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Generating Control Languages with
Abstract Categorial Grammars
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Abstract
We show that the class of level-k control languages, as defined by Weir, is properly

included in the class of 2k−1-multiple context-free languages for each k ≥ 2. The proof of
inclusion uses a representation of the set of derivation trees for a level-k control language
in terms of a second-order abstract categorial grammar.
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1.1 Introduction
Weir (1992a) introduced a hierarchy of language classes known as the con-
trol language hierarchy, starting with the context-free languages at level one.
Control languages at level two and above are each generated by a context-
free grammar coupled with a language at the previous level, which controls
derivation trees of the grammar in a certain “linear” fashion. Thus, for k ≥ 2,
level-k control languages are defined in terms of non-regular sets of deriva-
tion trees and the usual simple yield function, which merely concatenates
yields of subtrees. Even though it is known that the class of level-2 control
languages coincides with the class of tree-adjoining languages or head lan-
guages (Weir 1992a, Vijay-Shanker and Weir 1994), it is not immediately
clear how the higher levels are related to language classes generated by gram-
mar formalisms that have regular sets of derivation trees and complex yield
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functions, such as multiple context-free grammars (Seki et al. 1991).
In this paper, we prove that the class of level-k control languages is prop-

erly included in the class of 2k−1-multiple context-free languages for each
k ≥ 2. The proof of inclusion uses a representation of the set of derivation
trees for a control language in terms of a second-order abstract categorial
grammar (de Groote 2001). Composing this tree-generating ACG with the
yield function gives a string-generating second-order ACG, whose language
must be a multiple context-free language, as shown by Salvati (2007) using
the equivalence between MCFLs and output languages of deterministic tree-
walking transducers (Weir 1992b). We here give a direct conversion from
a second-order ACG of width 2m to an m-multiple context-free grammar to
show that a level-k control language is a 2k−1-MCFL.
Our motivation for relating control languages and MCFLs comes from

pumping lemmas for the two formalisms. For MCFLs, Seki et al. (1991) gave
a rather weak pumping lemma, which only says that an infinite m-MCFL
contains a string that can be pumped at some 2m positions. However, Radzin-
ski (1991) and Groenink (1997) erroneously credited Seki et al. (1991) with
(implicitly) proving the following much stronger statement:1

Myth 1 Let L be an m-MCFL. There is a constant n such that for every z ∈ L,
if |z| ≥ n, then z may be written as z = u1v1w1s1u2v2w2s2 . . . umvmwmsmum+1
in such a way as to satisfy the following conditions:
(i)
∑m

j=1|v js j| ≥ 1;
(ii) u1vi1w1s

i
1u2v

i
2w2s

i
2 . . . umv

i
mwmsimum+1 ∈ L for all i ≥ 0.

Contrary to Radzinski’s and Groenink’s claims, the proof given by Seki et al.
(1991) cannot be easily converted to a proof of the above statement. It is an
open question whether Myth 1 holds for any m ≥ 2.
As for the control language hierarchy, Palis and Shende (1995) proved an

Ogden-style pumping lemma, which implies the following statement:
Theorem 2 (Palis and Shende) Let L be a level-k control language. There
is a constant n such that for every z ∈ L, if |z| ≥ n, then z may be written as
z = u1v1w1s1u2v2w2s2 . . . u2k−1v2k−1w2k−1 s2k−1u2k−1+1 in such a way as to satisfy
the following conditions:

(i)
∑2k−1

j=1 |v js j| ≥ 1;
(ii) u1vi1w1s

i
1u2v

i
2w2s

i
2 . . . u2k−1v

i
2k−1w2k−1 s

i
2k−1u2k−1+1 ∈ L for all i ≥ 0;

(iii) |s2k−2u2k−2+1v2k−2+1| ≤ n.
Given the form of Myth 1 and of Theorem 2, it is natural to conjecture that

the class of level-k control languages is included in the class of 2k−1-MCFLs.
1Radzinski (1991) refers to an earlier technical report (Kasami et al. 1987), which was later

incorporated into Seki et al. 1991.
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We prove this conjecture, and use Theorem 2 to prove that the inclusion is
proper for k ≥ 2. Note that the special case of this result for k = 2 is already
known, since Seki et al. (1991) showed that the class of 2-MCFLs properly
includes the class of head languages.

1.2 Preliminaries
1.2.1 Tree languages
A ranked alphabet is a finite set F =

⋃
n∈N F(n), where F(m) ∩ F(n) = ∅ if

m ! n. If f ∈ F(n), n is the rank of f , written rank( f ). A tree over F is an
expression f T1 . . . Tn, where rank( f ) = n and T1, . . . , Tn are trees over F. The
set of trees over F is denoted TF . Subsets of TF are called tree languages.
Let F be a ranked alphabet, c ∈ F(0), and L1, L2 ⊆ TF . The concatenation

of L1 to L2 through c, written L2 ·c L1, is
⋃
T∈L2 T [c ← L1], where T [c ← L]

is defined inductively as follows:2

c[c← L] = L,
( f T1 . . . Tn)[c← L] = { fU1 . . .Un | Ui ∈ Ti[c← L] for i = 1, . . . , n }

if f ! c, where n = rank( f ).
The Kleene star of L (through c), written L∗,c, is defined to be

⋃
n≥0 Ln,c,

where
L0,c = {c}, Ln+1,c = Ln,c ∪ L ·c Ln,c.

See Gécseg and Steinby 1997 or Comon et al. 2002 for the definitions of
regular tree language and of (linear non-deleting) tree homomorphism. The
set of derivation trees of a context-free grammar is a special kind of regular
tree language known as a local set.

1.2.2 Control language hierarchy
A headed ranked alphabet is a pair (F, h), where. F is a ranked alphabet;. h is a function from F to N such that 0 ≤ h( f ) ≤ rank( f ).
Let (F, h) be a headed ranked alphabet. If T is a tree over F, the spine of

T , written spine(T ), is a string in F∗ defined as follows:3

spine( f T1 . . . Tn) =


f if h( f ) = 0,
f spine(T j) if h( f ) = j ≥ 1.

The set of all (maximal) spines of subtrees of T is then Spines(T ) =
{spine(T )} ∪ iSpines(T ), where iSpines(T ), the set of interior spines of T ,

2Note that the concatenation of L1 to L2 through c is written L1 ·c L2 in Gécseg and Steinby
1997. Our notation follows Comon et al. (2002).

3F∗ is the set of strings over F regarded as an unranked alphabet.
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is defined as follows:

iSpines( f T1 . . . Tn) =



⋃
1≤i≤n Spines(Ti) if h( f ) = 0,

iSpines(T j) ∪
⋃
1≤i≤n,i! j Spines(Ti) if h( f ) = j ≥ 1.

A labeled distinguished grammar (LDG) over a terminal alphabet V is
a six-tuple G = (N,V, P, S, F, h), where G◦ = (N,V, P, S) is a context-free
grammar, (F, h) is a headed ranked alphabet, and. F = { fπ | π ∈ P } (i.e., the symbols in F name the rules in P);. rank( fπ) is the number of occurrences of nonterminals on the right-hand
side of π.

The rule trees of G are defined inductively as follows:. If π = B→ w0B1w1 . . . Bnwn with w0, . . . ,wn ∈ V∗ and B, B1, . . . , Bn ∈ N,
then the tree fπT1 . . . Tn is a rule tree of type B if T1, . . . , Tn are rule trees
of type B1, . . . , Bn, respectively.

A rule tree of type S is a complete rule tree. The set of complete rule trees of
an LDG is a local set. A rule tree T determines a derivation tree of G◦, and
one can associate with T its yield, yieldG(T ), in an obvious way.
The language L(G,C) generated by a labeled distinguished grammar G =

(N,V, P, S, F, h) and a control set C ⊆ F∗ is4

{ yieldG(T ) | T is a complete rule tree of G and Spines(T ) ⊆ C }.
The class Ck of k-level control languages (Weir 1992a) is defined as fol-

lows:

C1 = CFL, Ck+1 = { L(G,C) | G is an LDG and C ∈ Ck }.
It is known that for each k, Ck is a full abstract family of languages and all

languages in Ck belong to the complexity class LOGCFL (Weir 1992a, Palis
and Shende 1992).

1.2.3 Multiple context-free grammars
A multiple context-free grammar (Seki et al. 1991) is a tuple G = (N,V, P, S),
where N is a ranked alphabet of nonterminals, V is an (unranked) alphabet of
terminals, S ∈ N(1), and P is a set of rules of the form

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1 ), . . . , Bn(xn,1, . . . , xn,rn ),
where n ≥ 0, B, B1, . . . , Bn are nonterminals of rank r, r1, . . . , rn, respectively,
xi, j are pairwise distinct variables, and t1, . . . , tr are strings over V ∪ { xi, j |
1 ≤ i ≤ n, 1 ≤ j ≤ ri } such that each xi, j occurs at most once in t1 . . . tr. The
symbol :− is omitted when n = 0. We say that G is an m-MCFG if the rank

4The present definition of L(G,C) is not exactly equivalent to Weir’s (1992a), but it is easy to
see that it leads to an equivalent definition of the control language hierarchy.
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of nonterminals does not exceed m. The language of G is L(G) = {w ∈ V∗ |
-G S(w) }, where -G is defined as follows:. if B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1 ), . . . , Bn(xn,1, . . . , xn,rn ) is a rule in P and
-G Bi(wi,1, . . . ,wi,ri ) for i = 1, . . . , n, then -G B(t1σ, . . . , trσ), where σ is
the substitution that sends xi, j to wi, j.

Example 1 The 2-MCFG consisting of the following five rules generates
RESP = { am1 am2 bn1bn2am3 am4 bn3bn4 | m, n ≥ 0 }:

S(x1,1x2,1x1,2x2,2) :− P(x1,1, x1,2),Q(x2,1, x2,2). P(ε, ε). Q(ε, ε).
P(a1x1,1a2, a3x1,2a4) :− P(x1,1, x1,2). Q(b1x1,1b2, b3x1,2b4) :− Q(x1,1, x1,2).
We know from Seki et al. 1991 that RESP ∈ 2-MCFL − C2.
An MCFG is non-erasing if for each rule, every variable on the right-hand

side occurs exactly once on the left-hand side. Non-erasing MCFGs are also
known as (string-based) linear context-free rewriting systems (Vijay-Shanker
et al. 1987). Seki et al. (1991) show that every m-MCFG has an equivalent
non-erasing m-MCFG.

1.2.4 Types and λ-terms
Given a finite set A of atomic types, we let T (A) denote the set of types built
up from atomic types using the type constructor →.5 The size of a type α is
the number of atomic type occurrences in it and is written |α|. The order of a
type α, denoted by ord(α), is defined as follows:
ord(p) = 1 if p is atomic, ord(α→ β) = max(ord(α) + 1, ord(β)).
A higher-order signature is a triple Σ = (A,C, τ), where A is a finite set

of atomic types, C is a finite set of constants, and τ is a mapping from C
to T (A). The order of Σ is max{ ord(τ(c)) | c ∈ C }. Let X be a countably
infinite set of variables. The set Λ(Σ) of (untyped) λ-terms over a higher-
order signature Σ = (A,C, τ) is the smallest superset of X ∪ C satisfying the
following conditions:6

1. If M,N ∈ Λ(Σ), then (MN) ∈ Λ(Σ);
2. If M ∈ Λ(Σ) and x ∈ X, then (λx.M) ∈ Λ(Σ).

The set FV(M) of free variables of M is understood in the usual way. A λ-
term M is closed if FV(M) = ∅; it is pure if it contains no constants.
A λ-term may be assigned a type under a type environment, which is a fi-

nite set Γ of variable declarations of the form x :α (where x ∈ X,α ∈ T (A)) in
5The connective→ is assumed to be right-associative, so we write α1 → α2 → α3 for α1 →

(α2→ α3). The notation αk → β abbreviates α→ · · ·→ α→ β with “α→” repeated k times.
6As usual, we omit the outermost parentheses and write MNP for (MN)P, λx.MN

for λx.(MN), and λx1 . . . xn.M for λx1.(λx2. . . . (λxn.M) . . . ). The notation MNk abbreviates
MN . . .N with “N” repeated k times.
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which no variable is declared more than once. A type environment is usually
written as a list x1 :α1, . . . , xn :αn. The following inference system, λ→Σ, de-
rives typing judgments of the form Γ -Σ M :α, where Γ is a type environment,
M ∈ Λ(Σ), and α ∈ T (A):

-Σ c : τ(c) for c ∈ C, x : α -Σ x : α for x ∈ X and α ∈ T (A),

Γ -Σ M : β
Γ − {x : α} -Σ λx.M : α→ β if Γ ∪ {x : α} is a type environment,

Γ -Σ M : α→ β ∆ -Σ N : α
Γ ∪ ∆ -Σ MN : β

if Γ ∪ ∆ is a type environment.

We write Γ - M : α when M is pure, omitting reference to Σ.
A λ-term M is linear if the following conditions both hold:

1. for any subterm λx.N of M, x ∈ FV(N);
2. for any subterm NP of M, FV(N) ∩ FV(P) = ∅.

We denote the set of linear λ-terms over Σ by Λlin(Σ). For every Γ and α,
there are only finitely many pure linear λ-terms M in β-normal form such that
Γ - M : α.
See Hindley 1997 or Sørensen and Urzyczyn 2006 for other standard no-

tions in simply-typed λ-calculus, such as substitution (of a λ-term for a free
variable in a λ-term), β-reduction, and β-normal form. We write !β for β-
reduction, and =β for β-equality. We denote the β-normal form of M by |M|β.

1.2.5 Strings and trees as linear λ-terms
A string a1 . . . an over an (unranked) alphabet V can be represented by a
closed λ-term /a1 . . . an/ = λz.a1(. . . (anz) . . . ) in Λlin(ΣstringV ), where ΣstringV =

({o},V, τ) and τ(a) = o → o for all a ∈ V . We call ΣstringV a string signa-
ture. Note that -

Σ
string
V
/w/ : o → o for all strings w ∈ V∗. Concatenation

of strings can be represented by the combinator B = λxyz.x(yz). We have
BM(BNP) =β B (BMN)P, and for strings v,w ∈ V∗, B /v//w/!β /vw/.
A ranked alphabet F can be represented by a second-order signature ΣtreeF =

({o}, F, τF), where for each f ∈ F(n), τF( f ) = on → o. We call ΣtreeF a tree
signature. We identify a tree in TF with a closed β-normal λ-term inΛlin(ΣtreeF )
of type o in the obvious way.
An alternative representation of a string a1 . . . an is by means of a monadic

tree "a1 . . . an# = a(1)1 (. . . (a
(1)
n−1a

(0)
n ) . . . ), which is a linear λ-term over ΣtreeF ,

where F = F(0) ∪ F(1) = { a(0) | a ∈ V } ∪ { a(1) | a ∈ V }.

1.2.6 Abstract categorial grammars
When we write Σ,Σ′,Σ1, etc., to refer to higher-order signatures, we assume
Σ = (A,C, τ), Σ′ = (A′,C′, τ′), Σ1 = (A1,C1, τ1), etc. Given higher-order



/ 7

July 4, 2007

signatures Σ and Σ′, a lexicon from Σ to Σ′ is a pairL = (σ, θ) such that
1. σ is a type substitution that maps elements of A to elements of T (A′);
2. θ is a mapping from C to Λlin(Σ′);
3. -Σ′ θ(c) : σ(τ(c)) for all c ∈ C.

The mapping θ is extended to a mapping from Λlin(Σ) to Λlin(Σ′) as follows:
θ(x) = x for x ∈ X, θ(MN) = θ(M)θ(N), θ(λx.M) = λx.θ(M).

We write L (α) and L (M) for σ(α) and θ(M), respectively. The width of L
is max{ |L (p)| | p ∈ A }, and the order ofL is max{ ord(L (p)) | p ∈ A }.
As noted by de Groote (2001), the composition of two lexicons is a lexi-

con: IfL1 = (σ1, θ1) is a lexicon from Σ0 to Σ1 andL2 = (σ2, θ2) is a lexicon
from Σ1 to Σ2, thenL2 ◦L1 = (σ2 ◦ σ1, θ2 ◦ θ1) is a lexicon from Σ0 to Σ2.
An abstract categorial grammar (de Groote 2001) is a quadruple G =

(Σ,Σ′,L , s), where
1. Σ is a higher-order signature called the abstract vocabulary;
2. Σ′ is a higher-order signature called the object vocabulary;
3. L is a lexicon from Σ to Σ′;
4. s is an element of A called the distinguished type.

The abstract language of G , denoted by A(G ), and the object language of G ,
denoted by O(G ), are defined as follows:

A(G ) = {M ∈ Λlin(Σ) | M is in β-normal form and -Σ M : s }.
O(G ) = { |L (M)|β | M ∈ A(G ) }.

We say that an ACG generates its object language.
If Σ′ is a tree signature and L (s) = o, then O(G ) is a set of trees. In such

a case, we call G a tree-generating ACG. If Σ′ is a string signature ΣstringV and
L (s) = o→ o, then we call G a string-generating ACG, and we say that G
generates a string language L ⊆ V∗ if O(G ) = { /w/ | w ∈ L }.
Example 2 The following ACG G = (Σ,ΣstringV ,L , s), where V =
{a1, a2, a3, a4, b1, b2, b3, b4}, is constructed from the MCFG of Example 1 us-
ing de Groote and Pogodalla’s (2004) procedure, and generates RESP.

A = {p, q, s}, C = { f1, f2, f3, f4, f5},
τ( f1) = p→ q→ s, τ( f2) = p, τ( f3) = q, τ( f4) = p→ p, τ( f5) = q→ q,

L (p) = L (q) = ((o→ o)→ (o→ o)→ o)→ o, L (s) = o→ o,
L ( f1) = λuvz.u(λx1,1x1,2.v(λx2,1x2,2.x1,1(x2,1(x1,2(x2,2z))))),

L ( f2) = L ( f3) = λw.w(λz.z)(λz.z),
L ( f4) = λuw.u(λx1,1x1,2.w(λz.a1(x1,1(a2z)))(λz.a3(x1,2(a4z)))),
L ( f5) = λuw.u(λx1,1x1,2.w(λz.b1(x1,1(b2z)))(λz.b3(x1,2(b4z)))).
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An ACG G = (Σ,Σ′,L , s) is n-th order if the order of Σ does not exceed
n. We say that G is of width m if the width of L does not exceed m. (The
ACG in Example 2 is a second-order ACG of width 6.)
The notation G(n, l) stands for the class of n-th order ACGs G =

(Σ,Σ′,L , s) such that the order of L does not exceed l. Kanazawa (2006a)
showed that the class of string languages generated by ACGs in G(n, l)
(n, l ≥ 2) is a substitution-closed full abstract family of languages, and the
class of tree languages generated by ACGs in G(n, l) (n ≥ 2, l ≥ 1) is closed
under union, concatenation, linear non-deleting tree homomorphism, and in-
tersection with regular tree languages. A quick examination of the proofs
given in Kanazawa 2006a reveals that all constructions involved preserve the
width of the lexicon as well, so the above closure properties hold of the ACGs
in G(n, l) of width m.

1.3 Second-order ACGs for control languages
If P is a linear λ-term which contains k occurrences of c, we let
〈P〉c[y1, . . . , yk] denote the linear λ-term that does not contain c such that
{y1, . . . , yk} ⊆ FV(〈P〉c[y1, . . . , yk]) and 〈P〉c[c, . . . , c] = P.
The following lemma (without the condition on width) was stated by

Kanazawa (2006a) without proof.
Lemma 3 Let F be a ranked alphabet and c an element of F(0). If L ⊆ TF is
generated by an ACG in G(2, l) of width m, so is L∗,c.
Proof. Let G = (Σ,ΣtreeF ,L , s) be an ACG in G(2, l) of width m generating
L. We define a second-order ACG G ′ = (Σ′,ΣtreeF ,L

′, s′) generating L∗,c as
follows:

A′ = A ∪ {s′}, C′ = C ∪ {d, e},

τ′( f ) =




(s′)k→ τ( f ) if f ∈ C and c occurs k times inL ( f ),
s→ s′ if f = d,
s′ if f = e,

L ′(p) =


L (p) if p ∈ A,
o if p = s′,

L ′( f ) =




λy1 . . . yk.〈L ( f )〉c[y1, . . . , yk] if f ∈ C and c occurs k times inL ( f ),
λx.x, if f = d,
c if f = e.

Clearly, G ′ is an ACG in G(2, l) of width m. We leave the proof of O(G ′) =
L∗,c to the reader. 12
Lemma 4 Let (F, h) be a headed ranked alphabet, and let C ⊆ F∗. If there
is a second-order ACG of width m generating C, then there is a second-order



/ 9

July 4, 2007

ACG of width m generating {T ∈ TF | Spines(T ) ⊆ C }.
Proof. Let G be a second-order ACG of width m generating C. The idea is
to first construct an ACG G ′ such that O(G ′) = { "w# | w ∈ C }, turn it into
G ′′ such that O(G ′′) = {T ∈ TF∪{c} | spine(T ) ∈ C and iSpines(T ) ⊆ {c} },
where c is a new symbol of rank 0, and then use Lemma 3 to obtain an ACG
G ′′′ such that O(G ′′′) = {T ∈ TF | Spines(T ) ⊆ C } = O(G ′′)∗,c ∩ TF . All
constructions preserve order and width.
Let F0 = { f ∈ F | h( f ) = 0 }, F1 = F − F0. Note that for every T ∈ TF ,

Spines(T ) ⊆ F∗1F0. For each f ∈ F0, let C f = C ∩ F∗1 f . By closure under
intersection with regular sets and closure under homomorphism, we obtain
from G an ACG generating {w | w f ∈ C f }. By adding to this ACG a constant
e f of type s→ s′ whose image under the lexicon is λx.x f (0) and changing all
g ∈ F1 to g(1), we obtain an ACG with distinguished type s′ generating the
tree language { "w# | w ∈ C f }. We obtain G ′ by closure under union.
To obtain G ′′ from G ′, we use closure under linear non-deleting tree ho-

momorphism. The relevant homomorphism is ϕ:

ϕ(g(1)x) = gc j−1xcr− j, where r = rank(g) and j = h(g),
ϕ( f (0)) = f cr, where r = rank( f ).

Finally, closure under Kleene star (Lemma 3) together with closure under
intersection with regular sets gives G ′′′. 12
LetAm denote the set of string languages generated by second-order ACGs

of width m.

Lemma 5 Ck ⊆ A2k .
Proof. Induction on k. For k = 1, de Groote (2001) and de Groote and Pogo-
dalla (2004) showed that second-order ACGs of width 2 can generate all
context-free languages. For the induction step, assume that C ∈ A2k and con-
sider L(G,C), whereG is an LDG. Since the set of complete rule trees ofG is
a local set, by Lemma 4 and closure under intersection with regular sets, the
set {T | T is a complete rule tree of G and Spines(T ) ⊆ C } is generated by a
second-order ACG of width 2k. Composing the lexicon of this ACG with the
lexiconLyieldG expressing yieldG doubles the width (LyieldG (o) = o→ o) and
gives a second-order ACG of width 2k+1 generating L(G,C). 12
We can show that the inclusion in Lemma 5 is proper except when k = 1.

Lemma 6 A2k − Ck ! ∅ for all k ≥ 2.
Proof. For k ≥ 1, let RESPk = { am1 am2 bn1bn2 . . . am2k−1am2kbn2k−1bn2k | m, n ≥ 0 }.
(The language RESP of Example 1 is RESP2.) Palis and Shende’s (1995)
pumping lemma (Theorem 2) can be used to show that RESP2k−1 " Ck for
each k ≥ 2. It is easy to define a k-MCFL generating RESPk. While applying
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de Groote and Pogodalla’s (2004) procedure to a k-MCFG produces a second-
order ACG of width 2k + 2, this particular k-MCFL can be encoded in a
second-order ACG of width 2k. We omit the details for lack of space. 12

1.4 From second-order ACGs to MCFGs
Let V be an alphabet, and let Λ′lin(Σ

string
V ) be the set of linear λ-terms over

Σ
string
V in which a symbol from V always occurs in a function position. Note
that /w/ ∈ Λ′lin(Σ

string
V ) for every w ∈ V∗. We extract from a λ-term M ∈

Λ′lin(Σ
string
V ) in β-normal form such that Γ -

Σ
string
V

M : α a tuple (w1, . . . ,wm) of
strings over V and a pure linear λ-term P such that Γ, z1 : o→ o, . . . , zm : o→
o - P : α and P[zi := /wi/]1≤i≤m !β M. In the following definition, lh(*w)
denotes the length (i.e., number of components) of a tuple *w, and the symbol
$ denotes concatenation of tuples; the letters a and y range over symbols in V
and variables, respectively. We assume that for all i ∈ N, zi " FV(M).

tuple(aM) =




(aw1,w2, . . . ,wm) if pure(M) starts with z1,
where tuple(M) = (w1, . . . ,wm),

(a)$ tuple(M) otherwise,

pure(aM) =


pure(M) if pure(M) starts with z1,
z1(pure(M)[zi := zi+1]1≤i≤m) otherwise, where m = lh(tuple(M)),

tuple(yM1 . . .Mn) = tuple(M1)
$
. . .
$ tuple(Mn),

pure(yM1 . . .Mn) = yP1 . . . Pn, where Pj = pure(Mj)[zi := zi+∑ j−1
k=1 mk

]1≤i≤mj ,
mk = lh(tuple(Mk)),

tuple(λy.M) = tuple(M), pure(λy.M) = λy. pure(M)

Lemma 7 Let M be a β-normal λ-term inΛ′lin(Σ
string
V ) such that y1 :α1, . . . , yk :

αk -ΣstringV
M : β, and let tuple(M) = (w1, . . . ,wm). Then the following hold:

(i) y1 : α1, . . . , yk : αk, z1 : o→ o, . . . , zm : o→ o - pure(M) : β.
(ii) pure(M)[zi := /wi/]1≤i≤m !β M.

(iii) m ≤ 1
2

(
|β| +

k∑

i=1
|αi|
)
.

Proof. Easy induction on M. For (iii), show that 2m ≤ |β| +∑k
i=1|αi| − 2 if the

head of M is a variable. 12
The rather technical lemma above may be seen as a special case of the

main result concerning interpolation of Kanazawa (2006b).
Let G = (Σ,ΣstringV ,L , s) be a second-order string-generating ACG of

width m. We assume that for every c ∈ A, L (c) belongs to Λ′lin(Σ
string
V ). For

α ∈ T ({o}), let Pα be the set of pure linear λ-terms M in β-normal form such
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that z1 : o→ o, . . . , zr : o→ o - M : α for some r ≤ 1
2 |α|. Note that Pα is finite.

Define an MCFG mcfg(G ) = (N,V, P, S) as follows:. N = {S} ∪ { (p,M) | p ∈ A,M ∈ PL (p) }, where rank((p,M)) = |FV(M)|.. For each c ∈ C with τ(c) = p1 → · · ·→ pn → p and Mi ∈ PL (pi) with
|FV(Mi)| = ri (1 ≤ i ≤ n), P contains the rule
(p, pure(M))(tuple(M)) :− (p1,M1)(x1,1, . . . , x1,r1 ), . . . , (pn,Mn)(xn,1, . . . , xn,rn )

where M = |L (c)(M1[z j := /x1, j/]1≤ j≤r1 ) . . . (Mn[z j := /xn, j/]1≤ j≤rn )|β and
tuple(M), pure(M) are defined with respect to the alphabet V ∪ { xi, j | 1 ≤
i ≤ n, 1 ≤ j ≤ ri }.. In addition, P contains the following rules:

S(ε) :− (s, λz.z). S(x1,1) :− (s, λz.z1z)(x1,1).
Lemma 8 If G is a second-order ACG of width m generating L ⊆ V∗, then
mcfg(G ) is an 3 12m4-MCFG and L(mcfg(G )) = L. Hence Am ⊆ 3 12m4-MCFL.
Theorem 9 Ck ⊆ 2k−1-MCFL. The inclusion is proper for k ≥ 2.
Proof. From Lemmas 5, 6, and 8. 12

1.5 Conclusion
We have proved Ck " 2k−1-MCFL for each k ≥ 2 by showing the following
two inclusions:

Ck " A2k ⊆ 2k−1-MCFL.
We do not know whether the second inclusion is proper. Note that by de
Groote and Pogodalla’s (2004) result, we know 2k−1-MCFL ⊆ A2k+2. Another
outstanding open question is whether the inclusion of

⋃
k≥1Ck in MCFL is

proper.
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