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Abstract: Several applications require truly 
random bit sequences, whereas physical 
sources of randomness are a t  best imperfect. 
We consider a general model for these 
slightly -random sources (e.g. zener diodes), 
and show how to convert their output into ‘ran- 
dom looking’ sequences, which we call 
quasi -random. We show that quasi-random 
sequences are indistinguishable from truly ran- 
dom ones in a strong sense. This enables us to  
prove that quasi-random sequences can be 
used in place of truly random ones for applica- 
tions such as  seeds for pseudo-random number 
generators, randomizing algorithms, and sto- 
chastic simulation experiments. 

1. Introduction. 

The existence of a source of fair coin flips 
has been extensively assumed for applications 
such as randomizing algorithms [Ra], crypto- 
graphic protocols [Bll, GM] and stochastic 
simulation experiments [Sc, KG]. Unfor- 
tunately, the available sources of randomness 
(e.g. zener diodes) are imperfect. The simplest 
model of an imperfect source of randomness is 
a coin whose bias is unknown, but fixed. Von 
Neumann [vN] proposed a very simple real time 
algorithm to extract unbiased flips from such a 
source. More recently, Blum [BE]  considers the 
question when the imperfect random source is 
a deterministic finite state Markov process. 

This source may be regarded as flipping a coin 
whose bias depends on the current state of the 
Markov process, and therefore depends on the 
sequence of bits previously output. Blurn shows 
that the obvious generalization of the von Neu- 
mann procedure does not work. He shows by an  
elegant proof that,  surprisingly enough, chang- 
ing the order in which the bits are output yields 
independent, unbiased flips. 

We consider an extremely general model of 
an imperfect source of randomness. We shall 
assume that the previous bits output by the 
source can condition the next bit in an arbi- 
trarily bad way. Accordingly, the model is that  
the next bit is output by the flip of a coin whose 
bias is fixed by an adversary who has complete 
knowledge of the history of the process. To 
make sure that the source does generate some 
randomness, the adversary is limited to picking 
a bias greater than 6 and smaller than 1-6, for 
some positive fraction O< 6 < 1. This models the 
known practical sources of randomness such as 
the zener diode, in which the frequency of 0’s 
and 1’s ”drifts” over a period of time [Mu]. We 
shall call such an adversary source a slightly- 
random source. 

I t  can be shown that no algorithm can 
extract a sequence of absolutely unbiased coin 
flips from such an  adversary source. Instead, 
we consider a different approach: we introduce 
the notion of quasi-random sequences. These 
sequences may not be truly independent or  
unbiased, but will be provably indistinguishable 
from truly random sequences in a very strong 
sense (even stronger than that of Yao [Ya]). A s  
a consequence of this indistinguishability, it will 
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follow that truly random sequences can be 
replaced by quasi-random sequences in all the 
usual computational applications of random 
sequences. A s  an example, we shall prove that 
quasi-random sequences can be used instead of 
truly random coin flips to generate random 
variates for stochastic simulation experiments. 
The advantage of considering quasi-random 
sequences is that they can be generated by 
slightly-random sources of the type described 
above, which closely model actual physical dev- 
ices. 

We show how to extract n bit quasi-random 
sequences from O(lognlog*n) such semi- 
random sources operating in parallel: the algo- 
rithm is efficient and uses no storage. More- 
over, i t  is a real-time algorithm in the sense 
that it generates one quasi-random bit a t  each 
step. We also prove that our method of genera- 
tion achieves optimal compression factor. 

Why is it necessary to consider (imperfect) 
physical sources of randomness in light of the 
theory of perfect (cryptographically secure) 
pseudo-random number generators [Sh, BM, 
Ya]. Blum [Bl] points out that there is a funda- 
mental problem that this theory leaves 
unsolved: that  is the source for the random 
seed. Using a fair source to generate this seed 
may be crucial because of the danger that the 
pseudo-random number generator might 
amplify any dependence or bias in the bits of 
the seed. A s  another example of the versatility 
of quasi-random sequences, we shall prove that 
they can be used as seeds for perfect pseudo- 
random number generators, without weakening 
the cryptographic security of the generator. 

2. Quasi-Randomness. 

Definition: A functional statistical test is any 
function f: I O , l j * + [ O , l ] ,  where [0,1] denotes the 
unit interval. 

We are given a source which for every 
length n, generates n-length strings x E 10,ljn 
with some probability p ,  (x) . 

Let ,uf(n)=l/2" f (z), be the average 

value of f on random n-length strings. 
Let ,u;(n)= C p,(s)f(z),  be the average 

value of f on n-length strings generated by the 
source. 

IzI=n 

121=71 

Definition: A quusi-random generator is a 
source such that for every t > 0, for n 
sufficiently large, and for every functional sta- 
tistical test f :  I,uf(n) - ,u;(n)I < ~ / n t .  

The notion of a functional statistical test  is 
a strengthening of the concept of probabilistic 
polynomial time statistical test ,  introduced by 
Yao [Ya]. Instead of evaluating a pseudo- 
random number generator on a few statistical 
tests (as was done in practice), Yao proposed 
that a pseudo-random number generator is 
"perfect" if it  passes all probabilistic polyno- 
mial time statistical tests. An obvious 
difference between Yao's statisticai tests, and 
our functional statistical tests is that the func- 
tion f need not be efficiently computable; it  
need not be computable a t  all. A more 
fundamental difference between these two 
notions arises from the fact that whereas the 
probabilistic polynomial statistical test is a 
complexity theoretic notion, the functional sta- 
tistical test  is an information theoretic notion. 
For this reason, Yao's definition of a perfect 
pseudo-random number generator is not uni- 
form: a pseudo-random number generator is 
perfect if for any specified level of security 
1 fnt and any proba.bilistic polynomial time sta- 
tistical test there is some seed length n which 
ensures this security. In general this value n 
depends on the statistical test ,  and no finite 
value n will ensure this level of security with 
respect to all statistical tests. On the other 
hand quasi-randomness is a uniform concept: 
for any desired level of security, a length n can 
be picked so that the n-length quasi random 
sequences achieve this security relative to 
every functional statistical test. 

The following Pwo theorems illustrate how 
the strong properties of quasi-random genera- 
tors allow them to replace truly random 
sequences. The first theorem shows that 
quasi-random sequences are just as  "good" as 
truly random sequences when fed as seeds to 
pseudo-random nuniber generators. 

-- 
A probabilistic polynomial time statistical 

test  is a function from g O , l { *  to i O , l { ,  which is 
computed by a probabilistic polynomial time 
Turing machine. A pseudo-random number gen- 
erator passes a probabilistic polynomial time 
statistical test  if for every t > O ,  for n sufficiently 
large, the average value of the test  (function) 
on n-length pseudo-random strings differs by 
no more than l /n ' !  from the average value of 
the test  on truly random strings. 
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Theorem 1: Let G: l O , l ] *  I O * l j *  be a perfect 
pseudo-random number generator. Then G with 
seeds generated by a quasi-random source is 
also perfect (passes all probabilistic polynomial 
time statistical tests). 

Proof: The basic idea of the proof is: suppose to 
the contrary that the generator when fed 
quasi-random seeds fails a probabilistic polyno- 
mial time statistical test T; then the quasi- 
random number generator fails the functional 
statistical test obtained by composing the 
pseudo-random number generator with the test 
T. 

More formally: Let T: f O , l ] *  4 l0 , l j  be any 
probabilistic polynomial time statistical test, 
and t > O  fixed. Suppose that G on n-length seeds 
generates poly(n)-length sequences €or some 
polynomial poly (n). 

Recall that P , T G ( ~ )  = l / Z n  

Now, I P T @ ~ ~ / ( ~ ) ) - P X ( ~ )  I = a ( l / n t )  
because G is perfect, and 
I p~~(n ) -pu ; '~ (n )  I = O ( l / n t )  because our 
source is quasi-random. 

I t  follows that 

Since this is true for each test T, and every t > 
0, it follows that the pseudo-random number 
generator with quasi-random seeds is perfect. 
Q.E.D. 

Next, we show that quasi-random sequences 
can be used in place of sequences of coin flips 
by any procedure that generates (random vari- 
ates of) a desired distribution T from a 
sequence of coin flips. Let f : { O , l { *  + Z, the set 
of integers. Given a probability distribution Pr 
on l0,ljn, f induces a probability distribution 
on Z in a natural way as follows: 
p , ( y ) =  R(Z).  Let T be the desired 

distribution. A s  a measure of the closeness with 
which T is approximated by the distribution 
induced by the function f ,  let 
a, = 2 I T ( Y )  -pn (y ) 1 .  Intuitively, an measures 

the area between the density plots of the two 
distributions. 

T ( G ( z ) )  . 
12 I=, 

I P T c p o 2 Y t n ) ) - P ; G ( 4  I = o w n t )  * 

lz I=n,1(2)=y 

Y €2  

generated by a quasi-random generator. Let 
a,*= I ~ ( y ) - q ~ ( y )  I. Then Ia,-a,* 1 < I /nt ,  

for every t, for sufficiently large n. 
Y E Z  

Comrnen't: The above theorem can be used to 
get effective bounds: given a bound one can 
compute n so that the error (the area between 
the two density plots) introduced by substitut- 
ing quasi-random sequences for truly random 
ones is less than the bound. This value of n, is 
guaranteed to work regardless of the algorithm 
used for generating the random variates, 
because of the uniformity property. The fact 
that functional statistical tests in the definition 
of quasi-randomness are not required to be 
polynomial time tests is also very important in 
this theorem. This is because the running time 
of algorithms for producing some distributions 
has not been analyzed, and may well be super- 
polynomial. 

= O( 1/ nt )  + O( 1/ nt) 

= O ( l / n t )  for every t > 0. 

t > 0. 

Theorem 2: Let f be any function as above; let 
p ,  be the probability density induced by f when 
all n length strings are picked with uniform 
probability, and let qn be the probability den- 
sity induced by f when the n length strings are 
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3. Extracting Quasi-random Sequences 
from Semi-random Sources. 

Recall that a slightly-random source  is a 
process which generates sequences of 0's and 
1's from the flips of a biased coin, where the 
bias of the coin is determined by an adversary. 

We now describe the basic principle under- 
lying the generation of quasi-random strings 
despite the presence of an adversary. Consider 
the following "high-quality" source: The 
sequences of length n are generated by a coin 
C, whose bias can be slightly changed after 
each flip, with the constraint that the bias must 
be greater than 1 / 2 - & ( n )  and less than 
1/2+&(n).  Before each flip of this coin, an 
adversary, who has knowledge of the history of 
the coin flips sets the bias of the coin. The pur- 
pose of the adversary is to create as much 
dependence in the distribution of flip 
sequences as possible. We would like to show 
that if ~ ( n )  is a sufficiently small function of n, 
then this source is quasi-random. 

Theorem 3: If for every t and for all sufficiently 
large n &(n) < l / n t ,  then the source defined 
above is quasi random. 

Proof: For any n-length string x = x  . . . x,, for 
every i, I s i r n ,  let Pr(xiIxl - . . xi-t2 denote the 
conditional probability that the i coin flip is 
xi, when the result of the first i-1 coin flips is 
x i  * . . xi-,. Then the probability that the 
source generates x is: 
p,(z) = P r ( x ,  I" l . .Xn- l )X . ' ' xPr(z,Ix,)Pr(x,). 
Since each successive bit is generated by the 
flip of a coin whose bias is between 1 / 2 - ~ ( n )  and 
1 / 2 + ~ ( n ) :  

(1/ 2-&(n))n 5 p,(x) I; (1/ 2+&(?2)),. 

For any functional statistical test f: 

IPf(n)-P;(n)l= I (1/2n-P,(z))f(s)I 
1zI=n 

s c 11/2n-Pn(2)1 
I2~( (1 /2+&(n) )n - - l / 2" )  

12 (=n 

= (1+2&(n))n-l. 

We are done by the following elementary calcu- 
lation: 

(1+2&(?2))"--1 = 2n&(n)+o ( n e ( n ) )  

= O ( l / n t )  for e v e r y  t > 0. 

Q.E.D. 

Now the task of extracting quasi-random 
sequences from O(logn1og'n) slightly-random 
sources is reduced to constructing the high- 
quality source described above. Each of the 
O(logn1og'n) slightly-random sources has its 
own adversary who picks the bias of the next 
flip. Once again each adversary has complete 
knowledge of the previous coin flips. We shall 
use the "unbiasing' property of the parity (xor) 
function. This property has been very 
effectively exploited in the past by Yao [Ya] to 
construct a perfect pseudo-random number 
generator, from any one way function. The 
algorithm QGEN be low converts slightly-random 
sources into a high quality source. In the next 
section, we shall prove that the choice of the 
parity function in the algorithm QGEN is 
optimal. 

Algorithm QGEN: 
Input: m sequences of bits, each of length n. 

output: y = y 1 , .  . . ,y, E 10,ljn 

yi := parity (Xl i+  . . . +xmi) 

Begin: 
for i = l  to n do: 

endfor 
End. 

Consider the following source: For each n, 
n-length sequences are generated by feeding 
n-bit outputs of 6'-'lognlog*n slightly-random 
sources to QGEN. QGEN converts these inputs 
into an n-length sequence. 

Theorem 4: The source defined above is quasi- 
random. 

Proof: We show that this source is "high quality" 
and therefore by Theorem 3 it is quasi-random. 
More precisely we show that if m slightly- 
random sources were used, then each bit out- 
put by QGEN has bias in the range 
[I/ 2-( 1-26)m, I/ 2+( 1-26)~] :  i.e. 
I P r ( Y i = o l Y , ,  ' , . ,:Yi-l=u) 

- Pr (y i= l  Iyl, . . . , yi-l=u) I < ( 1 - 2 d e I t ~ ) ~ .  
We introduce the following notation, for 
l<k<lognlog*n : 

= P r ( X , i + . . . + " ~ = o l y l ~  . . yi-l'u) , rk .i 

s k , i  = fi(%,+,+...+xk$=l Iy1 ' . . y(-l=u) . 

We prove by induction on k, that 

ITk,i--!Sk,* I < (1-26)k . 
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The basis step of the induction follows directly 
from the definition of a semi-random source. To 
prove the induction step, let 

B ( z k + + i = o ) y 1  ' ' ' yi-l=U) = p  8 

B ( z k + 1 i = 1  Iy1 ' ' "yi-l=u) = t 

6 < p , q  <1-6, because the bias of the k + l t h  
coin is between 6 and 1-6. Moreover xk+1$ is 
independent from zli,  . . . , zki, because the 
input sequences are generated by parallel 
sources. A simple consideration shows that 

rk f l,i = rk ,i 'P +'k ,i' q 7 

' k+ l , i  = 'k , i 'P + r k , i ' q  . 
Then 

I r k + l , i - s k + l , i  I = I (Tk, i -Sk , i ) ( iD-q)  I 
< ( 1-26)k ( 1-26) 

= ( 1 - 2 6 ) k + l  , 

This completes the induction. 

Finally, substituting any function that grows 
faster than logn asymptotically (we choose 
lognlog'n) for k, we get 

= o(l/n?) for every t > ~  
Q.E.D. 

4. Lowerbounds, or the Power of the 
Adversary. 

We prove below that the choice of the parity 
function in the algorithm QGEN of Section 3 is 
optimal. The model is that any algorithm must 
look a t  a fixed size block of slightly-random bits 
to produce one quasi-random bit. Thus any 
such algorithm is in general a boolean function 
mapping m bits into 1 bit. We prove below that 
m must grow faster than logn asymptotically to 
achieve quasi-randomness. Clearly, it suffices 
t o  consider the (hardest) case when the m 
slightly-random bits are outputs of m distinct 
slightly-random sources. 

Theorem 5: Let f : l O , l j m  + lO,l] be any boolean 
function. Then there are strategies for m 
adversaries such that the bias of f(s, . . . sl) 
differs atleast ( 1 - 2 ~ l ) ~  from 1/2, where si is a 
bit generated by the ith source. 

Proof: By induction on the number of sources. 
The basis follows from the definition of a 
slightly-random source. For the inductive step, 
fix the output of the lSt source to be 0. Then by 
the inductive assumption, the other m-1 adver- 
saries have strategies which force the bias of f 
restricted to s 1  = 0, to be bounded atleast 
( 1-26)m-1 away from 1/2. Let po(0) be the pro- 
bability that f restricted to s 1  is 0, and po(l) 
the probability that it is 1. We assume without 
loss of generality that the inductively assumed 
strategies for the m-1 adversaries yield: 
po(0)-po(l) = A 2 (1-26)m-1. Fix these stra- 
tegies for the m-1 adversaries. 
Case 1 :  For f resticted to s = 1, 
p ,(O) + A 2 p 1). In this case the first adver- 
sary chooses bias 1-6 towards 0. Then Pr[O] - 
Pr[ 11 > ( 1 - 6 ) A  - 6 A  

= ( 1 - 2 6 ) A  
2 ( 1-26)m * 

Case 2: p , ( O )  < p , ( l ) + A .  In this case the first 
adversary chooses bias 1-6 towards 1. Then 
Pr[ 11 - Pr[O] 2 (1 -6 )A - 6 A  

= ( 1 - 2 6 ) A  
2 (1-26)m. 

Q.E.D. 

I t  is somewhat surprising that the bound of 
Theorem 5 is exactly the same as the bound 
proved in Theorem 4. This directly yields: 

Corollary: the parity function achieves the 
most efficient conversion of slightly-random 
source outputs into quasi-random sequences. 

Finally, we show that that there is no algo- 
rithm to convert the output of a single slightly- 
random source into quasi-random sequences, 
no matter how much bit-compression is 
allowed. Let f:  t0,lj" -, l0 , l )  be any boolean 
function. Intuitively, f tries to compress m bits 
of the source output into one quasi-random bit. 
We prove that far every f ,  there is an adversary 
strategy so that the bias of the extracted bit is 
1 - 6 towards 1, thus showing that the extracted 
bit is just as bad as any bit in the original 
source output. 

The function f ,  may be represented in a 
complete binary tree of height m as follows: the 
two branches from each node are labelled 0 and 
1. Each path from root to leaf then corresponds 
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to a unique binary string of length m. The 
value of f on a string is assigned to the 
corresponding leaf in the tree. An adversary 
strategy for the slightly-random source con- 
sists of labelling for each node of the tree: the 
1-branch with a bias b between 6 and 1 - 6, and 
the corresponding 0-branch 1 - b. The probabil- 
ity of picking any root-leaf path in the tree is 
simply the product of the biases on the edges. 

Define the weight of a subtree be the 
number of 1-leaves in it. Assume without loss 
of generality that f(x) = 1 for atleast 112 frac- 
tion of the strings of length m. The following 
adversary strategy guarantees that the proba- 
bility of reaching a 1-leaf (i.e. f(x) = 1) is 
atleast 1-6: for each node, label the branch 
leading t o  the heavier subtree with bias 1 - 6. 
The proof goes by induction on the height, m, of 
the tree. Consider a subtree of height k,  rooted 
at A. Let a denote the number of 1-leaves in the 
subtree. Then a is either 2k or a k bit number 
akak-, . * . a l .  Let o( i )  denote the number of 
1's in the prefix ak . . . q+,. Then we associate 
a valuet v(a), with the subtree: 

Intuitiv'ely, this value is the probability of 
reaching a 1-leaf if the adversary follows the 
above strategy on a tree with all 1-leaves 
appearing consecutively from left to right. 

Theorem 6 For every boclean function f ,  there 
is an adversary strategy, such that the proba- 
bility that the function value has bias atleast 
1-6, when the inputs are sequences generated 
by the adversary source. 

Sketch of Proof: We prove by induction, on the 
height of the subtree, that the above adversary 
strategy ensures probability atleast v(a) of 
reaching a 1-leaf when starting from the root of 
any subtree A. This proves the theorem 
because we can assume without loss of general- 
ity that I[x: f(x) = 1 j 1 ~  Zrn-l, so the value of the 
whole tree is atleast 1-6. 

The idea of the inductive step is to show 
that if A and B are sons of C in the tree, and 
v(a) 2 v(b), then V(C) zz v(a)(l-6) + v(b)6. By 
the inductive assumption, the adversary can 
force probability atleast v(a) of reaching a 1- 
leaf when starting from the root of A, and simi- 
larly for B. Thus he can force probability 
atleast v(c) of reaching a 1-leaf starting from 
the root of C, by picking the branch leading to 
A with probability 1-6. 
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