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Abstract. The SPEC CPU2006 suite, released in Aug 2006 is the current industry-standard, CPU-
intensive benchmark suite, created from a collection of popular modern workloads. But, these workloads
take machine weeks to months of time when fed to cycle accurate simulators and have widely varying
behavior even over large scales of time [1]. It is to be noted that we do not see simulation based papers
using SPEC CPU2006 even after 1.5 years of its release. A well known technique to solve this problem
is the use of simulation points [2]. We have generated the simulation points for SPEC CPU2006 and
made it available at [3]. We also report the accuracies of these simulation points based on the CPI,
branch misspredictions, cache & TLB miss ratios by comparing with the full runs for a subset of
the benchmarks. It is to be noted that the simulation points were only used for cache, branch and
CPI studies until now and this is the first attempt towards validating them for TLB studies. They
have also been found to be equally representative in depicting the TLB characteristics. Using the
generated simulation points, we provide an analysis of the behavior of the workloads in the suite for
different branch predictor & cache configurations and report the optimally performing configurations.
The simulations for the different TLB configurations revealed that usage of large page sizes significantly
reduce the translation misses and aid in improving the overall CPI of the modern workloads.

1 Introduction

Understanding program behaviors through simulations is the foundation for computer archi-
tecture research and program optimization. These cycle accurate simulations take machine
weeks of time on most modern realistic benchmarks like the SPEC [4] [5] [6] suites incurring
a prohibitively large time cost. This problem is further aggravated due to the need to simu-
late on different micro-architectures to test the efficacy of the proposed enhancement. This
necessitates the need to come up with techniques [7] [8] that can facilitate faster simulations
of large workloads like SPEC suites. One such well known technique is the Simulation Points.
While there are Simulation Points for the SPEC CPU2000 suite widely available and used,
the simulation points are not available for the SPEC CPU2006 suite. We used the SimPoint
[9] [10] [11] tool to generate these simulation points for the SPEC2006 benchmark suite and
provide it for use at [3].

The contributions of this paper are two-fold. The first contribution is the creation of
the simulation points, which we make it available at [3] to the rest of the architecture
research community. We also provide the accuracy of these simulation points by comparing
the results with the full run of select benchmarks. It must be noted that 1.5 years after the
release of SPEC CPU2006, simulations based papers using CPU2006 are still not appearing
in architecture conferences. The availability of simulation points for CPU2006 will change
this situation.

The second contribution is the use of CPU2006 simulation points for branch predictor,
cache & TLB studies. Our ultimate goal was to find the optimal branch predictor, the cache



and the TLB configurations which provide the best performance on most of the benchmarks.
For this, we analyzed the benchmark results for different set of static and dynamic branch
predictors [12] and tried to come up with the ones that perform reasonably well on most
of the benchmarks. We then varied the size of one of these branch predictors to come up
with the best possible size for a hardware budget. A similar exercise was performed to come
up with the optimum instruction and data cache design parameters. We varied both the
associativity and size of caches to get an insight into the best performing cache designs for
the modern SPEC CPU workloads. The performance for different TLB configurations was
also studied to infer the effect of different TLB parameters like the TLB size, page size and
associativity.

It should be noted that such a study without simulation points will take several machine
weeks. Since the accuracy of the simulation points were verified with several full runs, we
are fairly confident of the usefullness of the results.

2 Background

Considerable work has been done in investigating the dynamic behavior of the current day
programs. It has been seen that the dynamic behavior varies over time in a way that is not
random, rather structured [1] [13] as sequences of a number of short reoccurring behaviors.
The SimPoint [2] tool tries to intelligently choose and cluster these representative samples
together, so that they represent the entire execution of the program. These small set of sam-
ples are called simulation points that, when simulated and weighted appropriately provide
an accurate picture of the complete execution of the program with large reduction in the
simulation time.

Using the Basic Block Vectors [14] , the SimPoint tool [9][10][11] employs the K-means
clustering algorithm to group intervals of execution such that the intervals in one cluster are
similar to each other and the intervals in different clusters are different from one another.
The Manhattan distance between the Basic Block Vectors serve as the metric to know the
extent of similarity between two intervals. The SimPoint tool takes the maximum number
of clusters as the input and generates a representative simulation point for each cluster. The
representative simulation point is chosen as the one which has the minimum distance from
the centroid of the cluster. Each of the simulation points is assigned a weight based on the
number of intervals grouped into its corresponding cluster. These weights are normalized
such that they sum up to unity.

3 Methodology

In this paper we used sim-fast, sim-outorder simulators of the simplescalar toolset [6] along
with the SimPoint tool to generate the simulation points for the SPEC CPU2006 suite.
Figure 1 shows the flowchart representation of the methodology. We used sim-fast simulator
to identify the different basic blocks in the static code of the benchmark and generate a
Basic Block Vector for every fixed dynamic interval of execution of the program. We chose
the interval size to be 100 million instructions. Further, these basic block vectors are fed
as input to the clustering algorithm of the SimPoint tool, which generates the different



simulation points (collection of Basic Block Vectors) and their corresponding weights. Having
obtained the simulation points and their corresponding weights, the simulation points are
tested by fast-forwarding (i.e., executing the program without performing any cycle accurate
simulation, as described in [3]) up to the simulation point, and then running a cycle accurate
simulation for 100 million instructions. The sim-outorder tool provides a convenient method
of fast-forwarding, to simulate programs in the manner described above. Fast-forwarding
a program implies only a functional simulation and avoids any time consuming detailed
cycle accurate measurements. The statistics like CPI (Cycles Per Instruction), cache misses,
branch mispredictions etc. are recorded for each simulation point. The metrics for the overall
program were computed based on the weight of each simulation point. Each of the individual
simulation point is simulated in parallel and their results were aggregated based on their
corresponding normalized weight. For example, the CPI was computed by multiplying the
CPI of each individual simulation point with its corresponding weights as in eqn (1).

CPI =
n∑

i=0

(CPI i ∗ weighti) (1)

On the other hand, the ratio based metrics like branch misprediction rate, cache miss
ratio were computed by weighing the numerator and denominator correspondingly as in eqn
(2).

MissRatio =

∑n
i=0(missesi ∗ weighti)∑n
i=0(lookupsi ∗ weighti)

(2)

The accuracy of the generated simulation points were studied by performing the full
program simulation using sim-outorder simulator and comparing the metrics like CPI, cache
miss ratios and branch mispredictions. This validation was performed to know the effec-
tiveness of the SimPoint methodology on SPEC CPU2006 [15] suite in depicting the true
behavior of the program. Since, sim-outorder runs on SPEC CPU2006 take machine weeks
of time, we restricted ourselves to running only a few selected benchmarks for this purpose.

For studying the branch behavior of the suite we once again used the sim-outorder sim-
ulator available in SimpleScalar [6]. This tool has in-built implementation for most of the
common static and dynamic branch predictors namely Always Taken, Always Not-Taken,
Bimodal, Gshare and other Twoway adaptive predictors. We studied the influence of above
predictors on the program behavior in terms of common metrics like execution time, CPI,
branch misprediction. One of the best performing predictors was chosen and the Pattern
History Table (PHT) size was varied and the results were analyzed to come up with an
optimal size for the PHT.

To get an insight into the memory and TLB behavior of the Suite, the same sim-outorder
simulator was employed, using which the configurations for the different levels of the cache
hierarchy and TLB were specified. We obtained the corresponding hit and miss rate for
various configurations along with their respective CPIs.

4 Simulation Points Generation and Verification

Figures 2 shows the sim-fast results for the SPECINT and SPECFP benchmarks. The tables
in the Figures. 2 and 3 show the number of simulation points generated for each of the bench-
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Fig. 1. Simulation point Generation and Verification

marks along with their instruction count and simulation time on a 2 GHz Xeon machine.
The interval of execution given to the sim-fast simulator was 100 million instructions. Also,
maximum number of clusters given to the SimPoint tool were 30. These simulation points
were launched as parallel jobs on the Texas Advance Computing Center (TACC) using the
sim-outorder simulator. A node on TACC could have been 2x to 3x faster than the other xeon
machine to which the execution times are compared. But, still the speedup numbers here are
too high that this discrepancy in machine speeds can be safely ignored. The final aggregated
metrics for the simulation point runs were calculated using the formulae mentioned in the
previous section. The full run simulations were also carried out for a few integer and floating
point benchmarks and the accuracy of the generated simulation points were obtained by
comparing the results.

To verify the accuracy of the simulation points, we further compared the CPIs and cache
miss ratios of the simulation point run to that of full run and analyzed the speedup obtained
due to the usage of simulation points. The configuration that we used to simulate the various
full and the simulation point runs is with a RUU size of 128, LSQ size of 64, decode, issue
and commit widths of 8, L1 data and instruction cache size of 256 sets, 64B block size,
an associativity of 2, L2 data and instruction cache size of 4096 sets, 64B block size, an
associativity of 4. The ITLB size used was 32 sets with 4K block size, and an associativity of
4. The DTLB size used was 64 sets, 4K block size and an associativity of 4. The number of
Integer ALUs were set to 4 and the number of Floating Point ALUs were set to 2. A combined
branch predictor with a meta table size of 2048. The error percentage in CPI and the speed-up
obtained due to the use of simulation points are given in Figures 3 and 4 . Clearly, performing



the simulation using the generated simulation points results in considerable speedup without
much loss in the accuracy, reducing machine weeks of time to a few hours. The CPI values
obtained using simulation points was within 5 percent of the full run CPI values for all the
benchmarks except 401.bzip where the value was off by around 8 percent. Even the error
in Data, Instruction cache miss rates, DTLB miss rates and the branch misprediction ratios
were within a limit of 5 percent for most of the benchmarks excepting bzip and libquantum
that have an error of 11% and 13% for the branch missprediction rates. Figures 4, 5, 6, 7
show the errors in the values of CPI, branch mispredictions, data cache, instruction cache
and DTLB miss rates for a set of benchmarks. Though the concept of simulation points
have been widely used in various studies about caches, branch predictors etc., this is the
first attempt towards validating and studying the TLB characteristics based on simulation
points. It is quite evident from the results that these simulation points are representative
of the whole benchmark even in terms of the TLB characteristics. Though the methodology
used by SimPoint is micorarchitecture independent, this validation is performed by taking
one specific platform (alpha) as a case study and the error rates may vary for other platforms.

We hope that these simulation points that are provided [3] will serve as a powerful tool
aiding in carrying out faster simulations using the large and representative benchmarks of the
SPEC CPU2006 Suite. The reference provided has the simulation points for 21 benchmarks
and we are in the process of generating the remaining simulation points, which will also be
added to the same reference.

Fig. 2. SPEC CPU2006 - Number of simulation points, total number of instructions and the simulation time taken
by the Simfast simulator of the SimpleScalar LLC. It is to be noted that Simoutorder will take an order more time
than Simfast



Fig. 3. Speedup obtained by using the simulation points. The simulation point runs were done on the Texas Advance
Computing Center and the full runs on a quad core 2 Ghz Xeon Processor
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Fig. 4. CPI comparison between full runs and simulation point runs
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Fig. 5. Branch misprediction rate comparison between full runs and simulation point runs



0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

416.gamess

445.gobmk

450.soplex

473.astar

471.omnetpp
401.bzip

447.dealll

400.perlben

Benchmarks

M
iss

 ra
te

Full run
Simpoint run

Fig. 6. Instruction cache miss ratio comparison between full runs and simulation point runs
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Fig. 7. Data cache and DTLB miss rate comparison between full runs and simulation point runs



5 Simulation Results and Analysis

5.1 Branch Characteristics

As mentioned earlier, sim-outorder supports both static and dynamic branch predictors.
static predictors are quite ideal for the embedded applications due to their simplicity and
low power requirements. Static predictors are also employed in designing simple cores in
case of single chip multiprocessors like Niagara [15], where there exists strict bounds on
area and power consumption on each core. It is also commonly used as backup predictors in
superscalar processors that require an early rough prediction during training time and when
there are misses in the Branch Targe Buffer. On the other hand, dynamic predictors give
superior performance compared to the static ones but at the cost of increased power and
area, as implemented in the modern complex x86 processors.

Fig. 9 shows the CPI results for two common type of static branch predictors viz., Always
Taken and Always Not-Taken. As expected, it is clear from Fig. 9 and Fig. 11 that the
performance of static predictors is quite poor compared to the perfect predictor. Always
taken has the overhead in branch target calculation, but most of the branches in loops are
taken.

Fig. 10 shows the CPI results for some common dynamic branch predictors. In this
paper, we have studied the performance of the following dynamic predictors viz., Bimodal,
Combined, Gshare, PAg and GAp. The configurations that were used for these predictors
respectively are,

– Bimodal - 2048
– Combined - 2048 (Meta table size)
– Gshare - 1:8192:13:1
– PAg - 256:4096:12:0
– GAp - 1:8192:10:0

Gshare, PAg and GAp are 2level predictors and their configurations are given in the
format {l1size:l2size:hist size:xor}. Clearly, the CPI values obtained using dynamic predictors
is much closer to the values obtained from the perfect predictor. Also, among these predictors,
Gshare and Combined branch predictors performs much better compared to others. Taking
a closer look at the graphs, we see that the Gshare predictor is ideal in the case of FP
benchmarks while combined predictors fares better for the integer benchmarks. Also, PAg
performs better than GAp predictor which indicates that a predictor with a global Pattern
History Table (PHT) performs better than one with a private PHT. This clearly shows that
constructive interference in a global PHT is helping the modern workloads and results in an
improved CPI.

Looking at the performance of the private and the global configurations of the Branch
History Shift Register (BHSR), it is evident that each of them perform well on specific
benchmarks. Fig. 12 shows the misprediction rates for the different dynamic predictors. The
performance improvement in CPI and Misprediction rate by using a dynamic predictor to
a static predictor is drastic for the cases of 471.omnetpp and 416.gamess. Both of these
benchmarks are pretty small workloads, that their branch behavior is easily captured by
these history based Branch Predictors. 462.libquantum and 450.soplex also have a significant
improvement in the CPI compared to their static counterparts, which can be attributed to



fact that the dynamic predictors are able to efficiently capture the branch behavior of these
benchmarks.

For the purpose of analyzing the effect of PHT size on the behavior of the programs,
we chose one of the best performing predictors obtained in the previous analysis i.e. Gshare
and varied the size of it’s PHT. We used PHT of index 12, 13 and 14 bits and observed the
improvement in both CPI and branch misprediction rate (Fig 13. & 11). Different benchmarks
responded differently to the increase in the PHT size. It can be observed that the integer
benchmarks respond more to the increase in the PHT size compared to the floating point
benchmarks. The floating point benchmarks have the least effect on the CPI for the increase
in the PHT size. This is because of the fact that the floating point benchmarks have lesser
number of branches and thus their behavior can be captured with a smaller PHT.

For instance, considering 435.gromacs, although there is a significant reduction in the
misprediction rate with an increase in the PHT size, there is not much improvement observed
in the CPI. After analyzing this benchmark, we found that 435.gromacs has only 2 percent
of the instructions as branches. So, improving the accuracy of branch predictor does not have
much effect on the CPI of the FP benchmarks. On the other hand, for the case of 445.gobmk
which is an integer benchmark, the improvement in misprediction rate shows a proportional
change in the CPI. This is expected since 445.gobmk has higher percentage of branches (15
percent) to the total instructions.
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5.2 Memory Characteristics

The memory hierarchy design is of paramount importance in modern superscalar processors
because of the performance loss due the Von Neumann bottleneck. It necessitates the need
to come up with the optimal cache design parameters, so that it is capable of hiding the
memory latencies efficiently. In this paper, we analyzed both the instruction and data level
I caches and tried to come up with the optimal design parameters.

For the purpose of analyzing the L1 caches, we varied both the cache size and the asso-
ciativity and compared the values of CPI and the miss ratios. We used the LRU replacement
policy for all our experiments which is given as one in specifying the configuraion of the
cache in the figures. From the graph in Fig. 15 & 16, it is evident that the effect of increasing
associativity has a prominent effect on the performance than just increasing the size of the
data cache. For some benchmarks like 445gobmk, increasing the associativity to 2 result in a
colossal reduction in the miss ratios, which can be attributed to smaller foot prints of these
benchmarks. Other benchmarks where associativity provided significant benefit are 456.hm-
mer, 458.sjeng and 482.sphinx3 in which case increasing the associativity to 2 resulted in
more than 50 percent reduction in miss ratio. However, some benchmarks like 473.astar and
450.soplex responded more to the size than associativity. It can be concluded that 473.astar
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Fig. 13. Misprediction rate for Gshare configurations given as L1size:L2size:hist size & xor
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Fig. 15. CPI for DL1 configurations in format name:no.sets:blk size:associativity&repl. policy
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Fig. 18. Missrate for IL1 configs in format name:no.sets:blk size:associativity&repl. policy

and 450.soplex has lot of sequential data and hence we cannot extract much benefit by in-
creasing the associativity. The CPIs of the benchmarks 462.libquantum and 433.milc neither
respond to the increase in the cache size nor to that in associativity. This may be due to a
smaller memory footprint of these benchmarks which can be captured completely by just a
small direct mapped cache.

The CPI and the miss ratios for different Level 1 instruction cache configurations are
shown in Fig. 17 and 18. As expected, the miss ratios of the instruction cache is much
lesser than that of the data cache because of the uniformity in the pattern of access to the
instruction cache. For some of the benchmarks like 473.astar, 456.hmmer, 435.gromacs, the
miss ratio is almost negligible and hence further increase in the cache size or associativity
does not have any effect on the performance. The performance benefit due to increase in
associativity compared to cache size in instruction cache is not as much as the data cache.
This is because of the fact that the instruction cache responds more to the increase in
the cache size to that of associativity because of high spatial locality in the references.
Considering the tradeoff between the performance and complexity, an associativity of two at
the instruction cache level seems to be optimal.

5.3 TLB Characteristics

Although designing the data cache is an important step in processor design, it has to be cou-
pled with an efficient TLB usage to achieve good performance. Choosing the TLB page size
is becoming critical in modern memory intensive workloads with large foot prints. This can



be attributed to the recent addition of features like multiple page sizes to modern operating
systems.

Using Simplescalar, we performed simulations on the SPEC 06 suite for different TLB
page sizes & associativities and observed the TLB miss ratio, which characterizes the part
of the CPI due to the time incurred in page translation.

First, we fixed the page size as 16KB and varied the associativity to see the corresponding
impact on miss ratios and CPI. As expected, the direct mapped TLB has performed worse
than the 2-way and 4-way TLBs as seen in Fig. 19 & 20. It looks like the improvement
in the performance from 2-way to 4-way is not much and is not worth the extra hardware
complexity required for the same. Thus, an associativity of two seems to be optimal for the
modern workloads. As we increased the TLB size from 16KB to 16MB, we found that the
change in associativity did not have any effect on the performance and this can be attributed
to the fact that a page size of 16MB is large enough to reduce the conflict misses to zero.

Second, we performed simulations with various page sizes for a 2-way associative TLB.
Our results as shown in Fig. 21 & 22 had a close match with that of the results specified in
[16] for a power5 processor. We found that large page sizes resulted in the least translation
misses, leading to a better CPI. Firstly, it can be observed that there is a reduction in
the TLB miss ratio around 30% for 471.omnetpp, 80% for 473.astar when the page size is
increased from 4KB to 16KB. There is a consistent improvement in the performance of all
the benchmarks for an increase in the page size. When a page size of 16MB is used, the TLB
misses reduces to nearly zero for most of the benchmarks except 445.gobmk and 450.soplex.
One possible cause for the increase in CPI for 445.gobmk and 450.soplex for a 16MB page size
could be due to serious wastage of memory caused due to internal fragmentation problems.
Other reasons could be having higher numbers of conflicts amongst the cache lines if the
virtual address bits used in cache tag matches are insufficiently distinct from each other
under larger sized TLB mappings.

Fig. 19. CPI for varying associativity with 16KB page sizes

6 Conclusion

The simulation points have proved to be an effective technique in reducing the simulation
time to a large extent without much loss of accuracy in the SPEC CPU2006 Suite. Using



Fig. 20. TLB miss ratios for varying sssociativity with 16KB page sizes
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Fig. 21. CPI for varying page sizes with 2-way associative TLB
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simulation points not only reduces the number of dynamic instructions to be simulated but
also makes the workload parallel, making them ideal for the current day parallel computers.

Further, simulating the different benchmarks with the different branch predictors, gave an
insight into understanding the branch behavior of modern workloads, which helped in coming
up with the best performing predictor configurations. We observed Gshare and the combined
(Bimodal & 2-level) to be the ideal predictors, predicting most of the branches to near
perfection. Looking at the effect of different cache parameters, it is observed that the design
of level-1 data cache parameters proves to be more important in affecting the CPI than that
of the instruction cache parameters. Instruction accesses, due to their inherent uniformity,
tends to miss less frequently, which makes the task of designing the Instruction cache much
easier. The line size of the Instruction cache seems to be the most important, while for the
data cache, both the line size and the associativity needs to be tailored appropriately to get
the best performance. The simulations for the different TLB configurations revealed that
usage of large page sizes significantly reduce the translation misses and aid in improving the
overall CPI of the modern workloads.
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