3.5 to 3.3, we get

∂N

∂t
= −

N0∑
i=1

~vi ·
∂δ(3)(~x− ~xi(t))

∂~x
δ(3)(~v−~vi(t))+~ai ·δ(3)(~x−~xi(t))

∂δ(3)(~v − ~vi(t))
∂~v

(3.6)
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We pull the gradients out of the equation first. This is a legal move, because
~vi and ~ai are coordinates representing the position of a single particle in phase
space, and thus commute just fine with the derivatives in equation 3.6.

After we do this, we can simplify the ~vi and ~ai. Because of the delta func-
tions, ~vi(t) will become ~v and ~ai(t) will become ~a. Making these replacements
we can next pull the dot products out of the equation and replace the delta
functions with N .22 Moving everything to the left hand side, we have the
Klimontovich equation

∂N

∂t
+ ~∇x · (~vN) + ~∇v · (~aN) = 0 (3.7)

Physically, this equation actually has a fairly simple meaning. It comes from
conservation of particles, in the same way that the continuity equation comes
from the conservation of charge. Geometrically, the Klimontovich equation is
equivalent to the idea that the number of particles leaving a region in phase
space is the number of particles flowing across the border of that region in
phase space. Figure 16 shows one such region in phase space. Mathematically,
this is

∂

∂t

[ ∫
V

N(~x,~v, t)d3~xd3~v

]
= −

∫
S

N~v6 · d ~A = −
∫
V

~∇6 · (N~v6)d3~xd3~v (3.8)

where the 6 represents the 6 dimension of phase space, V is a volume of interest
and S is the surface of that volume. Moving the right hand side over to the left
gives the Klimontovich equation, as promised.

Since ~x and ~v are independent variables, ~∇x · (~vN) = ~v · ~∇xN . If ~∇v ·~a = 0,
which is sometimes true, we can therefore write the Klimontovich equation as

∂N

∂t
+ ~v · ~∇xN + ~a · ~∇vN = 0 (3.9)

Perhaps the most important acceleration example to consider is the Lorentz
force, ~a = q

m ( ~E + ~v × ~B). Here, ~∇v~a = 0. We can prove this as follows:
~∇v = ∂

∂vx
x̂+ ∂

∂vy
ŷ + ∂

∂vz
ẑ, so ~∇v · ~a = ∂ax

∂vx
+

∂ay
∂vy

+ ∂az
∂vz

. Now, ∂ai
∂vi

= q
m (∂Ei∂vi

+
∂
∂vi

(~v× ~B)i) = 0 where the last step is because the ith component of ~v× ~B does
not include vi, but rather the other two components of ~v. Thus, equation 3.10
can be used for the Lorentz force.

One last comment before we average over the ensemble to get the Vlasov
equation. Using the chain rule, the total derivative of N with respect to time,
dN
dt = ∂N

∂t + ∂~x
∂t ·

∂N
∂~x + ∂~v

∂t ·
∂N
∂~v . By inspection, we see that setting this equal to

22Why can’t we apply the delta function first to equation 3.6, pull the dot products out of the
equation, and then pull the gradients out of the sum next to get ∂N

∂t
+~v · ~∇xN+~a·(~∇vN) = 0?

This is a bit subtle. The derivative with respect to ~x or ~v on the delta function means that
there is no longer a delta function which sets all the ~xi to ~x or the ~vi to ~v. Basically, the
derivative of a delta function is not a delta function. It is only when we remove the derivative
that we again have a delta function which makes ~ai(~xi, ~vi, t) = ~a(~x,~v, t). So we cannot change
the order we perform these operations.
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Figure 16: 3-D Visualization of the 6-D volume V (labeled C) in phase space
which we consider.

0 gives us equation 3.10. What does this imply? Well, the observant reader23

might notice that dN
dt is the same as the convective derivative in 6 dimensions.

Thus, the total derivative follows the motion of a plasma particle in phase
space. Thus, the phase space density is constant following a particles trajectory.
Therefore, if ~∇v~a = 0, then dN

dt = 0 and we can say that the phase space density
is constant as individual elements of N move around in phase space. While this
doesn’t have much consequence in the delta-function representation of N , it
will be more meaningful and less obvious when we replace N with f , a smooth
function.

We said earlier that the Klimontovich equation combined with the Lorentz
Force Law and Maxwell’s equations is exactly equivalent to a number of charged
particles interacting through electromagnetic forces. Let us see now how that
works for a fully-ionized plasma.

Because our plasma is fully-ionized, we know that for each species of plasma
particles σ with charge q and mass m, the acceleration is ~a = qσ

mσ
( ~Em+~v× ~Bm).

Ignoring gravity, this is the only other force which can act outside of the nucleus.
In this form, we label ~Em and ~Bm with the subscript m (which stands for

microscopic) to represent the fact that on a microscopic level, ~E and ~B fluctuate
significantly from place to place. These fluctuations account for the effect of
collisions in the plasma. Thus, our Klimontovich equation becomes

∂Nσ
∂t

+ ~v · ~∇xNσ +
qσ
mσ

( ~E + ~v × ~B) · ~∇vNσ = 0 (3.10)

Now, in order to solve this partial differential equation, we obviously need an
initial condition and boundary conditions on Nσ. However, we also need to
know ~Em and ~Bm and how they evolve in time. Thus, we need microscopic

23Alternatively, a fluid mechanics geek.
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Figure 17: Visualization of ensemble-averaging N to get f .

formulations of Maxwell’s equations.

~∇ · ~Em =
1

ε0

∑
σ

qσ

∫
d3~vNσ(~x,~v, t) (3.11)

~∇ · ~Bm = 0 (3.12)

~∇× ~Em = −d
~Bm
dt

(3.13)

~∇× ~Bm = µ0

∑
σ

qσ

∫
d3~v(~vNσ(~x,~v, t)) + µ0ε0

∂ ~Em
∂t

(3.14)

This system of equations is equivalent to a number of charged particles inter-
acting through electromagnetic forces.

3.2 Vlasov Equation

Now, instead of tracking each individual particle, we want to replace N with
a smooth function f accounting for the number of particles at a given position
with a given velocity. An example of this is shown in Figure 17. We also want
to replace our microscopically varying electric and magnetic fields ~Em and ~Bm
with smooth vector fields ~E and ~B. Let us define, where brackets represent an
average over the ensembles, f(~x,~v, t) ≡ 〈N(~x,~v, t)〉, ~B ≡ 〈 ~Bm〉, ~E ≡ 〈 ~Em〉. Let

us also define δN ≡ f −N , δ ~E ≡ ~Em − ~E, and δ ~B ≡ ~Bm − ~B.24

When we perform these averages, Maxwell’s equations are the same as our
normal Maxwell’s equations

~∇ · ~E =
1

ε0

∑
σ

qσ

∫
d3~vfσ(~x,~v, t) (3.15)

~∇ · ~B = 0 (3.16)

24Note that these definitions are slightly different from the definitions used by Hong in his
notes.
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~∇× ~E = −∂
~B

∂t
(3.17)

~∇× ~B = µ0

∑
σ

qσ

∫
d3~vfσ(~x,~v, t) + µ0ε0

∂ ~E

∂t
(3.18)

These are the same as Maxwell’s equations before ensemble averaging, just
with m removed. Why is this the case? Well, it comes from the fact that
Maxwell’s equations are linear. We can set ~Bm = ~B + δ ~B, do the same with
~Em, and subtract off the microscopic portions of Maxwell’s equations from both
sides without making any approximations.

Ensemble-averaging the Klimontovich equation, we get the Vlasov-Maxwell
equation. This would be the same as our Klimontovich equation with f replacing
N , except we have an additional non-linear correlation term which comes to the
right side.

∂fσ
∂t

+~v · ~∇fσ +
qσ
mσ

( ~E+~v× ~B) · ~∇vfσ = −
〈 qσ
mσ

(δ ~E+~v× δ ~B) · ~∇vδNσ
〉

(3.19)

Note that terms first-order in the fluctuations average to 0 by definition, but
terms second-order in fluctuations, i.e. correlation terms, do not automatically
average to 0. The correlation term on the right hand side accounts for the effect
of particle-particle interactions, i.e. collisions. How can we see this intuitively?
Without having any rigor, we can say roughly that the ensemble-average of
qσδNδ ~E will not go to 0, as where there is some δN there will also be a correlated
δ ~E as there are more particles at that microscopic position.

As far as I know, we are not able to calculate the right-hand side exactly. In
most applications, we simply set this term to be equal to some collision operator,
C(f). Solving the Vlasov-Maxwell equation in practice requires choosing a
collision operator which hopefully is approximately equal to the right-hand side
of equation 3.19 and is practically solvable.

3.2.1 Some facts about f

• The total number of particles for species σ in our plasma, Nσ, is
∫
d3~xd3~vfσ(~x,~v, t)

• The particle density of the species σ, nσ(~x, t) =
∫
fσ(~x,~v, t)d3~v. The

number density at ~x is equal to the integral of f over all possible velocities.

• The mean velocity of the species σ, ~uσ = 1
nσ

∫
~vfσ(~x,~v, t)d3~v. In other

words, the mean velocity ~u is thus the first moment of f with respect to
velocity, divided by the density.

• The plasma energy per volume in the particle kinetic energy for species
σ is

∫
d3~v 1

2mσv
2fσ. This accounts for both the thermal energy of the

plasma as well as the kinetic energy of the mean plasma flow.
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3.2.2 Properties of Collisionless Vlasov-Maxwell Equations

Suppose that C(f) = 0, such that our plasma is collisionless. We expect our

Vlasov-Maxwell equation, ∂f∂t + ~v · ~∇f + q
m ( ~E + ~v × ~B) · ~∇f = 0, to have a few

basic properties, such as particle, energy, and momentum conservation.
Particle conservation comes about automatically because f is conserved as

we follow a section of f around in phase space. df
dt is the convective derivative in

phase space, and since it equals zero then the value of f is constant as a particle
travels around in phase space. Thus, N , the total integral of f over velocity
space and real space, doesn’t change with time.

The total energy (plasma plus electromagnetic) is conserved through the
evolution of f under the Vlasov-Maxwell equation. The total energy

E =
1

2

∫
d3~x

[
ε0E

2 +
B2

µ0
+
∑
σ

∫
d3~vmσv

2fσ

]
(3.20)

is constant in time - we prove this on a homework assignment. The same is true
with total momentum,

~P =

∫
d3~x

[
ε0 ~E × ~B +

∑
σ

∫
d3~vmσ~vfσ

]
(3.21)

This is also proved in the homework.
Now, it turns out that if ci(~x,~v, t, ~B(~x), ~E(~x) is a constant of motion for a

single particle, such that

dci
dt

=
∂ci
∂t

+ ~v · ~∇ci +
q

m
( ~E + ~v × ~B) · ~∇vci = 0 (3.22)

then any function f(c1, c2, ..., ) which is a function of ci’s is a solution of the
Vlasov equation. This is easily shown, as

df

dt
=
∑
i

∂f

∂ci

dci
dt

= 0 (3.23)

3.2.3 Entropy of a distribution function

This isn’t covered in class, but I wanted to introduce the concept of entropy in
plasmas briefly.

The definition of the entropy of a distribution function f is

S = −
∫
d3~v

∫
d3~xf(~x,~v)lnf(~x,~v) (3.24)

Why is this true? Forget about distribution functions for a second, and
imagine we have N distinguishable pegs we can put into N holes, so that exactly
1 peg goes into each hole. Since the pegs are distinguishable, we have N ! ways
of ordering the N pegs into the N holes (N options for the first peg, N − 1
options for the second peg, etc until there is 1 option for the last peg).
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Now suppose that we group together the N holes into M groups, such that
the ith group has f(i) holes in that group, and

∑M
i f(i) = N . Now suppose we

want to place the pegs in the holes again, such that we care about the ordering
of the pegs within each group of holes and any peg can go into any hole. In
that case, then the number of ways of arranging the pegs into these M groups
must also equal N ! Why? If any peg can be in any group and the order matters
within the group, then there are N ways to place the first peg, N − 1 ways to
place the second, etc etc. Therefore the number of ways of arranging these N
pegs is the same as if we had no groups in the first place.

Now suppose we don’t care about the internal arrangement of the pegs within
each of the M groups, but we do care about which pegs go into which group.
How many ways can we arrange the pegs into these M groups such that we
don’t care about the internal arrangement of the pegs within each group? Well,
we don’t know it yet, but let us call this result C. We know that since there
are f(i)! ways of arranging the pegs within group i, then the number of ways of
arranging the pegs into these M groups such that we do care about the ordering
of the pegs within each group is

C × f(1)!× f(2)!× ...× f(M)! (3.25)

But from our previous paragraph, we know this equals N ! Solving for C, we get

C =
N !

f(1)!× f(2)!× ...× f(M)!
(3.26)

How does this relate to entropy? An important sentence is about to come
up, so buckle up and pay attention. C is the number of microscopic states
corresponding to the macrostate given by the f(i)’s. So using our definition of
entropy from statistical mechanics, S = kB lnΩ, we have

S = kB lnC

= ln(
N !

f(1)!× f(2)!× ...× f(M)!
)

= lnN !− lnf(1)!− lnf(2)!− ...− lnf(M)!

(3.27)

Now suppose f(i)� 1 for all i, such that we can use Stirling’s formula lnN ! ≈
N lnN −N to simplify the entropy. Using

∑M
i f(i) = N , we cancel the N term

to get

S = N lnN −
M∑
i

f(i)lnf(i) (3.28)

Since N is a constant, we can drop it from the entropy to get

S = −
M∑
i

f(i)lnf(i) (3.29)

What does this have to do with distribution functions? Well, suppose we
have a known distribution function f(~x,~v, t). This is our macrostate. Each
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point (~x,~v) in phase space can be thought of as a group of holes, and each
particle can be thought of as a peg. We have a known number of particles in
each point in phase space, analogous to having a known number of holes in each
group. The microstate is the particular arrangement of particles (pegs) which
gives us our macrostate f(~x,~v, t) (the number of holes in each group of holes).

If we have a known number of pegs f(i) in each group of holes, then the
entropy is given by equation 3.29. Therefore, if we have a known number of
particles in each point in phase space, f(~x,~v)d3~xd3~v, then the entropy (turning
the sum over i into an integral over ~x and ~v) is

S = −
∫
d3~v

∫
d3~xf(~x,~v)lnf(~x,~v) (3.30)

the same as equation 3.24. This is the entropy of a distribution function for a
plasma.

If I wanted to get fancy25 I could show that the maximum entropy distribu-
tion function is a Maxwellian. It’s a bit outside the scope of these notes though,
since I’m already on a topic which isn’t covered in class.

3.3 Collisions in the Vlasov Description

3.3.1 Heuristic Estimate of Collision Operator

When we go from the Klimontovich equation to the Vlasov equation by ensemble-
averaging, we get a collision operator term

C(fσ) = −〈 qσ
mσ

(δ ~E + ~v × δ ~B) · ~∇vδNσ〉 (3.31)

In general, we can’t solve exactly for this term. For now, let’s try to get a
heuristic estimate of what this might be. Let’s look only at the δ ~E · ~∇vδNσ
term, for simplicity.

We can write N heuristically as N
L3v3T

, where N is the total number of par-

ticles in the system and L is the length scale of the system. Now, from the law

of large numbers, δN ∼
√
N on average for a given microstate.

From Gauss’s equation ~∇· δ ~E =
∑
σ
qσ
ε0

∫
δNσd

3~v. Thus, δ ~E ∼ λDq(δN)v3T
ε0

∼
qλDδN
ε0L3 , where the λD arises because the distance scale over which ~E changes is

the Debye length.
Thus, plugging in our numbers to get a heuristic estimate of C(f), we find

C(f) ∼ δ ~E qδN

mv4
TL

3
∼ q2λDδN

2

ε0mv4
TL

6
∼ q2N

ε0mωPL3

1

L3v3
T

∼ ωP
L3v3

T

(3.32)

where ω2
P = q2n

ε0m
and vT

λD
= ωP and N

L3 = n have been used.
Question: This ωP seems too high, no? Shouldn’t the collision frequency be

way less than the plasma frequency?

25Bellan does this in his textbook.
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3.3.2 Properties of Collision Operator

So far, we’ve been pretty mute about the collision operator, C(f). Let’s start
discussing this now.

When we have more than one plasma species, we need to account for the
possibility of collisions between different plasma species as well as collisions
between the same species. Thus, we should instead define our collision operator
for fσ as the sum of collision operators between all plasma species, C(fσ) =∑
σ′ C(fσ, fσ′). If we were being rigorous, we should technically account for the

possibility of collisions between 3 or more different particles from potentially
different species. However, it is not a bad approximation (and much simpler) to
consider only consider binary collisions (i.e. collisions between two particles),
which we will do.

There are a couple properties we would hope that our collision operator
might have:

• Particles conservation: For all σ,
∫
C(fσ, f

′
σ)d3~v = 0. Physically, this

means that collisions between particles of species σ and σ′ at some position
~x only change the velocity of the particles of species σ at ~x, and maintain
the number of particles of species σ at ~x.

• Momentum conservation:
∑
σ,σ′

∫
mσ~vC(fσ, fσ′)d

3~v = 0. Physically, this
means that while particles can exchange momentum between different
species, the total momentum at each point ~x remains constant.

• Energy conservation:
∑
σ,σ′

∫ mσv
2
σ

2 C(fσ, fσ′)d
3~v = 0 Physically, this means

that while particles can exchange energy between different species, the to-
tal energy at each point ~x remains constant. If particles were to fuse,
releasing atomic energy, this would no longer be strictly true.

• We would hope that C(fσ, fσ′) be bilinear in f , meaning for some con-
stants α and β, we have C(αfσ, βfσ′) = αβC(fσ, fσ′) Physically, this
means that the number of collisions at each point in space is proportional
to the number of particles at that point in space. While this is strictly
not necessary, it is certainly a reasonable assumption.

• In general, we want C to be local, meaning that C at ~x = ~x0 depends
only on fσ(~x0, ~v, t) and fσ′(~x0, ~v, t), and not on any other ~x. It also means
that C doesn’t depend on any derivatives of f with respect to position,
but possibly derivatives with respect to velocity.

• We want, as t → ∞, f to go to a Maxwellian. Otherwise, our collision
operator is not reaching a maximum entropy state.

• C(f) should ensure that f ≥ 0. f cannot be negative.
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3.3.3 Examples of Collision Operators

Here, we investigate some of the collisions operators introduced in class.
One such operator is the Krook collision operator,

C(f) = −ν(f − fm) (3.33)

This is a simple way of writing the collision operator, and it clearly gives a
maxwellian distribution as t goes to infinity. Whether it has the required con-
servation properties was given in class as an exercise for students to do at home.
Well, we are students at home, so now it is time to complete that exercise! We
can see that if we choose fm such that the density of the maxwellian distribution
(the factor in front of the gaussian) at each point in space corresponds to the
density of f , then this collision operator conserves particles. If the maxwellian
is a drifting maxwellian at each point in space, such that the mean velocity of f
at that point in space is the same as the drift velocity of the maxwellian, then it
conserves momentum as well. If the temperature of the maxwellian fm depends
spatially on the local energy in f at that point, then sure, energy is conserved.
However, with these three constraints on n(~x), T (~x) and ~u(~x), our plasma will
not reach a uniform maxwellian at infinite time! Instead, it will reach a local
maxwellian at each point in space, which is not what we want! To get the cor-
rect behavior as t goes to infinity, we will have to make fm be constant in space
and time, which means our collision operator no longer conserves the quantities
we want it to (at least locally).

Another operator is the collision operator C(f) = 0, which is true in the
“mush limit”. In this limit, we take e → 0, me → 0, ne → constant, n →
∞, e

m →constant, and therefore λD → constant, vT → constant, and ωp →
constant. In this limit, the collision frequency is much much less than the
plasma frequency, and the collision operator can be ignored. Apparently, most
plasmas are in this limit, where the collision operator term is small.

Question: Why is collision frequency being less than plasma frequency mea-
sure of it being ignored?

A third operator we discussed is related to diffusion in velocity space, pre-
sumably simulating the effect of some wave. This looks like

C(f) =
∂

∂v‖
D(v‖)

∂

∂v‖
f (3.34)

This can be thought of as some diffusion in parallel velocity space, and so our

vlasov equation becomes analogous to the diffusion equation ∂f
∂t = D ∂2f

∂x2 . This
operator could represent, artificially, the effect of some waves being launched in
the plasma and creating diffusion of particles in velocity space.

3.4 Lorentz Collision Operator

A fourth collision operator we discussed was the Lorentz Collision Operator,
which is so important it deserves it’s own subsection. The Lorentz collision
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operator can be written in various forms, but only one form is covered in GPP1.
This form is

L(f) = ν(v)
∂

∂µ

[
(1− µ2)

∂

∂µ
f

]
(3.35)

where µ = v‖
v = cos θ, the angle parallel to the magnetic field. µ ranges from -1

to 1. Note this µ is not the adiabatic invariant! The frequency ν(v) ∼ 1
v3 . This

collision operator is not derived in GPP1, but it comes from the Focker-Planck
operator (also not derived in class) and an assumption that the ions are a cold
drifting population.

The Lorentz collision operator represents pitch-angle (the angle with respect
to the magnetic field) scattering of electrons due to collisions with ions, in
a system where the azimuthal angle with respect to the magnetic field φ is
negligible. Note that the Lorentz collision operator, like the diffusion in velocity
space due to waves, is qualitatively similar to the diffusion equation. Here, the
particles diffuse in velocity space due to collisions with the ions. The Lorentz
collision operator is valid under the assumption that Zi � 1, so the electron-
electron collisions are negligible and only electron-ion collisions are important.
It also relies on the assumption that vT,i � vT,e, as in the derivation the ions
are assumed to be a drifting delta function population.

A helpful property of the Lorentz collision operator is that it is self-adjoint.
This means that ∫

d3~vgL(f) =

∫
d3~vfmfL(g) (3.36)

We can prove this property by integrating by parts. First, we need to re-

member that L(f) = ν(v) ∂
∂µ (1− µ2) ∂f∂µ and

∫
d3~v =

∫
v2dv

∫
dφ
∫ 1

−1
dµ. Thus,∫

v2dv

∫
dφ

∫ 1

−1

ν(v)g
∂

∂µ
(1−µ2)

∂f

∂µ
dµ = −

∫
v2dv

∫
dφ

∫ 1

−1

ν(v)
∂g

∂µ
(1−µ2)

∂f

∂µ
dµ

(3.37)
But this would give us the same result for

∫
fF(g)d3~v, which proves the

self-adjointness described by equation 3.36.
There are other nice mathematical properties of the Lorentz operator - it

turns out that if Pn is the nth Legendre polynomial, then

L(Pn(µ)) = −n(n+ 1)Pn(µ) (3.38)

Since the Legendre polynomials are complete, we can write any f in terms
of them. f(µ, v, t) =

∑
n Pn(µ)an(v, t). Now, we can see that the larger-n,

smaller-v components of f pitch-angle scatter faster. Let’s see this. If we
have a spatially-homogenous, zero-field plasma, then our Vlasov equation is
∂f
∂t = ν(v)L(µ)f . Expanding f in terms of the Legendre polynomials, we have
∂an
∂t = −ν(v)n(n+ 1)an, so an(v, t) = an(v, 0)e−ν(v)n(n+1)t. Thus, the larger-n,

smaller-v particles pitch-angle scatter more quickly.

52



3.4.1 Lorentz Conductivity

What is the conductivity of a plasma? In other words, if we put some electric
field ~E in a plasma (never mind how it got there, or the fact that a plasma

tends to shield large-scale electric fields), then there should be some current ~J ,
where the constant of proportionality between the two is σ, the conductivity.
In solids, this is typically written ~J = σ ~E. While currents in plasma can arise
even if there is no electric field (for example, due to the single-particle drifts or
magnetization current), it is helpful to get a sense of how much current we will
get for a given electric field.

The cross-field conductivity, σ⊥, is in general different than the parallel
conductivity σ‖. Actually, if there is an electric field perpendicular to a magnetic

field in a plasma, there is a net plasma fluid ~E × ~B drift which arises when
particles are collisionless and drift. In addition, there will be some current
perpendicular to the field, which arises due to collisions causing particles to
drift perpendicular to the field. I don’t yet understand the full picture for the
current which arises in a plasma, and it wasn’t discussed in class, so it won’t be
discuss it in these notes.

Question: Is this explanation for cross-field current correct?
Here, we will look at plasma conductivity in an unmagnetized plasma, so

we can ignore all the complications of particle drifts and larmor orbits and
whatnot. We’ll use our favorite collision operator, the Lorentz collision operator,
in a spatially-homogeneous plasma with a net electric field ~E. Remember, the
Lorentz collision operator assumes the ions are a cold, drifting population such
that fi = ni(~x)δ3(~v − ~vi), and the significant collisions for the electrons are
with the ions. Thus, we are interested f for the electrons. Our Vlasov-Maxwell
equation for the electrons is

∂f

∂t
− e

m
~E · ∂f

∂~v
= L(f) = ν(v)

∂

∂µ
((1− µ2)

∂f

∂µ
) (3.39)

Now, we assume a steady-state solution, such that ∂
∂t → 0. This equilib-

rium is an equilibrium between collisions and the electric field which is pushing
particles. If the electric field is not unreasonably strong, then we expect our
equilibrium distribution to be similar to a Maxwellian, with some small depar-
ture. Thus, we can write f as fm(1 + g) where g is some arbitrary function and

g � 1 everywhere in phase space. We’ll also put ~E in the z-direction. So our
Vlasov-Maxwell equation becomes

− e

m
Ez

∂fm(1 + g)

∂vz
= L(fm(1 + g)) (3.40)

Since g is small and it’s derivatives are also small, then ∂fm(1+g)
∂vz

can be

approximated as ∂fm
∂vz

, which is −mvz
kBT

fm. Since C(fm) = 0, and the collision
operator is linear, then C(fm(1 + g)) = C(fm) + C(fmg) = fmC(g). Thus, we
have
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− e

kBT
Ezvzfm = fmL(g) (3.41)

We can cancel the fm and use the definition of µ, µ = v‖/v, to write

−eEzvµ
kBT

= ν(v)
∂

∂µ
((1− µ2)

∂g

∂µ
) (3.42)

Now, if we can solve this equation for g, we can solve for J ! Since the
electrons will move much more quickly than the ions, we can ignore the ion
motion and just look at the current due to the electrons. The integral of fmvz
goes to zero, so only the second term contributes.

Jz = −e
∫
fm(1 + g)vzd

3~v = −e
∫
fmgvzd

3~v (3.43)

So let’s set out to solve for g! Unfortunately, we can’t do this in general.
But suppose we expand g in terms of the Legendre polynomials, such that
g =

∑
n an(v, t)Pn(µ). Remember when we introduced the Lorentz collision

operator, we showed that for a homogenous, zero-field plasma, the larger-n
components of f pitch-angle scatter (i.e. equilibrate) faster. This motivates
us to look at only the n = 1 component of g, since the higher-n components
we expect to equilibrate faster. Also, the n = 0 Legendre polynomial is just a
constant, so this is not interesting. Thus, we’ll approximate g to be a1P1(µ) =
a1µ. Plugging this into equation 3.42, we get

−eEzvµ
kBT

= ν(v)
∂

∂µ
[(1− µ2)a1] = −2ν(v)µa1 (3.44)

Thus, a1 = eEzv
2ν(v)kBT

, so g = eEzvµ
2νkBT

. This allows us to solve for Jz using
equation 3.43:

Jz = − e
2Ez

2kBT

∫ 2π

0

dφ

∫ 1

−1

dµ

∫
v2dvfmv

2µ2 = −2πe2Ez
3kBT

∫ ∞
0

v4

ν(v)
fm(v)dv

(3.45)

From ~J = σ ~E, we have σ = 2πe2

3kBT

∫∞
0

v4

ν(v)fm(v)dv. I won’t carry out the

integral, but it isn’t hard to do, as ν(v) ∼ 1
v3 .

TODO: Find the minus sign error in current expression.
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4 Fluid Equations and MHD

The small, clean fusion reactor I
am considering is NOT
describable by MHD. Thank
goodness!

Samuel Cohen

So earlier in these notes, I cited Wikipedia’s article on the Knudsen number,
the ratio of the mean free path to the characteristic length scale of the system.
For high-temperature plasmas, the mean free path is often enormous compared
to the system size, meaning our fluid (here a plasma) cannot be treated with
a fluid description. However, I mentioned in a footnote that the fluid descrip-
tion for a plasma is often a good approximation. Let’s discuss that apparent
contradiction in more depth now.

4.1 Fluid Equations

4.2 MHD Equations

4.3 1D MHD Equilibrium
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5 Waves in Plasmas

Then (Fermi) said “Of course
such waves could exist.” Fermi
had such authority that if he said
“of course” today, every physicist
said “of course” tomorrow.

Hannes Alfvén, on MHD waves

There are lots of waves in plasmas. As a first-year student, I find keeping
track of all the different waves tends to be confusing. However, it is also a
very important topic, worthy of an entire course during the second year. Thus,
understanding the topic in depth seems rather important.

As far as I can tell, there are three main things we need to keep track of when
thinking about plasma waves. Firstly, we need to remember the name of the
wave. Unfortunately, many of the waves have multiple names, so this becomes
rather inconvenient. Secondly, we need to remember the dispersion relation of
the wave. This tells us about the group and phase velocity of the wave, and
sometimes whether it can propogate at all. Thirdly, we need to remember the
assumptions made in deriving the dispersion relation, so we can determine when
we expect that wave to arise in physical situations. At the end of this chapter,
hopefully we’ll have a better understanding of these three things for a number
of fundamental plasma waves, or at minimum a reference we can go to if our
memory fails us. Hopefully we can also gain a physical picture for these waves,
although that is not always possible given the vigorous algebraic manipulations
required to derive dispersion relations for many of these waves.

In Chapter 1, we started by deriving the most basic of waves, plasma oscil-
lations. These oscillations were derived assuming stationary ions, zero temper-
ature, zero magnetic field, and using a fluid description for the electrons. By
linearizing the equations and rearranging, we obtained a characteristic frequency

of ω2
p = e2n0

ε0me
.

We will start this chapter by again looking at electrostatic plasma oscilla-
tions, but this time using the Vlasov-Maxwell equation as opposed to the elec-
tron fluid equation. We will derive a dispersion relation for electrostatic plasma
oscillations which will take us to the world of complex functions. We’ll save the
pain of that subject until chapter 6, and in this chapter just find a dispersion
relation for the first order correction to plasma oscillations due to temperature
effects. We call this plasma oscillation with finite temperature Langmuir Waves.
We’ll then look at lower-frequency electrostatic waves, where the electrons move
faster than the wave. In this limit, the waves are called ion acoustic waves.

As we move to the fluid description of waves, we’ll again look at the Langmuir
waves and ion acoustic waves, but from a fluid description rather than a kinetic
description. We’ll see that both these waves arise from the fluid description,
just with different assumptions about the frequency of the wave relative to
the thermal velocity of each species. Using the fluid model, we’ll derive the
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dispersion relation for electromagnetic waves in plasmas, which amazingly have
a phase velocity faster than the speed of light! We’ll also see that a low-frequency
electrostatic wave cannot exist.

In the MHD description of waves, we’ll look at the fundamental MHD waves
which arise in a uniform background plasma with a magnetic field. There are
three waves which arise: the Alfvén wave, and the fast and slow magnetosonic
waves. Each of these waves will be discussed in detail.

5.1 Kinetic Description of Waves

As promised, we’ll start by looking at electrostatic plasma oscillations using the
Vlasov-Maxwell equation. Here, we allow the possibility that the particles have
some non-zero temperature, i.e. the velocity distribution function is not simply
a delta function at each point.

Our starting point is the collisionless unmagnetized Vlasov-Maxwell equa-
tion,

∂fσ
∂t

+ ~v · ~∇fσ −
qσ
mσ

~∇φ · ~∇vfσ = 0 (5.1)

Now, we will apply the method of linearization to the Vlasov-Maxwell equa-
tion. We assume our 0th order solution is not time-dependent or spatially
dependent, and also assume that the 0th order electric and magnetic fields are
0, so we only get a φ1 term. The induced-B term, ~B1, is small relative to ~E1,
which we can see through the following argument: we expect ~E1 ‖ ~k, and the

induced ~B will be due to magnetic induction, so ~∇× ~E1 = ~k× ~E1 = 0 = −∂ ~B1

∂t .
Our goal is going to be to solve for the first-order perturbation to f , fσ,1.

Once we have this, we can integrate it to solve for the density nσ,1. This is
sometimes called the σ response function (electron response function or ion
response function). Our next step is to plug the response functions for the
various species into Gauss’s law, to solve for our dispersion relation. Let’s see
how this works. Linearizing the Vlasov-Maxwell equation, we get

∂fσ,1
∂t

+ ~v · ~∇fσ,1 −
qσ
mσ

~∇φ · ~∇vfσ = 0 (5.2)

Notice all of the quantities are, 1st order in total. In order words, each term
is either 1st order in f , or 0th order in f and 1st order in some other quantity
(here, this quantity is φ). When we linearize, typically the quantities which are
0th order in total either go to zero or cancel each other. This is indeed the
case here, as there is no time-dependence or spatial dependence of the 0th order
solutions and there are no 0th order fields.

Now, we are looking for wave solutions, so we assume an exponential depen-

dence ei(
~k·~x−ωt) for each of the first-order quantities. This gives

−iωfσ,1 + ~v · i~kfσ,1 −
qσ
mσ

iφ1
~k · ~∇vfσ,0 = 0 (5.3)

Cancelling i and solving for fσ,1 (which we want so we can solve for the
response functions), we get
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fσ,1 =
qσ
mσ

φ1
∂fσ,0
∂v‖

v‖ − ω
k

(5.4)

where the parallel means parallel to ~k.
We can solve for the perturbed density, nσ,1, by integrating over velocity.

nσ,1 =
qσφ1

mσ

∫ ∂fσ,0
∂v‖

v‖ − ω
k

d3~v =
qσφ1

mσ

∫ ∂gσ
∂v‖

v‖ − ω
k

dv‖ (5.5)

where gσ =
∫
fσ,0d

2~v⊥. If we know our fσ,0, then we just perform that
integral, plug it into Gauss’s law, and we have our dispersion relation. So we’re
good, right? Unfortunately, there’s a problem: we’ve got a v‖ − ω

k term in the
denominator. When we integrate, this term will go to zero at some v‖, and
if there is some finite fσ,0 at that v‖, then this integral will blow up and our
integral will become infinite, which is obviously not what we want. There isn’t
a simple solution to this problem, and you’ll have to stay tuned until Chapter
6 to see what Landau damping is and how it resolves this issue. For now, we’ll
look at limiting cases of this integral, and use these limiting cases to investigate
various types of electrostatic plasma waves.

Now, there are two limiting cases of this integral we are interested in. The
first is called the adiabatic case, where the changes due to the wave occur so
quickly that the particles don’t have time to react. Mathematically, this means
ω
k � vth,σ. The second case is called the isothermal case, where the changes
due to the wave are so slow that the particles have plenty of time to react to
the wave’s behavior. Mathematically, this means ω

k � vth,σ.
The first limiting case is the adiavatic case, where ω

k � vth,σ. In this limit,
fσ,0 is essentially zero at the phase velocity of the wave, because the thermal
velocity is so much lower and most of the particles are similar in velocity to the
thermal velocity. Thus, the integral doesn’t blow up because the portion of the
integral which would otherwise blow up has a zero numerator.

To solve for nσ,1 in this limiting case, the first thing we’ll do is integrate

the integrand by parts. This gives
∂gσ
∂v‖
v‖−ωk

= gσ
(v‖−ωk )2 +

[
gσ

v‖−ωk

]∞
−∞, and the last

term will go to zero because fσ and hence gσ is zero at v‖ → ±∞. Now, we

can rewrite 1
(v‖−ωk )2 as k2

ω2
1

(1−
kv‖
ω )2

. In this limit we can Taylor expand to get

k2

ω2 (1 + 2
kv‖
ω + 3

v2‖k
2

ω2 ). With these manipulations, our integral for nσ,1 becomes

nσ,1 =
qσk

2φ1

ω2mσ

∫
gσ(1 + 2

kv‖

ω
+ 3

k2v2
‖

ω2
)dv‖ (5.6)

Remember the definition of gσ,
∫
fσ,0d

2~v⊥. From this definition, we can see
that the first term integrates to nσ,0. If the mean velocity in the parallel velocity
is zero, the second term integrates to zero. The third term is, approximately,

3v2
th,σ

k2

ω2nσ,0. Finally, after all that work, we have nσ,1 in the adiabatic limit
where ω

k � vth,σ.
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Table 1: Response Functions, nσ,1
Adiabatic, ω

k � vth,σ Isothermal, ω
k � vth,σ

qσnσ,0k
2

mσω2 φ1(1 + 3
k2v2th,σ
ω2 ) − qσnσ,0

mσv2th,σ
φ1

nσ,1 =
qσnσ,0
mσ

k2φ1

ω2
(1 + 3

k2v2
th,σ

ω2
) (5.7)

What about in the isothermal limit where ω
k � vth,σ? We can’t solve for this

exactly. However, if our zeroth order distribution function is Maxwellian, then
we can solve the integral in equation 5.5 to get something nice. Let’s do this now.

If we have a Maxwellian, fσ,0 = nσ,0( mσ
2πkBTσ

)3/2 exp (− mσv
2

2kBTσ
), and so integrat-

ing over the perpendicular directions gives gσ = nσ,0( mσ
2πkBTσ

)1/2 exp (− mσv
2
‖

2kBTσ
).

Taking the derivative, ∂gσ
∂v‖

= −nσ,0 m3/2
σ

(2π)1/2(kBTσ)3/2
v‖ exp (− mσv

2
‖

2kBTσ
). Now, we

ignore the v‖ − ω
k and replace that with just v‖. Why do we do this? Well, the

numerator goes as v‖ for small v‖, so if ω
k is really small, then the numerator

is essentially zero when the denominator goes to zero. We can see this geomet-
rically as well, if we visualize a Maxwellian distribution. Near the peak of a
Maxwellian distribution, the derivative of the distribution is about zero because
the maxwellian has a local maximum at it’s peak, so this part of the integral can
be ignored. This assumption is pretty dodgy because the integral technically
blows up, but it’s one we need to make to solve for the electron response in this
isothermal limit. If we make this dodgy assumption, then the v‖ on top and in
the bottom cancel. We have

nσ,1 = − qσm
1/2
σ nσ,0φ1

(kBTσ)3/2(2π)1/2

∫
exp (−

mσv
2
‖

2kBTσ
)dv‖ (5.8)

Using
∫
e−ax

2

dx =
√

π
a , our integral becomes

√
2πkBTσ
mσ

, so our response

function for σ is

nσ,1 = −qσnσ
mσ

mσ

kBTσ
φ1 = − qσnσ

mσv2
th,σ

φ1 (5.9)

We’ve done a lot of algebra so far, but the process has been pretty simple:
we linearize the Vlasov-Maxwell equation, look for electrostatic wave solutions,
solve for fσ,1, and integrate to get nσ,1 (the response function) in either an
adiabatic or isothermal limit. Now comes the fruit of our labor: we can plug
our response function into Gauss’s Law in various limits. Each of these limits
corresponds to a new plasma wave.

5.1.1 Langmuir Wave

The Langmuir wave is the finite-temperature version of the plasma oscillation.
This is a fast oscillation, such that the phase velocity of the wave is faster than
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the thermal velocity of both the ions and the electrons. Thus, both species
have an adiabatic response function. The Langmuir wave goes by many names,
including the electron plasma wave, the Bohm-Gross wave, or just the Bohm
wave. Typically, though, the Langmuir wave is what it’s called.

Gauss’s law, ~∇2φ1 = − 1
ε0

∑
σ qσnσ,1, becomes

−k2φ1 = −e
2ne,0k

2

ε0meω2
φ1(1 + 3

k2v2
th,e

ω2
)− q2

i ni,0k
2

ε0miω2
φ1(1 + 3

k2v2
th,i

ω2
) (5.10)

Notice that we can replace the
q2σnσ,0
ε0mσ

with ω2
p,σ. We expect to see the plasma

frequency show up, since the Langmuir wave is a finite-temperature version of
the plasma oscillation. We can also cancel the φ1 and the k2, and multiple by
ω2 to get

ω2 = ω2
p,e(1 + 3

k2v2
th,e

ω2
) + ω2

p,i(1 + 3
k2v2

th,i

ω2
) (5.11)

Hey look! We’ve got a dispersion relation, i.e. an equation for ω in terms of
k. Our dispersion relation is 4th-degree polynomial equation for ω. Let’s solve
this perturbatively. Since the Langmuir wave is the finite-temperature version
of the plasma oscillation, we expect our solution to be close to the plasma
frequency. Thus, we can approximate the 1

ω2 terms on the right of this equation
as 1

ω2
p,e

. This gives

ω2 = ω2
p,e + ω2

p,i + 3k2v2
th,e + 3

ω2
p,i

ω2
p,e

k2v2
th,i (5.12)

This is the dispersion relation for Langmuir waves! Often, it is just written
as ω2 = ω2

p,e + 3k2v2
th,e since the ion terms are much smaller than the electron

terms.

5.1.2 Ion Acoustic Wave

The ion acoustic wave is an electrostatic wave where the ions are still adiabatic,
but the electrons are isothermal. More explicitly, we have the relation vth,i �
ω
k � vth,e. It is called the ion acoustic wave because the wave is a modified
sound wave, where the electrons create the sound wave and the electrostatic
forces on the ions modify the sound wave.

TODO: is this the right explanation?
To solve for the dispersion relation, we again plug our ion and electron

response functions into Gauss’s law. This gives us (substituting in the plasma
frequency and cancelling φ1 and dividing by k2 as before)

−1 =
ω2
p,e

k2v2
th,e

−
ω2
p,i

ω2
(1 + 3

k2v2
th,i

ω2
) (5.13)

Now, we can solve this equation perturbatively as well. To lowest order,

since ω
k � vth,i, we can drop the 3

k2v2th,i
ω2 relative to 1. We’ll also drop the −1
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completely, because the other two terms which remain are much bigger than

1. Why? Well, we can rewrite
ω2
p,e

k2v2th,e
= 1

k2λ2
D,e

. Since k ∼ 1
λ , then this term

is λ2

λ2
D,e

, which will be much greater than 1 because the wavelength of the ion

acoustic wave is assumed to be larger than the electron debye length. Thus, the
first term is much greater than 1. The second term is also much great than 1,
because the frequency is assumed to be much less than the ion plasma frequency.
Dropping these two terms, to lowest order we have

0 =
ω2
p,e

k2v2
th,e

−
ω2
p,i

ω2
(5.14)

so to lowest order,
ω2

k2
=
ω2
p,i

ω2
p,e

v2
th,e (5.15)

To second order, we still ignore the −1 term, we include the 3
k2v2th,i
ω2 term

and plug in our first-order ω2/k2 solution to this term. This gives

ω2
p,e

k2v2
th,e

−
ω2
p,i

ω2
(1 + 3

v2
th,iω

2
p,e

v2
th,eω

2
p,i

) = 0 (5.16)

so to the second order,

ω2

k2
=
ω2
p,i

ω2
p,e

v2
th,e + 3v2

th,i (5.17)

This dispersion relation looks a bit rough, but we can simplify it to see the

physical meaning using our definition ω2
p,σ =

nσq
2
σ

ε0mσ
. Thus,

ω2
p,i

ω2
p,e

=
q2ime
e2mi

. We also

have v2
th,σ = kBTσ

mσ
so this first term becomes

q2i
e2
kBTe
mi

=
q2i
e2 c

2
s, where cs is the

sound speed, also called the acoustic speed.
Note that this is consistent with the physical picture we described earlier for

the Ion Acoustic Wave.

ω2

k2
=
q2
i

e2
c2s + v2

th,i (5.18)

5.1.3 Isothermal Electrostatic Waves Don’t Exist

Imagine we tried to find an electrostatic wave where both the ions and electrons
were isothermal. Plugging our electron and ion response functions into Gauss’s
law, we get

0 = 1 +
ω2
p,e

k2v2
th,e

−
ω2
p,i

k2v2
th,i

(5.19)

There is no frequency dependence! Actually, this is an equation for Debye
shielding, and is the same as equation 1.22 way back from chapter 1 but without
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the charge Q. Physically, this tells us that an electrostatic oscillation where the
ions and the electrons are both isothermal is not possible, because both the
electrons and the ions will Debye shield and cancel out any oscillation at that
slow frequency.

5.2 Plasma Waves in the Fluid Description

5.2.1 Langmuir Waves and Ion Acoustic Waves with the Fluid Model

5.2.2 Electromagnetic Waves

5.3 MHD Waves

5.4 Magnetized Plasma Waves (Advanced)

5.5 Two-Stream Instability (Advanced)
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6 Landau Damping

The Landau paper takes many
days, if not years to appreciate.
Go slowly, and enjoy it. It is the
foundation of plasma physics.

George Morales

TODO: Talk about Landau Damping

6.1 Fundamentals of Complex Analysis

Before we dive into some of the math behind Landau Damping, we should take
a few minutes to understand some basic facts about complex analysis, since
we’ll be working with integrals over the complex plane in this chapter as well
as Laplace Transforms.

6.1.1 Integrals of Analytic Functions in the Complex Plane

One fundamental result of complex analysis is that the closed integral of an
analytic function in the complex plane is zero. Now I don’t know about you,
but when I hear statements like that, I’m usually pretty confused. So let’s
unpack that statement some most.

When we perform real-valued integrals of a single-valued function f(x), we
are used to integrating a function along the real axis. This simple case is illus-
trated in figure 18. Now, it would seem obvious that if we integrate f(x) from
x1 to x2 and then back to x1, the integral will equal 0. And this is indeed true.
However, nothing is stopping us from plugging complex values into f(x) instead
of only real values. Additionally, nothing is stopping us from integrating over
not just the real axis, but integrating into the complex plane as well.

Imagine we wanted to integrate f(x) in the complex plane, such as the
integral in figure 19. Because this integral is now in the complex plane, we can
throw whatever intuition we had about integrals out the window. To get some
intuition for this sort of integral, let’s solve for this integral by hand and see
what we get, supposing that f(x) = xn.

Starting at the origin, the first part of the integral is just integrating from 0
to 1 along the real axis as we are used to.∫ 1

0

xndx =
1

n+ 1

[
xn+1

]1
0

=
1

n+ 1
(6.1)

The second leg of the integral involves holding the real component of x at 1
and integrating over the imaginary component of x.

∫ i

0

(1 + y)ndy =
1

n+ 1

[
(1 + y)n+1

]i
0

=
1

n+ 1
(1 + i)n+1 − 1

n+ 1
(6.2)
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Figure 18: Integration along the real axis of a function f(x).

Figure 19: Complex integral of a function f(x) = xn in the complex plane.
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The third leg of the integral involves holding the imaginary component of x
at i and integrating the real component from 1 to 0.∫ 0

1

(i+ x)ndx =
1

n+ 1

[
(i+ x)n+1

]0
1

=
in+1

n+ 1
− (1 + i)n+1

n+ 1
(6.3)

The fourth leg of the integral is done in similar fashion, fixing the real com-
ponent to 0. ∫ i

0

yndy = − in+1

n+ 1
(6.4)

Adding these 4 parts up, we can see that they add to 0. Our integral of
f(x) = xn, around a specific closed path in the complex plane, integrates to 0!
Now it turns out that we could have integrated xn around any closed path in the
complex plane, and our integral would have still come out to 0. I haven’t proven
anything, but you can probably imagine that our result might hold independent
of the shape of the integration path in the complex plane.

An analytic function is, for our purposes, a function which can be written
as a Taylor series. For some complex function f(x), it is analytic if it can be
written f(x) =

∑∞
n=0 an(x − x0)n for any point x0 in the complex plane. I

typically think of analytic functions as functions which don’t blow up at any
single points in space, and are smooth everywhere.

Now, if xn integrates to 0 over any closed path in the complex plane, then
any analytic function which can be written as an infinite sum of xn’s will also
integrate to 0 over the complex plane. This is what I was referring to earlier
when I wrote ”the closed integral of ananalytic function in the complex plane
is zero”. Not so bad!

6.1.2 Integrals of Non-Analytic Functions in the Complex Plane

Things get a little bit more complicated when functions are not analytic. What
this whole ‘non-analytic’ business usually means is that our function f(x) has
points in the complex plane where the function ‘blows up’. These points are
typically called ‘poles’. If we want to integrate over a path in the complex
plane26 which encloses a pole, then our integral will no longer necessarily be 0.
We’ll show in a second that an integral which encloses a pole is equal to the
‘residue’ of that pole, in a theorem known as the residue theorem.

Imagine, as in figure 20, that we wanted to perform an integral in the complex
plane which enclosed a pole. Well, from the result we discussed earlier that the
closed integral of any analytic function in the complex plane is 0, we can distort
our integral so it looks like a perfect circle around our pole, as in figure 20.
Make sure you understand why we can distort our integral like that - basically,
we’re just adding a bunch of closed integrals which all sum to 0, so that the
path of the integral changes.

26These integrals are often referred to as ‘contour integrals’.
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Figure 20: Integrating around a pole in the complex plane. The integral can be
changed to a circle around the pole without changing the result of the integral.

Now, any function (whether analytic or not) in the vicinity of a pole a can
we written as a Taylor series

∑∞
−∞ cn(x − a)n. We can use this to perform a

circular integral around a pole. Our path for x(t) is a circle around the pole at
x = a, so x(t) = a + reit. This gives dx = rieit. Our integral around the pole
in figure 20 then becomes∫

γ

f(x)dx =

∫ t=2π

t=0

∞∑
−∞

cn(reit)nrieitdt (6.5)

Because
∫ 2π

0
eimtdt is 0 for all integers m except m = 0, then only n = −1

contributes to the integral in equation 6.5. Thus, our integral becomes∫ t=2π

t=0

c(−1)idt = 2πic(−1) (6.6)

This is the ‘residue’ of the integral around the pole: the coefficient c(−1) of
the expansion of the function f(x), times 2 πi.

In summary, there are two key points we should keep in mind when doing
complex integration. Firstly, because the integral around a closed path in the
complex plane of an analytic function is zero, we can deform the path of our
integral arbitrarily in the complex plane so long as we don’t cross over any
poles. And if our integral encloses a pole, we can solve for the integral using
the residue theorem.

6.1.3 Laplace Transforms

Let’s take some time to make sure we understand Laplace transforms. The
Laplace transform of a function ψ(t) is defined as

ψ̃(p) =

∫ ∞
0

ψ(t)e−ptdt, Re(p) > γ (6.7)
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where γ is the fastest-growing exponential term in ψ(t). The inequality here

simply means that ψ̃(p) is only defined for the specified values of p. The inverse

Laplace transform of ψ̃(p) is

ψ(t) =
1

2πi

∫ β+i∞

β−i∞
dpψ̃(p)ept, β > γ (6.8)

where β is a real number. Actually, in class the Laplace transform was
defined a bit differently. Here, I’m using the definition used in Bellan, whose In
class, we replaced p with iω, which means that the inverse Laplace transform
will require an integration along the real axis, not the imaginary axis. This
difference isn’t so important, but I wanted to point that out so as to avoid
confusion as much as possible when comparing with class notes. Hopefully, by
the end of this chapter you’ll see why we used iω in class as opposed to p, and
you’ll be able to understand Laplace Transforms regardless of whether p or iω
is used.

Having the mathematical definition of a Laplace transform is great, but it
doesn’t mean we understand what a Laplace transform is or what it does or
how it works. Before we understand Laplace transforms, we need to recognize
that p is a complex number. This is pretty important. It’s also important
that the t-integration is from t = 0 to infinity, as opposed to −∞ to ∞ as in
Fourier transforms. Take a moment to think about those facts, and what they
imply about Laplace transforms. What do you think ψ̃(p) represents? Once you
think about that for a bit, you should reach a conclusion along these lines: the
Laplace transform takes a function which starts at t = 0 and goes to infinity,
and instead of breaking it up into oscillatory components which are real valued
(as in a Fourier Transforms), the components of the Laplace transform are both
oscillatory and exponentially growing or decaying. In other words, instead of it
telling us how much of each real frequency is in a function, it tells us (more or
less) how much of each complex frequency is in a function.

Why do we require, in the Laplace transform, that Re(p) > γ, where γ is
the fastest growing exponential term in ψ(t)? Well, suppose f(t) goes as eγt as

t → ∞. Then if Re(p) < γ, then ψ̃(p) will blow up (as we can see from the
definition of the Laplace transform). The same is true if f(t) is exponentially
decaying as t → ∞ - we still require that Re(p) > γ, where γ is the slowest-
decaying exponential, for otherwise the integral blows up.27

Imagine we had some function f(t), and we wanted to know what f̃(p) was.

Well, if p is purely real, then we have a simple idea of what f̃(p) is - it’s the
integral of the function f(t), integrated to infinity with a weight function e−pt

applied to the integration. While there isn’t a physical interpretation for this,
we can more or less understand what f̃(p) is giving us. On the other hand, if p
is purely imaginary, then (assuming f(t) decays at infinity sufficiently fast that

27If the function neither exponentially grows nor decays as time goes to infinity, then I’m
not quite sure how to handle issues of where in the complex plane the transform is defined.
I’ll have to think about that one. TODO: think about it
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the integral converges) ψ̃(p) tells us how much of the frequency Im(p) is in the
function f(t).

Let’s do one more example to make sure we understand intuitively what a
Laplace transform is. Imagine f(t) = e−αt cos (ωt). This function is exponen-
tially decaying and oscillating at the same time, of course. Now imagine we
took f̃(−α + iω). What will this give us? Well, for this particular value of p

(p = −α+ iω), f̃(p) will go to infinity, because the exponentials cancel and we’ll

be integrating cos2 ωt from 0 to infinity. As Re(p) increases above −α, f̃(p)
becomes some finite number, and gradually decreases towards zero as Re(p) in-

creases. If we imagine varying Im(p), it turns out that f̃(p) will be maximum
around Im(p) = ω and fall off as Im(p) changes. So for f(t) = e−αt cos (ωt), we
get a pole at p = −α+iω. This also illustrates an important point about Laplace
transforms: the fastest growing exponential term in f(t) (in this example, the

term is −α) is related to the pole of f̃(p) with the largest real component in
that the real components of each are the same.

We can actually derive the inverse transform, equation 6.8 from the definition
of the Laplace transform, equation 6.7. Bellan goes through this, and it’s an
illustrative exercise, so I’ll go through it here now. Let’s start by considering
the integral

g(t) =

∫
C

ψ̃(p)eptdp (6.9)

This is a reasonable guess for the inverse transform, since we expect the
inverse transform to have a ept factor hanging out in the integral. The contour
C over which we integrate in p-space is undefined at the moment - we’ll define
it in a bit. Plugging in the definition of ψ̃(p), we get

g(t) =

∫ ∞
t′=0

dt′ψ(t′)

∫
C

ep(t−t
′)dp (6.10)

We’ll have to be careful though: ψ̃(p) isn’t defined for Re(p) < γ, so we’ll
have to make sure our contour C doesn’t venture into that region in p-space.
To evaluate g(t), we’ll have to choose a contour C. But here is a fact: we can
write the delta function δ(t) as

δ(t) =
1

2π

∫ ∞
−∞

dωeiωt (6.11)

Hey wait a minute! That looks an awful lot like what we’ve got going on in
equation 6.10. If we define the right integration contour C, then we might be
able to get out a delta function, and thus write g(t) in terms of ψ(t). The trick
will be to hold the real part of p constant, and greater than γ (pr = β > γ)
and vary the imaginary part of p from negative infinity to positive infinity. If
we do this, then dp = idpi, and ep(t−t

′) = epr(t−t′)epi(t−t
′). Thus, equation 6.10

becomes
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g(t) =

∫ ∞
t=0

dt′ψ(t′)

∫ β+i∞

β−i∞
epr(t−t′)epi(t−t

′)dp (6.12)

g(t) = i

∫ ∞
t=0

dt′ψ(t′)eβ(t−t′)
∫ ∞
−∞

epi(t−t
′)dpi (6.13)

where we turned epr(t−t′) into eβ(t−t′) because pr was held constant over the
entire integral. Now, this last equation is in the form of δ(t) as desired, so it
becomes 2πδ(t− t′). Thus,

g(t) = 2πi

∫ ∞
0

dt′ψ(t′)eβ(t−t′)δ(t− t′) = 2πiψ(t) (6.14)

This completes our proof: g(t) is 2πi times ψ(t), assuming we integrate from

β − i∞ to β + i∞ and β > γ. And since the inverse transform of ψ̃(t) should
give us ψ(t), then equation 6.8 must be the inverse Laplace transform.

I’ve got one more fact (and short proof) related to Laplace transforms which
we’ll have to use. It turns out that∫ ∞

0

dt
dψ

dt
e−pt = pψ̃(p)− ψ(0) (6.15)

We can prove this simply by integrating by parts.

∫ ∞
0

dt
dψ

dt
e−pt = [ψ(t)e−pt]∞0 −

∫ ∞
0

dtψ(t)
d

dt
(e−pt) = −ψ(0)+p

∫ ∞
0

dtψ(t)e−pt

(6.16)

Since this last integral is the definition of the Laplace transform ψ̃(p), we’ve
proved our result for the Laplace transform of a derivative.

6.1.4 Analytic Continuation

Imagine we have a function f(t) = eqt where q is some complex number, and
we want to take the Laplace transform of f(t). What do we get? Well, using
the definition of the Laplace transform, we have

f̃(p) =

∫ ∞
0

e(q−p)tdt =
[ 1

q − p
e(q−p)t]t=∞

t=0
=
{∞ for Re(p) > Re(q)

1
p−q for Re(q) > Re(p)

(6.17)

Rhe transform is only defined for Re(p) >Re(q), but I’ve included the . Note
that if we tried to calculate the transform for Re(p) < Re(q), then we would have
gotten infinity as our answer, which isn’t analytic of course. So we shouldn’t
attempt to take Laplace transforms for a value of p in the region where it isn’t
defined, as this will give us infinity.

Now, let’s get from f̃(p) back to f(t) by taking the inverse laplace transform.
Using the definition of the inverse Laplace transform, we have
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f(t) =
1

2πi

∫ β+i∞

β−i∞
f̃(p)eptdpi (6.18)

It would be great if we could use method of residues to evaluate this integral,
as we would just need to calculate the residue of the pole at p = q, and viola we
have the integral. However, we have two problems: the integral isn’t a closed
contour in p-space, but rather a straight line. And the method of residues
requires a closed contour over an analytic function. The second problem is that
the inverse laplace transform f̃(p) isn’t defined to the left of the pole, so even if
we wanted to we couldn’t form a closed path which enclosed the pole.

However, it turns out that both these problems can be fixed and hence the
integral can be solved using method of residues, by use of an ingenious little trick
called analytic continuation. Watch carefully. The inverse Laplace transform,
f̃(p), isn’t defined for Re(p) < Re(q). However, the analytic expression for the
Laplace transform in the region where it is defined, 1

p−q , is only non-analytic
at the point p = q. What we do - and this is the key step when performing
analytic continuation - is redefine the inverse Laplace transform to be 1

p−q every-

where that 1
p−q is analytic, even in the region where the Laplace transform was

previously undefined. In this example, that means that our redefined Laplace
transform is now defined everywhere except the pole at p = q. Once we do this,
then we can actually close our integral infinitely far to the left in the left half
of p-space, as illustrated in figure 21. In this leftwards section of the contour
integral, the infinitely negative real component of p causes the exponential term
ept to go to 0, and this other section of the integral which closes the integral
evaluates to 0. However, now (as in figure 21) we have a closed contour in
p-space, so we can use the method of residues to evaluate the integral.

When we use method of residues, we expect that the residue gives us back
our original function, f(t) = eqt. Well, this is indeed the case. Remember,
the residue is 2πi times the c(−1) term in the expansion of the function f(x) =∑∞
−∞ cn(x − a)n around x = a. Well, here our function f(x) is the function

being integrated in equation 6.18, which is 1
2πi(p−q)e

pt. The 2πi’s cancel, and

if we expand the function around the point p = q, the n = −1 coefficient in
the expansion of (p − q)n is (not surprisingly) eqt. This makes sense, as we’re
looking for the coefficient for the 1

p−q term in the expansion of 1
p−q e

pt, which

already contains a 1
p−q in it. Bellan writes this out explicitly as28

f(t) =
1

2πi

∮
1

p− q
eptdp = lim

p→q
2πi(p− q)

[ 1

2πi(p− q)
ept
]

= eqt (6.19)

Let’s recap what just happened: we wanted to take the inverse Laplace
transform of a function, but we couldn’t actually carry out the integral. So

28I don’t really understand why this expression is the residue, but I’m not by any means
experienced in actually calculating residues of poles. This is the only residue we explicitly
calculate in this class, and I’m only calculating it to illustrate how analytic continuation works.
So if you want to understand this expression and actually get practice calculating residues of
poles, open up a book on complex analysis.
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Figure 21: The integration contour used to close the integral in equation 6.18.
These contours are called Bromwich contours. Although the inverse Laplace
transform is not defined for Re(p) ¡ Re(q), we have used analytical continuation
to be able to extend our integration path into the left half of p-space. We can
then solve this integral using method of residues.

we extended the realm of validity of the inverse transform, which allowed us to
close the integral in the left half of p-space. Because of the exponential term
in the integral, closing the integral added nothing to the original integral, and
we were able to use the method of residues to calculate an integral which we
previously couldn’t calculate.

In summary, analytic continuation involves making a new ψ̃(p) which

• Equals the old ψ̃(p) in the region Re(p) > γ,

• is also defined in the region Re(p) < γ,

• is analytic over the integration path.

As long as we follow these constraints, then analytic continuation is a useful
means of evaluating inverse Laplace integrals.

QUESTION: Bellan page 160, requirement 3. Is analytic where? What if
there are multiple poles? This is important - we can’t just say ‘must be analytic’
because there are still poles to be evaluated.

6.2 Fourier Transform in Space, Laplace Transform in Time

Okay, enough math. Let’s get back to the physics of Landau damping. Of
course, we’ll be using all the math I just introduced. Otherwise I wouldn’t have
bothered to introduce it.

To begin to understand Landau damping, we’re going to derive a pseudo-
dispersion relation for oscillations which perturb a homogenous, zero-field plasma
equilibrium. Why do I say pseudo? Well, typically a dispersion relation has an
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exact relation between wavenumber and frequency. Here we don’t have that,
we solve for the time-evolution of f based on the initial conditions. What moti-
vates us to look for a dispersion relation? Actually, the reason is pretty simple.
If our frequency ω in the dispersion relation has some imaginary component,
then the oscillations will be exponentially damped or exponentially growing. If
the frequency is purely real, then the oscillations will continue forever without
being damped. So if we are trying to understand damping, we want to figure
out any complex frequencies which might arise. Crucially, we will do this using
a kinetic treatment, with the Vlasov-Maxwell equation. For simplicity, we’ll use
the collisionless Vlasov-Maxwell equation. Even using a collisionless equation,
we still get damping. This is often called ‘collisionless damping’. If we were
to look for oscillations using collisionless fluid equations, we get waves which
aren’t damped, as in chapter 5.

Actually, we’ve gotten a preview of Landau damping in chapter 5 already.
Take a look back at equation 5.5. Remember how we got this equation for
the perturbed density nσ,1 - we started with the collisionless Vlasov-Maxwell
equation, linearized, and then Fourier-transformed in space and time to get
fσ,1

29. We then integrated fσ,1 over velocity space to get nσ,1. However, this
equation blows up in the denominator, when v‖ = w

k . Density going to infinity
isn’t good. In Chapter 5, we ignored this by expanding the denominator in
isothermal and adiabatic limits. It turns out that what we did in Chapter 5 was
wrong, and we’ll need to take a different approach. We erred when we Fourier
transformed. TODO: Why did we err?

Let’s start, as we did in chapter 5, with the collisionless Vlasov Maxwell
equation.

∂fσ
∂t

+ ~v · ~∇fσ +
qσ
mσ

( ~E + ~v × ~B) · ~∇vfσ = 0 (6.20)

Now, let’s linearize this equation around an equilibrium. Here, the equi-
librium is a spatially homogenous, zero-field equilibrium, such that ~E0 and ~B0

equal zero. This gives

∂fσ,1
∂t

+ ~v · ~∇fσ,1 +
qσ
mσ

( ~E1 + ~v × ~B1) · ~∇vfσ,0 = 0 (6.21)

Now, as before, we can Fourier transform in space, so all the first-order

quantities go as ei
~k·~x. Thus, the ~∇ becomes i~k. We can also ignore ~v × ~B1

relative to ~E1, using ~∇× ~B = 1
c2
∂ ~E
∂t . Since there is no zeroth-order field, we can

write kB1 ∼ ω 1
c2E1, so B1 ∼ ω

k
1
c2E1 and B1 ∼ vg

c2E1. Since
vgv
c2 � 1, we can

ignore ~v × ~B1. TODO: Why doesn’t ~J come in? Now, we have

29What we really did was assume an exponential dependence of all the first-order quantities

ei
~k·~x−iωt. However, this is equivalent to Fourier transforming in space and time, as Fourier

transforming in time picks out a particular ω and Fourier transforming in space picks out a
particular ~k, which we are doing. So when I say ‘we Fourier transform’ what I mean is that
we assume an exponential dependence in the linearized quantities. Sorry if that is confusing.
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∂fσ,1
∂t

+ i~v · ~kfσ,1 +
qσ
mσ

~E1 · ~∇vfσ,0 = 0 (6.22)

Now, here comes the crucial point. We’re going to Laplace transform in time
instead of Fourier transform. When you read about this, you’ll see people write
this is treating the problem as an “initial value problem”. I’m no mathemati-
cian, but here’s what I understand this statement to mean: when we Fourier
transform, each wavenumber k has a particular frequency ω which determines
the time-evolution of the function of interest, in this case fσ,1. However, when
we Laplace transform, there is not a particular single frequency (neither real
nor imaginary) which gives us the behavior of a component with wavenumber
k in fσ,1. Instead, the behavior of the wavenumber component k in fσ,1(t = 0)
has some complicated behavior described by many (complex) frequencies, and
Laplace transforming allows us to solve for that complicated behavior. Using
equation 6.15, we’ll see that solving for the complicated time-evolving behav-
ior requires knowing the initial condition on fσ,1. Now, taking the Laplace
transform gives

∫ ∞
0

[∂fσ,1
∂t

e−pt + i~v · ~kfσ,1e−pt +
qσ
mσ

~E1 · ~∇vfσ,0e−pt
]
dt = 0 (6.23)

On the first term, we can use equation 6.15 to simplify, to get pf̃σ,1(~x,~v, p)−
fσ,1(~x,~v, t = 0). In the second and third terms, we replace the first-order
quantities with their Laplace transforms. Thus, we have

pf̃σ,1(~x,~v, p)− fσ,1(~x,~v, t = 0) + i~v · ~kf̃σ,1(~x,~v, p) +
qσ
mσ

~̃E1(~x, p) · ~∇vfσ,0 = 0

(6.24)
This equation is a bit messy, and it’s only going to get worse from here

unfortunately. However, for now we can clean things up a bit by solving for
f̃σ,1.

f̃σ,1(~x,~v, p) =
fσ,1(~x,~v, t = 0)− qσ

mσ
~̃E1(~x, p) · ~∇vfσ,0

p+ i~v · ~k
(6.25)

We’ll assume fσ,1 is known at t = 0, which is equivalent to saying we know

what our initial perturbation is. Thus, we have an equation for f̃σ,1 in terms

of things we know, and ~̃E1, which we don’t know. Thus, if we can get one

more equation with both f̃σ,1 and ~̃E1, we can solve our dispersion relation.
Fortunately, there is one equation which describes electrostatic plasma oscilla-
tions we haven’t used yet: Gauss’s Law. And just like we Laplace transformed
the linearized Vlasov-Maxwell equation, we can also Laplace transform the lin-
earized Gauss’s law. Remember how we did this - we multiplied the equation
by e−pt and then integrated over t from 0 to ∞. We then used the definition of
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the Laplace transform the replace the first order quantities with their Laplace
transforms, which have a squiggle above them. For Gauss’s law, this leaves

~∇ · ~̃E1(p, ~x) = i~k · ~̃E1(p, ~x) =
1

ε0

∑
σ

qσ

∫
d3~vf̃σ,1(p, ~x,~v) (6.26)

We have an expression for f̃σ,1 in equation 6.25, which we can plug into the

above equation. We’ll then isolate for ~̃E1.

i~k· ~̃E1(p, ~x) =
1

ε0

∑
σ

qσ

∫ (fσ,1(~x,~v, t = 0)

p+ i~v · ~k
)
d3~v− 1

ε0

∑
σ

q2
σ

mσ

∫ ( ~̃E1(~x, p) · ~∇vfσ,0
p+ i~v · ~k

)
d3~v

(6.27)

Now, if we have purely electrostatic perturbations, then ~E1 = −~∇φ1 =

−i~kφ1, which implies ~E ‖ ~k. Thus, ~̃E1 = Ẽ1k̂, so the dot product ~k · ~̃E1

simplifies to a scalar and we can solve equation 6.27 for Ẽ1.

Ẽ1

[
ik +

1

ε0

∑
σ

q2
σ

mσ

∫
k̂ · ~∇vfσ,0
p+ i~v · ~k

d3~v

]
=

1

ε0

∑
σ

qσ

∫ (fσ,1(~x,~v, t = 0)

p+ i~v · ~k
)
d3~v

(6.28)

Solving for Ẽ1, we get

Ẽ1 =
N(p)

D(p)
(6.29)

where

N(p) =
1

ε0

∑
σ

qσ

∫ (fσ,1(~x,~v, t = 0)

p+ i~v · ~k
)
d3~v (6.30)

D(p) = ik +
1

ε0

∑
σ

q2
σ

mσ

∫
k̂ · ~∇vfσ,0
p+ i~v · ~k

d3~v (6.31)

The N stands for numerator, and D stands for denominator. Actually, my
N(p) and D(p) differ slightly from those derived in class and in Bellan’s book.
This is because I chose p as my Laplace variable, as opposed to iω. I also solved

for ~̃E1, as opposed to φ̃1 as is done in Bellan.
I should emphasize that Ẽ1 is now known! Or at least, in principle it is

known for a given p, since we known fσ,0 and fσ,1(t = 0).
A lot has happened, so we’re going to take a break here and recap what we’ve

done. We started with the Vlasov-Maxwell equation. We linearized around a
homogenous, zero-field equilibrium assuming that whatever perturbations were
created would be electrostatic in nature. The equation which remains can’t be
solved purely with Fourier transforms - that is the approach used in chapter
5, when we found that density blows up when v‖ = ω

k . Instead, we’ve taken a
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different approach, by Fourier transforming in space but Laplace transforming
in time. This allows us to solve for the first-order electric field in terms of the
initial value of the perturbed f . Lastly, we Laplace transform Gauss’s law and
combine that with the linearized Laplace transformed Vlasov-Maxwell equation
to solve for E1.

6.3 Landau Contours and All That Jazz

We’re going to attempt to solve for ~E1. If we can solve for ~E1, then in principle
we have everything we need to solve for the time-evolution of f .

Well, it turns out that solving for ~E1 is easy, at least in principle. All we
have to do is take the inverse Laplace transform of Ẽ1. From equation 6.8, we
have

~E1 =
k̂

2πi

∫ β+i∞

β−i∞

N(p)

D(p)
eptdp (6.32)

Take a look at figure 22. This represents the integration in p-space taken

to solve for ~E1. The x’s represent the poles of N(p)
D(p) . N(p)

D(p) isn’t defined in the

shaded red area, as the real part of p in this area is less than the real part of

the fastest growing pole of Ẽ1 = N(p)
D(p) . β, as you might have realized, is greater

than the real part of any poles of N(p)
D(p) .30

Now, the integral in equation 6.32 can be completed using the method of

analytic continuation. As a reminder, analytic continuation will define N(p)
D(p) in

the red region in figure 22, so that the integral can be extended into the left
half of p-space, and the integral can be solved using method of residues. If we

want N(p)
D(p) to remain analytic over an integration path like that of the Bromwich

contour in figure 21, we’ll need to make sure that N(p) and D(p) both remain
analytic as we extend these functions into the left half of p-space. It turns out
that keeping these functions analytic is a bit tricky, and requires the use of these
funny integration paths called Landau contours.

Remember our definitions of N(p) and D(p) from before.

N(p) =
1

ε0

∑
σ

qσ

∫ (fσ,1(~x,~v, t = 0)

p+ i~v · ~k
)
d3~v (6.33)

D(p) = ik +
1

ε0

∑
σ

q2
σ

mσ

∫
k̂ · ~∇vfσ,0
p+ i~v · ~k

d3~v (6.34)

30Bellan actually writes this incorrectly in his book - he says “β is chosen to be larger than
the fastest growing exponential term in N(p)/D(p).” However, this is wrong - there are two
correct, equivalent ways of writing this. The first is as I’ve written it here - that β is greater

than the real part of any poles of
N(p)
D(p)

. The second correct way of writing it would be that β

is greater than the fastest growing exponential in E1(t), γ. Note that there are two ways of
writing it because the fastest growing exponential term in E1(t) is the same as the real part

of the largest pole in Ẽ1(p), as I discussed in an example earlier in this chapter.
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Figure 22: The integration path taken in equation 6.32. The x’s represent the
poles of N(p)/D(p), which is being integrated here. Here, β is larger than the
largest real component of the poles of N(p)/D(p). The red area represents the
region in p-space where the Laplace transform of E1 is not defined, and thus
where the integration path cannot go.

We can integrate over the two directions perpendicular to ~k, and rewrite
these expressions as follows:

N(p) =
1

ikε0

∑
σ

qσ

∫ ∞
−∞

(Fσ,1(~x,~v, t = 0)

v‖ − ip
k

)
dv‖ (6.35)

D(p) = ik +
1

ikε0

∑
σ

q2
σ

mσ

∫ ∞
−∞

∂Fσ,0
∂v‖

v‖ − ip
k

dv‖ (6.36)

where Fσ,1 =
∫
fσ,1d

2~v⊥ and Fσ,0 =
∫ ∂fσ,0

∂v‖
d2~v⊥. As these integrals are

constructed, we integrate along the real axis. Each of the integrals has a pole
at v‖ = ip

k , but as long as Re(p) doesn’t equal zero, this isn’t a problem for us
because the integration path doesn’t go over the pole.31

I spoke too soon - this is a problem for us. Remember what we want to do -
we want to extend the definition of N(p) and D(p) into the left half of p-space,
such that N(p) and D(p) remain analytic. At Re(p) = 0, then Im(p) 6= 0,
so our integral is now integrating over a pole! This will create a discontinuity
in N(p) and D(p) at Re(p) = 0 - there will be a jump in the value of the
integral between Re(p) > 0 and Re(p) < 0. And a discontinuity in our analytic
continuation at Re(p) = 0 means our analytic continuation is no longer analytic
over the Bromwich contour, which means we can’t use the method of residues
to evaluate the integral.

31Let’s assume k > 0 for simplicity. The sign of k doesn’t change the result or the interpre-
tation of course.
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Figure 23: As Re(p) drops below 0, the integration paths in N(p) and D(p) are
deformed to prevent the pole from crossing the integration path, so that N(p)
and D(p) each remain analytic.

As Landau does, Landau found a clever solution. We can make N(p) and
D(p) analytic if we are willing to wander off the real axis during our integration.
Take a look at figure 23. Once Re(p) = 0, the integration path drops below the
real axis as shown in the figure. As Re(p) decreases below 0, we deform the
integration path further below the imaginary axis to prevent the pole from
crossing over the contour integral and creating a discontinuity in N(p) or D(p).
These deformed contours are called Landau contours.

Now, this is as far as we got in class in regards to Landau damping. Unfor-
tunately, this is a very unsatisfying point to stop in regards to Landau damping.
All we’ve done is some complex analysis and gotten an expressions for ~E1, which
supposedly we know how to evaluate in principle. We haven’t gotten any under-
standing of the physics behind Landau damping, or reaped the benefits of the
calculations we’ve done. Fortunately, you (and I!) will have the pleasant expe-
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rience of taking AST553, Plasma Waves and Instabilities, where we will revisit
Landau damping in great depth. Hopefully, at the conclusion of that course,
we’ll get to the important stuff: the physics. But for now, have patience. There
is much still for us to learn about this game we call Plasma Physics.
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