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Abstract. The vibration analysis is an important stage in the design of mechanical systems 
and structures subject to dynamic loads like wind and earthquake. The Finite Element Method 
(FEM) is commonly used in vibration analysis and its approximated solution can be improved 
using two refinement techniques: h and p-versions. The h-version of FEM gives good results 
for the lowest frequencies but demands great computational cost to work up the accuracy for 
the higher frequencies. The accuracy of the FEM can be improved applying the polynomial p 
refinement. Some enriched methods based on the FEM have been developed in last 20 years 
seeking to increase the accuracy of the solutions for the higher frequencies with lower 
computational cost. The purpose of this paper is to present a formulation of the Generalized 
Finite Element Method (GFEM) to free and transient vibration analysis of bars. The 
Generalized Finite Element Method is developed by enriching the standard Finite Element 
Method space, whose basis performs a partition of unity, with knowledge about the 
differential equation being solved. The proposed method combines the best features of GFEM 
and enriched methods: (a) efficiency, (b) hierarchical refinements and (c) the introduction of 
boundary conditions following the standard finite element procedure. In addition the 
enrichment functions are easily obtained. The main features of the GFEM are discussed and 
the partition of unity functions and the local approximation spaces are presented. The 
efficiency and convergence of the proposed method for vibration analysis of bars are checked. 
The results obtained by the GFEM are compared with those obtained by the analytical 
solution, some enriched methods and the h and p versions of the Finite Element Method. 

Keywords: Generalized finite element method, Dynamic analysis, Vibration analysis, 
Partition of unity. 

1. INTRODUCTION 

The dynamic analysis is an important stage in the design of mechanical systems and 
structures subject to dynamic loads like wind and earthquake. This analysis allows obtaining 
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the dynamic characteristics and the time-varying response of these structures. The dynamic 
analysis can be used also to identify cracks in structures. 

 The Finite Element Method (FEM) is commonly used in vibration analysis and its 
approximated solution can be improved using two refinement techniques: h and p-versions. 
The h-version consists of the refinement of element mesh; the p-version may be understood as 
the increase in the number of shape functions in the element domain without any change in 
the mesh. The conventional p-version of FEM consists of increasing the polynomial degree in 
the solution. The h-version of FEM gives good results for the lowest frequencies but demands 
great computational cost to work up the accuracy for the higher frequencies. The accuracy of 
the FEM can be improved applying the polynomial p refinement. 

Some enriched methods based on the FEM have been developed in last 20 years 
seeking to increase the accuracy of the solutions for the higher frequencies with lower 
computational cost. Engels [8] and Ganesan & Engels [9] present the Assumed Mode Method 
(AMM) which is obtained adding to the FEM shape functions set, some interface restrained 
assumed modes. The Composite Element Method (CEM) [23, 24] is obtained by enrichment 
of the conventional FEM local solution space with non-polynomial functions obtained from 
analytical solutions of simple vibration problems. A modified CEM applied to analysis of 
beams is proposed by [12]. The use of products between polynomials and Fourier series 
instead of polynomials alone in the element shape functions is recommended by [11]. They 
develop the Fourier p-element applied to the vibration analysis of bars, beams and plates. 
These three methods have the same characteristics and they will be called enriched methods 
in this work. The main features of the enriched methods are: (a) the introduction of boundary 
conditions follows the standard finite element procedure; (b) hierarchical p refinements are 
easily implemented and (c) they are more accurate than conventional h version of FEM. 

At the same time, the Generalized Finite Element Method (GFEM) was independently 
proposed by Babuska and colleagues [2, 6, 13] and by Duarte & Oden [7, 14] under the 
following names: Special Finite Element Method, Generalized Finite Element Method, Finite 
Element Partition of Unity Method, hp Clouds and Cloud-Based hp Finite Element Method. 
Actually, several meshless methods recently proposed may be considered special cases of this 
method. Strouboulis and co-workers [19] define otherwise the subclass of methods developed 
from the Partition of Unity Method including hp Cloud Method [7, 14], the eXtended Finite 
Element Method (XFEM) [20, 21], the Generalized Finite Element Method (GFEM) [17, 18], 
the Method of Finite Spheres [4], and the Particle-Partition of Unity Method [16]. The 
GFEM, which was conceived on the basis of the Partition of Unity Method, allows the 
inclusion of a priori knowledge about the fundamental solution of the governing differential 
equation. This approach ensures accurate local and global approximations. In structural 
dynamics, the Partition of Unity Method was applied by [5] and [10] to numerical vibration 
analysis of plates and by [1] to free vibration analysis of bars and trusses. Among the main 
challenges in developing the GFEM to a specific problem are: (a) choosing the appropriate 
space of functions to be used as local approximation and (b) the imposition of essential 
boundary conditions, since the degrees of freedom used in GFEM generally do not correspond 
to the nodal ones. In most cases the imposition of boundary conditions is achieved by the 



 
 

degeneration of the approximation space or applying penalty methods or Lagrange 
multipliers. 

The purpose of this work is to present a formulation of the GFEM to free and transient 
vibration analysis of bars. The proposed method combines the best features of GFEM and 
enriched methods: (a) efficiency, (b) hierarchical refinements and (c) the introduction of 
boundary conditions following the standard finite element procedure. In addition the 
enrichment functions are easily obtained. 

2. GENERALIZED FINITE ELEMENT METHOD 

The Generalized Finite Element Method (GFEM) is a Galerkin method whose main 
goal is the construction of a finite dimensional subspace of approximating functions using 
local knowledge about the solution that ensures accurate local and global results. The GFEM 
local enrichment in the approximation subspace is incorporated by the partition of unity 
approach. 

2.1. Partition of unity 

Let ( )ΩΗ∈ 1u  be the function to be approximated and { }iΩ  be an open cover of 
domain Ω  (Fig. 1) satisfying an overlap condition: 

 Ν∈∃ SM   so that  Ω∈∀x    { } Si Mxicard ≤Ω∈ . (1) 

 
Figure 1. Open cover { }iΩ  of domain Ω  (see [6]). 

 
A Lipschitz partition of unity subordinate to the cover { }iΩ  is the set of functions { }iη  

satisfying the conditions: 

 ( ) { } [ ]iii xx Ω⊂≠Ω∈= 0)(  supp ηη ,   i∀ , (2) 
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where ( )iη supp  denotes the support of definition of the function iη  and [ ]iΩ   is the closure 
of the patch iΩ .  

The partition of unity set { }iη  allows obtaining an enriched set of approximating 
functions. Let ( )Ω∩ΩΗ⊂ iiS 1  be a set of functions that locally well represents u:  

 { }m
j

j
ii sS 1== . (4) 

Then the enriched set is formed by multiplying each partition of unity function iη  by the 
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Accordingly, the function u can be approximated by the enriched set as: 
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where ija  are the degrees of freedom. 

In the proposed GFEM, the cover { }iΩ  corresponds to the finite element mesh and 
each patch iΩ corresponds to the sub domain of Ω  formed by the union of elements that 
contain the node xi (Fig. 2). 

 

 
Figure 2. Patchs and partition of unity set for one-dimensional GFEM finite element 

mesh 

2.2. Generalized C0 elements for free vibration analysis 

The generalized C0 elements use the classical linear FEM shape functions as the 
partition of unity, i.e.: 
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in the patch ( )11 , +−=Ω iii xx  . 

The proposed local approximation space in the patch ( )11 , +−=Ω iii xx  takes the form: 

 { }Kjjjji spanS 21211 ϕϕγγ= , lnj ,,2,1 K= , (8) 
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where  ER and ρR  are the Young modulus and specific mass on sub domain ( )1, +ii xx , EL and 
ρL are the Young modulus and specific mass on sub domain ( )ii xx ,1− , and jµ  is a frequency 
related to the enrichment level j.  

The enriched set S, so proposed, vanishes at element nodes, which allows the 
imposition of boundary conditions in the same fashion of the finite element procedure. 

This C0 element can be applied in the free vibration analysis of shafts, bars and 
trusses. Different frequencies jµ produce different enriched elements. The increase in the 

number of elements in the mesh with only one level of enrichment (j = 1) and a fixed 
parameter 111 LR βββ == , for example πβ =1 , produces an h refinement. Otherwise the 
increase in the number of levels of enrichment, with a different parameter LjRjj βββ ==

each, for example, πβ jj = ,  produces a hierarchical p refinement. Another refinement 

possible in the proposed GFEM is the adaptive refinement, which is presented below.  
The adaptive GFEM is an iterative approach presented first by [1] whose main goal is 

to increase the accuracy of the frequency (eigenvalue) related to a chosen vibration mode with 
order denoted by “target order”. The flowchart with blocks A to H presented in Figure 3 
represents the adaptive process.  

 
 
 



 
 

 

 
Figure 3. Flowchart of the adaptive GFEM. 

 
In this flowchart, ωtarget corresponds to the frequency related to the target mode. The 

first step of the adaptive GFEM process (blocks A to C) consists in obtaining an 
approximation of the target frequency by the standard FEM (GFEM with nl = 0) with a coarse 
mesh. The finite element mesh used in the analysis has to be as coarse as is necessary to 
capture a first approximation of the target frequency. The subsequent steps (blocks D to G) 
consist in applying the GFEM with only one enrichment level (nl = 1) to the same finite 
element mesh assuming the frequency jµ (j = 1, blocks D and E) of the enrichment functions 
(Eqs. 9-14) as the target frequency obtained in the last step. Thus, no mesh refinement is 
necessary along the iterative process. 

Both the standard FEM and the adaptive GFEM allow as many frequencies as the total 
number of degrees of freedom to be obtained. However, in the latter, only the precision of the 
target frequency is effectively improved by the iterative process. The other frequencies 

(A)   Choice of the target 
vibration mode 

target = chosen mode order 

(B)   Solution by FEM (GFEM nl = 0 ) 
mesh ndof  >=  target 

Obtain ωtarget,FEM

(C)              i = 1 
ωtarget,i =  ωtarget,FEM

(D)            i = i + 1 
j =  1 

(E)   Solution by GFEM 
nl = j and µj = ωtarget,i-1 

Obtain ωtarget,GFEM

(F)   ωtarget,i =  ωtarget,GFEM 

(G)       Convergence test 
|ωtarget,i -  ωtarget,i-1|  < tolerance 

(H)               End 
Show results 
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present errors similar to those obtained by the standard FEM with the same mesh. In order to 
improve the precision of another frequency, it is necessary to perform a new adaptive GFEM 
analysis, taking this new one as the target frequency. 

2.3. Generalized C0 elements for time response analysis 

The C0 elements described in the previous section can also be used for time response 
analysis. When damping is not considered, time response analysis can be made by solving the 
following system of equations [3]: 

 FuMKu =+ && , (15) 

where u is the vector of displacements, u&&  is the vector of accelerations, K is the stiffness 
matrix, M is the mass matrix and F is the vector of applied forces. 

The system of equations from Eq. (15) can be solved by some time integration scheme 
found in the literature. In this paper, Modal Superposition is used to obtain a set of 
independent equations from Eq. (15) and then each equation is solved separately by 
Newmark’s Method [3]. The advantage of using this approach is that one is able to choose 
which vibration modes to include in the Modal Superposition procedure. This can be an 
interesting tool to investigate the accuracy of the individual approximated vibration modes of 
the structure. 

The error between a reference solution and an approximate solution in a fixed position 
inside the structure can be approximated by 

 ∑
=

−∆≈
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i
h

i uute
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where nt is the number of time steps used, ∆t is the time step used to obtain the approximate 
solution, u(i) is the analytical solution at time step (i) and uh

(i) is the approximate solution at 
time step (i) in a fixed position inside the structure. Error evaluation according to Eq. (16) is 
illustrated in Fig. 4. The error in a given time interval is approximated by the product between 
∆t and ∆u(i). 
 

 
Figure 4: Error evaluation according to Eq. (16). 
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For the time response analysis, higher order polynomial finite elements were obtained 
using Lobatto’s polynomials as shape functions, as described in details by [22]. These poly-
nomials are different from Lagrange’s polynomials that are commonly used in p-version of 
FEM. However, both families of polynomials form a basis for the subspace Pn of polynomials 
up to order n when n+1 shape functions are used. Consequently, the approximations given by 
both schemes are the same. 

3. APPLICATION 

Numerical solutions for a uniform fixed-free bar (Fig. 5) are given below to check the 
efficiency of the proposed formulation of GFEM. 

 

 
Figure 5. Uniform fixed-free bar. 

 
The number of degrees of freedom (ndof) considered in each analysis is the total 

number of effective degrees of freedom after introduction of boundary conditions. 

3.1. Free vibration analysis 

The free axial vibration of a fixed-free bar (Fig. 5 with F(t) = 0) with length L, 
elasticity modulus E, mass density ρ and uniform cross section area A, has exact natural 
frequencies ( rω ) given by: 

 ( )
ρ

πω E
L

r
r 2

12 −
= ,    K,2,1=r  (17) 

In order to compare the exact solution with the approximated ones, in this example a 
non-dimensional eigenvalue rχ  given by: 

 
E

L r
r

22ωρ
χ =  (18) 

will be used. 
To check the efficiency of the p refinement of GFEM the results were compared to 

those obtained by AMM, by CEM, by Fourier, by linear and cubic h-versions of FEM and by 
conventional p-version of FEM. The shape functions of the conventional p-version of FEM 
are Lagrangian polynomials. The p-version of GFEM consists in a progressive increase of 
levels of enrichment with parameter πβ jj = . In the analyses by p-version of FEM and by all 



 
 

the enriched methods, the bar was described geometrically by one element and the successive 
refinements were obtained increasing the number of shape functions. Figures 6 to 8 present 
the behavior of relative error for the six earliest eigenvalues in logarithmic scale. 

Analyzing the results obtained for the fixed-free bar, one observes that the results 
obtained by GFEM and all enriched methods show convergence rates greater than the linear h 
refinement of the FEM. The cubic h-version of FEM shows better results than CEM / Fourier 
and AMM just for three earliest eigenvalues and it shows worst results than GFEM for all 
eigenvalues. The conventional hierarchical p refinement of the FEM has greater accuracy than 
CEM / Fourier and AMM. Otherwise, the GFEM showed worst precision than the p version 
of the FEM only for the first eigenvalue. 

 
 

 
Figure 6. Relative error (%) for the 1st and 2nd bar eigenvalues. 

 
 
 
 

 
Figure 7. Relative error (%) for the 3rd and 4th bar eigenvalues. 

 



 
 

 
Figure 8. Relative error (%) for the 5th and 6th bar eigenvalues. 

 
Four different adaptive GFEM analyses are performed in order to obtain the first four 

frequencies. In order to capture an initial approximation of the target vibration frequency, for 
the first frequency, the finite element mesh must have at least one bar element (one effective 
degree of freedom), for the second frequency, it must have at least two bar elements (two 
effective degrees of freedom), and so on. 

Table 1 presents the relative errors obtained by the numerical methods. The linear 
FEM solution is obtained with 100 elements, that is, 100 effective degrees of freedom (dof). 
The cubic FEM solution is obtained with 20 elements, that is, 60 effective degrees of 
freedom. The CEM solution is obtained with one element and 15 enrichment functions 
corresponding to one nodal degree of freedom and 15 field degrees of freedom resulting in 16 
effective degrees of freedom. The conventional hierarchical p FEM solution is obtained with a 
17-node element corresponding to 16 effective degrees of freedom. The analyses by the 
adaptive GFEM have no more than 20 degrees of freedom in each iteration. For example, the 
fourth frequency is obtained taking 4 degrees of freedom in the first iteration and 20 degrees 
of freedom in the two subsequent ones.  

 
Table 1. Results to free vibration of uniform fixed-free bar 

 
 

Eigenvalue 

linear h 
FEM 

(100e) 
ndof  = 100 

cubic h
FEM 
(20e) 

ndof = 60 

p FEM
(1e 17n) 

ndof = 16

CEM 
(1e 15c)  
ndof =16 

Adaptive GFEM 
 (after 3 iterations) 

error (%) error (%) error (%) error (%) error (%) ndof in iterations
1 2,056 e-3 8,564 e-10 3,780 e-13 8,936 e-4 3,780 e-13 1x 1 dof + 2x 5 dof
2 1,851 e-2 1,694 e-7 2,560 e-13 8,188 e-3 2,560 e-13 1x 2 dof + 2x 10 dof
3 5,141 e-2 3,619 e-6 1,382 e-13 2,299 e-2 2,304 e-14 1x 3 dof + 2x 15 dof
4 1,008 e-1 2,711 e-5 1,602 e-11 4,579 e-2 5,289 e-13 1x 4 dof + 2x 20 dof

 
The adaptive process converges rapidly, requiring three iterations in order to achieve 

each target frequency with precision of the 10-13 order. For the uniform fixed-free bar, one 
notes that the adaptive GFEM reaches greater precision than the h versions of FEM and the 
CEM. The p-version of FEM is as precise as the adaptive GFEM only for the first two 
eigenvalues. After this, the precision of the adaptive GFEM prevails among the others.  



 
 

3.2. Time response analysis 

Time response analysis is made for the structure from Figure 5. This is a fixed-free 
uniform bar subject to a time dependent force F(t) at the right end. Only axial displacements 
are considered here. 

The properties of the material for this example were chosen to give a wave velocity 
equal to 1/ == ρEc m/s, in order to simplify the analysis. Besides, the length of the bar is 
taken equal to 1 meter. The bar is at rest and then both initial displacements and velocities are 
null. 

The natural vibration frequencies for this example can be found using Eq. (17). For the 
time response we assume that the time dependent force is given by 

 )sin()( tftF ω= ,  (19) 

where f is the force magnitude and ω is the excitation frequency. 
The analytical solution for the time response in this case requires the application of 

techniques described by [15]. The displacements inside the bar are given by 
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This problem is solved numerically for ω = 20 rad/s and f = 1 N/m2. The analysis is 
made using the Modal Superposition Method for a time interval of 20 s and the resulting 
equations are solved using the Newmark method (with α = 0,5 and δ = 0,25) for a time step 
equal to 1,25x10-3 s. 

This example was solved by the GFEM, the standard linear FEM and the hierarchical 
polynomial FEM (Lobatto’s shape functions). The mesh used by the linear FEM was obtained 
by dividing the domain into 20 finite elements of equal size. The mesh used by p FEM was 
obtained using four finite elements of fifth order. The mesh used by the GFEM was obtained 
with four finite elements with one enrichment level obtained with βR= βL = 3π/2. All meshes 
result in 20 degrees of freedom after boundary conditions imposition. 

The errors evaluated according to Eq. (16) at the center of the bar (i.e. x = 0,5 m) are 
presented in Table 2, Fig. 9 and Fig. 10. The errors presented in the first column of Table 2 
were obtained including only the first vibration mode of the structure in the Modal 



 
 

Superposition procedure. The errors presented in the second column were obtained including 
the first and second modes, and so on. 

 
Table 2. Errors in (m.s) obtained for the time response analysis at x = 0,5 m for different 

numbers of modes included in the Modal Superposition procedure. 
Modes 1 2 3 4 5 6 7 8 9 10 
FEM 1,1813 1,1823 1,2071 1,1772 1,1407 1,2813 1,1676 1,1948 1,2150 1,2019 
p FEM 1,1813 1,1820 1,2042 1,1661 1,1259 1,1876 0,1651 0,0778 0,0891 0,0772 
GFEM 1,1813 1,1820 1,2042 1,1661 1,1259 1,1876 0,1592 0,0530 0,0498 0,0258

 
Modes 11 12 13 14 15 16 17 18 19 

FEM 1,1931 1,2000 1,2068 1,2010 1,1964 1,2006 1,2048 1,2005 1,1968 

p FEM 0,0817 0,0801 0,0817 0,0802 0,0801 0,0801 0,0889 0,0812 0,0843 

GFEM 0,0379 0,0320 0,0346 0,0328 0,0339 0,0335 0,0446 0,0351 0,0435 

 

 
Figure 9. Errors obtained for the time response analysis at x = 0,5 m for different numbers of 

modes included in the Modal Superposition procedure. 
 

 
Figure 10. Errors obtained for the time response analysis at x = 0,5 m for different numbers of 

modes included in the Modal Superposition procedure. 
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The most accurate results were obtained with the GFEM when the first 10 modes were 
included in the analysis. Besides, the results obtained with the linear FEM are very poor in 
comparison with the GFEM and the p FEM. 

A closer inspection of Figure 10 reveals that including more than 10 modes in the 
analysis resulted in less accurate results for both the GFEM and the p FEM. This indicates 
that most accurate results are not obtained by including every mode in Modal Superposition, 
possibly because the higher modes are poorly approximated. Besides, we note that the errors 
obtained with the GFEM are significantly smaller then the errors obtained by the p FEM in 
this case. 

This fact is confirmed by observing the time response at x = 0,5 m obtained by 
including the first 10 modes in the Modal Superposition procedure, that is presented in Figure 
11. We note that the results obtained with the linear FEM are very poor in comparison to the 
other two methods. The results obtained with the GFEM and the p FEM agree with analytical 
solution. However, the displacements obtained with the GFEM are much closer to the 
analytical solution than the ones obtained with the p FEM, mainly for peak displacements. 
 
 

 

Figure 11. Time response at x = 0,5 m obtained by including the first 10 modes in the Modal 

Superposition procedure. 

 

The accuracy of the results obtained with the GFEM in this case can be explained by 
observing the relative errors obtained for the natural vibration frequencies. These errors are 
presented in Table 3, Fig. 12 and Fig. 13. 

From Figure 12 we observe that the accuracy of the linear FEM for the approximation 
of the lower vibration modes is very poor in comparison to the GFEM and the p FEM. The 



 
 

linear FEM obtained better results only for the last three frequencies presented, but the errors 
involved in the approximation of these frequencies are so big that this makes little difference 
in practice. 

The vibration frequencies approximated with errors smaller than 0.05% are presented 
in Fig. 13. The results obtained with the linear FEM are not presented since they are very poor 
in comparison with the other two methods. 

In this case, we note an interesting behavior. The p FEM was able to obtain better 
results for the first few vibration modes, but the results obtained by the GFEM eventually 
become more accurate for the higher vibration modes. This fact is confirmed by the results 
presented in Table 3. 

However, the approximations obtained by the GFEM are more accurate for a larger 
range of frequencies. Note, for example, that the GFEM obtained more vibration frequencies 
with errors smaller than 0.01%. The p FEM was able to obtain better results only for the first 
four vibration frequencies, but the errors obtained by the GFEM for these frequencies are 
small enough for most practical applications. 

 
Table 3. Relative errors in (%) obtained for the natural vibration frequencies. 
Modes Frequency (rad/s) p FEM GFEM FEM 

1 1,570796 2,34E-04 2,34E-04 2,57E-02 
2 4,712389 2,34E-04 2,36E-03 2,32E-01 
3 7,853982 2,34E-04 2,78E-03 6,43E-01 
4 10,995574 2,34E-04 2,05E-03 1,26E+00 
5 14,137167 9,41E-04 9,41E-04 2,09E+00 
6 17,278760 7,18E-03 2,34E-04 3,13E+00 
7 20,420352 3,30E-02 2,34E-04 4,38E+00 
8 23,561945 1,13E-01 2,78E-03 5,83E+00 
9 26,703538 3,20E-01 3,02E-02 7,48E+00 
10 29,845130 7,47E-01 1,46E-01 9,30E+00 
11 32,986723 1,52E+00 4,69E-01 1,13E+01 
12 36,128316 2,50E+00 1,11E+00 1,33E+01 
13 39,269908 6,23E+00 2,86E+00 1,53E+01 
14 42,411501 8,91E+00 5,02E+00 1,73E+01 
15 45,553093 1,26E+01 8,15E+00 1,89E+01 
16 48,694686 1,46E+01 1,05E+01 1,99E+01 
17 51,836279 5,31E+01 3,79E+01 2,01E+01 
18 54,977871 5,98E+01 4,56E+01 1,91E+01 
19 58,119464 7,05E+01 5,72E+01 1,68E+01 

 
 



 
 

 

Figure 12. Relative errors (%) obtained for the natural vibration frequencies. 

 
From Table 2, we note that both the p FEM and the GFEM obtained the same results 

when the first six modes were included in the analysis. However, the inclusion of the 7th, 8th, 
9th and 10th modes results in a better approximation by the GFEM. 

This fact can be explained by observing the results presented in Table 3. The 7th, 8th, 
9th and 10th modes were much better approximated with the GFEM than with the p FEM. The 
p FEM obtained better results until the 4th mode, but the accuracy of the GFEM is good 
enough for these modes so that no difference is noted in the results from Table 2 in these 
cases. 
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These results indicate that the p FEM is able to obtain better results for the first few 

vibration modes, but the GFEM is able to obtain better results for a larger frequency range. 
Since time response analysis makes use of several vibration modes at the same time, 
obtaining only a few vibration modes with high accuracy may not ensure an accurate time 
response. This is particularly true when the structure is subject to high frequency excitations. 
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In this case, the GFEM is able to obtain better approximation for a larger range of vibration 
modes and then obtain better results for the time response analysis. 

4. CONCLUSION 

The main contribution of this work consists in formulating and investigating the 
performance of the Generalized Finite Element Method (GFEM) for vibration analysis of 
bars. The proposed generalized C0 element allows applying boundary conditions as in the 
standard finite element procedure. In some of the recently proposed methods such as the 
modified CEM [12], it is necessary to change the set of shape functions depending on the 
boundary conditions of the problem. In others, like the Partition of Unity used by [5] and [10], 
the boundary conditions are applied under a penalty approach. In addition the GFEM 
enrichment functions require less effort to obtain than the FEM shape functions in a 
conventional hierarchical p refinement.  

The GFEM results were compared with those obtained by the h and p versions of FEM 
and other enriched methods. The GFEM is quite accurate and its convergence rates are higher 
than those obtained by the h-versions of FEM and the enriched methods in free vibration 
analysis of bars. Although the p refinement of GFEM has produced excellent results and 
convergence rates, the adaptive GFEM exhibits special skills to reach accurately a specific 
frequency. 

In most of the free vibration analysis it is virtually impossible to get all the natural 
frequencies. However, in practical analysis it is sufficient to work with a set of frequencies in 
a range (or band), or with those which have more significant participation in the analysis. The 
adaptive GFEM allows finding a specific natural frequency with accuracy and computational 
efficiency. It may be used in repeated analyses in order to find all the frequency in the range 
of interest.  

The adaptive GFEM shows fast convergence and remains stable after the third 
iteration with quite precise results for the target frequency. The results have shown that the 
adaptive GFEM is more accurate than the h refinement of FEM and the CEM, both employing 
a larger number of degrees of freedom. The adaptive GFEM in free vibration analysis of bars 
has exhibited similar accuracy, in some cases even better, to those obtained by the p 
refinement of FEM. 

Thus the adaptive GFEM has shown to be efficient in the analysis of longitudinal 
vibration of bars, so that it can be applied, even for a coarse discretization scheme, in complex 
practical problems. Future research will extend this adaptive method to other structural 
elements like beams, plates and shells. 

In time response analysis the most accurate results were obtained with the GFEM. The 
results obtained with the linear FEM are very poor in comparison to the GFEM and the p-
version of the FEM. The results indicate that the p FEM is able to obtain better results for the 
first few vibration modes, but the GFEM is able to obtain better results for a larger frequency 
range. Since time response analysis makes use of several vibration modes at the same time, 
obtaining only a few vibration modes with high accuracy may not ensure an accurate time 
response. This is particularly true when the structure is subject to high frequency excitations. 



 
 

In this case, the GFEM is able to obtain better approximation for a larger range of vibration 
modes and then obtain better results for the time response analysis. 
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