
Generating Quasi-Random Sequences from Slightly-Random Sources.

(Extended Abstract)

Miklos Santha’
Umesh V. Vazirani“

University of California
Berkeley, CA 94720.

Abstract: Several applications require truly
random bit sequences, whereas physical
sources of randomness are a t best imperfect.
We consider a general model for these
slightly -random sources (e.g. zener diodes),
and show how to convert their output into ‘ran-
dom looking’ sequences, which we call
quasi -random. We show that quasi-random
sequences are indistinguishable from truly ran-
dom ones in a strong sense. This enables us to
prove that quasi-random sequences can be
used in place of truly random ones for applica-
tions such as seeds for pseudo-random number
generators, randomizing algorithms, and sto-
chastic simulation experiments.

1. Introduction.

The existence of a source of fair coin flips
has been extensively assumed for applications
such as randomizing algorithms [Ra], crypto-
graphic protocols [Bll, GM] and stochastic
simulation experiments [Sc, KG]. Unfor-
tunately, the available sources of randomness
(e.g. zener diodes) are imperfect. The simplest
model of an imperfect source of randomness is
a coin whose bias is unknown, but fixed. Von
Neumann [vN] proposed a very simple real time
algorithm to extract unbiased flips from such a
source. More recently, Blum [BE] considers the
question when the imperfect random source is
a deterministic finite state Markov process.

This source may be regarded as flipping a coin
whose bias depends on the current state of the
Markov process, and therefore depends on the
sequence of bits previously output. Blurn shows
that the obvious generalization of the von Neu-
mann procedure does not work. He shows by an
elegant proof that, surprisingly enough, chang-
ing the order in which the bits are output yields
independent, unbiased flips.

We consider an extremely general model of
an imperfect source of randomness. We shall
assume that the previous bits output by the
source can condition the next bit in an arbi-
trarily bad way. Accordingly, the model is that
the next bit is output by the flip of a coin whose
bias is fixed by an adversary who has complete
knowledge of the history of the process. To
make sure that the source does generate some
randomness, the adversary is limited to picking
a bias greater than 6 and smaller than 1-6, for
some positive fraction O< 6 < 1. This models the
known practical sources of randomness such as
the zener diode, in which the frequency of 0’s
and 1’s ”drifts” over a period of time [Mu]. We
shall call such an adversary source a slightly-
random source.

I t can be shown that no algorithm can
extract a sequence of absolutely unbiased coin
flips from such an adversary source. Instead,
we consider a different approach: we introduce
the notion of quasi-random sequences. These
sequences may not be truly independent or
unbiased, but will be provably indistinguishable
from truly random sequences in a very strong
sense (even stronger than that of Yao [Ya]). A s
a consequence of this indistinguishability, it will

*Supported by NSF Grant MCS 82-04506, and by the Pompeo Fellowship.

IBM Doctoral Fellowship.
Supported by NSF Grant MCS 82-04506, and by the CC

434
0272-5428/84/0000/0434$01.00 @ 1984 IEEE

follow that truly random sequences can be
replaced by quasi-random sequences in all the
usual computational applications of random
sequences. A s an example, we shall prove that
quasi-random sequences can be used instead of
truly random coin flips to generate random
variates for stochastic simulation experiments.
The advantage of considering quasi-random
sequences is that they can be generated by
slightly-random sources of the type described
above, which closely model actual physical dev-
ices.

We show how to extract n bit quasi-random
sequences from O(lognlog*n) such semi-
random sources operating in parallel: the algo-
rithm is efficient and uses no storage. More-
over, i t is a real-time algorithm in the sense
that it generates one quasi-random bit a t each
step. We also prove that our method of genera-
tion achieves optimal compression factor.

Why is it necessary to consider (imperfect)
physical sources of randomness in light of the
theory of perfect (cryptographically secure)
pseudo-random number generators [Sh, BM,
Ya]. Blum [Bl] points out that there is a funda-
mental problem that this theory leaves
unsolved: that is the source for the random
seed. Using a fair source to generate this seed
may be crucial because of the danger that the
pseudo-random number generator might
amplify any dependence or bias in the bits of
the seed. A s another example of the versatility
of quasi-random sequences, we shall prove that
they can be used as seeds for perfect pseudo-
random number generators, without weakening
the cryptographic security of the generator.

2. Quasi-Randomness.

Definition: A functional statistical test is any
function f: I O , l j * + [O , l] , where [0,1] denotes the
unit interval.

We are given a source which for every
length n, generates n-length strings x E 10,ljn
with some probability p , (x) .

Let ,uf(n)=l/2" f (z), be the average

value of f on random n-length strings.
Let ,u;(n)= C p,(s)f(z), be the average

value of f on n-length strings generated by the
source.

IzI=n

121=71

Definition: A quusi-random generator is a
source such that for every t > 0, for n
sufficiently large, and for every functional sta-
tistical test f : I,uf(n) - ,u;(n)I < ~ / n t .

The notion of a functional statistical test is
a strengthening of the concept of probabilistic
polynomial time statistical test , introduced by
Yao [Ya]. Instead of evaluating a pseudo-
random number generator on a few statistical
tests (as was done in practice), Yao proposed
that a pseudo-random number generator is
"perfect" if it passes all probabilistic polyno-
mial time statistical tests. An obvious
difference between Yao's statisticai tests, and
our functional statistical tests is that the func-
tion f need not be efficiently computable; it
need not be computable a t all. A more
fundamental difference between these two
notions arises from the fact that whereas the
probabilistic polynomial statistical test is a
complexity theoretic notion, the functional sta-
tistical test is an information theoretic notion.
For this reason, Yao's definition of a perfect
pseudo-random number generator is not uni-
form: a pseudo-random number generator is
perfect if for any specified level of security
1 fnt and any proba.bilistic polynomial time sta-
tistical test there is some seed length n which
ensures this security. In general this value n
depends on the statistical test , and no finite
value n will ensure this level of security with
respect to all statistical tests. On the other
hand quasi-randomness is a uniform concept:
for any desired level of security, a length n can
be picked so that the n-length quasi random
sequences achieve this security relative to
every functional statistical test.

The following Pwo theorems illustrate how
the strong properties of quasi-random genera-
tors allow them to replace truly random
sequences. The first theorem shows that
quasi-random sequences are just as "good" as
truly random sequences when fed as seeds to
pseudo-random nuniber generators.

--
A probabilistic polynomial time statistical

test is a function from g O , l { * to i O , l { , which is
computed by a probabilistic polynomial time
Turing machine. A pseudo-random number gen-
erator passes a probabilistic polynomial time
statistical test if for every t > O , for n sufficiently
large, the average value of the test (function)
on n-length pseudo-random strings differs by
no more than l /n ' ! from the average value of
the test on truly random strings.

43 5

Theorem 1: Let G: l O , l] * I O * l j * be a perfect
pseudo-random number generator. Then G with
seeds generated by a quasi-random source is
also perfect (passes all probabilistic polynomial
time statistical tests).

Proof: The basic idea of the proof is: suppose to
the contrary that the generator when fed
quasi-random seeds fails a probabilistic polyno-
mial time statistical test T; then the quasi-
random number generator fails the functional
statistical test obtained by composing the
pseudo-random number generator with the test
T.

More formally: Let T: f O , l] * 4 l0 , l j be any
probabilistic polynomial time statistical test,
and t > O fixed. Suppose that G on n-length seeds
generates poly(n)-length sequences €or some
polynomial poly (n).

Recall that P , T G (~) = l / Z n

Now, I P T @ ~ ~ / (~)) - P X (~) I = a (l / n t)
because G is perfect, and
I p~~(n) -pu ; '~ (n) I = O (l / n t) because our
source is quasi-random.

I t follows that

Since this is true for each test T, and every t >
0, it follows that the pseudo-random number
generator with quasi-random seeds is perfect.
Q.E.D.

Next, we show that quasi-random sequences
can be used in place of sequences of coin flips
by any procedure that generates (random vari-
ates of) a desired distribution T from a
sequence of coin flips. Let f : { O , l { * + Z, the set
of integers. Given a probability distribution Pr
on l0,ljn, f induces a probability distribution
on Z in a natural way as follows:
p , (y) = R(Z). Let T be the desired

distribution. A s a measure of the closeness with
which T is approximated by the distribution
induced by the function f , let
a, = 2 I T (Y) -pn (y) 1 . Intuitively, an measures

the area between the density plots of the two
distributions.

T (G (z)) .
12 I=,

I P T c p o 2 Y t n)) - P ; G (4 I = o w n t) *

lz I=n,1(2)=y

Y €2

generated by a quasi-random generator. Let
a,*= I ~ (y) - q ~ (y) I. Then Ia,-a,* 1 < I /nt ,

for every t, for sufficiently large n.
Y E Z

Comrnen't: The above theorem can be used to
get effective bounds: given a bound one can
compute n so that the error (the area between
the two density plots) introduced by substitut-
ing quasi-random sequences for truly random
ones is less than the bound. This value of n, is
guaranteed to work regardless of the algorithm
used for generating the random variates,
because of the uniformity property. The fact
that functional statistical tests in the definition
of quasi-randomness are not required to be
polynomial time tests is also very important in
this theorem. This is because the running time
of algorithms for producing some distributions
has not been analyzed, and may well be super-
polynomial.

= O(1/ nt) + O(1/ nt)

= O (l / n t) for every t > 0.

t > 0.

Theorem 2: Let f be any function as above; let
p , be the probability density induced by f when
all n length strings are picked with uniform
probability, and let qn be the probability den-
sity induced by f when the n length strings are

436

3. Extracting Quasi-random Sequences
from Semi-random Sources.

Recall that a slightly-random source is a
process which generates sequences of 0's and
1's from the flips of a biased coin, where the
bias of the coin is determined by an adversary.

We now describe the basic principle under-
lying the generation of quasi-random strings
despite the presence of an adversary. Consider
the following "high-quality" source: The
sequences of length n are generated by a coin
C, whose bias can be slightly changed after
each flip, with the constraint that the bias must
be greater than 1 / 2 - & (n) and less than
1/2+&(n). Before each flip of this coin, an
adversary, who has knowledge of the history of
the coin flips sets the bias of the coin. The pur-
pose of the adversary is to create as much
dependence in the distribution of flip
sequences as possible. We would like to show
that if ~ (n) is a sufficiently small function of n,
then this source is quasi-random.

Theorem 3: If for every t and for all sufficiently
large n &(n) < l / n t , then the source defined
above is quasi random.

Proof: For any n-length string x = x . . . x,, for
every i, I s i r n , let Pr(xiIxl - . . xi-t2 denote the
conditional probability that the i coin flip is
xi, when the result of the first i-1 coin flips is
x i * . . xi-,. Then the probability that the
source generates x is:
p,(z) = P r (x , I" l . .Xn- l)X . ' ' xPr(z,Ix,)Pr(x,).
Since each successive bit is generated by the
flip of a coin whose bias is between 1 / 2 - ~ (n) and
1 / 2 + ~ (n) :

(1/ 2-&(n))n 5 p,(x) I; (1/ 2+&(?2)),.

For any functional statistical test f:

IPf(n)-P;(n)l= I (1/2n-P,(z))f(s)I
1zI=n

s c 11/2n-Pn(2)1
I2~((1 /2+&(n))n - - l / 2")

12 (=n

= (1+2&(n))n-l.

We are done by the following elementary calcu-
lation:

(1+2&(?2))"--1 = 2n&(n)+o (n e (n))

= O (l / n t) for e v e r y t > 0.

Q.E.D.

Now the task of extracting quasi-random
sequences from O(logn1og'n) slightly-random
sources is reduced to constructing the high-
quality source described above. Each of the
O(logn1og'n) slightly-random sources has its
own adversary who picks the bias of the next
flip. Once again each adversary has complete
knowledge of the previous coin flips. We shall
use the "unbiasing' property of the parity (xor)
function. This property has been very
effectively exploited in the past by Yao [Ya] to
construct a perfect pseudo-random number
generator, from any one way function. The
algorithm QGEN be low converts slightly-random
sources into a high quality source. In the next
section, we shall prove that the choice of the
parity function in the algorithm QGEN is
optimal.

Algorithm QGEN:
Input: m sequences of bits, each of length n.

output: y = y 1 , . . . ,y, E 10,ljn

yi := parity (Xl i+ . . . +xmi)

Begin:
for i = l to n do:

endfor
End.

Consider the following source: For each n,
n-length sequences are generated by feeding
n-bit outputs of 6'-'lognlog*n slightly-random
sources to QGEN. QGEN converts these inputs
into an n-length sequence.

Theorem 4: The source defined above is quasi-
random.

Proof: We show that this source is "high quality"
and therefore by Theorem 3 it is quasi-random.
More precisely we show that if m slightly-
random sources were used, then each bit out-
put by QGEN has bias in the range
[I/ 2-(1-26)m, I/ 2+(1-26)~] : i.e.
I P r (Y i = o l Y , , ' , . ,:Yi-l=u)

- Pr (y i= l Iyl, . . . , yi-l=u) I < (1 - 2 d e I t ~) ~ .
We introduce the following notation, for
l<k<lognlog*n :

= P r (X , i + . . . + " ~ = o l y l ~ . . yi-l'u) , rk .i

s k , i = fi(%,+,+...+xk$=l Iy1 ' . . y(-l=u) .

We prove by induction on k, that

ITk,i--!Sk,* I < (1-26)k .

431

The basis step of the induction follows directly
from the definition of a semi-random source. To
prove the induction step, let

B (z k + + i = o) y 1 ' ' ' yi-l=U) = p 8

B (z k + 1 i = 1 Iy1 ' ' "yi-l=u) = t

6 < p , q <1-6, because the bias of the k + l t h
coin is between 6 and 1-6. Moreover xk+1$ is
independent from zli, . . . , zki, because the
input sequences are generated by parallel
sources. A simple consideration shows that

rk f l,i = rk ,i 'P +'k ,i' q 7

' k+ l , i = 'k , i 'P + r k , i ' q .
Then

I r k + l , i - s k + l , i I = I (Tk, i -Sk , i) (iD-q) I
< (1-26)k (1-26)

= (1 - 2 6) k + l ,

This completes the induction.

Finally, substituting any function that grows
faster than logn asymptotically (we choose
lognlog'n) for k, we get

= o(l/n?) for every t > ~
Q.E.D.

4. Lowerbounds, or the Power of the
Adversary.

We prove below that the choice of the parity
function in the algorithm QGEN of Section 3 is
optimal. The model is that any algorithm must
look a t a fixed size block of slightly-random bits
to produce one quasi-random bit. Thus any
such algorithm is in general a boolean function
mapping m bits into 1 bit. We prove below that
m must grow faster than logn asymptotically to
achieve quasi-randomness. Clearly, it suffices
t o consider the (hardest) case when the m
slightly-random bits are outputs of m distinct
slightly-random sources.

Theorem 5: Let f : l O , l j m + lO,l] be any boolean
function. Then there are strategies for m
adversaries such that the bias of f(s, . . . sl)
differs atleast (1 - 2 ~ l) ~ from 1/2, where si is a
bit generated by the ith source.

Proof: By induction on the number of sources.
The basis follows from the definition of a
slightly-random source. For the inductive step,
fix the output of the lSt source to be 0. Then by
the inductive assumption, the other m-1 adver-
saries have strategies which force the bias of f
restricted to s 1 = 0, to be bounded atleast
(1-26)m-1 away from 1/2. Let po(0) be the pro-
bability that f restricted to s 1 is 0, and po(l)
the probability that it is 1. We assume without
loss of generality that the inductively assumed
strategies for the m-1 adversaries yield:
po(0)-po(l) = A 2 (1-26)m-1. Fix these stra-
tegies for the m-1 adversaries.
Case 1 : For f resticted to s = 1,
p ,(O) + A 2 p 1). In this case the first adver-
sary chooses bias 1-6 towards 0. Then Pr[O] -
Pr[11 > (1 - 6) A - 6 A

= (1 - 2 6) A
2 (1-26)m *

Case 2: p , (O) < p , (l) + A . In this case the first
adversary chooses bias 1-6 towards 1. Then
Pr[11 - Pr[O] 2 (1 -6)A - 6 A

= (1 - 2 6) A
2 (1-26)m.

Q.E.D.

I t is somewhat surprising that the bound of
Theorem 5 is exactly the same as the bound
proved in Theorem 4. This directly yields:

Corollary: the parity function achieves the
most efficient conversion of slightly-random
source outputs into quasi-random sequences.

Finally, we show that that there is no algo-
rithm to convert the output of a single slightly-
random source into quasi-random sequences,
no matter how much bit-compression is
allowed. Let f: t0,lj" -, l0 , l) be any boolean
function. Intuitively, f tries to compress m bits
of the source output into one quasi-random bit.
We prove that far every f , there is an adversary
strategy so that the bias of the extracted bit is
1 - 6 towards 1, thus showing that the extracted
bit is just as bad as any bit in the original
source output.

The function f , may be represented in a
complete binary tree of height m as follows: the
two branches from each node are labelled 0 and
1. Each path from root to leaf then corresponds

438

to a unique binary string of length m. The
value of f on a string is assigned to the
corresponding leaf in the tree. An adversary
strategy for the slightly-random source con-
sists of labelling for each node of the tree: the
1-branch with a bias b between 6 and 1 - 6, and
the corresponding 0-branch 1 - b. The probabil-
ity of picking any root-leaf path in the tree is
simply the product of the biases on the edges.

Define the weight of a subtree be the
number of 1-leaves in it. Assume without loss
of generality that f(x) = 1 for atleast 112 frac-
tion of the strings of length m. The following
adversary strategy guarantees that the proba-
bility of reaching a 1-leaf (i.e. f(x) = 1) is
atleast 1-6: for each node, label the branch
leading t o the heavier subtree with bias 1 - 6.
The proof goes by induction on the height, m, of
the tree. Consider a subtree of height k, rooted
at A. Let a denote the number of 1-leaves in the
subtree. Then a is either 2k or a k bit number
akak-, . * . a l . Let o(i) denote the number of
1's in the prefix ak . . . q+,. Then we associate
a valuet v(a), with the subtree:

Intuitiv'ely, this value is the probability of
reaching a 1-leaf if the adversary follows the
above strategy on a tree with all 1-leaves
appearing consecutively from left to right.

Theorem 6 For every boclean function f , there
is an adversary strategy, such that the proba-
bility that the function value has bias atleast
1-6, when the inputs are sequences generated
by the adversary source.

Sketch of Proof: We prove by induction, on the
height of the subtree, that the above adversary
strategy ensures probability atleast v(a) of
reaching a 1-leaf when starting from the root of
any subtree A. This proves the theorem
because we can assume without loss of general-
ity that I[x: f(x) = 1 j 1 ~ Zrn-l, so the value of the
whole tree is atleast 1-6.

The idea of the inductive step is to show
that if A and B are sons of C in the tree, and
v(a) 2 v(b), then V(C) zz v(a)(l-6) + v(b)6. By
the inductive assumption, the adversary can
force probability atleast v(a) of reaching a 1-
leaf when starting from the root of A, and simi-
larly for B. Thus he can force probability
atleast v(c) of reaching a 1-leaf starting from
the root of C, by picking the branch leading to
A with probability 1-6.

5. Acknowledgements:

We are extremely iindebted to Manuel Blum, not
only for raising the issues that sparked off this
research, but also for his ability to detect very
subtle flaws in "proofs". Vijay Vazirani played a
critical role in helping us clarify several con-
ceptual points. Sampath Kannan was a catalyst
for the lower bound proofs. W e wish to thank
them and Ashok C'handra, Richard Karp, Dexter
Kozen, Steven Rudith, Michael Sipser & Avi
Wigderson for some very useful discussions.

6. References.

[Bll] M. Blum, "Coin Flipping by Telephone,"
IEEE COMPCON (1982).

[B12] M. Blum, "Independent Unbiased Coin
Flips From a Correlated Biased Source:
a Finite State Markov Chain," to appear.

[BBS] L. Blum, M . Blum and M. Shub, "A Sim-
ple Secure Pseudo-Random Number
Generator," to appear in SIAM Journal of
Computing.
M. Blum and S . Micali, "HOW to Generate
Cryptographically Strong Sequences of
Pseudo-Random Bits," 1982 FOCS.
S. Goldwasser and S. Micali, "Probabilis-
tic Encryption and How to Play Mental
Poker Keeping Secret all Partial Infor-
mation," 1982 STOC.
W. Kennedy and J. Gentle, S t a t i s t i c a l
C o m p u t i n g , Marcel Dekker, Inc. New
York.
D. Knuth, The Ar t of C o m p u t e r P r o g r a m -
m i n g , Volzlime 2: S e m i n u m e r i c a l Algo-
r i t h m s , Addison-Wesley, Reading, MA
(second edition 1981).
J. von Neumann, 'Various Techniques
Used in Connection with Random
Digits," Notes by G. E. Forsythe,
National Bureau of Standards, Applied
Math Series, 1951, Vol 12, 36-38.
Reprinted in von Neumann's Collected
Works, Vol 5, Pergamon Press (1963),
768-770.
M. Rabin, "Probabilistic Algorithms,"
Algorithms and Complexity, J.Traub,
Editor, Academic Press (1976), pp. 21-
39.

439

[SC] B. Schmeiser, "Random Variate Genera-
tion: A Survey," 1980 IEEE. Simulation
with Discrete Models: A State-of-the-Art
View, T.Oren, C. Shub, P. Roth (eds.).
A. Shamir, "On the Generation of Cryp-
tographically Strong Pseudo-Random
Sequences," 1981 ICALP.

[Ya] A. Yao, "Theory and Applications of
Trapdoor Functions," 1982 FOCS.

H. F. Murry, "A general approach for
generating natural random variables,"
IEEE Trans. Comput., vol. C-19, pp.
1210-1213. Dec 1970.

[Sh]

[Mu]

440

