
GENERATE ADVANCED
YARA RULES BASED ON
CODE REUSE

An Introduction to YARA

YARA, short for “yet another recursive acronym”,
is a tool used in malware detection and
classification. Malware researchers leverage YARA
to create descriptions of malware families based
on textual or binary patterns. Each description, or
signature, is a “rule” consisting of a set of strings
and a boolean expression to determine its logic.
When written effectively YARA rules identify
commonalities in malware and classify malicious
files to other forms of malware that display similar
patterns. More advanced YARA rules can be used
to find additional variants of malware and hunt for
samples.

While most security vendors use their own
signature mechanisms, YARA is an open standard
tool which can be used with many platforms and
applied to different use cases. For example, YARA
enables an organization to create detections of
its own, which is relevant for identifying targeted
malware that generic or classic signatures often
struggle to detect.

This poses a significant advantage for security
teams since they do not need to wait for signature
updates from their security vendors. Security
teams can create personalized, sophisticated
YARA signatures even for targeted attacks and
customly created malware.

The purpose of this white paper is to define the challenges involved in writing effective YARA rules. It
will explain how identifying code reuse between malicious files can be used to automatically produce
advanced YARA rules to increase the accuracy of malware detection and classification and improve
threat hunting capabilities.

Challenge:

If a YARA rule is created based
on the file’s trusted code,
many false positives will be
generated.

On the other hand, ensuring
a YARA signature is not too
specific is also important.
Taking a piece of code as it is,
for example, and developing
a rule that contains all of the
code’s addresses will make the
YARA rule very specific to this
particular file only. The rule
will not likely generate hits for
other or future variants of the
malware that contain different
values.

The Challenges in Writing Effective
YARA Rules
The vast majority of YARA rules available today are
simple-based rules focused on string reuse found in a
malware’s binary. Strings can include a log message
or hard-coded user agent, which are criteria not
guaranteed to be unique. Therefore they can result in
false positives and can be easily replaced or encrypted
by the adversary to avoid detection.

The most effective YARA rules are designed to achieve
high detection and classification rates while reducing
the number of false positives. Researchers must
select the right textual or binary patterns to optimize
detection results and accurately classify a file to its
respective malware family. This is difficult because
files share hundreds and even thousands of strings
and it is imperative that rules are not too generic nor
too specific.

For example, if a researcher is defining a YARA rule
based on a file that contains an embedded library,
and the rule is based on the generic library alone
– which is not a malicious piece of code in itself –
the researcher will receive a hit on every single file
that uses this library, in other words increasing the
number of false positives generated.

The ideal signature will have the right balance, broad
enough to identify many variants of the malware but
specific enough to avoid false positives.

Code similarity analysis breaks down a given file
into thousands of tiny fragments of code, or genes.
Identifying code that was used in previous attacks
can provide critical insights for security teams,
including:

Accurately determine the intent of the
software. For example, is the file trusted or
malicious?

Classify a malicious file to its relevant malware
family.

Uncover the level of sophistication and
potential risk of the threat. For example, are
you dealing with a common banking trojan, a
sophisticated APT or a nation-state sponsored
attack? The answer will shape your response.

Make attribution to the threat actor
responsible for creating the malware.

Not only can studying patterns in code reuse
identify the origin of any given file, it can
highlight unique, never-before-seen code,
which can detect new threats that have been
written from scratch.

Writing Advanced YARA Rules is
Difficult to Scale

More complex YARA rules can be created by
incorporating features such as wild cards (a type
of hexadecimal string), case-insensitive strings
and regular expressions. While advanced YARA
rules can be powerful instruments for detecting
malware, writing them requires a high degree of
technical ability and an understanding of YARA,
and can be a time consuming process.

Writing advanced YARA rules and malware
analysis in general is difficult to scale at high
volumes, especially since not every organization
has access to a team of highly-skilled researchers
or reverse engineers. How can a security team
create advanced YARA rules and still achieve
automation, especially if the organization
is faced with a high volume of alerts? The
answer lies in studying patterns in code reuse.

Defining Code Reuse

Almost every software or malware today is
comprised of previously written code. Developers
of trusted applications will employ code reuse to
make their work more efficient and to bring tools
to market faster. The same approach applies for
malware authors. As attackers write more malware
they will establish code patterns. For defenders
this provides an opportunity for attribution and
identifying threat actor capabilities.

By identifying a malicious file’s unique
binary code, a signature can be produced for
detecting only those genes. This will enable
detection of the exact same malware with
high confidence and a low false positive
rate.

Detecting samples of the same variants (the
same opcodes with different addresses) can
be replaced with wildcards.

Detecting different variants of the same
malware family or campaign (same baseline
of code but with different functionalities or
capabilities) to look for a partial match.

Detecting future variants that the attacker
may release based on code reuse.

Example:
The below example represents a file that has been disassembled into tiny
pieces of binary code, or genes.
Creating a YARA rule based on a file’s trusted code will result in false
positives. At the same time, developing a rule that contains all of the
code’s addresses will make the rule very specific to this particular file
only. The rule will not likely generate hits for other or future variants of the
malware that contain different values.

By identifying the malicious and unique code, a researcher can create a
YARA rule that will achieve very accurate results.

Receive hits on different hashes that contain the exact same code.
Receive hits on different hashes that contain some but not all of the
original code. This is useful for identifying new variants that are similar
to the malware that the signature is based on.

Trusted code

Malicious code

Never-before-seen,
or unique, code

Common code
seen previously in
other software

Generate Automatic, Advanced YARA
Rules with Code Reuse

Just as attackers reuse code to deploy new
malware, defenders can identify patterns in code
reuse to create advanced YARA rules. Here’s how:

Sample YARA Rule for TrickBot Malware

The following example demonstrates a code-based YARA rule produced for TrickBot, a common financial trojan. With the code-based YARA
signature in place, any future sample or variant that reuses some aspects of TrickBot’s code will be detected.

Sample YARA Rule for WannaCry Variant

This is an example of a YARA signature that was produced via code from a previous WannaCry sample. Deployed in May 2017, WannaCry is one of
the largest, high profile ransomware attacks in history, infecting over 200,000 computers across 150 countries.

Intezer Analyze

Leveraging code similarity analysis (or, “Genetic Malware Analysis”) technology, Intezer Analyze can generate automatic YARA signatures based
on a file’s code, enabling users to improve their threat hunting capabilities by detecting future variants of the malware. As highlighted above,
code-based YARA signatures can effectively reduce false positives and save precious resources in the form of time and analyst efforts. This is
particularly valuable for organizations dealing with a large volume of alerts.

This feature also allows for some more advanced usages. It can be used in several scenarios, including:

The user can adjust the thresholds of the rule. The default value is 70% of the entire code but it is possible to modify the rule to be more
specific, or more flexible.
The user can combine or split different YARA signatures to build stronger rules to better fit his or her needs.
The user can add to the automated rules with a string reuse feature to make the signature even more powerful for threat hunting.

1

2
3

Key Takeaways

Incorporating YARA into daily security operations can accelerate
incident response time, classify malware, empower threat
intelligence and improve detection capabilities by creating
custom signatures.

Traditional methods for writing effective YARA signatures have
their challenges, including being too specific or generic with
respect to a file’s textual or binary patterns.

In today’s YARA landscape many signatures are based on string
reuse. The challenge is to identify the “unique” strings, however
even if this is achieved, these signatures are much less effective
because strings can be easily manipulated, replaced or encrypted
by the adversary to avoid detection.

Automation of YARA signatures is difficult to scale at high
volumes and many organizations do not have a dedicated
team of malware analysts at hand to manually reverse
engineer every file they encounter.

Identifying malicious code seen in previous threats can
be used to generate more accurate YARA signatures for
detecting future variants or new malware.

The Intezer Analyze platform enables users to automatically
generate YARA rules based on binary code, rather than
simple strings. Code-based YARA rules are the most
effective since they are tolerant to modifications and are
more equipped to detect variants of the same threat.

