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Abstract:- In this paper, mathematical representation of similarity transformation model has been 
obtained for the steady laminar boundary layer of non-Newtonian flow with variable dynamic 
viscosity over a flat plate. The power-law fluid model has been adopted for the non-Newtonian fluid 
representation. The governing non-dimensional boundary layer equations have been transformed into 
ordinary differential equations using general similarity transformation. Comparison of different studies 
transformation models has been made for useful and common special similarity transformation.  While 
excellent compatibility was found. This developed general model can be used as a proof to the current 
models and basic for future transformation models in a large variety of applications. Moreover, 
numerical solution procedure using quasi-linearization method for flow equation based on this latter 
transformation model was developed and presented. 
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1 Introduction 

Boundary layer flow has been discussed for 
many decades. Boundary layer fluids can be 
divided into two types - Newtonian and non-
Newtonian; while most common and useful is 
the power-law model. In 1955 Metzner [1] 
presented applications of non-Newtonian flow 
behavior in chemical engineering. Five years 
later, Schowalter [2] discussed boundary layer 
theory for power law fluids.  

Some years later, works on non-Newtonian 
fluid types in different geometries have been 
published more frequently. For example, 
Acrivos et al. [3] have analyzed fluids flow 
along a flat plate. Moreover, in 1958 
Strivastava [4] investigated the flow of non-
Newtonian liquid near stagnation point. Five 
years later, Kapur and Gupta [5] published 
their study on 2D non-Newtonian flow in a 
channel. Three decades later, Garg and 
Rajagopal [6] have developed model in wedge 
geometry type for non-Newtonian flow.   

Another important issue in boundary layer 
flow is the boundary condition on the wall.  
Innovative study about magnetic influence on 
non-Newtonian laminar flow was done by 
Shashidar Reddy et al. [7]. Additionally, 
Moallemi et al. [8] used homotopy 
perturbation technique for analyzing non-

Newtonian flow in collector. During their 
research they investigated flow behavior while 
boundary condition imposed on. 

This essay concentrates on general 
similarity solution transformation of boundary 
layer equations. Former studies on the subject 
were done by Sanyal [9], Schlichting [10] and 
others. During the last four decades the subject 
was in gradually push; beginning with studies 
on various similarity solutions for 2D power-
law fluids which was done by Kapur et al.[11] 
and also by Hansen [12] for three-dimensional 
case. Last decade is characterized with various 
studies on wedge-geometry and other special 
cases which were done by Pakdemirli [13] and 
others. Also, similarity solution with 
compressible flow effect was done by Ludlow 
et al.

 [14]. 
This paper continues the author previous 

study on Newtonian and non-Newtonian 
fluids. While the former study [15] discussed 
non-linear dynamic viscosity effect on fluid, 
this paper object is to formalize generalized 
similarity transformation model for power-law 
laminar boundary layer fluids with non- linear 
dynamic viscosity compared with other 
studies. Moreover, numerical procedure based 
on quasi-linearization method has been 
developed. 
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2 Boundary Layer Formulation 

The power-law rheological law for non-
Newtonian shear stress xyt is described by:  
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while ( , )x y are the Cartesian coordinates of 

any point in the flow domain, where x -axis is 
along the plate and y -axis is normal to it. Flow 

consistency parameter ),( yxK is considered to 

be differentiable function of ),( yx coordinates.
u represents the velocity component in the 
positive x direction, and n is the power law 
index. 
 

The boundary layer continuity and 
momentum equations in case of 2D laminar 
flow of incompressible fluid with constant 
density r are: 
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while body forces are neglected.u and v
represent the components of the fluid velocity 
in positive , x y direction and xyt denotes non-

Newtonian shear stress.C is assumed to be 
known function from the outer inviscid-flow 
analysis, which derived by Bernoulli's 
equation. In this studyC is assumed to be 
constant. 
 
The boundary conditions for Eq. (2-3) are: 
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While ww VUU ,, ¥ andC are all constants that 

are not necessarily zero. 
 

Using transformation with stream function
( , )x yy leads to:         
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Substituting (7) into Eq. (2-3) yields: 
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while dynamic viscosity is defined by
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The transformed boundary conditions relations 
are: 
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General similarity solution will be defined by 
the following parameters: 
 

)()(),()(),( yGxMfxHyx == hhy  (12) 

wherey is the stream function andh is the 

similarity variable. Also, ( ) ( ), H x M x and 

( )G y are differentiable functions of ( ),x y , 

respectively.y derivatives would behave 
according to  the following form using (12), 
by:   
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Substituting relations (13) into Eq. (8) and 
dividing by product expression ( ) ( )H x M x  
leads to the following differential equation: 
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while ( ) ( ) 0H x M x ¹ for any x value.  

 Substituting (12) in B.C. (9-11) leads to the 
following relations: 
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In order to define specific solution for physical 
problem, one should define the following 
functions: [ ])(),(),( yGxMxH according to its 
physical and mathematical nature. In the next 
section ( )G y function and viscosity ( , )x yn
will be evaluated using B.C. (15).  
 
3 ( )G y function evaluation using 

B.C. 
Specific argument value input for f and f ¢  

will be achieved if )0(G and )( ¥®yG  would 
be converged to zero or diverged to infinity, 
respectively. Examination of these conditions 
together with other B.C. simultaneously is 

presented in Table 1. Realization of Table 1 
leads to the following polynomial function: 
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Viscosity function representation is 
formulated generally by: 
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while ( ).yM xh = Dealing with ( ) ( )H x M x

functions evaluation will be the topic of next 
section. 

 
4 ( ), ( )H x M x  function evaluation 

using Eq. (14) coefficients 

analysis 
 

Firstly, Simplifying Eq. (14) will be done 
by (19-20) relations substitution into (14), 
which yields: 
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At this point, coefficients evaluation analysis 
will be done using Table 2 below. 
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  Table 1:G function behavior examination 

B.C. Necessary conditions for constant B.C. 
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( )M x  
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Table 2: ( ),  ( )H x M x functions evaluation using Eq. (14) coefficients analysis 
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It can be inferred from Table 2 analysis that
( )H x form is: 
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3 ( )H x function examination  

According to the previous section, it was 
proved that similarity solution does exist only 
for specific ratio between ( )H x and ( )M x

function. In this section, evaluation of the 
appropriate ( )H x function that fulfills those 
specific B.C. will be done. 

In many applications of fluid mechanics
)(xM and )(xH are given by inverse ratio 

multiplied by constant [16-22]. Application of 
this case involved with adequate comparison 
between partial representative references will 
be done in section 4. General flow differential 
equation (see also Table 2) and adequate B.C. 
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while 1,a a are constants.  
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Eq. (21) should be dependent on one variable 
only (h ). For this purpose, adequate )(xH

function should be defined using the following
x coordinate's coefficients equalization: 
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Solution of Eq. (23) is obtained by substituting 
the following expression: 
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the following flow equation: 
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Analyzing second boundary condition (22) 
reveals that ( )0f is dependent on )(xH ¢ instead 
of being constant. Accordingly, there are two 
possible options for solution representation: 
 
Option 1: 
Assuming .0=wV  

Using this assumption doesn't obligate )(xH

behavior. Nevertheless, )(xH will be defined 
by relation (25). 
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Forcing constant,)( =¢ xH leads to the 

following form of 22 b)( += xaxH , while

ÂÎ22 ,ba . This expression coincides with 
former relation (25) for Newtonian case only (
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With the following B.C.: 
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Comparisons to other studies similarity 
transformation model will be made in the next 
section. 

5 Applications of general 

similarity transformation (24) 

with study comparisons 

Comparison between similarity 
transformation models is presented in Table 3. 
On the one hand, all similarity models obey to 
the general formulation (26). On the other 
hand, there are differences (usually slight) in 
model parameters in each study reference.  
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Note thath power denominator expression 

appears with
n

1
while in the table references 

above it appears with
1

1

+n
. The distinction 

derives from the absolute value states 
development as was done here (24). Variable 
viscosity function )(hj is discussed broadly in 
previous study [15]. In the next section 
numerical approach solution will be examined. 

6 Numerical approach solution 

for flow Eq. (26) with B.C. (28) 

Recently Numerical procedure studies on 
this field were developed by Jhankal [23] and 
also Bognár & Csáti [24]. Their researches 
were involved with laminar boundary layer  

 
flow of a power law fluid on a moving plate in 
various applications (presence of magnetic 
field and non-Newtonian media, respectively). 
During their studies they used numerical 
iterative methods. Jhanakal used Runge-Kutta-
Fehlberg Forth-Fifth order method while 
Bognár & Csáti used iterative transformation 
method (ITM). Also, Puttkammer [26] was 
solved the problem of classical boundary layer 
by using the shooting method and explicit 
discrete method. Moreover, quasi-linearization 
approach was applied by Lee [27], Huang [28] 
and Naikoti & Borra [29] on boundary layer 
with thermal effect in different studies. 
 
  Similarly to these models, numerical solution 
procedure will be developed in this section for 
flow Eq. (26) together with B.C (28).  
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Firstly, Eq. (26) full development 
presentation (for 0f >¢¢ ) would be described 
by: 
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representation.  
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Note that for 2/1=n ,a constant is non-exist. 
Also, 0¹¢¢f . 
 
From here, Eq. (29-30) will be divided into 
two main cases of power-law index range with 
appropriate numerical solution using Table 4. 
According to Table 4, )0(3x should be guessed 

until solution is converged (Shooting Method). 
Solution can be done for example by using 
BVP4C function in MATLAB program or 
instead, using directly the following Euler 
forward numerical method of order O(h2) as 
follows [25-26]: 
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while i is the grid index. h is grid space-gap 
and N is the grid length.  In order to solve this 
equation one should guess )0( =¢¢

if h . More 

approximate or numerical discrete methods 
are presented by Bognár [16, 24],  
Puttkammer [26] and others. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

B.C. 
Quasi – linearization numerical 

procedure 
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Table 4: Quasi –linearization numerical procedure application  

of Eq. (29) & B.C.(28) 
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7 Conclusion 
Generalized similarity transformation model 

for power-law laminar boundary layer fluid 
with non-linear dynamic viscosity was 
developed. Excellent compatibility was found 
with other similarity transformation models.  

 
Moreover, numerical solution was developed 

to general flow equation using quasi – 
linearization numerical procedure with 
appropriate Euler forward numerical relations.   

 
This current model can be used as a proof to 

current problems and a basic model for future 
transformation models in a large variety of 
applications by examining other ( )H x function 

parameters ( 1 1,  ba ) and variety of B.C. 

parameters ( , , ,wU U C a¥ ). 
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