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Abstract. Clearly explaining a rationale for a classification decision to
an end user can be as important as the decision itself. Existing ap-
proaches for deep visual recognition are generally opaque and do not
output any justification text; contemporary vision-language models can
describe image content but fail to take into account class-discriminative
image aspects which justify visual predictions. We propose a new model
that focuses on the discriminating properties of the visible object, jointly
predicts a class label, and explains why the predicted label is appropriate
for the image. Through a novel loss function based on sampling and re-
inforcement learning, our model learns to generate sentences that realize
a global sentence property, such as class specificity. Our results on the
CUB dataset show that our model is able to generate explanations which
are not only consistent with an image but also more discriminative than
descriptions produced by existing captioning methods.
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1 Introduction

Explaining why the output of a visual system is compatible with visual evi-
dence is a key component for understanding and interacting with AI systems [4].
Deep classification methods have had tremendous success in visual recognition
[20,10,8], but their outputs can be unsatisfactory if the model cannot provide a
consistent justification of why it made a certain prediction. In contrast, systems
which can justify why a prediction is consistent with visual elements to a user
are more likely to be trusted [34]. Explanations of visual systems could also aid
in understanding network mistakes and provide feedback to improve classifers.

We consider explanations as determining why a decision is consistent with vi-
sual evidence, and differentiate between introspection explanation systems which
explain how a model determines its final output (e.g., “This is a Western Grebe
because filter 2 has a high activation...”) and justification explanation systems
which produce sentences detailing how visual evidence is compatible with a sys-
tem output (e.g., “This is a Western Grebe because it has red eyes...”). We con-
centrate on justification explanation systems because they may be more useful to
non-experts who do not have knowledge of modern computer vision systems [4].
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Description: This is a large bird with a white neck and a black back in the water.
Definition: The Western Grebe is has a yellow pointy beak, white neck and belly, and black back.
Visual Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow 
beak and red eye.
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Laysan Albatross

Description: This is a large flying bird with black wings and a white belly.
Definition: The Laysan Albatross is a seabird with a hooked yellow beak, black back and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked yellow 
beak, and white belly.

Description: This is a large bird with a white neck and a black back in the water.
Definition: The Laysan Albatross is a seabird with a hooked yellow beak, black back and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white neck 
and black back.

Laysan Albatross

Western Grebe

Fig. 1. Our proposed model generates explanations that are both image relevant and
class relevant. In contrast, descriptions are image relevant, but not necessarily class
relevant, and definitions are class relevant but not necessarily image relevant.

We argue that visual explanations must satisfy two criteria: they must be
class discriminative and accurately describe a specific image instance. As shown
in 1, explanations are distinct from descriptions, which provide a sentence based
only on visual information, and definitions, which provide a sentence based only
on class information. Unlike descriptions and definitions, visual explanations
detail why a certain category is appropriate for a given image while only men-
tioning image relevant features. For example, consider a classification system
that predicts a certain image belongs to the class “western grebe” (1, top). A
standard captioning system might provide a description such as “This is a large
bird with a white neck and black back in the water.” However, as this description
does not mention discriminative features, it could also be applied to a “laysan
albatross” (1, bottom). In contrast, we propose to provide explanations, such as
“This is a western grebe because this bird has a long white neck, pointy yellow
beak, and a red eye.” The explanation includes the “red eye” property, which
is important for distinguishing between “western grebe” and “laysan albatross”.
As such, our system explains why the predicted category is the most appropriate
for the image.

We outline our approach in Figure 2. In contrast to description models, we
condition generation on an image and the predicted class label. We also use fea-
tures extracted from a fine-grained recognition pipeline [10]. Like many contem-
porary description models [37,7,18,40,19], we use an LSTM [13] to generate word
sequences. However, we design a novel loss function which encourages generated
sentences to include class discriminative information; i.e., to be class specific.
One challenge is that class specificity is a global sentence property: e.g., while
a sentence “This is an all black bird with a bright red eye” is class specific to
a “Bronzed Cowbird”, words and phrases in this sentence, such as “black” or
“red eye” are less class specific on their own. Our final output is a sampled sen-
tence, so we backpropagate the discriminative loss through the sentence sampling
mechanism via a technique from the reinforcement learning literature [39].

To the best of our knowledge, ours is the first framework to produce deep vi-
sual explanations using natural language justifications. We describe below that
our novel joint vision and language explanation model combines classification
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Fig. 2. Our joint classification and explanation model. We extract visual features using
a fine-grained classifier before sentence generation and, unlike other sentence generation
models, condition sentence generation on the predicted class label. A novel discrimina-
tive loss encourages generated sentences to include class specific attributes.

and sentence generation by incorporating a loss function that operates over sam-
pled sentences. We show that this formulation is able to focus generated text to
be more discriminative and that our model produces better explanations than
a description baseline. Our results also confirm that generated sentence quality
improves with respect to traditional sentence generation metrics by including a
discriminative class label loss during training. This result holds even when class
conditioning is ablated at test time.

2 Related Work

Explanation. Automatic reasoning and explanation has a long and rich history
within the artificial intelligence community [4,33,24,5,35,25,22,17]. Explanation
systems span a variety of applications including explaining medical diagnosis [33],
simulator actions [24,5,35,17], and robot movements [25]. Many of these systems
are rule-based [33] or solely reliant on filling in a predetermined template [35].
Methods such as [33] require expert-level explanations and decision processes.
As expert explanations or decision processes are not available during training,
our model learns purely from visual features and fine-grained visual descriptions
to fulfill our two proposed visual explanation criteria. In contrast to systems
like [33,24,5,35,25,22] which aim to explain the underlying mechanism behind a
decision, Biran et al. [4] concentrate on why a prediction is justifiable to a user.
Such systems are advantageous because they do not rely on user familiarity with
the design of an intelligent system in order to provide useful information.

Many vision methods focus on discovering visual features which can help
“explain” an image classification decision [3,16,6]. Importantly, these models do
not link discovered discriminative features to natural language expressions. We
believe that the methods discovering discriminative visual features are comple-
mentary to our proposed system. In fact, discriminative visual features could be
used as additional inputs to our model to produce better explanations.

Visual Description. Early image description methods rely on detecting
visual concepts (e.g., subject, verb, and object) before generating a sentence
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with either a simple language model or sentence template [21,11]. Recent deep
models [37,7,18,40,19,9,28] outperform such systems and produce fluent, accu-
rate descriptions. Though most description models condition sentence generation
only on image features, [14] condition generation on auxiliary information, such
as words used to describe a similar image in the train set. However, [14] does
not condition sentence generation on category labels.

LSTM sentence generation models are generally trained with a cross-entropy
loss between the probability distribution of predicted and ground truth words
[37,7,18,40,28]. Frequently, however, the cross-entropy loss does not directly op-
timize for properties desirable at test time. [26] proposes a training scheme for
generating unambiguous region descriptions which maximizes the probability of
a region description while minimizing the probability of other region descrip-
tions. In this work, we propose a novel loss function for sentence generation
which allows us to specify a global constraint on generated sentences.

Fine-grained Classification. Object classification, particularly fine-grained
classification, is an attractive setting for explanation systems because describing
image content does not suffice as an explanation. Explanation models must focus
on aspects that are both class-specific and depicted in the image.

Most fine-grained zero-shot and few-shot image classification systems use
attributes [23] as auxiliary information. Attributes discretize a high dimensional
feature space into simple and readily interpretable decision statements that can
act as an explanation. However, attributes have several disadvantages. They
require experts for annotation which is costly and results in attributes which are
hard for non-experts to interpret (e.g., “spatulate bill shape”). Attributes are not
scalable as the list of attributes needs to be revised to ensure discriminativeness
for new classes. Finally, attributes do not provide a natural language explanation
like the user expects. We therefore use natural language descriptions [31] which
achieved superior performance on zero-shot learning compared to attributes and
also shown to be useful for text to image generation [32].

Reinforcement Learning in Computer Vision. Vision models which
incorporate algorithms from reinforcement learning, specifically how to back-
propagate through a sampling mechanism, have recently been applied to visual
question answering [1] and activity detection [41]. Additionally, [40] use a sam-
pling mechanism to attend to specific image regions for caption generation, but
use the standard cross-entropy loss during training.

3 Visual Explanation Model

Our visual explanation model (Figure 3) aims to produce an explanation which
describes visual content present in a specific image instance while containing
appropriate information to explain why the image belongs to a specific category.
We ensure generated descriptions meet these two requirements for explanation
by including both a relevance loss (Figure 3, bottom right) and discriminative
loss (Figure 3, top right). We propose a novel discriminative loss which acts on
sampled word sequences during training. Our loss enables us to enforce global
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Fig. 3. Training our explanation model. Our explanation model differs from other
caption models because it (1) includes the object category as an additional input and
(2) incorporates a reinforcement learning based discriminative loss

sentence constraints on sentences. By applying our loss to sampled sentences, we
ensure that the final output of our system fulfills our explanation criteria. We
consider a sentence to be either a complete sentence or a sentence fragment.

3.1 Relevance Loss

Image relevance can be accomplished by training a visual description model. Our
model is based on LRCN [7], which consists of a convolutional network, which ex-
tracts high level visual features, and two stacked recurrent networks (specifically
LSTMs), which generate descriptions conditioned on visual features. During in-
ference, the first LSTM receives the previously generated word wt−1 as input
and produces an output lt. The second LSTM, receives the output of the first
LSTM lt and an image feature f and produces a probability distribution p(wt)
over the next word. The word wt is generated by sampling from the distribution
p(wt). Generation continues until an “end-of-sentence” token is generated.

We propose two modifications to the LRCN framework to increase the image
relevance of generated sequences (Figure 3, top left). First, category predictions
are used as an additional input to the second LSTM in the sentence generation
model. Intuitively, category information can help inform the caption generation
model which words and attributes are more likely to occur in a description.
For example, category level information can help the model decide if a red eye
or red eyebrow is more likely for a given class. We experimented with a few
methods to represent class labels, and found that training a language model,
e.g., an LSTM, to generate word sequences conditioned on images, then using
the average hidden state of the LSTM across all sequences for all classes in the
train set as a vectorial representation of a class works best. Second, we use rich
category specific features [10] to generate relevant explanations.

Each training instance consists of an image, category label, and a ground
truth sentence. During training, the model receives the ground truth word wt
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for each time step t ∈ T . We define the relevance loss for a specific image (I)
and caption (C) as:

LR(I, C) =
1

N

N−1∑
n=0

T−1∑
t=0

log p(wt+1|w0:t, I, C) (1)

where wt is a ground truth word and N is the batch size. By training the model
to predict each word in a ground truth sentence, the model produces sentences
which reflect the image content. However, this loss does not explicitly encourage
generated sentences to discuss discerning visual properties. In order to generate
sentences which are both image relevant and category specific, we include a dis-
criminative loss to focus sentence generation on discriminative visual properties
of the object.

3.2 Discriminative Loss

Our discriminative loss is based on a reinforcement learning paradigm for learn-
ing with layers which require sampling intermediate activations of a network. In
our formulation, we first sample a sentence and then use the sampled sentence
to compute a discriminative loss. By sampling the sentence before computing
the loss, we ensure that sentences sampled from our model are more likely to be
class specific. Our reinforcement based loss enables us to backpropagate through
the sentence sampling mechanism.

We minimize the following overall loss function with respect to the explana-
tion network weights W :

LR(I, C)− λEw̃∼p(w|I,C) [RD(w̃)] (2)

which is a linear combination of the relevance loss LR and the expectation of the
negative discriminator reward −RD(w̃) over descriptions w̃ ∼ p(w|I, C), where
p(w|I, C) is the model’s estimated conditional distribution over descriptions w
given the image I and category C. Since Ew̃∼p(w|I,C) [RD(w̃)] is intractable, we
estimate it at training time using Monte Carlo sampling of descriptions from the
categorical distribution given by the model’s softmax output at each timestep.
The sampling operation for the categorical distribution is non-smooth in the dis-
tribution’s parameters {pi} as it is a discrete distribution. Therefore, ∇WRD(w̃)
for a given sample w̃ with respect to the weights W is undefined.

Following the REINFORCE [39] algorithm, we make use of the following
equivalence property of the expected reward gradient:

∇WEw̃∼p(w|I,C) [RD(w̃)] = Ew̃∼p(w|I,C) [RD(w̃)∇W log p(w̃)] (3)

In this reformulation, the gradient ∇W log p(w̃) is well-defined: log p(w̃) is the
log-likelihood of the sampled description w̃, just as LR is the log-likelihood of
the ground truth description. However, the sampled gradient term is weighted by
the reward RD(w̃), pushing the weights to increase the likelihood assigned to the
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most highly rewarded (and hence most discriminative) descriptions. Therefore,
the final gradient we compute to update the weights W , given a description w̃
sampled from the model’s softmax distribution, is:

∇WLR − λRD(w̃)∇W log p(w̃). (4)

RD(w̃) should be high when sampled sentences are discriminative. We define
our reward simply as RD(w̃) = p(C|w̃), or the probability of the ground truth
category C given only the generated sentence w̃. By placing the discriminative
loss after the sampled sentence, the sentence acts as an information bottleneck.
For the model to produce an output with a large reward, the generated sentence
must include enough information to classify the original image properly.

For the sentence classifier, we train a single layer LSTM-based classification
network to classify ground truth sentences. Our sentence classifier correctly pre-
dicts the class of unseen validation set sentences 22% of the time. This number
is possibly low because descriptions in the dataset do not necessarily contain
discriminative properties (e.g., “This is a white bird with grey wings.” is a valid
description but can apply to multiple bird species). Nonetheless, we find that this
classifier provides enough information to train our explanation model. Outside
text sources (e.g., field guides) could be useful when training a sentence classifier.
However, incorporating outside text can be challenging as this requires aligning
our image annotation vocabulary to field-guide vocabulary. When training the
explanation model, we do not update weights in the sentences classifier.

4 Experimental Setup

Dataset. We employ the Caltech UCSD Birds 200-2011 (CUB) dataset [38]
which contains 200 classes of bird species and 11,788 images in total. Recently,
[31] collected 5 sentences for each of the images which do not only describe the
content of the image, e.g., “This is a bird”, but also give a detailed descrip-
tion of the bird, e.g., “red feathers and has a black face patch”. Unlike other
image-sentence datasets, every image in the CUB dataset belongs to a class,
and therefore sentences as well as images are associated with a single label. This
property makes this dataset unique for the visual explanation task, where our
aim is to generate sentences that are both discriminative and class-specific.

Though sentences collected in [31] were not originally collected for the visual
explanation task, we observe that sentences include detailed and fine-grained cat-
egory specific information. When ranking human annotations by output scores
of our sentence classifier, we find that high-ranking sentences (and thus more
discriminative sentences) include rich discriminative details. For example, the
sentence “...mostly black all over its body with a small red and yellow portion
in its wing” has a score of 0.99 for “Red winged blackbird” and includes details
specifc to this bird variety, such as “red and yellow portion in its wing”. As
ground truth annotations are descriptions as opposed to explanations, not all
annotations are guaranteed to include discriminative information. For example,
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though the “bronzed-cowbird” has striking red eyes, not all humans mention this
discrimitave feature. To generate satisfactory explanations, our model must learn
which features are discriminative from descriptions and incorporate discrimina-
tive properties into generated explanations. Example ground truth images and
annotations may be found in our supplemental.

Implementation. For image features, we extract 8,192 dimensional features
from the penultimate layer of the compact bilinear fine-grained classification
model [10] which has been pre-trained on the CUB dataset and achieves an
accuracy of 84%. We use one-hot vectors to represent input words at each time
step and learn a 1000 dimensional embedding before inputting each word into
an LSTM with 1000 hidden units. We train our models using Caffe [15], and
determine model hyperparameters using the standard CUB validation set before
evaluating on the test set. All reported results are on the standard CUB test set.

Baseline and Ablation Models. We propose two baseline models: a de-
scription model and a definition model. Our description baseline generates sen-
tences conditioned only on images and is equivalent to LRCN [7] except we use
image features from a fine-grained classifier ([10]). Our definition baseline gen-
erates sentences using only an image label as input. Consequently, this model
outputs the same sentence for every image of the same class. Our proposed model
is both more image and class relevant than either of these baselines and thus
superior for the explanation task.

Our explanation model differs from description models in two key ways. First,
in addition to an image, generated sentences are conditioned on class predic-
tions. Second, explanations are trained with a discriminative loss which enforces
that generated sentences contain class specific information (see Equation 2). To
demonstrate that both class information and the discriminative loss are impor-
tant, we compare our explanation model to an explanation-label model which is
not trained with the discriminative loss, and to an explanation-discriminative
model which is not conditioned on the predicted class.

Metrics. To evaluate our explanation model, we use automatic metrics and
two human evaluations. Our automatic metrics rely on the common sentence
evaluation metrics (METEOR [2] and CIDEr [36]) and are used to evaluate the
quality of our explanatory text. METEOR is computed by matching words in
generated and reference sentences, but unlike other common metrics such as
BLEU [30], it uses WordNet [29] to also match synonyms. CIDEr measures the
similarity of a generated sentence to reference sentence by counting common n-
grams which are TF-IDF weighted. Consequently, CIDEr rewards sentences for
correctly including n-grams which are uncommon in the dataset.

A generated sentence is image relevant if it mentions concepts which are
mentioned in ground truth reference sentences for the image. Thus, to mea-
sure image relevance we simply report METEOR and CIDEr scores, with more
relevant sentences producing higher METEOR and CIDEr scores.

Measuring class relevance is considerably more difficult. We could use the
LSTM sentence classifier used to train our discriminative loss, but this is an un-
fair metric because some models were trained to directly increase the accuracy as
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measured by the LSTM classifier. Instead, we measure class relevance by consid-
ering how similar generated sentences for a class are to ground truth sentences
for that class. Sentences which describe a certain bird class, e.g., “cardinal”,
should contain similar words and phrases to ground truth “cardinal” sentences,
but not ground truth “black bird” sentences. We compute CIDEr scores for im-
ages from each bird class, but instead of using ground truth image descriptions
as reference sentences, we pool all reference sentences which correspond to a
particular class. We call this metric the class similarity metric.

Though class relevant sentences should have high class similarity scores, a
model could achieve a better class similarity score by producing better overall
sentences (e.g., better grammar) without producing more class relevant descrip-
tions. To further demonstrate that our sentences are class relevant, we compute
a class rank metric. Intuitively, class similarity scores computed for generated
sentences about cardinals should be higher when compared to cardinal reference
sentences than when compared to reference sentences from other classes. Con-
sequently, more class relevant models should yield higher rank for ground truth
classes. To compute class rank, we compute the class similarity for each gen-
erated sentence with respect to each bird category and rank bird categories by
class similarity. We report the mean rank of the ground truth class. We empha-
size the CIDEr metric because of the TF-IDF weighting over n-grams. If a bird
has a unique feature, such as “red eyes”, generated sentences which mention this
attribute should be rewarded more than sentences which just mention attributes
common across all bird classes. We apply our metrics to images for which we
predict the correct label as it is unclear if the best explanatory text should be
more similar to the correct class or the predicted class. However, the same trends
hold if we apply our metrics to all generated sentences.

5 Results

We demonstrate that our model generates superior visual explanations and pro-
duces image and class relevant text. Additionally, generating visual explanations
results in higher quality sentences based on common sentence generation metrics.

5.1 Quantitative Results

Image Relevance. Table 1, columns 2 & 3, record METEOR and CIDEr scores
for our generated sentences. Importantly, our explanation model has higher ME-
TEOR and CIDEr scores than our baselines. The explanation model also out-
performs the explanation-label and explanation-discriminative model suggesting
that both label conditioning and the discriminative loss are key to producing
better sentences. Furthermore, METEOR and CIDEr are substantially higher
when including a discriminative loss during training (compare rows 2 and 4 and
rows 3 and 5) demonstrating that including this additional loss leads to better
generated sentences. Moreover, the definition model produces more image rele-
vant sentences than the description model suggesting that category information
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Image Relevance Class Relevance Best Explanation
METEOR CIDEr Similarity Rank Bird Expert Rank

(1-200) (1-5)

Definition 27.9 43.8 42.60 15.82 2.92
Description 27.7 42.0 35.30 24.43 3.11

Explanation-Label 28.1 44.7 40.86 17.69 2.97
Explanation-Dis. 28.8 51.9 43.61 19.80 3.22
Explanation 29.2 56.7 52.25 13.12 2.78

Table 1. Comparing our explanation model to our definition and description baseline,
as well as the explanation-label and explanation-discriminative (explanation-dis.) ab-
lation models. Our explanations are image relevant, as measured by METEOR and
CIDEr scores (higher is better). They are also class relevant, as measured by class sim-
ilarity metric (higher is better) and class rank metric (lower is better) (see section 4
for details). Finally, our explanations are ranked better by experienced bird watchers.

is important for fine-grained description. On the other hand, our explanation-
label results are better than both the definition and description results showing
that the image and label contain complementary information.

Class Relevance. Table 1, columns 4 & 5, report class similarity and class
rank metrics (see section 4 for details). Our explanation model produces a higher
class similarity score than other models by a substantial margin. The class rank
for our explanation model is also lower than for any other model suggesting that
sentences generated by our explanation model more closely resemble the correct
class than other classes in the dataset. Our ranking metric is quite difficult;
sentences must include enough information to differentiate between very similar
bird classes without looking at an image, and our results clearly show that our
explanation model performs best at this difficult task. The accuracy of our LSTM
sentence classifier follow the same general trend, with our explanation model
achieves 59.13% whereas the description model obtains 22.32% accuracy.

Based on the success of our discriminator, we train a definition model with
the discriminative loss and find that our loss does boost performance of the
definition model (METEOR: 28.6, CIDEr: 51.7, Similarity: 48.8, Rank: 15.5).
Importantly, the explanation still performs best on our evaluation metrics.

User Studies. The ultimate goal of our explanation system is to provide use-
ful information about an unknown object to a user. We therefore also consulted
experienced bird watchers to rate our explanations against our baseline and ab-
lation models. Consulting experienced bird watchers is important because some
sentences may provide correct, but non-discriminative properties, which an aver-
age person may not be able to properly identify. For example, This is a Bronzed
Cowbird because this bird is nearly all black with a short pointy bill. is correct,
but is a poor explanation as it does not mention unique attributes of a Bronzed
Cowbird such as red eye. Two experienced bird watchers evaluated 91 randomly
selected images and answered which sentence provided the best explanation for
the bird class (Table 1, column 6). Our explanation model has the best mean
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Fig. 4. Visual explanations generated by our system. Our explanation model produces
image relevant sentences that also discuss class discriminative attributes.

rank (lower is better), followed by the definition model. This trend resembles
the trend seen when evaluating class relevance.

We also demonstrate that explanations are more effective than descriptions at
helping humans identify different bird species. We ask five Amazon Turk workers
to choose between two images given a generated description and explanation. We
evaluate 200 images (one for each bird category) and find that our explanations
are more helpful to humans. When provided with an explanation, the correct
image is chosen (with an image considered to be chosen correctly if 4 out of 5
workers select the correct image) 56% of the time, whereas when provided with
a description, the correct image is chosen less frequently (52% of the time).

5.2 Qualitative Results

Figure 4 shows sample explanations which first declare a predicted class label
(“This is a Kentucky Warbler because”) followed by the explantory text pro-
duced by the model described in Section 3. Qualitatively, our explanation model
performs quite well. Note that our model accurately describes fine detail such as
black cheek patch for Kentucky Warbler and long neck for Pied Billed Grebe.

Comparing Explanations, Baselines, and Ablations. Figure 5 com-
pares sentences generated by our explanation, baseline, and ablation models.
Each model produces reasonable sentences, however, we expect our explanation
model to produce sentences which discuss class relevant properties. For many im-
ages, the explanation model uniquely mentions some relevant properties. In Fig-
ure 5, row 1, the explanation model specifies that the Bronzed Cowbird has red
eyes which is rarer than properties mentioned correctly by the definition and
description models (black, pointy bill). For White Necked Raven (Figure 5 row
3), the explanation model identifies the white nape, which is a unique attribute
of that bird. Explanations are also more image relevant. For example, in Figure 5
row 7 the explanation model correctly mentions visible properties of the Hooded
Merganser, but other models fail in at least one property.

Comparing Definitions and Explanations. Figure 6 directly compares
explanations to definitions for three bird categories. Images on the left include
a visual property of the bird species which is not present in the image on the
right. Because the definition is the same for all image instances of a bird class, it
can produce sentences which are not image relevant. For example, in the second
row, the definition model says the bird has a red spot on its head which is true
for the image on the left but not for the image on the right. In contrast, the
explanation model mentions red spot only when it is present in the image.
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This is a Bronzed Cowbird because ...
Definition:  this bird is black with blue on its wings and has a long pointy beak.
Description:  this bird is nearly all black with a short pointy bill.
Explanation-Label: this bird is nearly all black with bright orange eyes.
Explanation-Dis.: this is a black bird with a red eye and a white beak.
Explanation:  this is a black bird with a red eye and a pointy black beak.This is a Bronzed Cowbird because ...

This is a Black Billed Cuckoo because ...
Definition:  this bird has a yellow belly and a grey head.
Description:  this bird has a yellow belly and breast with a gray crown and green wing.
Explanation-Label: this bird has a yellow belly and a grey head with a grey throat.
Explanation-Dis.: this is a yellow bird with a grey head and a small beak.
Explanation:  this is a yellow bird with a grey head and a pointy beak.

This is a White Necked Raven because ...
Definition:  this bird is black in color with a black beak and black eye rings.
Description:  this bird is black with a white spot and has a long pointy beak.
Explanation-Label: this bird is black in color with a black beak and black eye rings.
Explanation-Dis.: this is a black bird with a white nape and a black beak.
Explanation:  this is a black bird with a white nape and a large black beak.

This is a Northern Flicker because ...
Definition:  this bird has a speckled belly and breast with a long pointy bill.
Description:  this bird has a long pointed bill grey throat and spotted black and white mottled crown.
Explanation-Label: this bird has a speckled belly and breast with a long pointy bill.
Explanation-Dis.: this is a grey bird with black spots and a red spotted crown.
Explanation:  this is a black and white spotted bird with a red nape and a long pointed black beak.

This is a American Goldfinch because ...
Definition:  this bird has a yellow crown a short and sharp bill and a black wing with a white breast.
Description:  this bird has a black crown a yellow bill and a yellow belly.
Explanation-Label: this bird has a black crown a short orange bill and a bright yellow breast and belly.
Explanation-Dis.: this is a yellow bird with a black wing and a black crown.
Explanation:  this is a yellow bird with a black and white wing and an orange beak.

This is a Yellow Breasted Chat because ...
Definition:  this bird has a yellow belly and breast with a white eyebrow and gray crown.
Description:  this bird has a yellow breast and throat with a white belly and abdomen.
Explanation-Label: this bird has a yellow belly and breast with a white eyebrow and gray crown.
Explanation-Dis.: this is a bird with a yellow belly and a grey back and head.
Explanation:  this is a bird with a yellow breast and a grey head and back.
This is a Hooded Merganser because ...
Definition:  this bird has a black crown a white eye and a large black bill.
Description:  this bird has a brown crown a white breast and a large wingspan.
Explanation-Label: this bird has a black and white head with a large long yellow bill and brown tarsus and feet.
Explanation-Dis.: this is a brown bird with a white breast and a white head.
Explanation:  this bird has a black and white head with a large black beak.

Fig. 5. Example sentences generated by our baseline models, ablation models, and
our proposed explanation model. Correct properties are highlighted in green, mostly
correct ones are highlighted in yellow, and incorrect ones are highlighted in red. The
explanation model correctly mentions image relevant and class relevant properties.

Discriminative Loss. To determine how the discriminative loss impacts
sentence generation, we compare the description and explanation- discrimina-
tive models in Figure 7. Neither model receives class information at test time,
though the explanation-discriminative model is explicitly trained to produced
class specific sentences. Both models generate visually relevant sentences. How-
ever, the model trained with our discriminative loss contains properties specific
to a class more often than the ones generated using the description model. For
instance, for the class Black-Capped Vireo, the explanation-discriminative model
mentions black head which is one of the most prominent distinguishing properties
of this vireo type. For the White Pelican image, the explanation-discriminative
model mentions highly discriminative features like long neck and orange beak.
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Definition:  this bird has a white breast black 
wings and a red spot on its head.
Explanation:  this is a white bird with a black wing 
and a black and white striped head.

Definition:  this bird has a white breast black 
wings and a red spot on its head.
Explanation:  this is a black and white bird with 
a red spot on its crown.

Definition:  this bird is black with a long tail and 
has a very short beak.
Explanation: this is a black bird with a small black 
beak. 

Definition:  this bird is black with a long tail and 
has a very short beak.
Explanation:  this is a black bird with a long tail 
feather and a pointy black beak.

This is a Red Bellied Woodpecker because...

This is a Downy Woodpecker because...

This is a Shiny Cowbird because...

This is a Red Bellied Woodpecker because...

This is a Downy Woodpecker because...

This is a Shiny Cowbird because...

Definition: this bird has a bright red crown and 
nape white breast and belly and black and 
white spotted wings and secondaries.
Explanation:  this bird has a red crown a black 
and white spotted wing and a white belly.

Definition:  this bird has a bright red crown and 
nape white breast and belly and black and 
white spotted wings and secondaries.
Explanation:  this bird has a bright red crown and 
nape with with black and white striped wings.

Fig. 6. We compare generated explanations and definitions. All explanations on the
left include an attribute which is not present on the image on the right. In contrast to
definitions, our explanation model can adjust its output based on visual evidence.

Definition:  
This bird is brown and white in color 
with a skinny brown beak and brown 
eye rings.
Explanation:  
This is a small brown bird with a long 
tail and a white eyebrow.M

ar
sh
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n Definition:  
This bird is brown and white in color 
with a skinny brown beak and brown 
eye rings.
Explanation:  
This is a small bird with a long bill and 
brown and black wings.
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Definition:  
This bird has a white breast black wings 
and a red spot on its head.
Explanation:  
This is a white bird with a black wing 
and a black and white striped head.

Definition:  
This bird has a white breast black wings 
and a red spot on its head.
Explanation:  
This is a black and white bird with a red 
spot on its crown.

Definition:  
This bird is black with a long tail and 
has a very short beak.
Explanation: 
This is a black bird with a small black 
beak. 

Definition:  
This bird is black with a long tail and 
has a very short beak.
Explanation:  
This is a black bird with a long tail 
feather and a pointy black beak.
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y 
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Description: this bird is black and white in color 
with a orange beak and black eye rings.
Explanation-Dis.: this is a black bird with a white 
eye and an orange beak.

Description: this bird has a bright blue crown and a 
bright yellow throat and breast. 
Explanation-Dis.: this is a yellow bird with a blue 
head and a black throat.

Description: this bird has a long black bill a white 
throat and a brown crown.
Explanation-Dis.: this is a black and white spotted bird 
with a long tail feather and a pointed beak.

Description: this bird is blue and black in color with a 
stubby beak and black eye rings. 
Explanation-Dis.: this is a blue bird with a red eye and 
a blue crown. 

Description: this bird has a white belly and breast 
black and white wings with a white wingbar. 
Explanation-Dis.: this is a bird with a white belly 
yellow wing and a black head. 

Description: this bird is white and black in color with a 
long curved beak and white eye rings. 
Explanation-Dis.: this is a large white bird with a long 
neck and a large orange beak.

This is a Black-Capped Vireo because...

This is a Crested Auklet because...

This is a Green Jay because...

This is a White Pelican because...

This is a Geococcyx because...

This is a Cape Glossy Starling because...

Fig. 7. Comparing sentences generated by description and explanation-discriminative
models. Though both are capable of accurately describing visual attributes, the
explanation-discriminative model captures more “class-specific” attributes.

Incorrect Prediction. We qualitatively examine explanations for instances
where the incorrect label is predicted. (Figure 8). In these scenarios, explanations
are frequently image relevant and mention features common in both the image
instance and the predicted class. For example, in the first row of Figure 8 the
model mistakes the “Laysan Albatross” for the “Cactus Wren”. The explanation
text includes many features also mentioned in the “Cactus Wren” definition (for
example color and the spotted feathers) and is relevant to the image.

6 Conclusion

Our work is an important step towards explaining deep visual models, a crucial
capability required from intelligent systems. Visual explanation is a rich research
direction, especially as the field of computer vision continues to employ and im-
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Definition:  
This bird is brown and white in color 
with a skinny brown beak and brown 
eye rings.
Explanation:  
This is a small brown bird with a long 
tail and a white eyebrow.M

ar
sh
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n Definition:  
This bird is brown and white in color 
with a skinny brown beak and brown 
eye rings.
Explanation:  
This is a small bird with a long bill and 
brown and black wings.
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Definition:  
This bird has a white breast black wings 
and a red spot on its head.
Explanation:  
This is a white bird with a black wing 
and a black and white striped head.

Definition:  
This bird has a white breast black wings 
and a red spot on its head.
Explanation:  
This is a black and white bird with a red 
spot on its crown.

Definition:  
This bird is black with a long tail and 
has a very short beak.
Explanation: 
This is a black bird with a small black 
beak. 

Definition:  
This bird is black with a long tail and 
has a very short beak.
Explanation:  
This is a black bird with a long tail 
feather and a pointy black beak.
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Explanation:  this is a small yellow bird with a grey head 
and small beak.
Acadian Flycatcher Definition: this bird is brown with white 
on its chest and has a very short beak.
Orange Crowned Warbler Definition:  this bird is yellow 
with black on its wings and has a very short beak.

Explanation:  this is a grey bird with a white throat and a 
long beak.
Great Crested Flycatcher Definition: this bird has a yellow 
belly and breast with a gray crown and brown back
Gray Kingbird Definition:  this bird has a white belly and 
breast with a grey crown and wing.

Explanation:  this is a small grey bird with a white belly and 
a small pointy beak.
Acadian Flycatcher Definition: this bird is brown with white 
on its chest and has a very short beak.

Explanation:  this bird has a yellow belly and breast with a 
gray wing and head.
Great Crested Flycatcher Definition: this bird has a yellow 
belly and breast with a gray crown and brown back.

Explanation: this is a brown and white spotted bird with a 
long pointed beak.
Cactus Wren Definition:  this bird has a long thin beak with 
a brown body and black spotted feathers.
Laysan Albatross Definition:  this bird has a white head and 
breast a grey back and wing feathers and an orange beak.

Explanation: this bird has a white head and breast with a 
long hooked bill.
Laysan Albatross Definition:  this bird has a white head 
and breast a grey back and wing feathers and an orange 
beak.

Correct:  Laysan Albatross, Predicted:  Cactus Wren

Correct:  Acadian Flycatcher, Predicted:  Orange Crowned Warbler

Correct: Great Crested Flycatcher, Predicted:  Gray Kingbird

Correct:  Laysan Albatross, Predicted:  Laysan Albatross

Correct: Acadian Flycatcher, Predicted:  Acadian Flycatcher

Correct: Great Crested Flycatcher, Predicted:  Great Crested Flycatcher

Fig. 8. When the model predicts the wrong class, the explanation is image relevant
and frequently discusses attributes common between the image and the predicted class.

prove deep models which are not easily interpretable. We anticipate that future
models will look “deeper” into networks to produce explanations and perhaps
begin to explain the internal mechanism of deep models.

We propose a novel reinforcement learning based loss which allows us to influ-
ence the kinds of sentences generated with a sentence level loss function. Though
we focus on a discriminative loss in this work, we believe the general principle of
a loss which operates on a sampled sentence and optimizes for a global sentence
property is potentially beneficial in other applications. For example, [12,27] pro-
pose introducing new vocabulary words into description systems. Though both
models aim to optimize a global sentence property (whether or not a caption
mentions a certain concept), neither optimizes for this property directly.

In summary, we have presented a novel image explanation framework which
justifies the class prediction of a visual classifier. Our quantitative and qualitative
evaluations demonstrate the potential of our proposed model and effectiveness
of our novel loss function. Our explanation model goes beyond the capabilities of
current captioning systems and effectively incorporates classification information
to produce convincing explanations, a potentially key advance for adoption of
many sophisticated AI systems.
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