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Abstract: AN operator T ∈B (H) is said to be generalized P-paranormal if  

‖|𝑻|𝒑𝑼 |𝑻|𝒑𝒙  ‖‖𝒙‖ ≥
𝟏

𝑴𝒑
‖|𝑻|𝒑𝒙‖𝟐 

For all 𝒙 ∈ 𝑯,  p > 0, and M > 0, where U is the partial isometry appeared in the polar decomposition 𝑻 = 𝑼|𝑻|  of T. The aim 

of this note is to obtain some structure theorem for a class of generalized P-paranormal operators.  Exactly we will give some 

conditions which are generalization of concepts of generalized paranormal operators.  

 

Keywords: Paranormal Operators, Hilbert Space, Hypo Normal Operator, Log-Hypo Normal Operators, and Bounded Linear 

Operator. 

 

INTRODUCTION 

Let H be an infinite dimensional complex Hilbert and B (H) denote the algebra of all bounded linear operators acting on H.  Every 

operator T can be decomposed into T = U|𝑇|with a partial isometry U, where |𝑇| is the square root of T * T.  If U is determined 

uniquely by the kernel condition ker (U) = ker|𝑇|, then this decomposition is called the polar decomposition, which is one of the 

most important results in operator theory. In this paper, T = U|𝑇| denotes the polar decomposition satisfying the kernel condition 

ker (U) = ker(|𝑇|). 

 Recall that an operator T ∈B (H) is positive, T ≥ 0, if   (T𝑥, 𝑥) ≥ 0 for all 𝑥 ∈ 𝐻.  An operator T ∈ B(H) is said to be 

hyponormal if T*T ≥ TT*.  Hyponormal operators have been studied by many authors and it is known that hyponormal operators 

have many interesting properties similar to those of normal operators. An operator T is said to be p-hyponormal if (T ∗ 𝑇)𝑝 ≥
(𝑇𝑇 ∗)𝑝 for p ∈(0, 1] and an operator T is said to be log-hyponormal if T is invertible and log|𝑇| ≥ log |T*|. P-hyponormal and log-

hyponormal operators are defined as extension of hyponormal operator.  An operator T ∈B (H) is said to be paranormal if it satisfies 

the following norm inequality  

‖𝑇2𝑥‖ ≥  ‖|𝑇𝑥‖2 

For every unit vector 𝑥 ∈ 𝐻. Ando [3] proved that every log-hyponormal operators is paranormal.  It was originally introduced as 

an intermediate class between hyponormal operators and normaloid. It has been studied by many authors, so there are many to cite 

their references, for instance [3, 9, 22].  We say that an operator T belong to class A if |𝑇2|  ≥  |𝑇|2.  Class A was first introduced 

by Furuta-Ito-Yamazaki as a subclass of paranormal which include the class of p-hyponormal and log-hyponormal operators.   

 

DEFINITION 1.1 

 A bounded linear operator T on H is called generalized n-paranormal operator if for every unit vector 𝑥 ∈ 𝐻,   M > 0 and 

a positive integer n such that 𝑛 ≥ 2, T satisfies  ‖𝑇𝑛𝑥‖ ≥
1

𝑀
𝑛
2

‖𝑇𝑥‖𝑛 

 

DEFINITION 1.2 

Let T ∈B(H), An operator T belongs to generalized class A operator if for M> 0, 𝑇 Satisfies  

|𝑇2|  ≥  
1

𝑀
|𝑇|2 

 Rai [18] has defined a bounded operator T on a Hilbert space H as generalized paranormal if for every unit vector 𝑥 ∈ 𝐻 

and M> 0, 𝑇 Satisfies  

‖𝑇2𝑥‖  ≥  
1

𝑀
‖𝑇𝑥‖2.  He also proved a result for every unit vector 𝑥, 

‖𝑇𝑘+1𝑥‖2  ≥  
1

𝑀2𝑘−1
‖𝑇𝑘𝑥‖2‖𝑇2𝑥‖ 
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Where T is a bounded linear operator H, M>0 and k≥1 

 On the basis of the above result, we define the generalized n-paranormal operator as follows.  

 

THEOREM 1.3 

If T satisfies    |𝑇𝑛|
2

𝑛  ≥  
1

𝑀
|T|2 for some positive integer n such that n≥2 and m>0, then T is a generalized n-paranormal operator. 

 

LEMMA 1.4   Holder – Mccarthy inequality 

 Let T be a positive operator.  Then the following inequalities hold for all 𝑥 ∈ 𝐻. 

(i) < 𝑇𝑟𝑥, 𝑥 >  ≤  < 𝑇𝑥, 𝑥 >𝑟 ‖𝑥‖2(1−𝑟)  𝑓𝑜𝑟 0 < 𝑟 ≤ 1 

(ii) < 𝑇𝑟𝑥, 𝑥 >  ≥  < 𝑇𝑥, 𝑥 >𝑟 ‖𝑥‖2(1−𝑟)  𝑓𝑜𝑟 𝑟 ≥ 1 

Proof: 

Suppose T satisfies   |𝑇𝑛|
2

𝑛  ≥  
1

𝑀
|T|2  -------- (B-1) 

for some positive integer n such that n≥2 and m>0, Then for every unit vector 𝑥 ∈ 𝐻. 
‖𝑇𝑛‖2   =        < |𝑇𝑛|2𝑥, 𝑥 > 

                                                ≥         < |𝑇𝑛|
2

𝑛𝑥, 𝑥 >𝑛 

                                                                                                   ≥         <
1

𝑀
|𝑇|2𝑥, 𝑥 >𝑛         ---- (B-1) 

                        ≥          <
1

𝑀𝑛
|𝑇|2𝑥, 𝑥 >𝑛 

                                                                                        ≥           
1

𝑀𝑛
‖𝑇𝑥‖2𝑛  

Hence we have‖𝑇𝑛‖     ≥  
1

𝑀
2
𝑛

‖𝑇𝑥‖𝑛  for every unit vector 𝑥 ∈ 𝐻 

THEOREM 1.5 

 Let T ∈B(H). If T is generalized k -quasi – hyponormal then T is generalized (k+1) -paranormal. 

Proof: 

 If T is a generalized k – quasi hyponormal then the following relation holds for every unit vector 𝑥 ∈ 𝐻 

‖𝑇𝑘+1𝑥‖ ≥
1

𝑀
(
𝑘+1

2 )
‖𝑇∗𝑇𝑘𝑥‖          ----   (B-1) 

To prove T is generalized (K+1) -paranormal it suffices to prove that 

                      ‖𝑇𝑘+1𝑥‖ ≥
1

𝑀
(
𝑘+1

2 )
‖𝑇𝑥‖𝑘+1 

 

We know that for any bounded linear operator T on a Hilbert space H. 

                                                                    ‖𝑇𝑥‖𝑘+1 ≤ ‖𝑇∗𝑇𝑘𝑥‖      ----------   (B-3) 

Therefore from (B-2) and (B-3) we get 

                                                                    ‖𝑇𝑘+1𝑥‖ ≥
1

𝑀
(
𝑘+1

2 )
‖𝑇𝑥‖𝑘+1  

 

Hence T is a generalized (k+1) -paranormal operator. 

 

THEOREM 1.6 

 Let 0<p<1. Every Generalized p-paranormal operator is generalized paranormal. 

Proof: 

 We note that the Holder inequality by Mccarthy (i) of Lemma 1.4 has the following form. 

  ‖𝑆𝑝𝑦‖ ≤ ‖𝑆𝑦‖𝑝‖𝑦‖1−𝑝 

For all 𝑦 ∈ 𝐻.  Putting 𝑆 = |𝑇| and 𝑦 = 𝑈|𝑇|𝑝in part (ii) of Lemma 1.4 

We have 

  ‖|𝑇|𝑝𝑈 |𝑇|𝑝𝑥‖ ≤ ‖|𝑇| 𝑈|𝑇|𝑝𝑥‖𝑝‖|𝑇|𝑝𝑥  ‖1−𝑝 

Since the left hand side of the above inequality is greater than  
‖|𝑇|𝑝𝑥‖2 / 𝑀𝑝‖𝑥‖by the generalized absolute p-paranormality. It follows that  

        ‖|𝑇|𝑝𝑥‖1+𝑝 ≤ ‖|𝑇| 𝑈|𝑇|𝑝𝑥‖𝑝‖𝑥‖     ---------   (B.4) 

Hence, if we replace 𝑥 by  |𝑇|1−𝑝𝑥   in (B.4) then 

        
1

𝑀𝑝
‖𝑇𝑥‖𝑝+1 ≤ ‖|𝑇|1−𝑝𝑥‖‖𝑇2𝑥‖𝑝 

Applying part (ii) of lemma 1.4 again it follows that  

           ‖|𝑇|1−𝑝𝑥‖ ≤ ‖𝑇𝑥‖1−𝑝‖𝑥‖𝑝 
Therefore it implies that 

        
1

𝑀𝑝
‖𝑇𝑥‖𝑝+1 ≤ ‖|𝑇|1−𝑝𝑥‖‖𝑇2𝑥‖𝑝 

                ≤ ‖𝑇𝑥‖1−𝑝‖𝑥‖𝑝‖𝑇2𝑥‖𝑝 

so that  

               
1

𝑀
‖𝑇𝑥‖2 ≤ ‖𝑇2𝑥‖‖𝑥‖ 

This completes the proof. 
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THEOREM 1.7 

 Let T be a generalized p-paranormal operator, then 

‖𝑇3𝑥‖ ≥
1

𝑀2
‖𝑇2𝑥‖‖𝑇𝑥‖For every unit vector 𝑥 ∈ 𝐻 

Proof: 

 For a unit vector 𝑥 in H.  We may assume that ‖𝑇𝑥‖ ≠0, we have 

                                                       ‖𝑇3𝑥‖=‖𝑇𝑥‖ ‖𝑇2 𝑇𝑥

‖𝑇𝑥‖
‖ 

                                                   ≥
1

𝑀
‖𝑇𝑥‖ ‖𝑇

𝑇𝑥

‖𝑇𝑥‖
‖

2

  (By theorem 1.6) 

                                                      ≥
1

𝑀
‖𝑇𝑥‖ ‖

𝑇2𝑥

‖𝑇𝑥‖
‖

2

 

                                                      ≥
1

𝑀

‖𝑇𝑥‖‖𝑇2𝑥‖
2

‖𝑇𝑥‖2  

≥
1

𝑀2

‖𝑇𝑥‖‖𝑇2𝑥‖ ‖𝑇𝑥‖2

‖𝑇𝑥‖2
 

‖𝑇3𝑥‖ ≥
1

𝑀2
‖𝑇2𝑥‖‖𝑇𝑥‖ 

Hence the theorem. 

 

THEOREM 1.8 

Let T be a generalized p-paranormal operator, then 

 ‖𝑇4𝑥‖ ≥
1

𝑀5
‖𝑇2𝑥‖2‖𝑇𝑥‖For every unit vector 𝑥 ∈ 𝐻 

Proof: 

 For a unit vector 𝑥 in H.  We may assume that ‖𝑇𝑥‖ ≠0, we have 

                                                             ‖𝑇4𝑥‖=‖𝑇𝑥‖ ‖𝑇2 𝑇2𝑥

‖𝑇𝑥‖
‖ 

                                                                 ≥
1

𝑀
‖𝑇𝑥‖ ‖𝑇

𝑇2𝑥

‖𝑇𝑥‖
‖

2

 (By theorem 1.6) 

                                                                 ≥
1

𝑀

‖𝑇𝑥‖‖𝑇3𝑥‖
2

‖𝑇𝑥‖2  

                          ≥
1

𝑀

‖𝑇𝑥‖‖𝑇3𝑥‖ ‖𝑇3𝑥‖

‖𝑇𝑥‖2
 

                                                                        ≥
1

𝑀5

‖𝑇2𝑥‖
2

‖𝑇𝑥‖2

‖𝑇𝑥‖
   (By Theorem 1.7) 

‖𝑇4𝑥‖ ≥
1

𝑀5
‖𝑇2𝑥‖2‖𝑇𝑥‖ 

 

THEOREM 1.9 

 Let T be a generalized P-Paranormal operator, then  

 ‖𝑇𝑘+1𝑥‖2 ≥  
1

𝑀2𝑘−1
‖𝑇𝑘𝑥‖2‖𝑇2𝑥‖ For a positive integer k≥ 1 and every unit vector 𝑥 in H. 

Proof: 

We will use induction to establish the inequality. 

                                                      ‖𝑇𝑘+1𝑥‖2 ≥  
1

𝑀2𝑘−1
‖𝑇𝑘𝑥‖2‖𝑇2𝑥‖ For a positive integer k≥ 1    ...... (B.5) 

In case K=1 

                                                          ‖𝑇2𝑥‖2 =  ‖𝑇2𝑥‖ ‖𝑇2𝑥‖   ≥
1

𝑀2
‖𝑇𝑥‖4........... (B.6) 

hold by theorem (2.4).  Now suppose that (B.5) holds for some k≥ 1 and we assume that ‖𝑇𝑥‖  ≠ 0  then 

‖𝑇𝑘+2𝑥‖2    =  ‖𝑇𝑥‖2 ‖𝑇𝑘+1
𝑇𝑥

‖𝑇𝑥‖
‖

2

 

                                                                                                   ≥  ‖𝑇𝑥‖2 1

𝑀2𝑘−1 ‖𝑇𝑘 𝑇𝑥

‖𝑇𝑥‖
‖

2

‖𝑇2 𝑇𝑥

‖𝑇𝑥‖
‖         (By B.5) 

                                                                                           ≥ ‖𝑇𝑥‖2 1

𝑀2𝑘−1 ‖
𝑇𝑘+1𝑥

‖𝑇𝑥‖
‖

‖𝑇3 𝑥‖

‖𝑇𝑥‖
 

                                                            ≥    
1

𝑀2𝑘−1
‖𝑇𝑘+1𝑥‖2 1

𝑀2

‖𝑇2 𝑥‖‖𝑇𝑥‖

‖𝑇𝑥‖
 

                                                                                       ≥
1

𝑀2𝑘+1
‖𝑇𝑘+1𝑥‖2‖𝑇2𝑥‖  

That is 

                                                                 ‖𝑇𝑘+2𝑥‖2     ≥
1

𝑀2𝑘+1
‖𝑇𝑘+1𝑥‖2‖𝑇2𝑥‖  ......... (B.7) 

For  k+3 

‖𝑇𝑘+3𝑥‖2 =  ‖𝑇𝑥‖2 ‖𝑇𝑘+2
𝑇𝑥

‖𝑇𝑥‖
‖

2

 

                                                                                                 ≥  ‖𝑇𝑥‖2 1

𝑀2𝑘+1 ‖𝑇𝑘+1 𝑇𝑥

‖𝑇𝑥‖
‖

2

‖𝑇2 𝑇𝑥

‖𝑇𝑥‖
‖by (B.7) 
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                                                                                          ≥  ‖𝑇𝑥‖2 1

𝑀2𝑘+1 ‖
𝑇𝑘+2 𝑥

‖𝑇𝑥‖
‖

2

‖
𝑇3𝑥

‖𝑇𝑥‖
‖ 

                                                                                         ≥  ‖𝑇𝑥‖2 1

𝑀2𝑘+1

‖𝑇𝑘+2 𝑥‖
2

‖𝑇𝑥‖2

‖𝑇3𝑥‖

‖𝑇𝑥‖
 

                                                                                       ≥
1

𝑀2𝑘+1
‖𝑇𝑘+2 𝑥‖2 1

𝑀2

‖𝑇2𝑥‖‖𝑇𝑥‖

‖𝑇𝑥‖
  (By theorem 1.7) 

                                                                   ‖𝑇𝑘+3 𝑥‖2   ≥
1

𝑀2𝑘+3
‖𝑇𝑘+2 𝑥‖2‖𝑇2𝑥‖........ (B.8) 

 

For  k+4 

                                                                     ‖𝑇𝑘+4𝑥‖2 =  ‖𝑇𝑥‖2 ‖𝑇𝑘+3     𝑇𝑥

‖𝑇𝑥‖
‖

2

 

                                                                                         ≥  ‖𝑇𝑥‖2 1

𝑀2𝑘+3 ‖𝑇𝑘+2 𝑇𝑥

‖𝑇𝑥‖
‖

2

‖𝑇2 𝑇𝑥

‖𝑇𝑥‖
‖   (By B.8) 

                                                                                         ≥  ‖𝑇𝑥‖2 1

𝑀2𝑘+3 ‖
𝑇𝑘+3 𝑥

‖𝑇𝑥‖
‖

2

‖
𝑇3𝑥

‖𝑇𝑥‖
‖ 

                                                                                         ≥  ‖𝑇𝑥‖2 1

𝑀2𝑘+3

‖𝑇𝑘+3 𝑥‖
2

‖𝑇𝑥‖2

‖𝑇3𝑥‖

‖𝑇𝑥‖
 

                                                                                       ≥
1

𝑀2𝑘+3
‖𝑇𝑘+3 𝑥‖2 1

𝑀2

‖𝑇2𝑥‖‖𝑇𝑥‖

‖𝑇𝑥‖
  (By Theorem 1.7) 

                                                                    ‖𝑇𝑘+4 𝑥‖2 ≥
1

𝑀2𝑘+5
‖𝑇𝑘+3 𝑥‖2‖𝑇2𝑥‖ 

The proof is complete. 

 

THEOREM 1.10 

Let𝑇 ∈ 𝐵(𝐻),  If T is a generalized p-paranormal operator T, then T satisfies  

‖𝑇𝑛+1𝑥‖ ≥
1

𝑀
𝑛(𝑛+1)

2

‖𝑇𝑥‖𝑛+1 

For any unit vector 𝑥 ∈ 𝐻, 𝑀 > 0 and positive integer n such that 𝑛 ≥ 1. 
Proof: 

For n=1 the statement is trivial. If the statement is true for n-1 then we have  

                                                   ‖𝑇𝑛+1‖ = ‖𝑇𝑥‖ ‖𝑇𝑛 𝑇𝑥

‖𝑇𝑥‖
‖ 

                                                                       ≥
1

𝑀
𝑛(𝑛−1)

2

‖𝑇𝑥‖ ‖
𝑇2𝑥

‖𝑇𝑥‖
‖

𝑛

 

                                            ≥
1

𝑀
𝑛(𝑛−1)

2

‖𝑇𝑥‖
1

𝑀𝑛

‖𝑇𝑥‖2𝑛

‖𝑇𝑥‖𝑛  

                                           ≥
1

𝑀
𝑛(𝑛−1)

2

‖𝑇𝑥‖𝑛+1 

Hence the Lemma. 

 

CONCLUSION 

Operator theory plays a vital role in the development of applied science and other related areas. This process can be extended in 

different dimensions. 
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