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Abstract. ]. F. Benders devised a clever approach for exploiting
the structure of mathematical programming problems with com-
plicating variables (variables which, when temporarily fixed, render
the remaining optimization problem considerably more tractable).
For the class of problems specifically considered by Benders, fixing
the values of the complicating variables reduces the given problem
to an ordinary linear program, parameterized, of course, by the
value of the complicating variables vector. The algorithm he
proposed for finding the optimal value of this vector employs a
cutting-plane approach for building up adequate representations of
(i) the extremal value of the linear program as a function of the
parameterizing vector and (ii) the set of values of the parameterizing
vector for which the linear program is feasible. Linear programming
duality theory was employed to derive the natural families of cuts
characterizing these representations, and the parameterized linear
program itself is used to generate what are usually deepest cuts for
building up the representations.

In this paper, Benders’ approach is generalized to a broader
class of programs in which the parametrized subproblem need no
longer be a linear program. Nonlinear convex duality theory is
employed to derive the natural families of cuts corresponding to
those in Benders’ case. The conditions under which such a generaliza-
tion is possible and appropriate are examined in detail. An illustrative
specialization is made to the variable factor programming problem
introduced by R. Wilson, where it offers an especially attractive
approach. Preliminary computational experience is given.
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1. Introduction

This paper is devoted to problems of the form

maxit;lize f{x, ¥) subject to G(x, 3} = 0, xeX, yeV, (1)

where y is a vector of complicating variables in the sense that (1) is a
much easier optimization problem in x when y is temporarily held fixed.
G is an m-vector of constraint functions defined on X X ¥ C R™m x R7e,
We have in mind particularly situations such as the following:

(a) for fixed y, (1) separates into a number of independent
optimization problems, each involving a different subvector of x;

(b) for fixed y, (1) assumes a well-known special structure, such
as the classical transportation form, for which efficient solution procedures
are available; and

(c) Problem (1) is not a concave program in x and y jointly, but
fixing y renders it so in «.

Such situations abound in practical applications of mathematical
programming and in the literature of large-scale optimization, where
the central objective is to exploit special structure such as this in order
to design effective solution procedures.

It is evident that there are substantial opportunities for achieving
computational economies by somehow looking at (1) in y-space rather
than in xy-space. We expect that, in situation (a), the computations can be
largely decentralized and done in parallel for each of the smaller
independent subproblems; in (b), use can be made of available efficient
special-purpose algorithms; and in (c), the nonconvexities can be treated
separately from the convex portion of the problem.

The key idea that enables (1) to be viewed as a problem in y-space is
the concept of projection (Ref. 1), sometimes also known as partitioning.
The projection of (1) onto y is

maximize o(y) subject toye YNV, 2)
¥
where
o(y) = supremum f(x, y) subject to G(x, ¥) = 0, xe X, (3)
and
V = {y:G(x,9) = 0 for some x € X}. 4)

Note that o(y) is the optimal value of (1) for fixed y and that, by our
designation of y as complicating variables, evaluating (y) is much easier
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than solving (1) itself. Because it must be referred to so often in the
sequel, the label (1-y) is introduced to refer to the optimization problem
in (3)

ma);ér}rgize f(x, y) subject to G(x, ) = 0. (-9}

The set V' consists of those values of v for which (1-y) is feasible;
Y N V can be thought of as the projection of the feasible region of (1)
onto y-space.

It is intuitively clear that the projected problem (2) is equivalent
for our purposes to (1). This will be made precise in Theorem 2.1 below.
For now, it is enough to keep in mind that an optimal solution y* of
(2) readily yields an optimal solution (x*, y*) of (1), where x* is any
optimizing x in (1-y*).

Benders (Ref. 2) was one of the first to appreciate the importance
of (2) as a route to solving (1). The difficulty with (2), however, is that
the function v and the set I are only known implicitly via their definitions
(3) and (4). Benders coped with this difficulty by devising a cutting-plane
method that builds up an approximation to v and V. His development
treats the special case

X={x:22>0} (5-1)
@) = cx + (), (5-2)
Gz, y) = Ax +g(y) — b, (5-3)

where ¢ is a scalar-valued function and g a vector-valued function.
Under these assumptions, both v and 7 turn out to have exact representa-
tions using only a finite number of approximators. Linear programming
duality theory yields a constructive proof of this result based on the fact
that (1) is a linear program in & for each fixed y. The rationale of the
computational procedure is then evident. See the original paper or
Ref. 1, Section 4.1, for details,

The main result of this paper is an extension of Benders’ approach
to a more general class of problems with the help of nonlinear duality
theory. Many new practical problems are thereby brought into range,
including some difficult ones having to do with the optimal design of
gaseous diffusion processes and the computation of chemical equilibria.
These results are presented in the following section. In Section 3,
specialization is made to the variable factor programming problem,
previously treated by Wilson (Ref. 3) by another approach. In addition
to its intrinsic interest, this application illustrates an instance in which (1)
1s not a concave program and yet can be solved optimally by concave
programming techniques via the present approach. Computational
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experience is given. Section 4 presents some additional discussion of the
assumptions required at various stages of the development.

For the reader’s convenience, pertinent but not yet universally
known results from nonlinear duality theory are summarized in an
appendix. The notation employed is standard. All vectors are column
vectors, unless transposed.

2. Generalized Benders Decomposition

The generalization of Benders’ approach to a class of problems of
the form (1) is divided into five subsections. The first establishes the
master problem and its equivalence to (1). The central idea here is to
invoke the natural dual representations of v and V after passing to (2).
The second subsection demonstrates how the master problem can be
solved via a series of subproblems which generate dominating approxi-
mators of v and V as needed. Roughly speaking, this is accomplished by
obtaining the optimal multiplier vectors for (I-y) corresponding to
various trial values of y. The generalized Benders decomposition
procedure for (1) is then stated and discussed in Section 2.3. Theoretical
convergence is taken up in Section 2.4, and Section 2.5 discusses some
computational considerations.

2.1. Derivation of the Master Problem. The desired master
problem is obtained from (1) by a sequence of three manipulations:
(i) project (1) onto y, resulting in (2); (ii) invoke the natural dual
representation of V' in terms of the intersection of a collection of regions
that contain it; and (iii) invoke the natural dual representation of v in
termsof the pointwise infimum of a collection of functions that dominate it.

Manipulation (i) was already discussed in Section 1. The following
easy theorem (Ref. 1, Section 2.1) shows that (1) and (2) are equivalent
for our purposes [note that no assumptions on (1) whatever are needed].

Theorem 2.1. (Projection). Problem (1) is infeasible or has
unbounded optimal value iff the same is true of (2). If (x*, ¥*) is optimal
in (1), then y* must be optimal in (2). If y* is optimal in (2) and x*
achieves the supremum in (3) with y = y*, then (x*, y*) is optimal in
(1). If ¥ is e;,-optimal in (2) and ¥ is e,-optimal in (1-7), then (&, ¥) is
(&1 + €5)-optimal in (1).

Manipulation (ii) is based on the following theorem.

Theorem 2.2. (V-Representation). Assume that X is a nonempty
convex set and that GG is concave on X for each fixed y € ¥. Assume
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further that the set Z, = {z e R™: G(x, y) > z for some x € X} is
closed for each fixed y € Y. Then, a point j € Y is also in the set V iff
satisfies the (infinite) system

[supre%{mum XG(x,v)] =0, all  Xed, (6)
X
where

A={AeR": A >0and ) A = 1.
i=1
Proof. Let ¥ beanarbitrary point in Y.Itis trivial to verify directly
that ¥ satisfies (6) if it is in V. The converse can be demonstrated with the

help of nonlinear duality theory as follows. Suppose that § satisfies (6).
Then,

. . .
mfi\rer/llum[supgg%lum AG(x, ¥)] = 0.

It follows that

inf}\g%lm[supa%x(mm NG, 7)] = 0, (7

since the scaling of X does not influence the sign of the bracketed expres-
sion and A = 0 is allowed in (7). Now, (7) simply asserts that the dual
with respect to the G-constraints of the concave program

maxér)?ize 0fx subject to G(x, 7) == 0 (8)

has optimal value 0. Recalling that Z; is closed, we therefore have from
Theorem 5.1 (see the appendix) that (8) must be feasible and, hence, that
Fel.

The assumption that Z, is closed for each y € Y is not a stringent
one. Mild sufficient conditions under which it must hold are given in
Section 4.1.

Manipulation (iii) is based on the following theorem.

Theorem 2.3. (v-Representation). Assume that X is a nonempty
convex set and that f and G are concave on X for each fixed ye Y.
Assume further that, for each fixed ¥ € Y N TV, at least one of the follow-
ing three conditions holds: (a) v(7) is finite and (1-¥) possesses an
optimal multiplier vector®; (b) o(¥) is finite, G(x, ¥) and f(x, ) are

3 See the appendix for the definition of an optimal multiplier vector. Actually, it is enough
to consider generalized optimal multiplier vectors (also defined in the appendix) in order
to avoid the implicit assumption that (1) must have an optimal solution.
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continuous on X, X is closed, and the e-optimal solution set of (1-7) is
nonempty and bounded for some ¢ > 0; and (c) o( 7) = +o0. Then,
the optimal value of (1-y) equals that of its dual on ¥ N V, that is,

o(y) == ini}g})lm[supgﬂté%um f(x, ) + wG(x, v)], all  ye¥YNnV. (9

The proof is a direct application of Theorems 5.2 and 5.3 and weak
duality. Alternative assumption (a) is one that will very often hold.
Many different sufficient conditions, usually called constraint qualifica-
tions, are known which imply it—most of them fairly weak assumptions
to preclude pathological cases. Nor is alternative (b) particularly stringent.
Of course, boundedness of X or of the feasible region is enough to
guarantee that the e-optimal solution set is bounded for any ¢ > 0, and
the existence of a unique optimal solution does it for € =

Under the assumptions of Theorems 2.2 and 2.3, then, manipula-
tions (i)-(iii) applied to (1) yield the equivalent master problem

ma}%rlglize[ini}ln}lélm[supgg%um f(x,v) + w!G(x, y)]] subject to (6)

or, using the definition of infimum as the greatest lower bound,

ma:}{gg,)ize Yo (10-1)
Yo
subject to
Vo < supgcg%um{ f(x, ) + w'G(x,y)}, all w220, (10-2)
supgceetr%um{)\tG(x, =0, al Aed (10-3)

2.2. Solving the Master Problem. The most natural strategy
for solving the master problem (10), since it has a very large number
of constraints, is relaxation (Ref. 1). Begin by solving a relaxed version
of (10) that ignores all but a few of the constraints (10-2) and (10-3);
if the resulting solution does not satisfy all of the ignored constraints,
then generate and add to the relaxed problem one or more violated
constraints and solve it again; continue in this fashion until a relaxed
problem solution satisfies all of the ignored constraints [at which point an
optimal solution of (10) has been found], or until a termination
criterion signals that a solution of acceptable accuracy has been obtained.
Details regarding the termination criterion will be supplied later. The
deeper concern is the crucial issue of how a solution to a relaxed version
of (10) can be tested for feasibility with respect to the ignored con-
straints and, in case of infeasibility, how a violated constraint can be
generated.
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Suppose that ( §, J) is optimal in a relaxed version of (10). How
can this point be tested for feasibility in (10-2) and (10-3)? From
Theorem 2.2 and the definition of V, we see that J satisfies (10-3) iff
(1-9) has a feasible solution. And if (I-J) turns out to be feasible,
Theorem 2.3 implies that ( §, ) satisfies (10-2) iff §, << o( #). Thus,
(1-9) is the natural subproblem for testing { #, ¥,) for feasibility in the
master problem. This is in perfect accord with our interest in applications
where y is complicating in the sense that (1—y) is much easier than (1)
itself.

Not only is (1-) the appropriate subproblem for testing the
feasibility of (4, §5) in (10), but almost any reasonable algorithm for
(1) will yield an index of a violated constraint in the event that ( #, ¥)
is infeasible. By an index of a violated constraint, we mean a vector 4 > 0
such that

So > supremum{f(¥, §) + 2G(x, )}, (11-1)

if (10-2) is violated, or a vector A € 4 such that
supfggum{f\*G(x, <0, (11-2)

if (10-3) is violated. If (1) is infeasible, it can be shown that most
dual-type algorithms addressed to it yield such a A, as do most primal
algorithms fitted with a phase-one procedure for finding an initial
feasible solution if one exists [A can be viewed as specifying a convex
combination of constraints that has no solution in X]. If (1) is feasible
and has a finite optimal value, it follows from Theorem 5.2 that an
optimal multiplier vector satisfies (11-1) if one exists and §, > o( §).
Virtually all modern algorithms applicable to (1-9) produce an optimal
multiplier vector as a byproduct, if one exists, as is usually the case.
Nonexistence must be associated either with an unbounded optimal
value, in which case one may terminate since the same must then be true
of (1), or with a finite optimal value but a pathological condition in
which, by (9), # nevertheless satisfies (11-1) if it comes close enough to
being optimal in the dual of (1-4). Such a # will be referred to sub-
sequently as a near-optimal multiplier vector.

In light of this discussion, it is reasonable to presume henceforth
that (1—9) will be addressed with an algorithm that is dual-adequate in
the sense that it yields: a vector Ae A satisfying (11-2) if (1-f) is
infeasible; an optimal multiplier vector # if one exists; or a near-optimal
multiplier vector # satisfying (11-1) if no optimal multiplier vector
exists, but §, exceeds the optimal value of (1—-5).

Thus, we have shown how (1-) can be used to test any point
{ #, ) for feasibility in the master problem (10) and to generate an
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index (A or #) of a violated constraint in the event of infeasibility. This
completes the discussion of how (10) can be solved by the relaxation
strategy.

2.3. Statement of the Procedure. The generalized Benders
decomposition procedure can now be stated formally. The hypotheses of
Theorems 2.2 and 2.3 are presumed to hold, and it will be assumed for
simplicity that (1) has finite optimal value.

It will be convenient in stating the procedure to define the following
(see Section 2.5 for discussion):

L*yu) = supl;t;%mm{f(x, v) 4+ utG{x, ¥}, yeY, u >0, (12-1)
Ly X) = supa&g{mm{h‘(}'(x, kD) yeY, A=0. (12-2)

With this understanding, the generalized Benders decomposition
procedure is represented by the following steps.

Step (1). Letapointyin Y N V be known. Solve the subproblem
(1-¥) and obtain an optimal (or near-optimal) multiplier vector # and
the function L*(y; @). Put p = 1, ¢ = 0, u! = @, LBD = o( 7). Select
the convergence tolerance parameter ¢ > 0.

Step (2). Solve the current relaxed master problem

maxir}pize ¥o subject to yo < L*¥(y;49), j=1,.,p,
ye

Yo ) (13)
Ly(y; M) =0, J=1,q

by any applicable algorithm. Let ( §, §;) be an optimal solution; J, is an
upper bound on the optimal value of (1). If LBD > §, — ¢, terminate.

Step (3). Solve the revised subproblem (1-7). One of the following
cases must occur.

Step (3A). The quantity o( §)is finite. 1f v( §) = F, — e, terminate.
Otherwise, determine an optimal multiplier vector # [if none exists, a
near-optimal multiplier vector satisfying (11-1) will do] and the function
L*(y; 4). Increase p by 1 and put w? = 4. If o(§) > LBD, put LBED =
o( #). LBD is a lower bound on the optimal value of (1). Return to
Step (2).

Step (3B). Problem (1-4) is infeasible. Determine A in A satisfying
(11-2), and the function Ly(y; ). Increase ¢ by 1 and put X2 = A,
Return to Step (2).
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Remark 2.1, It is implicitly assumed in the statement of
Step (2) that an optimal solution of (13) exists. This problem is neces-
sarily feasible in view of the assumed existence of the point ¥ in Step (1),
but to preclude an unbounded optimum during the early executions of
Step (2) it may be necessary to constrain (7, y,) additionally to a region
known to contain all physically significant solutions of (10).

Remark 2.2, Step (1) is set up to begin at a known §yin Y N 1,
because this is believed to be the situation most likely to be encountered
in applications. There is an advantage to utilizing experience and
mathematical or physical insight in order to provide a good initial
feasible solution. If such a point is unknown, however, Step (1) could
be altered in the obvious way to accomodate an infeasible initial point
[see Step (3B)]. An alternative would be to make the procedure as it
stands function first in a phase-one mode in order to find a point ¥ in
Yynb.

Remark 2.3. The termination conditions can be understood as
follows, in view of Theorem 2.1. Termination at Step (3A) implies that §
in e-optimal in (2), for §, is obviously an upper bound on the optimal
value of (2) [it is the optimal value of the equivalent master problem (10)
with some of its constraints deleted]. Thus, any optimal solution £ of
(1-7) yields an e-optimal solution (%, §) of (1) [if only a 8-optimal solution
of (1-J) can be computed, the result is (¢ 4 8)-optimal in (1)]. Termina-
tion at Step (2) is similar, except that LBD plays the role of o( §); LBD is
always set at the greatest optimal value of (1—y) found at any previous
execution of Step (1) or Step (3A), and so is the best known lower bound
on the optimal value of (2). When LBD > §, — ¢, the subproblem
corresponding to LBD yields an e-optimal solution of (1). Note that,
while the sequence of values for §, found at successive executions of
Step (2) must be monotone nonincreasing, the sequence of values for
v( §) found at Step (3A) need not be monotone nondecreasing. This is
the reason for introducing LBD.

Remark 2.4. Itis of some interest and comfort to know that the
violated constraints generated at Step (3) are usually the most violated
(or nearly so} among all violated constraints. When # is an optimal
multiplier vector at Step (3A), it follows from Theorem 5.2 that it
indexes a constraint among (10-2) that is most violated at ( §, #,). When
no optimal multiplier vector for (1-y) exists, how near # comes to
indexing a most violated constraint depends solely on how nearly it
solves the dual problem of (1--). Similarly, how close A comes to indexing
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a most violated constraint among (10-3) at Step (3B) depends solely on
how close it comes to solving the dual of (8) with 7 equal to ¥ (with the
dual vector normalized to A4).

2.4, Theoretical Convergence. There are many different sets
of conditions under which the generalized Benders decomposition
procedure or variants of it can be proven convergent. T'wo convergence
theorems are presented here to illustrate the possibilities. The first
applies when Y is a finite discrete set and is therefore appropriate for
applications to mixed integer nonlinear programming.? The second
convergence theorem is intended for the case where Y is of infinite
cardinality (e.g., convex).

Theorem 2.4. (Finite Convergence). Assume that Y is a finite
discrete set, that the hypotheses of Theorem 2.2 hold, and that the
hypotheses of Theorem 2.3 hold with condition (b) omitted. Then, the
generalized Benders decomposition procedure terminates in a finite
number of steps for any given € > 0 and even for ¢ == 0.

Proof. Fix e > 0 arbitrarily. Finite termination is a direct
consequence of the finiteness of Y and the fact that no 7 can ever
repeat itself in a solution to (13) at Step (2). For, if § ¢ V, then Step (3B)
generates an L, -constraint that precludes § from ever again being
feasible in (13); and, if §eV and o(§) is finite, then a constraint
yo << L*(y; 4) is generated that would imply the optimality of § under
the termination criterion of Step (3A) if § were ever to occur again in a
solution of (13) [if (¥4, »* = #) were to solve (13) subsequently, then
yo! < L¥(§;4) = o( §) = v(»') would have to hold, and the termination
condition would therefore be satisfied].

The reason for the slight strengthening of the hypotheses of
Theorem 2.3 [i.e., requiring that (1) has an optimal multiplier vector
whenever o( ) is finite] is to preclude the possibility of an infinite number
of executions of Step (3A) with the same #, each resulting in a slightly
better near-optimal multiplier vector but always bounded strictly away
from o( §) in value. A slight strengthening of what is meant by a near-
optimal multiplier vector at Step (3A) would preclude this possibility

¢ Balas (Ref. 4) has previously developed a somewhat different generalization of Benders’
approach for the case where Y is a discrete set. Aside from his use of earlier (pre-
Rockafellar) nonlinear duality results designed for differentiable convex functions, the
main distinguishing feature of his work is the use of implicit enumeration rather than
relaxation, to solve the master problem analogous to (10), his Lnearized dual.
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if the existence of a true optimal multiplier vector for (1-§) were in
question. A similar comment could be made with regard to the second
convergence theorem.

Theorem 2.5. (Finite e-convergence). Assume that Y is a non-
empty compact subset of V, that X is a nonempty compact convex set,
that f and G are concave on X for each fixed y € ¥ and are continuous
on X x Y, and that the set U(y) of optimal multiplier vectors for (1-y)
is nonempty for all y in Y and uniformly bounded in some neighborhood
of each such point. Then, for any given € > 0, the generalized Benders
decomposition procedure terminates in a finite number of steps.

Proof.® Fix ¢ > 0 arbitrarily. Suppose that the procedure does
not terminate in a finite number of steps. Let (¥, 3> be the sequence
of optimal solutions to (13) at successive executions of Step (2). By
taking a subsequence, if necessary, we may assume that {(yg, ¥
converges to a point { 7, , ¥) such that ¥ € ¥ [remember that {yy"> is a
nonincreasing sequence bounded below and that (3*) is in the compact
set Y. Similarly, we may assume by the uniform boundedness assump-
tion that the corresponding sequence of optimal multiplier vectors {u*)>
produced by Step (3A) converges to a point Z Now, yit' < L¥(y"+; w)
obviously holds by the accumulation of constraints in (13), and so by
the continuity of L* (apply Theorem 1.4 in Meyer, Ref. 5) we obtain
Yo < L*( 7; @), To complete the proof, it remains to show that # € U( y)
and that v is lower semicontinuous at ¥, for then L*( ¥; #) must equal
o( ¥) by Theorem 5.2 and consequently 7, << v( #); this would imply by
the lower semicontinuity of v at § that y* < v(»”) + € for all v suffi-
ciently large, which would contradict the supposition that the termination
criterion at Step (3A) is never met.

To show that % € U( ), it is enough to show that U(y) is an upper-
semicontinuous mapping at 7. 'T'o do this, we employ the characterization
of U(y) as the set of optimal solutions to the dual of (1-y); in other words
(Theorem 5.4),

Uyy={u=0:L*y;u) = n}g%)L*(y; ul)}.

Then, by the continuity of L*, we may apply Theorem 1.5 of Ref. 5 to
obtain the desired upper-semicontinuity of U at 7.

5 A rilumber of basic results involving point-to-set mappings in mathematical programming
will be employed. The reader is advised to review the first five results in Meyer (Ref. 5)
before attempting to follow the proof. The author is indebted to W. Hogan for his
collaboration in developing this proof.
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"T'o show the lower semicontinuity of v at ¥, it is convenient to use
the characterization (9), which becomes

o(y) =minL¥(y;u), all  yeY,

in view of (12-1) and the assumed nonemptiness of U(y). Since Y is
compact, the local uniform boundedness assumption implies the uniform
boundedness of U(y) on all of Y. Hence, there exists a compact set U*
such that U(y) C U* for all y in Y. The constraint « € U* can therefore
be introduced above without disturbing the equality, thus permitting
direct application of Lemma 1.2 of Ref. 5 in order to obtain the desired
lower semicontinuity of v.

The uniform boundedness assumption of Theorem 2.5 may be
somewhat awkward. For this reason, we now demonstrate a condition
implying it at a given point that may be more readily verifiable in
practice. For example, this condition is easily verified at any point e ¥
in the case of variable factor programming (Section 3).

Lemma 2.1. Assume that X is a nonempty compact convex set
and that f and G are concave on X for each fixed y € ¥ and continuous
on X x V. If there exists a point # € X such that G(%, §) > 0, then the
set U(y) of optimal multiplier vectors for (1-y) is uniformly bounded in
some open neighborhood of 7.

Proof. The existence of & implies that the set (x, 2) = {x e X :
G(x,y) > 2} is nonempty for all (y, 2) in some open neighborhood
N of (7, 0). Define the auxiliary function

Wy, 2) = su){; f(x, ) subject to G(x, ) > 2.
ki 2=1

It can be shown that the map £ is continuous on a neighborhood of
(#, 0), say N. It follows from Theorem 1.4 of Ref. 5 that s must be
continuous on N. Define N; to be an open neighborhood of ¥ and
Ny={2eR":0 < % <3,i = 1,.,m}, 8 >0, such that N; x N,CN,
where N, is the closure of N; . Define

B = minimum §(y, z) subject to ye N, , 2 e N, ,

= ¥z

B= maximum i(y, 5) subject to y € Ny , 2 € N, .
v,

Evidently, —o0 < B < B < -+oo. To show that the conclusion of
Lemma 2.1 holds on N, , take any point y* in N, . If U(3%) is empty,
there is nothing to show; otherwise, let ' be any point in U(y%). Then,

P01, 2) < P01, 0) — ulz, all 2,
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by one of the characterizations (Theorem 5.4) of U(y"). By considering
each of the m choices 8¢; for z, where ¢; is the 7th unit vector in R™,
we obtain

0 < ut <[54 0) — (3% 3)]/8 < (B — B)fS.

Thus, U(y') is contained within the same hypercube for any y' in N, .

The assumption ¥ C V7 in Theorem 2.5, which precludes any
possibility of Step (3B) occurring, also calls for clarification. There are
many applications (such as the one discussed in Section 3) where Y C V
automatically holds. In other applications, prior experience or physical
or mathematical insight may make it possible to enforce this assumption
by redefining ¥ to be some subset of itself known to contain the optimal
solution of (2) and on which (I-y) is known to be feasible. Without the
assumption Y C V, however, there is a danger that Step (3B) may occur
infinitely many times in succession and thereby preclude finite e-conver-
gence. One situation of importance where it is known that this danger
cannot materialize is when X is given by linear constraints and G is of
the form (5-3), for then it is easily shown that 7" has a representation in
terms of a finite collection of constraints; thus, Step (3B) need occur at
most a finite number of times. A finite number of occurrences of Step (3B)
is not enough to spoil the finite e-convergence argument of Theorem 2.5.

For applications where Y € 7 and Step (3B) could possibly accur
infinitely often in succession, there are two fairly obvious possibilities
for preserving finite e-convergence with Y of infinite cardinality. The
first would be to modify the procedure to finitely truncate any excessively
long sequence of successive executions of Step (3B) and go to Step (34)
with § equal to the extrapolated limit point (which, we presume, will be
in ¥ N ¥V under reasonable regularity assumptions). The other possibility
would be to essentially absorb Step (3B) into Step (2) by imposing the
side constraint y € ¥ on (13). One might then be able to employ a primal
algorithm for (13) with a parametric algorithm for (1-y) used simul-
taneously to discover when the side constraint is about to be violated.
Or one might solve (13) with the side constraint y € V' handled by
successive inside-out approximation in the spirit of the Dantzig-Wolfe
decomposition (see Ref. 6, Chapter 24 for the original method and Ref. 1,
Section 4.3, for the extension required here). This is the approach
adopted in Ref. 7, Section 3.1, for a special structure. None of these
possibilities has been worked out in complete detail, and must therefore
be viewed as but tentative suggestions. It is hoped that computational
studies now under way will shed light on the situation.

In closing the discussion of convergence, we make reference to the
very recent results of Hogan (Ref. 8) who applies the results of Eaves and

80g/10/4-4
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Zangwill (Ref. 9) to demonstrate finite e-convergence of the procedure
even when amply satisfied constraints are dropped at Step (2). This
enables the relaxed master problem (13) to have fewer constaints, thereby
reducing the time required per iteration of the procedure. Whether this
advantage will be offset by a greater number of required iterations is
another matter for computational study.

2.5. Computational Considerations. With the theoretical
development of generalized Benders decomposition complete, it is
appropriate to consider the prospects for efficient computational
implementation.

Since (1-y) is a concave program, the availability of a dual-adequate
algorithm for Steps (1) and (3) is not a serious issue. The availability of an
algorithm for solving the relaxed master problem (13) at Step (2),
however, is in question unless something is known about the mathematical
nature of ¥, L*, and L, . Except for certain special cases, it is preferred
that (13) be a concave program, that is, the set Y convex and the
functions L* and L, concave on Y. Several sufficient conditions for the
latter requirement in terms of the behavior of f and G are given in
Section 4.2 (e.g., joint concavity of fand Gon X x Y).

If (13) 1s not a concave program, but Y includes the requirement
that the components of y must be integer-valued, then implicit enumera-
tion or some other discrete optimization technique may enable (13) to be
optimized. This is certainly feasible if f and G are separable and linear
in y and if ¥ consists of linear constraints and an integrality requirement
on y, for then (13) becomes an integer linear program for which many
solution methods are available. In fact, this is probably the single most
important case arising in applications when y is a vector of 0-1 variables.
The reason is that the introduction of such variables into an otherwise
continous optimization problem is usually done to account for logical
alternatives, which in turn typically leads to the structure in y mentioned
above,

In selecting algorithms to be used for (1-y) and (13), an obvious
point to bear in mind is that they should if possible have the capability
of being restarted after the first iteration so as to take advantage of the
most recent previous solution to their respective problems.

Attention is now turned to the as yet undiscussed question of how
the functions L* and L, in (13) are to be obtained in explicit form. This
issue must be resolved except in the unlikely circumstance that the
algorithm for (13) is prepared to deal with these functions in their
supremal value representations (12-1) and (12-2). It appears necessary
to assume that (1) has the following property.
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Property (P). For every u > 0, the supremum of f (x, ) + «'G(x,y)
over X can be taken essentially independently of y, so that the function
L*(- ; u) on Y can be obtained explicitly with little or no more effort than
is required to evaluate it at a single value of y.

Similarly, for every A € /4, the supremum of A'G(x, y) over X can be
taken essentially independently of y, so that the function L (- ;A) on ¥
can be obtained explicitly with little or no more effort than is required
to evaluate it at a single value of y.

One important case in which Property (P) holds is when fand G are
linearly separable in x and y, that is,

fle,3) = fu(x) +fo(9),  Glx,3) = Gy(x) + Go()- (14)
Then, for any # > O and A e 4,

L¥(y; w) = supremum{fy(x) + w'Gy(%)} + fo(3) + #'Gy(y),  ye¥, (151
Ly ) = supx;“c;le{lum{/\tGl(x)} + NGy ), yeY. (15-2)

The variable factor programming problem discussed in Section 3 shows
that Property (P) can hold even though F and G are not linearly separable
in & and y. The same is true of certain problems having to do with the
optimal design of diffusion processes® and the computation of chemical
equilibria.” See Section 4.2 for further discussion.

A dual-adequate algorithm for (1-) that produces L*(- ;i) or
L,(- ; &) essentially as a byproduct as well as # or A will be called L-dual-
adequate. In the presence of Property (P), L-dual-adequacy usually
requires very little if anything more of an algorithm for (1-y) than dual-
adequacy does. When (14) holds, for example, by (9) and (15-1) we have

L¥y; 8) = o(9) — ) — #C ) + foly) +#Go(y),  ye,

when 4 is an optimal multiplier vector [for then # achieves the infimum
in (9)). This equation is only approximate when an optimal multiplier
vector does not exist, but the approximation can be made arbitrarily
accurate by making # nearly enough optimal in the dual of (1-9) (see
Theorem 2.3). Thus, L*(y; ) is obtained without even having to
explicitly perform the supremum in (15-1). A similarly satisfactory
situation usually exists regarding L, (y; A), although a detailed justifica-

6 The author is grateful to Prof. R. Wilson of Stanford University for pointing out this
application (Ref. 10).

7 This was pointed out to the author by R. J. Clasen and will be reported in a forthcoming
paper by him.
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tion of ’thlS statement would depend upon whether the algorithm
produces 4 by a phase-one or dual-type approach when (1-9) is infeasible.
In the context of variable factor programming, it will be seen in Section 3
that any algorithm for (1) is L-dual-adequate so long as it produces an

optimal solution £ and multiplier vector # (both of which necessarily
exist for any #).

3. Application to Variable Factor Programming

Wilson (Ref. 3) has defined the variable factor programming
problem as follows:

mammme Z y, fi{x?) (16-1)
subject to -
Zl &y <6 (16-2)
20, i=1l..,n, (16-3)
Ay <b,  y=0 (16-4)

where x° is an m-vector [x is the mym-vector (x,..., ™)]. One may
interpret y; as the level of activity 7 and f; as the profit coefficient or
yield rate for activity 7 when x* is the allocation of variable factors (or
stimulants) per unit of activity 7. Constraint (16-2) requires the total
allocation of variable factors to be within an availability vector c.
Obviously (16) is a proper generalization of the general linear
programming problem. As pointed out by Wilson, it arises in petroleum
refining and blending (tetraethyl lead is a stimulant), certain pre-
processing industries, and agricultural planning. In the later case, for
instance, ¥, might represent the number of acres to be planted with
crop 7, and x* might represent the amounts of various kinds of fertilizer,
irrigation water, tilling labor, etc., to be used on each acre of crop 7.

3.1. Theoretical Aspects. It will be assumed that each f; is
a continuous concave function on the nonnegative orthant, i.e., that the
marginal productivity of the variable factors is nonincreasing. It is also
assumed, without loss of generality, that each component of ¢ is positive
(if some component of ¢ were zero, the corresponding variable factor
could be dropped from the problem).

The assumptions underlying the generalized Benders decomposition
procedure are easily verified as follows. Theorem 2.2 is unnecessary,
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since the set ¥ turns out to be all of R?:. This is so because ¢ > 0 and
xl = -+ = g™ == ( satisfies (16-2) for any choice of y. In Theorem 2.3,
the initial assumptions are immediate. Alternative assumption (a) holds
for all § > 0, because the subproblem (1-7), which specializes to

ng
maximize ) ¥,f{x°) (17-%)

21=0...., 22320 f=1

subject to

is a concave program with a finite optimal solution® which also satisfies
Slater’s interiority constraint qualification (x! = -+ = a2 =0 is
interior since ¢ > 0).

The preceding observations also show (with the help of Lemma 2.1)
that the assumptions required for finite e-convergence by Theorem 2.5
also hold, except possibly for x and y being unbounded. From the
physical interpretation of the problem, however, it is clear that bounding
constraints on & and y can be imposed without loss of generality.

Fortunately, the relevant part of Property (P), namely the first part,
also holds, since for all y > 0 we have

supremum{f(x, y) -+ #'G(x, )}

sy ot (3 v+

== suprernum
21 20,...,2"220 {i=1 i=1
N2
= wule + Y y; supremum{f,(x’) — u'x’} = L*(y; u). (18)
i #=0

Note that L*(y; u) is linear in y. Additionally, we note that any algorithm
for solving (17-7) at Step (1) or (3) is dual-adequate so long as it produces
an optimal sclution ¥ and an optimal multiplier vector % (the existence of
both for any 7 has been demonstrated above). Such an algorithm is also
L-dual-adequate, because

suprgréum{ fixFy — it} = (%) — w'x? (19
holds for all 7 such that 7, > 0; for ¢ such that j, = 0, the supremum

will have to be computed. Thus, L*( y; @) is at hand directly from (18)-
(19) with little if any extra work once the subproblem (17-7) is solved.

8 'The objective function is continuous, x? is arbitrary for 7 such that 7; = 0, and «* is
bounded by 0 < x* < ¢/§; for £ such that §; > 0.
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It would seem that generalized Benders decomposition is particularly
well suited to variable factor programs. Step (3B) cannot occur; the
relaxed master program to be solved at Step (2)

maiii;r(x)lize 4, subject to Ay < b, (20-1)

Yo

Yo <L¥y;uh),  j=Le,p,  (20-2)

is an ordinary linear program (L* is linear in y for fixed #); and the sub-
problem (17-y) to be solved at Steps (1) and (3) is a concave program
with linear constraints and an objective function that is linearly separable
in the x%'s. This subproblem has a natural and meaningful interpretation
in its own right as the problem of determining the optimal use of variable
factors given a tentative choice of activity levels. The violated constraints
generated are always most violated constraints (see Remark 2.4).

3.2, Computational Experience. Computational experiments
have been carried out for a class of variable factor programs with linear
yield rate functions f; . "The generalized Benders decomposition procedure
worked quite well for the test problems. The number of iterations
required to find the optimal solution was typically four or five, with a
range of 1-13, and seemed remarkably insensitive to problem size
parameters over the range studied.

The test problems were randomly generated as follows. The
A-matrix is 7 X #, and 309, dense. Each nonzero element is indepen-
dently chosen from a uniform distribution on the interval [I, 15].
The f; functions are all of the form

filot)y = d; + - &,

where the scalars d; are independently uniform on [1, 15] and

v = @)7/ @ W’),

where 7 is zero with probability one-half or, with equal probability,
an integer between 1 and 10. For each series run, the coefficients were
generated according to the largest values of the size parameters, and the
individual problems of the series were then obtained by deleting portions
of the data. For every case, the b-vector was taken to be the row sums of
the actual 4 matrix used, and the c-vector was always a vector with each
element equal to #, .

The structure just given can be motivated in terms of the following
interpretation. A manufacturing facility has 7z, production processes,
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Table 1. Number of iterations {r = §).

=6 Hy = 9 ny = 12 ny = 15 ny = 18
m =1 13 2% 2% 2% 2%
2,2,2,1 2,2,2,3 2,3,2,2 2,3,2,2 2,3,2,2
m =2 13 28 23 3 3
2,2,2,1 2,2,2,5 2,333 2,3,4,3 2,3,2,5
m =4 3 5 42 43 53
2,6,2,2 6,527 54,55 6,4,5 4 5655
m=6 3 5% 52 5% 7%
2,523 54,3, 10 54,77 6,5,4,7 57, 11,86
m = 8§ 3% 6 6 7% 9
3,6,31 6,54,9 557,17 7,6,9,7 7,11, 13,5

each of which consumes 7 different resources (materials, time on various
machines, types of labor, etc.). The constraints Ay <C b take into
account the limited availability of these resources; there are just enough
resources to operate each process at unit level. The basic per unit profit
is d; for process 7, but this can be increased by applying stimulants
(variable factors). There is just enough of each stimulant to apply it at
unit rate to every process if each process were operated at unit level,
and so doing would increase each d; by a factor of one-half.

The computational results are given in Tables 1 and 2. The four
lower numbers in each cell give the number of iterations to optimality
for four independent trials, and the upper number is the average. In
each case, the termination criterion was that the lower and upper bounds
coincide to six significant figures.

4. Discussion

The first subsection discusses an assumption of Theorem 2.2, and
the second gives further insight into Property (P) and the nature of the
functions L* and L, .

Table 2. Number of iterations (m = 4, n = 12).
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4.1. Assumption of Theorem 2.2, Theorem 2.2 assumes that
the set

Zy = {ze R": G(x,y) > = for some x € X}

must be closed for each y € ¥. At first glance, it might seem that this
would be so if G were continuous on X for each fixed y in ¥ and X were
closed, but the following example shows that this is not sufficient: let
m =1, X = [l, ), and G(x, y) = —1/x; then clearly Z, = (— 0, 0),
which is not closed. If X is bounded as well as closed and G is continuous
on X for each y € Y, however, it is easy to verify that Z, must be closed
for all y € Y. It can also be shown (with the help of Lemma 6 of Ref. 11)
that these conditions remain sufficient if the boundedness of X is replaced
by the condition: X is convex and, for each fixed y € Y, G is concave on X
and there exists a point 2, such that the set {x e X : G(», y) > z,} is
bounded and nonempty. Since X is required to be convex and G is
required to be concave on X for fixed y € ¥, by Theorem 2.3 anyway,
this condition is a useful weakening of the requirement that X be
bounded. For example, the condition holds if, for each fixed y in Y,
at least one of the component functions of G has a bounded set of maxim-
izers over X (in this case, select the corresponding component of 2, to be
the maximal value and let the other components be arbitrarily small).

4.2, Functions L* and L, . The significance of the requirement
of Property (P) that the extrema in (12-1) and (12-2) can be taken
essentially independently of y deserves further elaboration. We have
already seen two classes of problems for which this requirement holds,
namely linear separability in x and y [see (15)] and variable factor
programming [see (18)], and have alluded to two other such problem
classes. It is easy to invent still other such examples, e.g., those for which
f(x,v) + u'G(x, y) can be written as O(h(x, u), y, u) for any xe X,
ye Y, and u > 0, where O is increasing in its first component and %
is a scalar function of x and u. Then, clearly,

L¥(y;u) = Q(sup;rvgglum{k(x, u)}, ¥, 4), yeY. 21

A similar representation would also have to be available for A{G(x, v)
if the second part of (P) is to hold.

When the achievement of the extrema in (12-1) and (12-2} is not in
question, the following version of Property (P) is appropriate: for every
u > 0 there exists a point x, € X such that

supremum{f(x, y) + w'G(x, )} = f(%u,9) +u'Glx,,p),  ye¥, (22-1)
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and, for every A € 4, there exists a point x, € X such that

supﬁ?um{)\@(x, N} = XG(x,,y), ye¥. (22-2)

Then, L*(y; u) is available directly from x,, and L,(y;A) directly
from x, . Let this version be called Property (P’). It is helpful to keep
in mind that the usual situation, but by no means the only possible one,
is where # is an optimal multiplier vector for (1) and x, is an optimal
solution.

One conjecture concerning Property (P) that has probably already
occurred to the reader is that the first part implies the second part.
This seems plausible since for any A € 4 in the second part of (F) one
may take u = A in the first part, with € so large that the influence of
f becomes inconsequential by comparison with that of OA'G, with the
result that Z.(y; ) approximately equals (1/8) L*(y; 62) for large 6.
This conjecture can indeed be verified when X is closed and bounded
and f and G are continuous on X for each fixed y € Y. The proof is most
easily carried out in terms of (P'). The boundedness of X can be
weakened somewhat along the lines suggested by the discussion of
Section 4.1.

Finally, it is appropriate to recite some sufficient conditions for
L*L,) to be concave as a function of y for fixed u(d). As noted in
Section 2.5, this is usually necessary if the relaxed master problem (13)
is to be solvable by an available algorithm. Suppose that Y is a convex
set. We consider several possible cases. When f and G are linearly
separable in x and y, it is evident from (15) that the desired conclusion
holds if f, and G, are concave on Y. In variable factor programming,
(18) shows that L* is even linear on Y. When the ()-representation
introduced above holds, L* is concave if ) is concave in its y-argument,
and L., is concave if the analog of Q is concave in its y-argument. And if
the slightly more stringent Property (P’) holds, (22) reveals that the
desired conclusion holds if f and G are concave on Y for each fixed
x & X. With regard to this last condition, it is perhaps unnecessary to say
that marginal concavity of f and G in x for fixed y and in y for fixed »
does ot imply joint concavity on X X Y, although of course the converse
does hold. It is useful to know, however, that joint concavity does imply
without any further qualification that L* and L, are concave on Y. The
proof follows the lines of Theorem 2 in Ref. 1.

It is interesting to note that, under any of these sufficient conditions
for the concavity of L* and L, , not only is (13) a concave program, but
so is the original projected problem (2): by Theorem 2.2, ¥ N Y is the
convex set {ye Y :Ly,(y;A) =0, all Aed}; and by Theorem 2.3,
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2(y) = infimum, ., L*(y; ) is concave on Y NV since it is the
infimum of a collection of concave functions. Thus, (2) can be a concave
program even though (1) is not a concave program. This is certainly true in
variable factor programming, as we have already pointed out. It can also
be true, for example, when the sufficient condition associated with
property (P} holds.

5. Appendix: Summary of Relevant Results from Nonlinear
Duality Theory

All results will be stated in terms of the standard primal problem
ma)gr)rilize f(x) subject to g,(%) = 0, 7=1,.,m, (23)

where it is assumed that f and each function g, is concave on the non-
empty convex set X C R™ See Ref. 11 for further details.
The dual of (23) with respect to the g; constraints is

minimize [supazr)r{lum f(x) + ;1 ulgz(x)] , (24)
where # = (uy ,..., 4,,) is a vector of dual variables. By the weak duality
theorem (Ref. 11, Theorem 2), any feasible solution of the primal must
have a value no greater than the value of any feasible solution of the dual.

If ¥ is an optimal solution of the primal problem, an optimal
multiplier vector # is defined to be any nonnegative vector such that

Y #g{®) =0
=1
and ¥ maximizes
flx) + Y, #gdx)
=1

over X. To preclude assuming that the optimal value of the primal is
actually achieved by some X, for many purposes it is enough to work
with the concept of a generalized optimal multiplier vector: a nonnegative
vector % such that, for every scalar ¢ > 0, there exists a point x, feasible
in the primal problem satisfying the two conditions

(1) x, is an e-optimal maximizer of f(¥) + Yy #;g,(x) over X,
(i) Xl ggdx) < e
Every optimal multiplier vector is also a generalized optimal multiplier
vector.
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Theorem 5.1. If {zeRm:g(x) > =;, i =1,.,m, for some
x € X}is closed and the optimal value of the dual is finite, then the primal
problem must be feasible.

Proof. Thisis an immediate corollary of Theorem 5 of Ref. 11.

Theorem 5.2, If @ is a (generalized) optimal multiplier vector
for the primal problem, then 7 is also an optimal solution of the dual and
the optimal values of primal and dual are equal.

Proof. This follows immediately from Lemmas 3 and 4 of Ref. 11
and the discussion just before the latter.

It is also true that if the primal problem has no generalized optimal
multiplier vector and yet the optimal values of primal and dual are equal,

then the dual can have no optimal solution (by inspection of Diagram 1,
Ref. 11).

Theorem 5.3. Assume X to be closed, f and each g, to be
continuous on X, the optimal value of (23) to be finite and the set

{xeX:g{x) = 0,1=1,.,m and f(x) = o}

to be bounded and nonempty for some scalar o no greater than the
optimal value of (23). Then, the optimal values of the primal and dual
problems are equal.

Proof. This follows immediately from Theorems 7 and § of
Ref. 11.

Theorem 5.4. If(23) has an optimal solution, then « is an optimal
multiplier vector iff

(=) < P{0) — i w2, forall 2,

i=1

where i(z) is the optimal value of (23) with O replaced by z; in the ith
constraint. If, in addition, at least one optimal multiplier vector exists,
then u is an optimal multiplier vector iff # is an optimal solution of the
dual problem (24).

Proof. See Theorems 1 and 3 of Ref. 11.
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