

Generator Sizing Guide

IMPORTANT NOTICE:

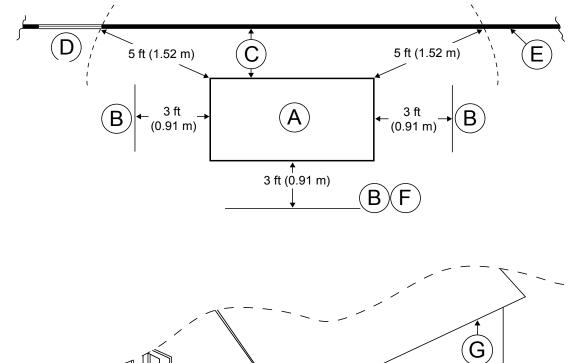
This booklet is designed to familiarize estimators and installers with proper sizing guidelines for residential and commercial generators. The information is not comprehensive, nor does it replace or supercede any material contained in any of the written documents shipped with the equipment. This booklet should only be used in conjunction with the Owner's Manual, Installation Manual and other technical documents shipped with each product. Always read all accompanying documentation carefully before attempting to install any generator, transfer switch or related equipment.

HOW TO USE THIS BOOKLET:

Within this booklet, you will find electrical load information, plus an outline of generator surge capability, fuel pipe sizing, liquid propane tank sizing, and UPS / generator compatibility. The worksheet pages can be removed from the book and photocopied to create additional Onsite Estimating Sheets for use with individual jobs.

SAFETY INFORMATION:

Proper sizing of the generator is crucial to the success of any installation and requires a good working knowledge of electricity and its characteristics, as well as the varying requirements of the electrical equipment comprising the load. When analyzing the electrical load, consult the manufacturer's nameplate on each major appliance or piece of equipment to determine its starting and running requirements in terms of watts, amps and voltage. When choosing the generator output for commercial or industrial applications, select a rating that is approximately 20 to 25% higher than the peak load (for example, if the load is about 40 kilowatts, select a 50 kW genset). A higher rated generator will operate comfortably at approximately 80% of its full capacity and will provide a margin of flexibility if the load increases in the future.


For safety reasons, Generac recommends that the backup power system be installed, serviced and repaired by a Generac Authorized Service Dealer or a competent, qualified electrician or installation technician who is familiar with applicable codes, standards and regulations.

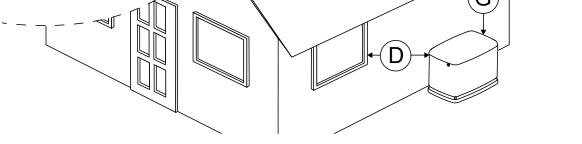

It is essential to comply with all regulations established by the Occupational Safety & Health Administration (OSHA) and strict adherence to all local, state and national codes is mandatory. Before selecting a generator, check for municipal ordinances that may dictate requirements regarding placement of the unit (setback from building and/or lot line), electrical wiring, gas piping, fuel storage (for liquid propane or diesel tanks), sound and exhaust emissions.

Table of Contents

Placement Diagram - Air-cooled Generators
Table 1 – Motor Load Reference5
Table 2 – Non-Motor Load Reference
Table 3 – Surge Capability
Table 3A – Protector Series 8
Natural Gas Installation
Table 4 – Fuel Pipe Sizing – Natural Gas
LP Vapor Installation
Table 5 – Fuel Pipe Sizing – LP Vapor 10
Table 6 – LP Vapor (LPV) Tank Sizing
Table 7 –Generator Fuel Consumption 11
UPS – Generator Compatibility
UPS – SIZING EXAMPLES
Typical Generator/Transfer Switch Combinations
NEC 700, 701, 702 Comparison
Electrical Formulas, Weights and Measures
Tear-out Worksheets:
Selected Circuit Load Calculator System Capacity – Load Calculator

PLACEMENT DIAGRAM — AIR-COOLED GENERATORS

ID	Description	Comments
А	Top of generator	
В	Front and end clearance	Minimum clear distances cannot include shrubs, bushes, or trees.
С	Rear clearance	18 in (45.7 cm) minimum clearance per NFPA testing, labeling, and listing, unless state or local codes dictate otherwise.
D	Windows and openings	No operable windows, doors, or openings in the wall are permitted within 5 ft (1.52 m) from any point of the generator.
E	Existing wall	One-hour fire rated walls allow closer placement of the generator set without approved enclosure. Confirm before installation.
F	Removable fence	Removable fence panels for servicing cannot be placed less than 3 ft (0.91 m) in front of the generator.
G	Overhead clearance	5 ft (1.52 m) minimum distance from any structure, overhang, or projections from the wall. DO NOT install under wooden decks or structures unless this distance is maintained.

TABLE 1 MOTOR LOAD REFERENCE

AC & Heat Pumps

AC & Heat Pumps Running Load								Startin	g Load	
Description	Нр	Running kW	Amps @ 240V 1Ø	Amps @ 208V 3Ø	Amps @ 240V 3Ø	Amps @ 480V 3Ø	LR Amps @ 240V 1Ø	LR Amps @ 208V 3Ø	LR Amps @ 240V 3Ø	LR Amps @ 480V 3Ø
1 Ton (12,000 BTU)	1	1	5	3	3	1	33	22	19	10
2 Ton (24,000 BTU)	2	2	10	7	6	3	67	44	38	19
3 Ton (36,000 BTU)	3	3	15	10	8	4	100	67	58	29
4 Ton (48,000 BTU)	4	4	20	13	11	6	117	78	67	34
5 Ton (60,000 BTU)	5	5	25	16	14	7	145	97	84	42
7.5 Ton (85,000 BTU)	7.5	7.5	37	24	21	11	219	146	126	63
10 Ton* (120,000 BTU)	5 Hp (x2)	10	49	33	28	14	145	97	84	42
10 Ton (120,000 BTU)	10 Hp	10	49	33	28	14	250	167	144	72
15 Ton* (180,000 BTU)	7.5 Hp (x2)	15	74	49	42	21	219	146	126	63
15 Ton (180,000 BTU)	15 Hp	15	74	49	42	21	375	250	217	108
20 Ton* (240,000 BTU)	10 Hp (x2)	20	98	65	57	28	250	167	144	72
20 Ton (240,000 BTU)	20 Hp	20	n/a	65	57	28	500	333	289	144
25 Ton (300,000 BTU)	25	25	n/a	82	71	35	625	416	361	180
30 Ton* (360,000 BTU)	15 Hp (x2)	30	n/a	98	85	42	375	250	217	108
30 Ton (360,000 BTU)	30 Hp	30	n/a	98	85	42	750	500	433	217
40 Ton* (480,000 BTU)	20 Hp (x2)	40	n/a	131	113	57	500	333	289	144
40 Ton (480,000 BTU)	40 Hp	40	n/a	131	113	57	1000	666	577	289
50 Ton* (480,000 BTU)	25 Hp (x2)	50	n/a	163	142	71	625	416	361	180
50 Ton (480,000 BTU)	50 Hp	50	n/a	163	142	71	1250	833	722	361

* For Multiple motor configurations, sequence starting is assumed.

Air Conditioning 1 hp per 1 ton

1 ton = 12,000 BTUs

General Residential

		Running Load			Starting Load			
Description	Нр	Running kW	Amps @ 120V 1Ø	4.9Amps @ 240V 1Ø	Starting kW	LR Amps @ 120V 1Ø	LR Amps @ 240V 1Ø	
Refrigerator pump, sump, furnace, garage opener	0.5	0.5	4.9	2.5	1.5	25	13	
Freezer, washer, septic grinder	0.75	0.75	7.4	3.7	2.3	38	19	
General 1 Hp	1	1	9.8	4.9	3	50	25	
Well & septic lift pump	2	2	19.6	9.8	6	100	50	

TABLE 2 NON-MOTOR LOAD REFERENCE

Residential

		Running Load*	
Description	kW	Amps at120V 1ø	Amps at 240V 1ø
Electric heat per 1000 ft ²	12	n/a	50
Heat pump elements per 1000 ft ²	7	n/a	29
Dryer	5.5	n/a	23
Hot tub	10	n/a	50
Range oven/Stove top per burner	8	n/a	30
Electric hot water	4.5	n/a	19
General lighting and receptaclesper 1000 ft ²	3	24.9	n/a
Blow dryer	1.25	10.4	n/a
Dishwasher	1.5	12.5	n/a
Microwave	1	8.3	n/a
Toasters	1	8.3	n/a
Home Entertainment Center	1	8.3	n/a
Computer	1	8.3	n/a
Kitchen	1.5	12.5	n/a
Laundry	1.5	12.5	n/a

*Always check data plate for actual running amps.

Commercial

Please refer to equipment data plate and/or billing history for commercial details.

TABLE 3SURGE CAPABILITY

		Rated Output (Running Amps) LP / NG				Ma (LR /	iximum Su Amps @ 3	ırge Capat 0% Voltag	oility e Dip)
Size (kW)	RPM	240V 1Ø	208V 3Ø	240V 3Ø	480V 3Ø	240V 1Ø	208V 3Ø	240V 3Ø	480V 3Ø
7.5	3600	29/25	n/a	n/a	n/a	62	n/a	n/a	n/a
9	3600	33/29	n/a	n/a	n/a	70	n/a	n/a	n/a
11	3600	45/42	n/a	n/a	n/a	92	n/a	n/a	n/a
15 ECO	Varible	63/63	n/a	n/a	n/a	200	n/a	n/a	n/a
16	3600	66/66	n/a	n/a	n/a	130	n/a	n/a	n/a
20	3600	83/75	n/a	n/a	n/a	185	n/a	n/a	n/a
20 SYN	Varible	83/75	n/a	n/a	n/a	200	n/a	n/a	n/a
22	3600	92/81	n/a	n/a	n/a	210	n/a	n/a	n/a

Generac Air-cooled Generators

Maximum power decreases about 3.5 percent for each 1,000 feet (304.8 meters) above sea level; and also will decrease about 1 percent for each 6 °C (10 °F) above 16 °C (60 °F)

				Output nps) LP / NG		ximum Su Amps @ 30			
Size (kW)	RPM	240V 1Ø	208V 3Ø	240V 3Ø	480V 3Ø	240V 1Ø	208V 3Ø	240V 3Ø	480V 3Ø
RG 22	1800	92/92	76/76	66/66	n/a	135	92	80	n/a
RG 25	3600	104/104	87/87	75/75	n/a	170	130	112	n/a
RG 27	1800	113/104	94/87	81/75	n/a	170	120	103	n/a
RG 30	3600	125/125	104/104	90/90	n/a	180	155	134	n/a
RG 32	1800	133/133	111/111	96/96	48/48	180	210	182	87
RG 36	3600	150/146	125/121	108/105	54/53	240	130	115	60
RG 38	1800	158/158	132/132	114/114	57/57	180	210	182	87
RG 45	3600	188/188	156/156	135/135	68/68	240	130	115	60
RG 48	1800	200/200	167/167	144/144	72/72	195	218	189	87
RG 60	3600	250/250	208/208	180/180	90/90	320	210	182	91
QT 70	1800	292/267	242/232	210/201	105/101	356	471	408	201
QT 80	3600	333/333	278/278	240/240	120/120	435	466	404	175
QT 100	2300	417/371	347/326	300/282	150/141	413	452	392	261
QT 130	2970	542/488	451/423	390/367	195/183	648	885	767	390
QT 150	3600	625/625	520/493	451/427	225/214	1214	1334	1156	624

Generac Liquid-cooled Generators

Temperature Deration:

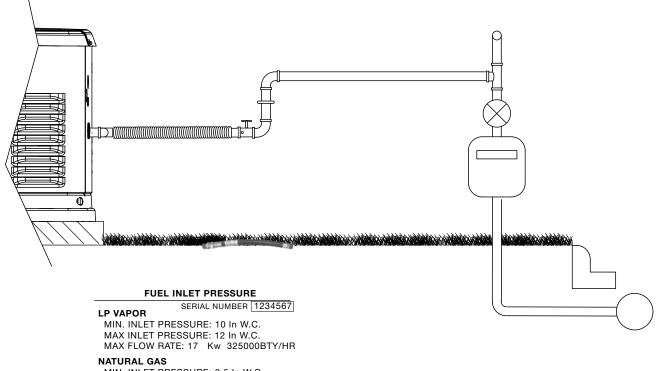
3% for every 10 °C above 25 °C or 1.65% for every 10 °F above 77 °F

Altitude Deration (22, 25, 27, 30, 45,48, 70,100,130 & 150): 1% for every 100 m above 183 m or 3% for every 1000 ft above 600 ft

Altitude Deration (32,36,38, 60, & 80 kW): 1% for every 100 m above 915 m or 3% for every 1000 ft above 3000 ft

TABLE 3A SURGE CAPABILITY

Generac Protector Series Generators (diesel)


	Rated Output (Running Amps)									
Size (kW)	240V 1 PH	208V 3 PH	240V 3 PH	480V 3 PH						
15	62	52	45	n/a						
20	83	69	60	n/a						
30	125	104	90	45						
48/50	200	173	150	75						

Maximum Su	Maximum Surge Capability (LR Amps @ 30% Voltage Dip)								
240V 1 PH	208V 3 PH	240V 3 PH	480V 3 PH						
129	90	78	n/a						
211	143	124	n/a						
168	144	125	64						
189	218	189	87						

Fuel Consumption

Size (kW)	% of Rated Load	Gal/Hr	L/Hr	Total Capacity (Gal/L)	Usable Capacity (Gal/L)
	25%	0.51	1.93		
15	50%	0.79	2.99	34 Gallons	32 Gallons
15	75%	1.14	4.31	128.7 Liters	121.1 Liters
	100%	1.48	5.58		
	25%	0.67	2.6		
20	50%	1.05	3.97	34 Gallons	32 Gallons
20	75%	1.52	5.32	128.7 Liters	121.1 Liters
	100%	1.98	7.48		
	25%	0.92	3.5		
	50%	1.45	5.5	62 Gallons	57 Gallons
30	75%	1.96	7.4	234.7 Liters	215.8 Liters
	100%	2.74	10.4		
	25%	1.35	5.11		
48/50	50%	2.15	8.14	62 Gallons	57 Gallons
40/00	75%	3.06	11.58	234.7 Liters	215.8 Liters
	100%	3.98	15.07		

NATURAL GAS INSTALLATION

MIN. INLET PRESSURE: 3.5 In W.C. MAX INLET PRESSURE: 7 In W.C. MAX FLOW RATE: 16 Kw 312000BTY/HR

FUEL PIPE SIZING NATURAL GAS

TABLE 4

Natural Gas 5" to 7" of Water Column

 $(1\!\!\!/ 2''$ Pressure Drop) (Table values are maximum pipe run in feet.)

5"–7" 7–22 kW 5"–14" RG22–60 kW 11"–14" 70-150 kW

	Pipe Size (inches)								
kW	0.5"	0.75"	1"	1.25"	1.5"	2"	2.5"	3"	
7-9	10	60	200	750					
11		30	100	450					
15-16		10	35	140	300				
20-22		10	35	140	300				
RG 22		10	30	115	250				
25 & 30		10	50	200	450				
27			20	80	175	550			
32			20	90	175	600			
36			10	35	80	250			
38			10	70	150	500			
45				20	50	175	400		
48			10	30	75	250	600		
60				10	30	100	200	700	
70				10	30	100	200	700	
80				10	20	75	170	475	
100				10	20	75	170	475	
130					10	40	90	250	
150					10	30	70	200	

TABLE 4BNatural Gas 3.5" to4.9" of Water Column

(Table values are maximum pipe run in feet.)

	Pipe Size (in)									
kW	0.75"	0.75" 1" 1.25" 1.5"								
7–9	20	60	175							
11		30	125	200						
15–16		10	60	125						
20-22		10	60	125						

Natural Gas

1 cubic foot = 1,000 BTU 1 therm = 100,000 BTU Gas consumption = 13,000-16,000 BTU per kW/hr

Pressure

1 inch mercury = 13.61 inches water column 1 inch Water Column = 0.036 psi 3.5-14 inches water column = 0.126 psi to 0.50 psi

Note:

- Pipe sizing is based on 0.5" H₂O pressure drop.
- Sizing includes a nominal number of elbows and tees.
- Please verify adequate service and meter sizing.
- Tables based on black pipe.

Note: Size the fuel pipe to the sizing charts or to local codes. When installing other than Sch. 40 black pipe, please refer to the manufactures sizing charts. The air-cooled generator is not a constant flow appliance, the fuel pipe was sized large enough to supply at least 100% of the generator BTU/hr rating.

LP VAPOR INSTALLATION

FUEL INLET PRESSURE SERIAL NUMBER 1234567

LP VAPOR MIN. INLET PRESSURE: 10 In W.C. MAX INLET PRESSURE: 12 In W.C. MAX FLOW RATE: 17 Kw 325000BTY/HR NATURAL GAS MIN. INLET PRESSURE: 3.5 In W.C.

MIN. INLET PRESSURE: 3.5 In W.C. MAX INLET PRESSURE: 7 In W.C. MAX FLOW RATE: 16 Kw 312000BTY/HR

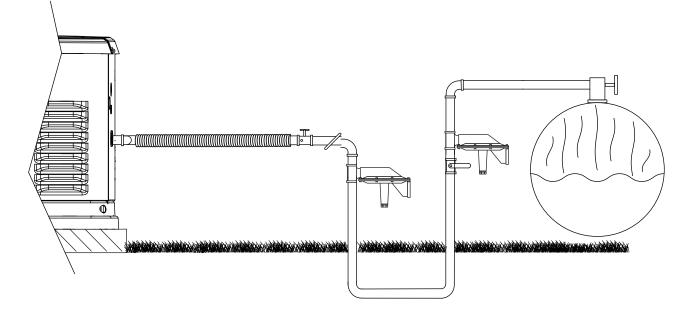


TABLE 5

FUEL PIPE SIZING LP VAPOR

	Pipe Size (inches)							
kW	0.5"	0.75"	1"	1.25"	1.5"	2"	2.5"	3"
7-9	35	175	600					
11	15	80	350					
15-16		40	175	550				
20-22		20	80	350				
RG 22		20	100	400				
25 & 30		50	200	800				
27		15	70	300	625			
32		10	60	280	550			
36			20	150	325	950		
38		10	35	200	450			
45			10	80	200	600		
48			10	80	200	600		
60			10	40	100	350		
70			10	40	100	350	700	
80				30	80	300	600	
100				20	60	275	550	
130				10	30	150	325	800
150				10	20	100	250	600

LP Vapor (LPV) 10" to 12" of Water Column

(1/2" Pressure Drop) (Table values are maximum pipe run in feet.)

LP

LPG: 8.55 ft^3 /lb., 4.24 lbs./gal., 2500 btu/ft^3 LPG: $36.3 \text{ ft}^3 = 1 \text{ gal.}$

Pressure

1 inch mercury = 13.61 inches water column 1 inch Water Column = 0.036 psi 11–14 inches water column = 0.396 psi to 0.50 psi

Note:

- Pipe sizing is based on 0.5" $\ensuremath{\text{H}_20}$ pressure drop.
- Sizing includes a nominal number of elbows and tees.
- Please verify adequate service and meter sizing.
- Tables based on black pipe.

Note: Size the fuel pipe to the sizing charts or to local codes. When installing other than Sch. 40 black pipe, please refer to the manufactures sizing charts. The air-cooled generator is not a constant flow appliance, the fuel pipe was sized large enough to supply at least 100% of the generator BTU/hr rating.

LP VAPOR (LPV) TANK SIZING Vapor Withdrawal

Tank Capacity Total (Gal.)	Tank Capacity Useable (Gal.)	Minimum Temp (°F)	Tank Capacity (btu/hr.)	Length (Inches)	Diameter (Inches)	Overall Ht. (Inches)
120	72	40 20 0	246,240 164,160 82,080	57	24	33
150	90	40 20 0	293,760 195,840 97,920	68	24	33
250	150	40 20 0	507,600 338,400 169,200	94	30	39
325	195	40 20 0	642,600 428,400 214,200	119	30	39
500	300	40 20 0	792,540 528,360 264,180	119	37	46
850	510	40 20 0	1,217,700 811,800 405,900	165	41	50
1000	600	40 20 0	1,416,960 944,640 472,320	192	41	50

TABLE 6

TABLE 7 GENERATOR FUEL CONSUMPTION

Gene kW R			el Consump 100% BTU		Fuel Consumption at 50% BTU/HR		
LP Vapor	Nat. Gas	LP V	apor	Nat. Gas	LP Vapor		Nat. Gas
LF Vapui	Nal. Uds	BTU/HR	GAL/HR	BTU/HR	BTU/HR	GAL/HR	BTU/HR
7.5	6	115,000	1.26	117,000	90,000	1	85,000
9	8	125,000	1.37	121,000	79,000	0.87	90,000
11	10	179,000	1.97	159,000	107,000	1.18	111,000
15 ECO	15 ECO	261,000	2.87	281,000	120,000	1.32	134,000
16	16	267,000	2.94	309,000	229,000	2.52	218,000
20	18	324,000	3.56	301,000	216,000	2.52	204,000
20 VSCF	18 VSCF	311,000	3.42	285,000	149,000	1.64	174,000
22	19.5	352,000	3.87	310,000	233,000	2.56	216,000
RG22	22	324,000	3.6	324,000	196,500	2.2	207,000
RG25	25	188,000	2.1	221,000	112,500	1.2	140,000
RG27	25	372,500	4.1	396,000	226,000	2.6	233,000
RG30	30	188,000	2.1	221,000	112,500	1.2	140,000
RG32	32	415,000	4.6	381,000	238,000	2.6	219,000
RG36	36	578,000	6.4	626,000	448,000	5	332,000
RG38	38	480,000	5.3	444,000	270,000	3	260,000
RG45	45	774,000	8.6	836,000	445,000	4.9	501,000
RG48	48	780,000	8.6	638,000	378,000	4.2	425,000
RG60	60	1,000,000	11	1,051,000	580,000	6.4	611,000
QT70	67	1,028,000	11.4	1,020,000	496,000	5.46	500,000
QT80	80	1,163,000	12.8	1,253,000	603,000	6.7	785,000
QT100	94	1,268,000	14	1,260,000	718,000	7.9	713,000
QT130	122	1,798,000	19.8	1,786,000	933,000	10.3	927,000
QT150	142	2,080,000	22.9	2,061,000	1,080,000	11.9	1,070,000

Gas Required for Common Appliances

60,000–120,000 40,000–60,000 80,000–140,000 50,000–80,000
50,000-80,000
100,000–200,000
50,000-100,000
50,000–90,000 14,000–16,000 40,000–85,000
25,000–50,000 30,000–55,000 115,000–125,000 125,000–150,000 155,000–200,000
1,500-2,000 18,000-22,000 20,000-90,000 35,000-90,000 40,000-80,000 1,400-2,800

Note: Tank BTU capacity and generator run times based upon maintaining a minimum tank fuel level of 20%. Tanks are typically filled to 80% full.

Note: Typical fuel consumption based on a generator 100% loaded.

Operating Cost Per Hour	
=	
NG Therms/HR x Cost of NG Therm	

UPS — **GENERATOR COMPATIBILITY**

Passive (also referenced as standby or off-line) and Line-Interactive

These technologies are most common for personal workstations and point of sale applications. They are typically single phase equipment with size ranges of 350 VA–2000 VA for passive and 500 VA to 5000 VA for line-interactive.

Passive UPS's are the simplest type. Under normal conditions AC power passes straight through to the UPS load. When the input power supply goes outside of specifications, the UPS transfers the load from input power to the internal DC to AC power inverter. Passive UPS's do not correct for voltage or frequency deviations under "normal" operation.

Line-interactive is similar to the passive technology except it has circuitry that attempts to correct for standard voltage deviations. Frequency deviations under "normal" power operation are not corrected.

Equipment Notes:

These devices tend to be electrically / harmonically very noisy. A single small UPS is not a significant concern, but applications with multiple UPS's can be problematic.

Passive UPS technology typically has normal tolerances of 10–25% on voltage and 3 hertz on frequency. Minuteman UPS input tolerance is closer to 10–36%. If the input source goes outside of these tolerances, the UPS will switch onto the UPS battery source. Some line-interactive units may have frequency tolerances factory set to 0.5 hertz. These units will need to have their frequency tolerance increased to a minimum of 2 hertz. Minuteman UPS products are close to 5 hertz and not 0.5 hertz.

Generator Sizing Recommendation:

Limit the total UPS loading to 15%-20% of the generator capacity.

Double-Conversion (also referenced as on-line)

This technology is most common for critical load applications. Double-conversion UPS's constantly rectify AC to DC and then invert the DC back into AC. This configuration results in an output that corrects for voltage and frequency deviations.

There are single and three phase models covering small through large applications. Most UPS applications larger than 5000 VA use double conversion technology. This approach is also the preferred technology for generator applications.

Equipment Notes:

Double-conversion UPS's that are single phase or unfiltered three phase models tend to create a significant level of electrical/ harmonic noise. This is illustrated by harmonic current distortions that are greater than 35%. Minuteman UPS products could have current distortion of 8%. When three phase models are supplied with harmonic filters (current distortion less than 10%), this concern is no longer an issue.

Generator Sizing Recommendation:

Single phase models: limit the total UPS loading to 25% of the generator capacity.

Single phase Minuteman UPS models: limit the total UPS loading to 50% of the generator capacity.

Three phase models without filters (current distortion > 30%): limit the UPS loading to 35% of the generator capacity. Three phase models with filters (current distortion < 10%): limit the UPS loading to 80% of the generator capacity.

UPS Information
2 x kVA rating for a filtered system 3–5 x kVA rating for an unfiltered system
3–5 x kVA rating for an unfiltered system

Supplier(s)	Passive (Standby)	Line-Interactive	Double-Conversion
Minuteman UPS	Enspire	Enterprise Plus	Endeavor
APC	Back-UPS Series	Smart-UPS Series	Symmetra Series
Liebert	PowerSure PST & PSP	PowerSure PSA & PSI	UPStation & Nfinity
Powerware	3000 series	5000 series	9000 series

Note: Ferrups and Delta-Conversion UPS technologies not included in discussion

UPS- GENERATOR COMPATIBILITY SIZING EXAMPLES

- UPS systems create electrical or harmonic noise, and this harmonic noise has to be taken into consideration when sizing a generator.
- The generator alternator has to be sized large enough to accept the Total UPS Load from the connected UPS systems.
- Undersizing the generator can cause damage to the UPS equipment, connected equipment, and/or generator.

The sizing formula for UPS systems is the following:

Number of Systems X VA Rating X Harmonic Multiplier X Generator Multiplier = Minimum Alternator Size

Single phase generator backing up 3, 2500 VA Line-Interactive UPS Systems with a Harmonic Multiplier of 3

Number of UPS Systems	3	
VA Rating	2500	
Harmonic Multiplier	3	
Total UPS Load	22,500 VA	
Generator Multiplier	4	(25% of the generator capacity)
Minimum Generator Alternator Size	*90,000 VA	

*Note: Depending on any voltage and frequency adjustments with the UPS system, generator range is 80-100 kW

Number of UPS Systems	4	
VA Rating	10000	
Harmonic Multiplier	2	
Total UPS Load	80,000 VA	
Generator Multiplier	1.25	(80% of the generator capacity)
Minimum Generator Alternator Size	100,000 VA	

3 Phase generator backing up 4, 10000 VA Double Conversion UPS Systems with a Harmonic Multiplier of 2

Sizing Notes:

- Always contact the UPS manufacturer when in doubt of the Harmonic Multiplier for the UPS system.
- Always use the full VA rating of the UPS system for sizing calculations
- Limit Total UPS loading on single phase generators to 25% of the generators capacity
- Limit Total UPS loading on 3 phase generators to 80% of the generators capacity

TYPICAL GENERATOR/TRANSFER SWITCH COMBINATIONS

Current Model - Evolution	Current Switch model #	Description	Prior Models (5/10-3/13)	Prior Switch Model # (*see note)
Evolution models / transfe	r switches and prior mode	ls / transfer switches listed CAN be used together.		
		9 kW Air-Cooled Generator - Aluminum		
7029	RTG10EZA1	10 Circuit Pre-wired Switch	6245	RTS10EZA1
	RTG16EZA3	100 amp 16 Circuit Switch NEMA 3R		
7030	RTSC100A3	100 amp Normal Smart Switch	6237	RTSX100A3
	RTSE100A3CSA	100 amp CSA Service Rated Switch		RTSE100A3CSA
		11 kW Air-Cooled Generator - Aluminum		
	RTG12EZA1	12 Circuit Pre-wired Switch		RTS10EZA1
	RTG16EZA3	100 amp 16 Circuit Switch NEMA 3R	4	
7031	RTSC100A3	100 amp Normal Smart Switch	6439	RTSX100A3
1001	RTSW100A3	100 amp Service Rated Smart Switch		RTSR100A3
7032	RTSW150A3 RTSC200A3	150 amp Service Rated Smart Switch 200 amp Normal Smart Switch	6437	RTSR150A3 RTSR200A3
	RTSW200A3	200 amp Service Rated Smart Switch	6438	RTSR200A3
7033	5449	GenReady Load Center NEMA 1	-	5449
	5454	GenReady Load Center NEMA 3R	-	5454
	5448	Basic GenReady Load Center	1	5448
	RTSE100A3CSA	100 amp CSA Service Rated Switch		RTSE100A3CSA
	RTSE200A3CSA	200 amp CSA Service Rated Switch		RTSE200A3CSA
		15 kW EcoGen Air-Cooled Generator - Aluminum		
7034	RTSB200A3	200 amp Service Rated Smart Switch	6103	
	RTSI200A3	200 amp Normal Smart Switch		
	ſ	16/16 kW Air-Cooled Generator - Aluminum		
	RTG16EZA1	16 Circuit Pre-wired Switch	1	RTS16E2A1
	RTG16EZA3	100 amp 16 Circuit Switch NEMA 3R	1	
7035	RTSC100A3	100 amp Normal Smart Switch	6459	RTSX100A3
1000	RTSW100A3	100 amp Service Rated Smart Switch		RTSR100A3
7036	RTSW150A3	150 amp Service Rated Smart Switch	6461	RTSR150A3
	RTSC200A3	200 amp Normal Smart Switch		RTSX200A3
7037	RTSW200A3	200 amp Service Rated Smart Switch	6462	RTSR200A3
	5449	GenReady Load Center NEMA 1	6721	5449
	5454	GenReady Load Center NEMA 3R	0/21	5454
	5448	Basic GenReady Load Center	-	5448
	RTSE100A3CSA RTSE200A3CSA	100 amp CSA Service Rated Switch 200 amp CSA Service Rated Switch	-	RTSE100A3CSA RTSE200A3CSA
	III OE 200A000A			110220043004
7040	DTODOOOAO	20 kW Synergy Air-Cooled Generator - Aluminum	6055	
70241	RTSB200A3	200 amp Service Rated Smart Switch	6089	
	RTSI200A3	200 amp Normal Smart Switch		
		20 kW Air-Cooled Generator - Aluminum		
	RTG16EZA3	100 amp 16 Circuit Switch NEMA 3R		
	RTSC100A3	100 amp Normal Smart Switch	_	RTSX100A3
	RTSW100A3	100 amp Service Rated Smart Switch	-	RTSR100A3 RTSR150A3
7038	RTSW150A3 RTSC200A3	150 amp Service Rated Smart Switch 200 amp Normal Smart Switch	6729	RTSX200A3
	RTSW200A3	200 amp Service Rated Smart Switch	-	RTSR200A3
7039	5449	GenReady Load Center NEMA 1	6730	5449
	5454	GenReady Load Center NEMA 3R	-	5454
	5448	Basic GenReady Load Center	-	5448
	RTSE100A3CSA	100 amp CSA Service Rated Switch	-	RTSE100A3CSA
	RTSE200A3CSA	200 amp CSA Service Rated Switch		RTSE200A3CSA
		00 kW Ain Occled Concentration Alexia		
	DTC16E7A0	22 kW Air-Cooled Generator - Aluminum	-	
	RTG16EZA3 RTSC100A3	100 amp 16 Circuit Switch NEMA 3R 100 amp Normal Smart Switch	-	RTSX100A3
	RTSW100A3	100 amp Normal Smart Switch 100 amp Service Rated Smart Switch	-	RTSR100A3
	RTSW150A3	150 amp Service Rated Smart Switch	1	RTSR150A3
7042	RTSC200A3	200 amp Normal Smart Switch	6551	RTSX200A3
70.40	RTSW200A3	200 amp Service Rated Smart Switch	0550	RTSR200A3
7043	5449	GenReady Load Center NEMA 1	- 6552	5449
	5454	GenReady Load Center NEMA 3R]	5454
	5448	Basic GenReady Load Center		5448
	RTSE100A3CSA	100 amp CSA Service Rated Switch		RTSE100A3CSA
	RTSE200A3CSA	200 amp CSA Service Rated Switch		RTSE200A3CSA

TYPICAL GENERATOR/TRANSFER SWITCH COMBINATIONS

Current Model - Evolution	Current Switch model #	Description	Prior Models (5/10-3/13)	Prior Switch Model # (*see note)
------------------------------	---------------------------	-------------	-----------------------------	--

Evolution models / transfer switches and prior models / transfer switches listed CAN be used together.

		22 kW Liquid-Cooled Generator, 1phase - Aluminum		
		25 kW Liquid-Cooled Generator, 1phase - Steel		
		27 kW Liquid-Cooled Generator, 1phase - Steel		
		30 kW Liquid-Cooled Generator, 1phase - Steel		
	RTSC100A3	100 amp Normal Smart Switch*		RTSX100A3
RG02224ANAX	RTSW100A3	100 amp Service Rated Smart Switch*	QT02224ANAN QT02516ANSN QT02724ANAN QT03016ANSN	RTSR100A3
RG02516ANSX RG02724ANAX	RTSW150A3	150 amp Service Rated Smart Switch		RTSR150A3
	RTSC200A3	200 amp Normal Smart Switch		RTSX200A3
RG03016ANSX	RTSW200A3	200 amp Service Rated Smart Switch		RTSR200A3
	5449	GenReady Load Center NEMA 1		5449
	5454	GenReady Load Center NEMA 3R		5454
	5448	Basic GenReady Load Center		5448
	RTSE100A3CSA	100 amp CSA Service Rated Switch		RTSE100A3CSA
	RTSE200A3CSA	200 amp CSA Service Rated Switch		RTSE200A3CSA

		36 kW Liquid-Cooled Generator - Aluminum		
	RTSC100A3 100 amp Normal Smart Switch* RTSW100A3 100 amp Service Rated Smart Switch* RTSW150A3 150 amp Service Rated Smart Switch	RTSX100A3		
RTSW100A3 100 amp Service Rated Sm	100 amp Service Rated Smart Switch*		RTSR100A3	
DC02624ANAX	RG03624ANAX RTSW150A3 150 amp Service Rated Smart Switch QT03624ANAN RTSC200A3 200 amp Normal Smart Switch QT03624ANAN RTSW200A3 200 amp Service Rated Smart Switch QT03624ANAN	150 amp Service Rated Smart Switch	QT03624ANAN	RTSR150A3
HUUJUZ4ANAA		200 amp Normal Smart Switch		RTSX200A3
		RTSR200A3		
	RTSE100A3CSA	RTSE100A3CSA 100 amp CSA Service Rated Switch	RTSE100A3CSA	
	RTSE200A3CSA	200 amp CSA Service Rated Switch		RTSE200A3CSA

		45 kW Liquid-Cooled Generator - Steel		
RG04524ANSX	RTSC200A3	200 amp Normal Smart Switch	QT04524ANSN	RTSX200A3
RG04524ANSA	RTSW200A3	200 amp Service Rated Smart Switch		RTSR200A3
	RTSE200A3CSA	200 amp CSA Service Rated Switch]	RTSE200A3CSA

		48 kW Liquid-Cooled Generator - Aluminum		
	RTSC100A3	100 amp Normal Smart Switch*		RTSX100A3
	RTSW100A3 100 amp Service Rated Smart Switch* RTSC200A3 200 amp Normal Smart Switch]	RSSD100A3	
RG04842ANAX		0T049424NIAN	RTSX200A3	
ngu4042ANAA	RTSW200A3	200A3 200 amp Service Rated Smart Switch QT04842ANAN	RTSR200A3	
	RTSE100A3CSA	100 amp CSA Service Rated Switch		RTSE100A3CSA
	RTSE200A3CSA	A3CSA 200 amp CSA Service Rated Switch	RTSE200A3CSA	
	RTSC400A3	400 amp Normal Smart Switch]	RTSE200A3CSA

		60 kW Liquid-Cooled Generator -		
RG06024ANSX*	RTSC100A3	100 amp Normal Smart Switch*		RTSX100A3
This model available	RTSW100A3	100 amp Service Rated Smart Switch	OTOCODANICNI	RTSR100A3
in Steel or Aluminum;	RTSC200A3	A3 200 amp Normal Smart Switch* QT06024ANSN	RTSX200A3	
Natural Gas or LP	RTSW200A3	200 amp Service Rated Smart Switch*		RTSR200A3
	RTSC400A3	400 amp Normal Smart Switch		RTSX400A3

RTS 100–200 amp*	22–48 kW Liquid-Cooled Generator - 3Ø service rated	100–200 amp*
RTS 100–400 amp*	22–60 kW Liquid-Cooled Generator - 3Ø options	100–400 amp*
RTS 100–800 amp*	70–150 kW Liquid-Cooled Generator - 1 & 3Ø options	100–800 amp*

* See NEC Article 240.21(B)

NEC (700, 701, 702) Comparison

NEC Comparison Table to be used as a general guideline in determining the proper generator for specific applications. Refer to architectural documents for final selection.

		Article 700 - Emergency	Article 701 - Standby	Article 702 - Optional Standby	
	Scope	Legally required life safety	Legally required critical support (fire fighting, health hazards, etc)	Protect property & facilities	
	Equipment Approval	For Emergency / (UL2200)	For Intended Use / (UL2200)	For Intended Use / (UL2200) / Not in 2008	
	Witness Testing (on-sight)	At install & periodically	At install	None	
βL	Periodic Testing	Yes	Yes	None	
Testing	Battery Maintenance	Yes	Yes	None	
Р Р	Maintenance Records	Yes	Yes	None	
	Load Testing	Yes	Yes	None	
	Capacity	All Loads	All loads intended to operate at one time	All loads intended to operate at one time / Not in 2008	
	Other Standby Loads Allowed	Yes with load shedding	Yes with load shedding	2008 – Yes with load shedding	
	Peak Shaving Allowed	Yes ??	Yes	Yes	
ч	Automatic	Yes	Yes	No	
vite	Equipment Approval	For Emergency / (UL1008)	For Standby / (UL1008)	For Intended Use / (UL1008)	
Ś	Means to Permit Bypass	Yes	No	No	
Transfer Switch	Elect. Operated - Mech. Held	Yes	No	No	
	Other loads	No	Yes with load shedding	N/A	
Ë	Max. Fault Current Capable	Yes	Yes	Yes	
~*	Derangement	Yes / Standard common alarm	Yes / Standard common alarm	Yes / Standard common alarm	
al) le 8	Carrying Load	Yes / Displayed at ATS	Yes / Displayed at ATS	Yes / Displayed at ATS	
Signals Audible Visual)	Battery Charger Failed	Yes	Yes	No	
Signals (Audible & Visual)	Ground Fault Indication	Yes (480V & 1000A)	No	No	
	NFPA 110 Signaling	Yes / Optional annunciator	Yes / Optional annunciator	No	
Signs	At service	Yes / Type & location	Yes / Type & location	Yes / Type & location	
Sić	At neutral to ground bonding	Yes (if remote)	Yes (if remote)	Yes (if remote)	
	Wiring kept independent	Yes	No	No	
	Fire protection (ref 700-9d)	Yes (1000 persons or 75' building)	No	No	
	Maximum power outage	10 sec	60 sec	N/A	
	Retransfer delay	15 min setting	15 min setting	No	
	Automatic starting	Yes	Yes	No	
	On-site fuel requirements	2 hours (see NFPA 110)	2 hours	None	
	Battery charger	Yes	Yes	No	
	Ground Fault	Indication Only	No	No	

Electrical Formulas

Volts, Current, Power Factor	<u>E x l</u> 1000	<u>E x I x 1.73 x PF</u>
		1000
Volts, Current	<u>E x l</u> 1000	<u>E x I x 1.73</u> 1000
kW, Volts, Power Factor	<u>kW x 1000</u> E	<u>kW x 1000</u> E x 1.73 x PF
Volts, Amps, Power Factor	Volts x Amps	E x I x 1.73 x PF
Frequency, RPM	<u>2 x 60 x Frequency</u> RPM	<u>2 x 60 x frequency</u> RPM
RPM, No. of Rotor Poles	RPM x Poles 2 x 60	<u>RPM x Poles</u> 2 x 60
Frequency, No. of Rotor Poles	<u>2 x 60 x Frequency</u> Rotor Poles	<u>2 x 60 x Frequency</u> Rotor Poles
Motor Horsepower, Efficiency	HP x 0.746 Efficiency	HP x 0.746 Efficiency
Volts, Amperes	<u>E</u> I	Ē
Ohms, Amperes	l x R	l x R
Ohms, Volts	E R	<u>E</u> R
	kW, Volts, Power Factor Volts, Amps, Power Factor Frequency, RPM RPM, No. of Rotor Poles Frequency, No. of Rotor Poles Motor Horsepower, Efficiency Volts, Amperes Ohms, Amperes Ohms, Volts	Volts, Current 1000 kW, Volts, Power Factor kW x 1000 E Volts, Amps, Power Factor Volts x Amps Frequency, RPM 2 x 60 x Frequency RPM RPM, No. of Rotor Poles 2 x 60 Frequency, No. of Rotor Poles 2 x 60 Frequency, No. of Rotor Poles 2 x 60 x Frequency Rotor Poles Motor Horsepower, Efficiency HP x 0.746 Efficiency Volts, Amperes I Ohms, Amperes I x R Ohms, Volts E

E = VOLTS

NOTES

U.S. WEIGHTS AND MEASURES

LINEAR MEASURE

LINEAR MEASURE
1 INCH = 2.540 CENTIMETERS 12 INCHES = 1 FOOT = 3.048 DECIMETERS 3 FEET = 1 YARD = 9.144 DECIMETERS 5.5 YARDS = 1 ROD = 5.029 METERS 40 RODS = 1 FURLONG = 2.018 HECTOMETERS 8 FURLONGS = 1 MILE = 1.609 KILOMETERS
MILE MEASUREMENTS
1 STATUTE MILE = 5,280 FEET 1 SCOTS MILE = 5,952 FEET 1 IRISH MILE = 6,720 FEET 1 RUSSIAN VERST = 3,504 FEET 1 ITALIAN MILE = 4,401 FEET 1 SPANISH MILE = 15,084 FEET
OTHER LINEAR MEASUREMENTS
1 HAND =4 INCHES1 LINK =7.92 INCHES1 SPAN =9 INCHES1 FATHOM =6 FEET1 CHAIN =22 YARDS1 FURLONG =10 CHAINS1 CABLE =608 FEET
SQUARE MEASURE
144SQUARE INCHES=1SQUARE FOOT9SQUARE FEET=1SQUARE YARD30'/4SQUARE YARDS=1SQUARE ROD40RODS=1ROOD4ROODS=1ACRE640ACRES=1SQUARE MILE1SQUARE MILE=1SECTION36SECTIONS=1TOWNSHIP
CUBIC OR SOLID MEASURE
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

METRIC SYSTEM

CUBIC MEASURE: (THE UNIT IS THE METER = 39.37 INCHES) 1 CU. CENTIMETER = 1000 CU. MILLIMETERS = 0.06102 CU. IN. 1 CU, DECIMETER = 1000 CU, CENTIMETERS = 61.02374 CU, IN. = 1000 CU. DECIMETERS = 35.31467 CU. FT. 1 CU. METER = 1 STERE = 1.30795 CU. YDS. 1 CU. CENTIMETER (WATER) = 1 GRAM 1000 CU. CENTIMETERS (WATER) = 1 LITER = 1 KILOGRAM 1 CU. METER (1000 LITERS) = 1 METRIC TON MEASURES OF WEIGHT: (THE UNIT IS THE GRAM = 0.035274 OUNCES) 1 MILLIGRAM = 0.015432 GRAINS = CENTIGRAM = 10 MILLIGRAMS = 0.15432 GRAINS 1 1 DECIGRAM = 10 CENTIGRAMS = 1.5432 GRAINS = 10 DECIGRAMS = 15.4323 GRAINS GRAM 1 DEKAGRAM = 10 GRAMS 1 = 5.6438 DRAMS HECTOGRAM = 10 DEKAGRAMS = 3.5274 OUNCES 1 KILOGRAM = 10 HECTOGRAMS = MYRIAGRAM = 10 KILOGRAMS = 2.2046223 POUNDS 1 22.046223 POUNDS 1 = 10 MYRIAGRAMS = 1 QUINTAL 1.986412 CWT. 1 METRIC TON = 10 QUINTAL = 2204.6226 / 21849 POUNDS = 0.56438 DRAMS 1 GRAM 1 DRAM = 1.77186 GRAMS = 27.3438 GRAINS 1 METRIC TON = 2,204.6223 POUNDS MEASURES OF CAPACITY: (THE UNIT IS THE LITER = 1.0567 LIQUID QUARTS) 1 CENTILITER = 10 MILLILITERS = 0.338 FLUID OUNCES DECILITER = 10 CENTILITERS = 3.38 FLUID OUNCES 1 LITER = 10 DECILITERS = 33.8 DEKALITER = 10 LITERS = 0.28 1 LITER FLUID OUNCES DEKALITER = 10 LITERS = 0.284 BUSHEL HECTOLITER = 10 DEKALITERS = 2.84 BUSHELS 1 1 1 KILOLITER = 10 HECTOLITERS = 264.2 GALLONS NOTE: <u>KILOMETERS</u> x 5 = MILES or $\frac{\text{MILES}}{5}$ x 8 = KILOMETERS

METRIC S	YSTEM
PREFIXES: A. MEGA = 1,000,000 B. KILO = 1,000 C. HECTO = 100 D. DEKA = 10	E. DECI = 0.1 F. CENTI = 0.01 G. MILLI = 0.001 H. MICRO = 0.000001
LINEAR MEASURE: (THE UNIT IS THE METER = 33 1 CENTIMETER = 10 MILLIMI 1 DECIMETER = 10 CENTIM 1 METER = 10 DECIME 1 DEKAMETER = 10 METERS 1 HECTOMETER = 10 DEKAME 1 KILOMETER = 10 HECTOM 1 MYRIAMETER = 10,000 METER	ETERS = 0.3937011 IN. ETERS = 3.9370113 INS. TERS = 1.0936143 YDS. = 3.2808429 FT. S = 10.936143 YDS. ETERS = 109.36143 YDS. METERS = 0.62137 MILE
SQUARE MEASURE: (THE UNIT IS THE SQUARE METER 1 SQ. CENTIMETER = 100 SQ. MI 1 SQ. DECIMETER = 100 SQ. CEI 1 SQ. DECIMETER = 100 SQ. DEI 1 SQ. DEKAMETER = 100 SQ. DEI 1 SQ. HECTOMETER = 100 SQ. DEI 1 SQ. HECTOMETER = 100 SQ. DEI 1 SQ. KILOMETER = 100 SQ. HEI	LLIMETERS = 0.1550 SQ. IN. NTIMETERS = 15.550 SQ. INS. CIMETERS = 10.7639 SQ. FT. TERS = 119.60 SQ. YDS. KAMETERS
(THE UNIT IS THE "ARE" = 100 SQ. 1 CENTIARE = 10 MILLIA 1 DECIARE = 10 CENTIA 1 ARE = 10 DECIAF 1 DECKARE = 10 ARES 1 HEKTARE = 10 DEKAR 1 SQ. KILOMETER = 100 HEKTAF	Image: RES = 10.7643 SQ. FT. RES = 11.96033 SQ. YDS. RES = 119.6033 SQ. YDS. = 0.247110 ACRES ES = 2.471098 ACRES
CUBIC MEASURE: (THE UNIT IS THE "STERE" = 61,02: 1 DECISTERE = 10 CENTIS 1 STERE = 10 DECIST	5. <i>38659 CU. INS.)</i> ITERES = 3.531562 CU. FT. TERES = 1.307986 CU. YDS

1	DECISTERE	=	10	CENTISTERES	=	3.531562	CU. FT.
1	STERE	=	10	DECISTERES	=	1.307986	CU. YDS.
1	DEKASTERE	=	10	STERES	=	13.07986	CU. YDS.

METRIC DESIGNATOR AND TRADE SIZES METRIC DESIGNATOR 16 21 27 35 41 53 63 78 91 103 129 155 12 1/2 3/4 1 11/4 11/2 2 2¹/₂ 3 31/2 4 3/8 5 6 TRADE SIZE

U.S. WEIGHTS & MEASURES / METRIC EQUIVALENT CHART

	In.	Ft.	Yd.	Mile	Mm	Cm	M	Km
1 Inch =	1	.0833	.0278	1.578x10 ⁻⁵	25.4	2.54	.0254	2.54x10-3
1 Foot =	12	1	.333	1.894x10-4	304.8	30.48	.3048	3.048x10-4
1 Yard =	36	3	1	5.6818 x10 ⁻⁴	914.4	91.44	.9144	9.144x10-4
1 Mile =	63,360	5,280	1,760	1	1,609,344	160,934.4	1,609.344	1.609344
1 mm =	.03937	.0032808	1.0936x10-3	6.2137x10-7	1	0.1	0.001	0.000001
1 cm =	.3937	.0328084	.0109361	6.2137x10-6	10	1	0.01	0.00001
1 m =	39.37	3.28084	1.09361	6.2137x10-4	1000	100	1	0.001
1 km =	39,370	3,280.84	1,093.61	0.62137	1,000,000	100,000	1,000	1
n, = Inches FI, = Foot Yd. = Yard Ni, = Mile Mm = Millimeter Cm = Centimeter M = Meter Km = Kilometer								

EXPLANATION OF SCIENTIFIC NOTATION:

Scientific Notation is simply a way of expressing very large or very small numbers in a more compact format. Any number can be expressed as a number between 1 & 10, multiplied by a power of 10 (which indicates the correct position of the decimal point in the original number). Numbers greater than 10 have positive powers of 10, and numbers less than 1 have negative powers of 10. Example: 186,000 = 1.86 x 105 0.000524 = 5.24 x 10⁻⁴

USEFUL CONVERSIONS / EQUIVALENTS
1 BTU
1 GRAM CALORIE Raises 1 Gram of water 1°C
1 CIRCULAR MIL Equals 0.7854 sq. mil
1 SQ. MIL Equals 1.27 cir. mils
1 MIL Equals 0.001 in.
To determine circular mil of a conductor:
ROUND CONDUCTORCM = (Diameter in mils) ²
BUS BARCM = Width (mils) x Thickness (mils)
0.7854
NOTES: 1 Millimeter = 39.37 Mils 1 Cir. Millimeter = 1550 Cir. Mils 1 Sq. Millimeter = 1974 Cir. Mils

8

perferated pages start here

Selected Circuit Load Calculator

Contractor	Email
	Fax
	Location
VOLTAGE	□ 120/240 1Ø □ 120/208 3Ø □ 120/240 3Ø □ 277/480 3Ø
TYPE	Natural Gas LP Vapor (LPV)
ELEC. SERVICE	□ 100 Amp □ 150 Amp □ 200 Amp □ 300 Amp □ 400 Amp □ 600 Amp □ 0ther
Defers installation of	ntest less live indiction to confirm all requirements are mot live indictions more vary

Before installation contact local jurisdiction to confirm all requirements are met. Jurisdictions may vary. Generac recommends contacting local authorities prior to installation.

LOADS: Look for heavy building loads such as refrigeration, air conditioning, pumps or UPS systems. Use the following for sizing and determining generator kW.

TABLE 8	Motor Load Table (refer to Table 1)					
Device		HP	RA	LRA	kW Running (= HP)	Starting kW ¹

Applications

The QT Series does not meet the necessary requirements for the following applications:

GENE

- NEC 695 Fire Pumps
- NEC 700 Emergency Systems NFPA 20 Fire Pumps
- NFPA 20 Fire Pumps NFPA 99 Healthcare

NFPA 110 Emergency Systems

Reference Codes

Related Codes and Standards: NEC 225 Branch Circuits and Feeders NEC 240 **Overcurrent Protection** NEC 250 Grounding NEC 445 Generators NEC 700 **Emergency Systems** NEC 701 Legally Required Standby NEC 702 **Optional Standby** Installation & Use of NFPA 37 Stationary Engines NFPA 54 National Fuel Gas Code NFPA 58 LP Gas Code ICC **Fuel Gas Code**

To Calculat	e kW
120 V 1ø	Amps x 120/1000 = kW
240 V 1ø	Amps x 240/1000 = kW
208 V 3ø	(Amps x 208 x 1.732 x PF) /1000 = kW
240 V 3ø	(Amps x 240 x 1.732 x PF) /1000 = kW
480 V 3ø	(Amps x 480 x 1.732 x PF) /1000 = kW

¹ See Table 430.7(B) for staring kVA per HP for motor loads.

TABLE 9	Non-Motor Load Table (refer to Table 2)					
Device		Amps	kW			

PF is application power factor (worst case 1.0) Typical application power factor is 0.95.

Iranster S	witch Availability
RTSW – 10	0, 150, 200, 300 and 400 Amp service rated
RTSN - 10	0–800 3ø and 600–800 1ø Amp
RTSC – 10	0, 200, 400, 600, 800 Amp
GenReady	– 200 Amp service panel
-	RTS and GenReady switches only work
	with the Evolution or Nexes Controller.

Refer to Generator Sizing Instructions on other side of this sheet.

RECOMMENDED GENERATOR SIZE _____

Install Notes:

1. Consult manual for installation recommendations.

2. Consult local authority having jurisdiction for local requirements.

GENERAC

Generator Sizing Instructions:

There is not a single correct sizing solution. Following are several methods that, when mixed with good judgement, should result in an appropriately sized generator. Remember to consider load growth, seasonality, and effects of starting motors.

As municipalities and states adopt the new 2017 NEC Electrical Code, there may be new sizing requirements, spelled out in the code book, which the installation technician must follow. Always check with the local inspection department to confirm which code cycle will affect your install.

Never add Amps when sizing a generator. Convert Amps to kW and add kW to determine the required generator size. Power factors for various motor loads vary widely. Adding Amps without properly accounting for the power factor and/or mixing voltages will result in improperly sizing the generator.

When motors start, they create a current surge that step loads the generator and creates a voltage dip. After selecting a generator, reference the generator's surge capability using **table 3**. Verify that voltage dip is adequate for the application. Most commercial applications should be limited to about 15% voltage dip and residential applications should be limited to a 30% voltage dip.

Some applications utilize an uninterruptible power supply (UPS) to back up critical loads. Please read sizing guide for this load type.

Measurement Method 220.87 Exception NEC 2017

Connect a recording ammeter or power meter that is capable of measuring the maximum peak kW demand continuously over a minimum 30 day period. The maximum kW demand shall be taken while the building is occupied and shall include the larger of the heating or cooling loads. The peak kW demand shall be multiplied by 125%.

Peak kW demand X 125% = Calculated kW demand

Size the generator to the next standard size and verify UPS and motor load compatibility.

Determining Existing Loads/Billing History Method 220.87 NEC 2017

Many customers have a utility rate structure that has a peak demand charge. Using a year's worth of electric bills, size the generator 25% larger than the largest peak demand.

Verify motor and UPS load compatibility. Peak Demand = _____

Project Layout

| <u> </u> | |
 | |
|----------|--|------|------|------|------|------|------|------|------|------|--|

Load Summation Method

- Enter running kW for all motor loads (except the largest) expected to run during peak load levels into table 8. Refer to table 1 for typical motor load sizes and electrical requirements.
- Enter kW for all non-motor loads expected to run during peak load levels into table 9. Refer to table 2 for typical residential loads and rules of thumb.
- Add the running motor load kW, non-motor load kW, and the starting kW of the largest motor load.

Motor load running total	(minus largest motor):		
Non-motor load total:			kW (ref. table 9)
Starting load from larges	st cycling motor:		kW (ref. table 8)
Total electrical loads:		=	kW
Select generator:	Commercial (add 20 to	25% to total kW)	

Residential (add 10 to 20% to total kW)

 Confirm that voltage dip is within acceptable limits by comparing motor LRA to generator surge capability (see table #3).

5) Confirm UPS compatibility (see page 11).

System Capacity – Load Calculation

If the local municipality or state you are in has adopted the 2017 NEC Code, you may be required to use this step. Article 702 of the 2017 NEC includes a new requirement for sizing (702.4). If no other method for sizing is acceptable, sizing of the generator shall be made in accordance with Article 220 of the NEC. The system capacity estimating sheet will guide you through this process.

SMM Load Control Module

702.4 (B) (2) (a) NEC 2017

The SMM Load Control Module is a 50 amp contact housed in a NEMA 3R enclosure for indoor and outdoor installation applications. Through the use of the SMM Modules in conjunction with any of the 100–600 amp Smart Switches, household or business loads can be intelligently managed enabling the use of a smaller, more efficient generator system. Up to four SMM Modules can be used with a single switch.

Ball Park Estimates (Do not use for final sizing)

Estimate based on 60% service size: (commercial)

240 Volts, 1 Ø:	Amps x .15 =	_kW
208 Volts, 3 Ø:	Amps x .22 =	_kW
240 Volts, 3 Ø:	Amps x .25 =	_kW
480 Volts, 3 Ø:	Amps x .50 =	_kW

Estimate based on 40% service size: (residential)

240 Volts, 1 Ø:	Amps x .10 = _	kW
208 Volts, 3 Ø:	Amps x .15 =	kW
240 Volts, 3 Ø:	Amps x .17 =	kW
480 Volts, 3 Ø:	Amps x .34 =	kW

Estimate based on square footage

Fast food, convenience stores, restaurants, grocery stores	kW = 50 kW + 10 watts/sq. ft.
Other commercial applications	kW = 30 kW + 5 watts/sq. ft.
Square footage =	Estimated kW =

Amps to kW Rule of Thumb (assumes .8 pf)

$Amps = kW \times 1.5$
$Amps = kW \times 3.5$
$Amps = kW \times 3$
$Amps = kW \times 4$

System Capacity – Load Calculator

GENERAC

DIRECTIONS FOR NEC 2017, ARTICLE 220, PART IV

GENERAC

Work	(sheet — NEC 2017, 220 Pa	art IV			
Contractor		Email			
Phone		Fax			
Job Name					
Date	Location				
Voltage (Circle)	240V -1Ø				
Fuel	100 Ame	NG	LPV		
Elec. Service NET SQUARE FOOTAGE	100 Amp	200 Amp	400 Amp	Ot	ier
					Loads (kW)
GENERAL LOADS	Qty	Rating (Load)	Factor	Loads (VA)	$(VA \div 1,000)$
General Lighting and General Use Receptacles		3 VA/ft ²	100%		
Branch Circuits (1500 VA/ft ²)					
Small Appliance Circuits (20 Amp)		1500	100%		
Laundry Circuits		1500	100%		
Fixed Appliances		Full Curre	nt Rating		
Well			100%		
Sump Pump			100%		
Freezer			100%		
Microwave (Not counter-top model)			100%		
Disposal			100%		
Dishwasher			100%		
Range			100%		
Wall-Mounted Oven			100%		
Counter-Mounted Cooking Surface			100%		
Water Heater			100%		
Clothes Dryer			100%		
Garage Door Opener			100%	1	
Septic Grinder			100%	1 1	
Other (list)			100%	1 1	
			100%	1 1	
			100%	1 1	
			100%	1	
			100%		
			100%	+ +	
			100%	<u> </u>	
			100%		
			100%		
T-1-1 O-m-m-1			100%		
Total General Loads HEAT / A-C LOAD				VA	kW
		1	100%	1 1	1
A-C / Cooling Equipment			100%		
Heat Pump			1000/	┨───┤	
Compressor (if not included as A-C)			100%	┨───┤	
Supplemental Electric Heat			65%	<u>∤</u> ∤	
Electric Space Heating		<u> </u>	0524	<u>↓ </u>	
Less than 4 separately controlled units			65%	┦───┤	
4 or more separately controlled units			40%	Į ļ	
System With Continuous Nameplate Load			100%	↓	
Largest Heat / A-C Load (VA) VA kW		l			
GENERAL LOADS					
 1st 10 kW of General Loads 100% kW 			100%	kW	
 Remaining General Loads (kW) 40% kW 			40%	kW	
CALCULATED GENERAL LOAD (kW) kW					kW
LARGEST HEAT / A-C LOAD 100% kW kW					kW
TOTAL CALCULATED LOAD (Net General Loads + Heat/A-C Load)				kW
	,				

Contractor	Email
	Fax
	Location
VOLTAGE	□ 120/240 1Ø □ 120/208 3Ø □ 120/240 3Ø □ 277/480 3Ø
ТҮРЕ	🗌 Natural Gas 🛛 LP Vapor (LPV)
ELEC. SERVICE	□ 100 Amp □ 150 Amp □ 200 Amp □ 300 Amp □ 400 Amp □ 600 Amp □ 0ther

Before installation contact local jurisdiction to confirm all requirements are met. Jurisdictions may vary. Generac recommends contacting local authorities prior to installation.

LOADS: Look for heavy building loads such as refrigeration, air conditioning, pumps or UPS systems. Use the following for sizing and determining generator kW.

TABLE 8 Motor Load Table (refer to Table 1)							
Device		HP	RA	LRA	kW Running (= HP)	Starting kW ¹	

Applications

The QT Series does not meet the necessary requirements for the following applications:

- NEC 695 Fire Pumps
- NEC 700 Emergency Systems
- NFPA 20 Fire Pumps NFPA 99 Healthcare

NFPA 110 Emergency Systems

Reference Codes

Related Codes and Standards: NEC 225 Branch Circuits and Feeders NEC 240 **Overcurrent Protection** NEC 250 Grounding NEC 445 Generators NEC 700 **Emergency Systems** NEC 701 Legally Required Standby NEC 702 **Optional Standby** NFPA 37 Installation & Use of Stationary Engines NFPA 54 National Fuel Gas Code NFPA 58 LP Gas Code ICC Fuel Gas Code

To Calculate kW						
120 V 1ø	Amps x 120/1000 = kW					
240 V 1ø	Amps x 240/1000 = kW					
208 V 3ø	(Amps x 208 x 1.732 x PF) /1000 = kW					
240 V 3ø	(Amps x 240 x 1.732 x PF) /1000 = kW					
480 V 3ø	(Amps x 480 x 1.732 x PF) /1000 = kW					

¹ See Table 430.7(B) for staring kVA per HP for motor loads.

TABLE 9	Non-Motor Load Table (refer to Table 2)					
Device		Amps	kW			

PF is application power factor (worst case 1.0) Typical application power factor is 0.95.

induster 5	witch Availability
RTSW - 10	0, 150, 200, 300 and 400 Amp service rated
RTSN – 10	0–800 3ø and 600–800 1ø Amp
RTSC – 10	0, 200, 400, 600, 800 Amp
GenReady	– 200 Amp service panel
-	RTS and GenReady switches only work
	with the Evolution or Nexes Controller.

Refer to Generator Sizing Instructions on other side of this sheet.

RECOMMENDED GENERATOR SIZE _____

Install Notes:

1. Consult manual for installation recommendations.

2. Consult local authority having jurisdiction for local requirements.

GENERAC

Generator Sizing Instructions:

There is not a single correct sizing solution. Following are several methods that, when mixed with good judgement, should result in an appropriately sized generator. Remember to consider load growth, seasonality, and effects of starting motors.

As municipalities and states adopt the new 2017 NEC Electrical Code, there may be new sizing requirements, spelled out in the code book, which the installation technician must follow. Always check with the local inspection department to confirm which code cycle will affect your install.

Never add Amps when sizing a generator. Convert Amps to kW and add kW to determine the required generator size. Power factors for various motor loads vary widely. Adding Amps without properly accounting for the power factor and/or mixing voltages will result in improperly sizing the generator.

When motors start, they create a current surge that step loads the generator and creates a voltage dip. After selecting a generator, reference the generator's surge capability using **table 3**. Verify that voltage dip is adequate for the application. Most commercial applications should be limited to about 15% voltage dip and residential applications should be limited to a 30% voltage dip.

Some applications utilize an uninterruptible power supply (UPS) to back up critical loads. Please read sizing guide for this load type.

Measurement Method 220.87 Exception NEC 2017

Connect a recording ammeter or power meter that is capable of measuring the maximum peak kW demand continuously over a minimum 30 day period. The maximum kW demand shall be taken while the building is occupied and shall include the larger of the heating or cooling loads. The peak kW demand shall be multiplied by 125%.

Peak kW demand X 125% = Calculated kW demand

Size the generator to the next standard size and verify UPS and motor load compatibility.

Determining Existing Loads/Billing History Method 220.87 NEC 2017

Many customers have a utility rate structure that has a peak demand charge. Using a year's worth of electric bills, size the generator 25% larger than the largest peak demand.

Verify motor and UPS load compatibility. Peak Demand = _____

Project Layout

| <u> </u> | |
 | |
|----------|--|------|------|------|------|------|------|------|------|------|--|

Load Summation Method

- Enter running kW for all motor loads (except the largest) expected to run during peak load levels into table 8. Refer to table 1 for typical motor load sizes and electrical requirements.
- Enter kW for all non-motor loads expected to run during peak load levels into table 9. Refer to table 2 for typical residential loads and rules of thumb.
- Add the running motor load kW, non-motor load kW, and the starting kW of the largest motor load.

Motor load running total	(minus largest motor):		
Non-motor load total:			kW (ref. table 9)
Starting load from larges	st cycling motor:		kW (ref. table 8)
Total electrical loads:		=	kW
Select generator:	Commercial (add 20 to	25% to total kW)	

Residential (add 10 to 20% to total KW)

 Confirm that voltage dip is within acceptable limits by comparing motor LRA to generator surge capability (see table #3).

5) Confirm UPS compatibility (see page 11).

System Capacity – Load Calculation

If the local municipality or state you are in has adopted the 2017 NEC Code, you may be required to use this step. Article 702 of the 2017 NEC includes a new requirement for sizing (702.4). If no other method for sizing is acceptable, sizing of the generator shall be made in accordance with Article 220 of the NEC. The system capacity estimating sheet will guide you through this process.

SMM Load Control Module

702.4 (B) (2) (a) NEC 2017

The SMM Load Control Module is a 50 amp contact housed in a NEMA 3R enclosure for indoor and outdoor installation applications. Through the use of the SMM Modules in conjunction with any of the 100–600 amp Smart Switches, household or business loads can be intelligently managed enabling the use of a smaller, more efficient generator system. Up to four SMM Modules can be used with a single switch.

Ball Park Estimates (Do not use for final sizing)

Estimate based on 60% service size: (commercial)

240 Volts, 1 Ø:	Amps x .15 =	kW
208 Volts, 3 Ø:	Amps x .22 =	kW
240 Volts, 3 Ø:	Amps x .25 =	kW
480 Volts, 3 Ø:	Amps x .50 =	kW

Estimate based on 40% service size: (residential)

240 Volts, 1 Ø:	Amps x .10 =	kW
208 Volts, 3 Ø:	Amps x .15 =	kW
240 Volts, 3 Ø:	Amps x .17 =	kW
480 Volts, 3 Ø:	Amps x .34 =	kW

Estimate based on square footage

Fast food, convenience stores, restaurants, grocery stores	kW = 50 kW + 10 watts/sq. ft.
Other commercial applications	kW = 30 kW + 5 watts/sq. ft.
Square footage =	Estimated kW =

Amps to kW Rule of Thumb (assumes .8 pf)

For 480 volt systems	Amps = kW x 1.5
For 208 volt systems	$Amps = kW \times 3.5$
For 240 volt 3 Ø systems	$Amps = kW \times 3$
For 240 volt 1 Ø systems	$Amps = kW \times 4$

System Capacity – Load Calculator

GENERAC

DIRECTIONS FOR NEC 2017, ARTICLE 220, PART IV

Worksheet — NE	C 2017, 220 P	art IV			
Contractor		Email			
Phone		Fax			
Job Name					
Date	Location			ļ	
Voltage (Circle)	240V -1Ø		1.51/		
Fuel	100.4mm	NG	LPV		
Elec. Service NET SQUARE FOOTAGE	100 Amp	200 Amp	400 Amp	Ot	
					Loads (kW)
GENERAL LOADS	Qty	Rating (Load)	Factor	Loads (VA)	$(VA \div 1,000)$
General Lighting and General Use Receptacles		3 VA/ft ²	100%		
Branch Circuits (1500 VA/ft²)					
Small Appliance Circuits (20 Amp)		1500	100%		
Laundry Circuits		1500	100%		
Fixed Appliances		Full Curre	-		
Well			100%		
Sump Pump			100%		
Freezer			100%		
Microwave (Not counter-top model)			100%		
Disposal			100%		
Dishwasher			100%		
Range			100%		
Wall-Mounted Oven			100%	1 1	
Counter-Mounted Cooking Surface			100%		
Water Heater			100%	i i	
Clothes Dryer			100%		
Garage Door Opener			100%	1 1	
Septic Grinder			100%	1 1	
Other (list)			100%	1 1	
			100%	1 1	
			100%	1 1	
			100%	+	
			100%	+ +	
			100%		
			100%		
			100%		
			100%		
			100%		
Total General Loads	I			VA	kW
HEAT / A-C LOAD	1	T	1000/		1
A-C / Cooling Equipment			100%	┦───┤	
Heat Pump				↓	
Compressor (if not included as A-C)	ļ	ļ	100%	ļļ	
Supplemental Electric Heat	ļ	ļ	65%	ļļ	
Electric Space Heating	ļ	ļ		ļļ	
Less than 4 separately controlled units	ļ	ļ	65%	ļ ļ	
4 or more separately controlled units			40%		
System With Continuous Nameplate Load	ļ		100%		
Largest Heat / A-C Load (VA) VA kW					
GENERAL LOADS					
1st 10 kW of General Loads 100% kW			100%	kW	
• Remaining General Loads (kW) 40% kW			40%	kW	
CALCULATED GENERAL LOAD (kW) kW					kW
LARGEST HEAT / A-C LOAD 100% kW kW					kW
TOTAL CALCULATED LOAD (Net General Loads + Heat/A-C Load)					kW
TOTAL GALGOLATED LOAD (NET GEHETAL LOAUS + MEAL/A-6 LOAU)					KVV

Contractor	Email
	Fax
	Location
VOLTAGE	□ 120/240 1Ø □ 120/208 3Ø □ 120/240 3Ø □ 277/480 3Ø
ТҮРЕ	🗌 Natural Gas 🗌 LP Vapor (LPV)
ELEC. SERVICE	□ 100 Amp □ 150 Amp □ 200 Amp □ 300 Amp □ 400 Amp □ 600 Amp □ 0ther

Before installation contact local jurisdiction to confirm all requirements are met. Jurisdictions may vary. Generac recommends contacting local authorities prior to installation.

LOADS: Look for heavy building loads such as refrigeration, air conditioning, pumps or UPS systems. Use the following for sizing and determining generator kW.

TABLE 8	TABLE 8 Motor Load Table (refer to Table 1)						
Device		HP	RA	LRA	kW Running (= HP)	Starting kW ¹	

Applications

The QT Series does not meet the necessary requirements for the following applications:

- NEC 695 Fire Pumps NEC 700 Emergency Sys
- NEC 700 Emergency Systems NFPA 20 Fire Pumps
- NFPA 99 Healthcare

NFPA 110 Emergency Systems

Reference Codes

Related Codes and Standards: NEC 225 Branch Circuits and Feeders NEC 240 **Overcurrent Protection** NEC 250 Grounding NEC 445 Generators NEC 700 **Emergency Systems** NEC 701 Legally Required Standby NEC 702 **Optional Standby** NFPA 37 Installation & Use of Stationary Engines NFPA 54 National Fuel Gas Code NFPA 58 LP Gas Code ICC Fuel Gas Code

To Calculate kW						
120 V 1ø	Amps x 120/1000 = kW					
240 V 1ø	Amps x 240/1000 = kW					
208 V 3ø	(Amps x 208 x 1.732 x PF) /1000 = kW					
240 V 3ø	(Amps x 240 x 1.732 x PF) /1000 = kW					
480 V 3ø	(Amps x 480 x 1.732 x PF) /1000 = kW					

¹ See Table 430.7(B) for staring kVA per HP for motor loads.

TABLE 9	Non-Motor Load Table (refer to Table 2)						
Device		Amps	kW				

PF is application power factor (worst case 1.0) Typical application power factor is 0.95.

Indialer 5	witch Availability
RTSW – 10	0, 150, 200, 300 and 400 Amp service rated
RTSN – 100	0–800 3ø and 600–800 1ø Amp
RTSC – 10	0, 200, 400, 600, 800 Amp
GenReady	– 200 Amp service panel
-	RTS and GenReady switches only work
	with the Evolution or Nexes Controller.

Refer to Generator Sizing Instructions on other side of this sheet.

RECOMMENDED GENERATOR SIZE _____

Install Notes:

1. Consult manual for installation recommendations.

2. Consult local authority having jurisdiction for local requirements.

GENERAC

Generator Sizing Instructions:

There is not a single correct sizing solution. Following are several methods that, when mixed with good judgement, should result in an appropriately sized generator. Remember to consider load growth, seasonality, and effects of starting motors.

As municipalities and states adopt the new 2017 NEC Electrical Code, there may be new sizing requirements, spelled out in the code book, which the installation technician must follow. Always check with the local inspection department to confirm which code cycle will affect your install.

Never add Amps when sizing a generator. Convert Amps to kW and add kW to determine the required generator size. Power factors for various motor loads vary widely. Adding Amps without properly accounting for the power factor and/or mixing voltages will result in improperly sizing the generator.

When motors start, they create a current surge that step loads the generator and creates a voltage dip. After selecting a generator, reference the generator's surge capability using **table 3**. Verify that voltage dip is adequate for the application. Most commercial applications should be limited to about 15% voltage dip and residential applications should be limited to a 30% voltage dip.

Some applications utilize an uninterruptible power supply (UPS) to back up critical loads. Please read sizing guide for this load type.

Measurement Method 220.87 Exception NEC 2017

Connect a recording ammeter or power meter that is capable of measuring the maximum peak kW demand continuously over a minimum 30 day period. The maximum kW demand shall be taken while the building is occupied and shall include the larger of the heating or cooling loads. The peak kW demand shall be multiplied by 125%.

Peak kW demand X 125% = Calculated kW demand

Size the generator to the next standard size and verify UPS and motor load compatibility.

Determining Existing Loads/Billing History Method 220.87 NEC 2017

Many customers have a utility rate structure that has a peak demand charge. Using a year's worth of electric bills, size the generator 25% larger than the largest peak demand.

Verify motor and UPS load compatibility. Peak Demand = _____

Project Layout

| <u> </u> | |
 | |
|----------|--|------|------|------|------|------|------|------|------|------|--|

Load Summation Method

- Enter running kW for all motor loads (except the largest) expected to run during peak load levels into table 8. Refer to table 1 for typical motor load sizes and electrical requirements.
- Enter kW for all non-motor loads expected to run during peak load levels into table 9. Refer to table 2 for typical residential loads and rules of thumb.
- Add the running motor load kW, non-motor load kW, and the starting kW of the largest motor load.

Motor load running total	(minus largest motor):		
Non-motor load total:			kW (ref. table 9)
Starting load from larges	st cycling motor:		
Total electrical loads:		=	kW
Select generator:	Commercial (add 20 to	25% to total kW)	

Residential (add 10 to 20% to total KW)

 Confirm that voltage dip is within acceptable limits by comparing motor LRA to generator surge capability (see table #3).

5) Confirm UPS compatibility (see page 11).

System Capacity – Load Calculation

If the local municipality or state you are in has adopted the 2017 NEC Code, you may be required to use this step. Article 702 of the 2017 NEC includes a new requirement for sizing (702.4). If no other method for sizing is acceptable, sizing of the generator shall be made in accordance with Article 220 of the NEC. The system capacity estimating sheet will guide you through this process.

SMM Load Control Module

702.4 (B) (2) (a) NEC 2017

The SMM Load Control Module is a 50 amp contact housed in a NEMA 3R enclosure for indoor and outdoor installation applications. Through the use of the SMM Modules in conjunction with any of the 100–600 amp Smart Switches, household or business loads can be intelligently managed enabling the use of a smaller, more efficient generator system. Up to four SMM Modules can be used with a single switch.

Ball Park Estimates (Do not use for final sizing)

Estimate based on 60% service size: (commercial)

240 Volts, 1 Ø:	Amps x .15 =	kW
208 Volts, 3 Ø:	Amps x .22 =	kW
240 Volts, 3 Ø:	Amps x .25 =	kW
480 Volts, 3 Ø:	Amps x .50 =	kW

Estimate based on 40% service size: (residential)

240 Volts, 1 Ø:	Amps x .10 =	kW
208 Volts, 3 Ø:	Amps x .15 =	kW
240 Volts, 3 Ø:	Amps x .17 =	kW
480 Volts, 3 Ø:	Amps x .34 =	kW

Estimate based on square footage

Fast food, convenience stores, restaurants, grocery stores	kW = 50 kW + 10 watts/sq. ft.
Other commercial applications	kW = 30 kW + 5 watts/sq. ft.
Square footage =	Estimated kW =

Amps to kW Rule of Thumb (assumes .8 pf)

For 480 volt systems	Amps = kW x 1.5
For 208 volt systems	$Amps = kW \times 3.5$
For 240 volt 3 Ø systems	$Amps = kW \times 3$
For 240 volt 1 Ø systems	$Amps = kW \times 4$

System Capacity – Load Calculator

GENERAC

DIRECTIONS FOR NEC 2017, ARTICLE 220, PART IV

Worksheet — NE	C 2017, 220 P	art IV			
Contractor		Email			
Phone		Fax			
Job Name					
Date	Location			ļ	
Voltage (Circle)	240V -1Ø		1.51/		
Fuel	100.4mm	NG 000 Ame	LPV		
Elec. Service NET SQUARE FOOTAGE	100 Amp	200 Amp	400 Amp	Ot	
					Loads (kW)
GENERAL LOADS	Qty	Rating (Load)	Factor	Loads (VA)	$(VA \div 1,000)$
General Lighting and General Use Receptacles		3 VA/ft ²	100%		
Branch Circuits (1500 VA/ft²)					
Small Appliance Circuits (20 Amp)		1500	100%		
Laundry Circuits		1500	100%		
Fixed Appliances		Full Curre	-		
Well			100%		
Sump Pump			100%		
Freezer			100%		
Microwave (Not counter-top model)			100%		
Disposal			100%		
Dishwasher			100%		
Range			100%		
Wall-Mounted Oven			100%	1 1	
Counter-Mounted Cooking Surface			100%		
Water Heater			100%	1	
Clothes Dryer			100%		
Garage Door Opener			100%	1 1	
Septic Grinder			100%	1 1	
Other (list)			100%	1 1	
			100%	1 1	
			100%	1 1	
			100%	+	
			100%	+ +	
			100%		
			100%		
			100%		
			100%		
			100%		
Total General Loads	I			VA	kW
HEAT / A-C LOAD	1	T	1000/		1
A-C / Cooling Equipment			100%	┦───┤	
Heat Pump				↓	
Compressor (if not included as A-C)	ļ	ļ	100%	ļļ	
Supplemental Electric Heat	ļ	ļ	65%	ļļ	
Electric Space Heating	ļ	ļ		ļļ	
Less than 4 separately controlled units	ļ	ļ	65%	ļ ļ	
4 or more separately controlled units			40%		
System With Continuous Nameplate Load	ļ		100%		
Largest Heat / A-C Load (VA) VA kW					
GENERAL LOADS					
1st 10 kW of General Loads 100% kW			100%	kW	
• Remaining General Loads (kW) 40% kW			40%	kW	
CALCULATED GENERAL LOAD (kW) kW					kW
LARGEST HEAT / A-C LOAD 100% kW kW					kW
TOTAL CALCULATED LOAD (Net General Loads + Heat/A-C Load)					kW
TOTAL GALGOLATED LOAD (NET GEHETAL LOAUS + MEAL/A-6 LOAU)					KVV

Contractor	Email
	Fax
	Location
VOLTAGE	□ 120/240 1Ø □ 120/208 3Ø □ 120/240 3Ø □ 277/480 3Ø
TYPE	🗌 Natural Gas 🛛 LP Vapor (LPV)
ELEC. SERVICE	□ 100 Amp □ 150 Amp □ 200 Amp □ 300 Amp □ 400 Amp □ 600 Amp □ 0ther

Before installation contact local jurisdiction to confirm all requirements are met. Jurisdictions may vary. Generac recommends contacting local authorities prior to installation.

LOADS: Look for heavy building loads such as refrigeration, air conditioning, pumps or UPS systems. Use the following for sizing and determining generator kW.

TABLE 8	Motor Load Table (refer to Table 1)						
Device		HP	RA	LRA	kW Running (= HP)	Starting kW ¹	

Applications

The QT Series does not meet the necessary requirements for the following applications:

- NEC 695 Fire Pumps
- NEC 700 Emergency Systems NFPA 20 Fire Pumps
- NFPA 20 Fire Pumps NFPA 99 Healthcare
- NFPA 110 Emergency Systems

Reference Codes

Related Codes and Standards: NEC 225 Branch Circuits and Feeders NEC 240 **Overcurrent Protection** NEC 250 Grounding NEC 445 Generators NEC 700 **Emergency Systems** NEC 701 Legally Required Standby NEC 702 **Optional Standby** NFPA 37 Installation & Use of Stationary Engines NFPA 54 National Fuel Gas Code NFPA 58 LP Gas Code ICC Fuel Gas Code

To Calculate kW						
120 V 1ø	Amps x 120/1000 = kW					
240 V 1ø	Amps x 240/1000 = kW					
208 V 3ø	(Amps x 208 x 1.732 x PF) /1000 = kW					
240 V 3ø	(Amps x 240 x 1.732 x PF) /1000 = kW					
480 V 3ø	(Amps x 480 x 1.732 x PF) /1000 = kW					

¹ See Table 430.7(B) for staring kVA per HP for motor loads.

TABLE 9	Non-Motor Load Table (refer to Table 2)					
Device		Amps	kW			

PF is application power factor (worst case 1.0) Typical application power factor is 0.95.

Indialer 5	witch Availability
RTSW – 10	0, 150, 200, 300 and 400 Amp service rated
RTSN – 100	0–800 3ø and 600–800 1ø Amp
RTSC – 10	0, 200, 400, 600, 800 Amp
GenReady	– 200 Amp service panel
-	RTS and GenReady switches only work
	with the Evolution or Nexes Controller.

Refer to Generator Sizing Instructions on other side of this sheet.

RECOMMENDED GENERATOR SIZE _____

Install Notes:

1. Consult manual for installation recommendations.

2. Consult local authority having jurisdiction for local requirements.

GENERAC

Generator Sizing Instructions:

There is not a single correct sizing solution. Following are several methods that, when mixed with good judgement, should result in an appropriately sized generator. Remember to consider load growth, seasonality, and effects of starting motors.

As municipalities and states adopt the new 2017 NEC Electrical Code, there may be new sizing requirements, spelled out in the code book, which the installation technician must follow. Always check with the local inspection department to confirm which code cycle will affect your install.

Never add Amps when sizing a generator. Convert Amps to kW and add kW to determine the required generator size. Power factors for various motor loads vary widely. Adding Amps without properly accounting for the power factor and/or mixing voltages will result in improperly sizing the generator.

When motors start, they create a current surge that step loads the generator and creates a voltage dip. After selecting a generator, reference the generator's surge capability using **table 3**. Verify that voltage dip is adequate for the application. Most commercial applications should be limited to about 15% voltage dip and residential applications should be limited to a 30% voltage dip.

Some applications utilize an uninterruptible power supply (UPS) to back up critical loads. Please read sizing guide for this load type.

Measurement Method 220.87 Exception NEC 2017

Connect a recording ammeter or power meter that is capable of measuring the maximum peak kW demand continuously over a minimum 30 day period. The maximum kW demand shall be taken while the building is occupied and shall include the larger of the heating or cooling loads. The peak kW demand shall be multiplied by 125%.

Peak kW demand X 125% = Calculated kW demand

Size the generator to the next standard size and verify UPS and motor load compatibility.

Determining Existing Loads/Billing History Method 220.87 NEC 2017

Many customers have a utility rate structure that has a peak demand charge. Using a year's worth of electric bills, size the generator 25% larger than the largest peak demand.

Verify motor and UPS load compatibility. Peak Demand = _____

Project Layout

 •									•	•	

Load Summation Method

- Enter running kW for all motor loads (except the largest) expected to run during peak load levels into table 8. Refer to table 1 for typical motor load sizes and electrical requirements.
- Enter kW for all non-motor loads expected to run during peak load levels into table 9. Refer to table 2 for typical residential loads and rules of thumb.
- Add the running motor load kW, non-motor load kW, and the starting kW of the largest motor load.

Motor load running total	(minus largest motor):		
Non-motor load total:			kW (ref. table 9)
Starting load from larges	st cycling motor:		
Total electrical loads:		=	kW
Select generator:	Commercial (add 20 to	25% to total kW)	

Residential (add 20 to 20% to total KW)

 Confirm that voltage dip is within acceptable limits by comparing motor LRA to generator surge capability (see table #3).

5) Confirm UPS compatibility (see page 11).

System Capacity – Load Calculation

If the local municipality or state you are in has adopted the 2017 NEC Code, you may be required to use this step. Article 702 of the 2017 NEC includes a new requirement for sizing (702.4). If no other method for sizing is acceptable, sizing of the generator shall be made in accordance with Article 220 of the NEC. The system capacity estimating sheet will guide you through this process.

SMM Load Control Module

702.4 (B) (2) (a) NEC 2017

The SMM Load Control Module is a 50 amp contact housed in a NEMA 3R enclosure for indoor and outdoor installation applications. Through the use of the SMM Modules in conjunction with any of the 100–600 amp Smart Switches, household or business loads can be intelligently managed enabling the use of a smaller, more efficient generator system. Up to four SMM Modules can be used with a single switch.

Ball Park Estimates (Do not use for final sizing)

Estimate based on 60% service size: (commercial)

240 Volts, 1 Ø:	Amps x .15 =	kW
208 Volts, 3 Ø:	Amps x .22 =	kW
240 Volts, 3 Ø:	Amps x .25 =	kW
480 Volts, 3 Ø:	Amps x .50 =	kW

Estimate based on 40% service size: (residential)

240 Volts, 1 Ø:	Amps x .10 =	kW
208 Volts, 3 Ø:	Amps x .15 =	kW
240 Volts, 3 Ø:	Amps x .17 =	kW
480 Volts, 3 Ø:	Amps x .34 =	kW

Estimate based on square footage

Fast food, convenience stores, restaurants, grocery stores	kW = 50 kW + 10 watts/sq. ft.
Other commercial applications	kW = 30 kW + 5 watts/sq. ft.
Square footage =	Estimated kW =

Amps to kW Rule of Thumb (assumes .8 pf)

For 480 volt systems	Amps = kW x 1.5
For 208 volt systems	$Amps = kW \times 3.5$
For 240 volt 3 Ø systems	$Amps = kW \times 3$
For 240 volt 1 Ø systems	$Amps = kW \times 4$

System Capacity – Load Calculator

GENERAC

DIRECTIONS FOR NEC 2017, ARTICLE 220, PART IV

Worksheet — NE	C 2017, 220 P	art IV			
Contractor		Email			
Phone		Fax			
Job Name					
Date	Location			ļ	
Voltage (Circle)	240V -1Ø		1.51/		
Fuel	100.4mm	NG 000 Ame	LPV		
Elec. Service NET SQUARE FOOTAGE	100 Amp	200 Amp	400 Amp	Ot	
					Loads (kW)
GENERAL LOADS	Qty	Rating (Load)	Factor	Loads (VA)	$(VA \div 1,000)$
General Lighting and General Use Receptacles		3 VA/ft ²	100%		
Branch Circuits (1500 VA/ft ²)					
Small Appliance Circuits (20 Amp)		1500	100%		
Laundry Circuits		1500	100%		
Fixed Appliances		Full Curre	-		
Well			100%		
Sump Pump			100%		
Freezer			100%		
Microwave (Not counter-top model)			100%		
Disposal			100%		
Dishwasher			100%		
Range			100%		
Wall-Mounted Oven			100%	1 1	
Counter-Mounted Cooking Surface			100%		
Water Heater			100%	1	
Clothes Dryer			100%		
Garage Door Opener			100%	1 1	
Septic Grinder			100%	1 1	
Other (list)			100%	1 1	
			100%	1 1	
			100%	1 1	
			100%	+	
			100%	+ +	
			100%		
			100%		
			100%		
			100%		
			100%		
Total General Loads	I			VA	kW
HEAT / A-C LOAD	1	T	1000/		1
A-C / Cooling Equipment			100%	┦───┤	
Heat Pump				↓ ↓	
Compressor (if not included as A-C)	ļ	ļ	100%	ļļ	
Supplemental Electric Heat	ļ	ļ	65%	ļļ	
Electric Space Heating	ļ	ļ		ļļ	
Less than 4 separately controlled units	ļ	ļ	65%	ļ ļ	
4 or more separately controlled units			40%		
System With Continuous Nameplate Load	ļ		100%		
Largest Heat / A-C Load (VA) VA kW					
GENERAL LOADS					
1st 10 kW of General Loads 100% kW			100%	kW	
• Remaining General Loads (kW) 40% kW			40%	kW	
CALCULATED GENERAL LOAD (kW) kW					kW
LARGEST HEAT / A-C LOAD 100% kW kW					kW
TOTAL CALCULATED LOAD (Net General Loads + Heat/A-C Load)					kW
TOTAL GALGOLATED LOAD (NET GEHETAL LOAUS + MEAL/A-6 LOAU)					KVV

Contractor	Email
	Fax
	Location
VOLTAGE	□ 120/240 1Ø □ 120/208 3Ø □ 120/240 3Ø □ 277/480 3Ø
TYPE	🗌 Natural Gas 🛛 LP Vapor (LPV)
ELEC. SERVICE	□ 100 Amp □ 150 Amp □ 200 Amp □ 300 Amp □ 400 Amp □ 600 Amp □ 0ther

Before installation contact local jurisdiction to confirm all requirements are met. Jurisdictions may vary. Generac recommends contacting local authorities prior to installation.

LOADS: Look for heavy building loads such as refrigeration, air conditioning, pumps or UPS systems. Use the following for sizing and determining generator kW.

TABLE 8	8 Motor Load Table (refer to Table 1)						
Device		HP	RA	LRA	kW Running (= HP)	Starting kW ¹	

Applications

The QT Series does not meet the necessary requirements for the following applications:

- NEC 695 Fire Pumps
- NEC 700 Emergency Systems NFPA 20 Fire Pumps
- NFPA 99 Healthcare
- NFPA 110 Emergency Systems

Reference Codes

Related Codes and Standards: NEC 225 Branch Circuits and Feeders NEC 240 **Overcurrent Protection** NEC 250 Grounding NEC 445 Generators NEC 700 **Emergency Systems** NEC 701 Legally Required Standby NEC 702 **Optional Standby** NFPA 37 Installation & Use of Stationary Engines NFPA 54 National Fuel Gas Code NFPA 58 LP Gas Code ICC Fuel Gas Code

To Calculate kW						
120 V 1ø	Amps x 120/1000 = kW					
240 V 1ø	Amps x 240/1000 = kW					
208 V 3ø	(Amps x 208 x 1.732 x PF) /1000 = kW					
240 V 3ø	(Amps x 240 x 1.732 x PF) /1000 = kW					
480 V 3ø	(Amps x 480 x 1.732 x PF) /1000 = kW					

¹ See Table 430.7(B) for staring kVA per HP for motor loads.

TABLE 9	Non-Motor Load Table (refer to Table 2)				
Device		Amps	kW		

PF is application power factor (worst case 1.0) Typical application power factor is 0.95.

induster 5	witch Availability
RTSW - 10	0, 150, 200, 300 and 400 Amp service rated
RTSN – 10	0–800 3ø and 600–800 1ø Amp
RTSC – 10	0, 200, 400, 600, 800 Amp
GenReady	– 200 Amp service panel
-	RTS and GenReady switches only work
	with the Evolution or Nexes Controller.

Refer to Generator Sizing Instructions on other side of this sheet.

RECOMMENDED GENERATOR SIZE _____

Install Notes:

1. Consult manual for installation recommendations.

2. Consult local authority having jurisdiction for local requirements.

GENERAC

Generator Sizing Instructions:

There is not a single correct sizing solution. Following are several methods that, when mixed with good judgement, should result in an appropriately sized generator. Remember to consider load growth, seasonality, and effects of starting motors.

As municipalities and states adopt the new 2017 NEC Electrical Code, there may be new sizing requirements, spelled out in the code book, which the installation technician must follow. Always check with the local inspection department to confirm which code cycle will affect your install.

Never add Amps when sizing a generator. Convert Amps to kW and add kW to determine the required generator size. Power factors for various motor loads vary widely. Adding Amps without properly accounting for the power factor and/or mixing voltages will result in improperly sizing the generator.

When motors start, they create a current surge that step loads the generator and creates a voltage dip. After selecting a generator, reference the generator's surge capability using **table 3**. Verify that voltage dip is adequate for the application. Most commercial applications should be limited to about 15% voltage dip and residential applications should be limited to a 30% voltage dip.

Some applications utilize an uninterruptible power supply (UPS) to back up critical loads. Please read sizing guide for this load type.

Measurement Method 220.87 Exception NEC 2017

Connect a recording ammeter or power meter that is capable of measuring the maximum peak kW demand continuously over a minimum 30 day period. The maximum kW demand shall be taken while the building is occupied and shall include the larger of the heating or cooling loads. The peak kW demand shall be multiplied by 125%.

Peak kW demand X 125% = Calculated kW demand

Size the generator to the next standard size and verify UPS and motor load compatibility.

Determining Existing Loads/Billing History Method 220.87 NEC 2017

Many customers have a utility rate structure that has a peak demand charge. Using a year's worth of electric bills, size the generator 25% larger than the largest peak demand.

Verify motor and UPS load compatibility. Peak Demand = _____

Project Layout

| <u> </u> | |
 | |
|----------|--|------|------|------|------|------|------|------|------|------|--|

Load Summation Method

- Enter running kW for all motor loads (except the largest) expected to run during peak load levels into table 8. Refer to table 1 for typical motor load sizes and electrical requirements.
- Enter kW for all non-motor loads expected to run during peak load levels into table 9. Refer to table 2 for typical residential loads and rules of thumb.
- Add the running motor load kW, non-motor load kW, and the starting kW of the largest motor load.

Motor load running total	(minus largest motor):		kW (ref. table 8)
Non-motor load total:			kW (ref. table 9)
Starting load from larges	st cycling motor:		kW (ref. table 8)
Total electrical loads:		=	kW
Select generator:	Commercial (add 20 to	o 25% to total kW)	

nerator: Commercial (add 20 to 25% to total kW) Residential (add 10 to 20% to total kW)

 Confirm that voltage dip is within acceptable limits by comparing motor LRA to generator surge capability (see table #3).

5) Confirm UPS compatibility (see page 11).

System Capacity – Load Calculation

If the local municipality or state you are in has adopted the 2017 NEC Code, you may be required to use this step. Article 702 of the 2017 NEC includes a new requirement for sizing (702.4). If no other method for sizing is acceptable, sizing of the generator shall be made in accordance with Article 220 of the NEC. The system capacity estimating sheet will guide you through this process.

SMM Load Control Module

702.4 (B) (2) (a) NEC 2017

The SMM Load Control Module is a 50 amp contact housed in a NEMA 3R enclosure for indoor and outdoor installation applications. Through the use of the SMM Modules in conjunction with any of the 100–600 amp Smart Switches, household or business loads can be intelligently managed enabling the use of a smaller, more efficient generator system. Up to four SMM Modules can be used with a single switch.

Ball Park Estimates (Do not use for final sizing)

Estimate based on 60% service size: (commercial)

240 Volts, 1 Ø:	Amps x .15 =	_kW
208 Volts, 3 Ø:	Amps x .22 =	_kW
240 Volts, 3 Ø:	Amps x .25 =	_kW
480 Volts, 3 Ø:	Amps x .50 =	_kW

Estimate based on 40% service size: (residential)

240 Volts, 1 Ø:	Amps x .10 =	kW
208 Volts, 3 Ø:	Amps x .15 =	kW
240 Volts, 3 Ø:	Amps x .17 =	kW
480 Volts, 3 Ø:	Amps x .34 =	kW

Estimate based on square footage

Fast food, convenience stores, restaurants, grocery stores	kW = 50 kW + 10 watts/sq. ft.
Other commercial applications	kW = 30 kW + 5 watts/sq. ft.
Square footage =	Estimated kW =

Amps to kW Rule of Thumb (assumes .8 pf)

$Amps = kW \times 1.5$
$Amps = kW \times 3.5$
$Amps = kW \times 3$
$Amps = kW \times 4$

System Capacity – Load Calculator

GENERA

DIRECTIONS FOR NEC 2017, ARTICLE 220, PART IV

Worksheet — NE	C 2017, 220 P	art IV			
Contractor		Email			
Phone		Fax			
Job Name					
Date	Location			ļ	
Voltage (Circle)	240V -1Ø		1.51/		
Fuel	100.4mm	NG	LPV		
Elec. Service NET SQUARE FOOTAGE	100 Amp	200 Amp	400 Amp	Ot	
					Loads (kW)
GENERAL LOADS	Qty	Rating (Load)	Factor	Loads (VA)	$(VA \div 1,000)$
General Lighting and General Use Receptacles		3 VA/ft ²	100%		
Branch Circuits (1500 VA/ft²)					
Small Appliance Circuits (20 Amp)		1500	100%		
Laundry Circuits		1500	100%		
Fixed Appliances		Full Curre	-		
Well			100%		
Sump Pump			100%		
Freezer			100%		
Microwave (Not counter-top model)			100%		
Disposal			100%		
Dishwasher			100%		
Range			100%		
Wall-Mounted Oven			100%	1 1	
Counter-Mounted Cooking Surface			100%		
Water Heater			100%	1	
Clothes Dryer			100%		
Garage Door Opener			100%	1 1	
Septic Grinder			100%	1 1	
Other (list)			100%	1 1	
			100%	1 1	
			100%	1 1	
			100%	+	
			100%	+ +	
			100%		
			100%		
			100%		
			100%		
			100%		
Total General Loads	I			VA	kW
HEAT / A-C LOAD	1	T	1000/		1
A-C / Cooling Equipment			100%	┦───┤	
Heat Pump				↓ ↓	
Compressor (if not included as A-C)	ļ	ļ	100%	ļļ	
Supplemental Electric Heat	ļ	ļ	65%	ļļ	
Electric Space Heating	ļ	ļ		ļļ	
Less than 4 separately controlled units	ļ	ļ	65%	ļ ļ	
4 or more separately controlled units			40%		
System With Continuous Nameplate Load	ļ		100%		
Largest Heat / A-C Load (VA) VA kW					
GENERAL LOADS					
1st 10 kW of General Loads 100% kW			100%	kW	
• Remaining General Loads (kW) 40% kW			40%	kW	
CALCULATED GENERAL LOAD (kW) kW					kW
LARGEST HEAT / A-C LOAD 100% kW kW					kW
TOTAL CALCULATED LOAD (Net General Loads + Heat/A-C Load)					kW
TOTAL GALGOLATED LOAD (NET GEHETAL LOAUS + MEAL/A-6 LOAU)					KVV

Contractor	Email
	Fax
	Location
VOLTAGE	□ 120/240 1Ø □ 120/208 3Ø □ 120/240 3Ø □ 277/480 3Ø
ТҮРЕ	🗌 Natural Gas 🗌 LP Vapor (LPV)
ELEC. SERVICE	□ 100 Amp □ 150 Amp □ 200 Amp □ 300 Amp □ 400 Amp □ 600 Amp □ 0ther

Before installation contact local jurisdiction to confirm all requirements are met. Jurisdictions may vary. Generac recommends contacting local authorities prior to installation.

LOADS: Look for heavy building loads such as refrigeration, air conditioning, pumps or UPS systems. Use the following for sizing and determining generator kW.

TABLE 8	Motor Load Table (refer to Table 1)					
Device		HP	RA	LRA	kW Running (= HP)	Starting kW ¹

Applications

The QT Series does not meet the necessary requirements for the following applications:

- NEC 695 Fire Pumps NEC 700 Emergency Syst
- NEC 700 Emergency Systems NFPA 20 Fire Pumps
- NFPA 99 Healthcare
- NFPA 110 Emergency Systems

Reference Codes

Related Codes and Standards: NEC 225 Branch Circuits and Feeders NEC 240 **Overcurrent Protection** NEC 250 Grounding NEC 445 Generators NEC 700 **Emergency Systems** NEC 701 Legally Required Standby NEC 702 **Optional Standby** NFPA 37 Installation & Use of Stationary Engines NFPA 54 National Fuel Gas Code NFPA 58 LP Gas Code ICC **Fuel Gas Code**

To Calculate kW						
120 V 1ø	Amps x 120/1000 = kW					
240 V 1ø	Amps x 240/1000 = kW					
208 V 3ø	(Amps x 208 x 1.732 x PF) /1000 = kW					
240 V 3ø	(Amps x 240 x 1.732 x PF) /1000 = kW					
480 V 3ø	(Amps x 480 x 1.732 x PF) /1000 = kW					

¹ See Table 430.7(B) for staring kVA per HP for motor loads.

TABLE 9	Non-Motor Load Table (refer to Table 2)					
Device		Amps	kW			

PF is application power factor (worst case 1.0) Typical application power factor is 0.95.

<u>Indianation o</u>	witch Availability
RTSW – 10	00, 150, 200, 300 and 400 Amp service rated
RTSN - 10	0–800 3ø and 600–800 1ø Amp
RTSC - 10	0, 200, 400, 600, 800 Amp
GenReady	– 200 Amp service panel
	RTS and GenReady switches only work
	with the Evolution or Nexes Controller.

Refer to Generator Sizing Instructions on other side of this sheet.

RECOMMENDED GENERATOR SIZE _____

Install Notes:

1. Consult manual for installation recommendations.

2. Consult local authority having jurisdiction for local requirements.

GENERAC

Generator Sizing Instructions:

There is not a single correct sizing solution. Following are several methods that, when mixed with good judgement, should result in an appropriately sized generator. Remember to consider load growth, seasonality, and effects of starting motors.

As municipalities and states adopt the new 2017 NEC Electrical Code, there may be new sizing requirements, spelled out in the code book, which the installation technician must follow. Always check with the local inspection department to confirm which code cycle will affect your install.

Never add Amps when sizing a generator. Convert Amps to kW and add kW to determine the required generator size. Power factors for various motor loads vary widely. Adding Amps without properly accounting for the power factor and/or mixing voltages will result in improperly sizing the generator.

When motors start, they create a current surge that step loads the generator and creates a voltage dip. After selecting a generator, reference the generator's surge capability using **table 3**. Verify that voltage dip is adequate for the application. Most commercial applications should be limited to about 15% voltage dip and residential applications should be limited to a 30% voltage dip.

Some applications utilize an uninterruptible power supply (UPS) to back up critical loads. Please read sizing guide for this load type.

Measurement Method 220.87 Exception NEC 2017

Connect a recording ammeter or power meter that is capable of measuring the maximum peak kW demand continuously over a minimum 30 day period. The maximum kW demand shall be taken while the building is occupied and shall include the larger of the heating or cooling loads. The peak kW demand shall be multiplied by 125%.

Peak kW demand X 125% = Calculated kW demand

Size the generator to the next standard size and verify UPS and motor load compatibility.

Determining Existing Loads/Billing History Method 220.87 NEC 2017

Many customers have a utility rate structure that has a peak demand charge. Using a year's worth of electric bills, size the generator 25% larger than the largest peak demand.

Verify motor and UPS load compatibility. Peak Demand = _____

Project Layout

 •									•	•	

Load Summation Method

- Enter running kW for all motor loads (except the largest) expected to run during peak load levels into table 8. Refer to table 1 for typical motor load sizes and electrical requirements.
- Enter kW for all non-motor loads expected to run during peak load levels into table 9. Refer to table 2 for typical residential loads and rules of thumb.
- Add the running motor load kW, non-motor load kW, and the starting kW of the largest motor load.

Motor load running total	(minus largest motor):		kW (ref. table 8)
Non-motor load total:			kW (ref. table 9)
Starting load from larges	st cycling motor:		kW (ref. table 8)
Total electrical loads:		=	kW
Select generator:	Commercial (add 20 to	o 25% to total kW)	

nerator: Commercial (add 20 to 25% to total kW) Residential (add 10 to 20% to total kW)

 Confirm that voltage dip is within acceptable limits by comparing motor LRA to generator surge capability (see table #3).

5) Confirm UPS compatibility (see page 11).

System Capacity – Load Calculation

If the local municipality or state you are in has adopted the 2017 NEC Code, you may be required to use this step. Article 702 of the 2017 NEC includes a new requirement for sizing (702.4). If no other method for sizing is acceptable, sizing of the generator shall be made in accordance with Article 220 of the NEC. The system capacity estimating sheet will guide you through this process.

SMM Load Control Module

702.4 (B) (2) (a) NEC 2017

The SMM Load Control Module is a 50 amp contact housed in a NEMA 3R enclosure for indoor and outdoor installation applications. Through the use of the SMM Modules in conjunction with any of the 100–600 amp Smart Switches, household or business loads can be intelligently managed enabling the use of a smaller, more efficient generator system. Up to four SMM Modules can be used with a single switch.

Ball Park Estimates (Do not use for final sizing)

Estimate based on 60% service size: (commercial)

240 Volts, 1 Ø:	Amps x .15 =	kW
208 Volts, 3 Ø:	Amps x .22 =	kW
240 Volts, 3 Ø:	Amps x .25 =	kW
480 Volts, 3 Ø:	Amps x .50 =	kW

Estimate based on 40% service size: (residential)

240 Volts, 1 Ø:	Amps x .10 = _	kW
208 Volts, 3 Ø:	Amps x .15 =	kW
240 Volts, 3 Ø:	Amps x .17 =	kW
480 Volts, 3 Ø:	Amps x .34 =	kW

Estimate based on square footage

Fast food, convenience stores, restaurants, grocery stores	kW = 50 kW + 10 watts/sq. ft.
Other commercial applications	kW = 30 kW + 5 watts/sq. ft.
Square footage =	Estimated kW =

Amps to kW Rule of Thumb (assumes .8 pf)

For 480 volt systems	Amps = kW x 1.5
For 208 volt systems	$Amps = kW \times 3.5$
For 240 volt 3 Ø systems	$Amps = kW \times 3$
For 240 volt 1 Ø systems	$Amps = kW \times 4$

System Capacity – Load Calculator

GENERAC

DIRECTIONS FOR NEC 2017, ARTICLE 220, PART IV

Worksheet — NE	C 2017, 220 P	art IV			
Contractor		Email			
Phone		Fax			
Job Name					
Date	Location			ļ	
Voltage (Circle)	240V -1Ø		1.51/		
Fuel	100.4mm	NG	LPV		
Elec. Service NET SQUARE FOOTAGE	100 Amp	200 Amp	400 Amp	Ot	
					Loads (kW)
GENERAL LOADS	Qty	Rating (Load)	Factor	Loads (VA)	$(VA \div 1,000)$
General Lighting and General Use Receptacles		3 VA/ft ²	100%		
Branch Circuits (1500 VA/ft²)					
Small Appliance Circuits (20 Amp)		1500	100%		
Laundry Circuits		1500	100%		
Fixed Appliances		Full Curre	-		
Well			100%		
Sump Pump			100%		
Freezer			100%		
Microwave (Not counter-top model)			100%		
Disposal			100%		
Dishwasher			100%		
Range			100%		
Wall-Mounted Oven			100%	1 1	
Counter-Mounted Cooking Surface			100%		
Water Heater			100%	1	
Clothes Dryer			100%		
Garage Door Opener			100%	1 1	
Septic Grinder			100%	1 1	
Other (list)			100%	1 1	
			100%	1 1	
			100%	1 1	
			100%	+	
			100%	+ +	
			100%		
			100%		
			100%		
			100%		
			100%		
Total General Loads	I			VA	kW
HEAT / A-C LOAD	1	T	1000/		1
A-C / Cooling Equipment			100%	┦───┤	
Heat Pump				↓	
Compressor (if not included as A-C)	ļ	ļ	100%	ļļ	
Supplemental Electric Heat	ļ	ļ	65%	ļļ	
Electric Space Heating	ļ	ļ		ļļ	
Less than 4 separately controlled units	ļ	ļ	65%	ļ ļ	
4 or more separately controlled units			40%		
System With Continuous Nameplate Load	ļ		100%		
Largest Heat / A-C Load (VA) VA kW					
GENERAL LOADS					
1st 10 kW of General Loads 100% kW			100%	kW	
• Remaining General Loads (kW) 40% kW			40%	kW	
CALCULATED GENERAL LOAD (kW) kW					kW
LARGEST HEAT / A-C LOAD 100% kW kW					kW
TOTAL CALCULATED LOAD (Net General Loads + Heat/A-C Load)					kW
TOTAL GALGOLATED LOAD (NET GEHETAL LOAUS + MEAL/A-6 LOAU)					KVV

Contractor	Email
Phone	Fax
	Location
VOLTAGE	□ 120/240 1Ø □ 120/208 3Ø □ 120/240 3Ø □ 277/480 3Ø
ТҮРЕ	🗆 Natural Gas 🛛 LP Vapor (LPV)
ELEC. SERVICE	□ 100 Amp □ 150 Amp □ 200 Amp □ 300 Amp □ 400 Amp □ 600 Amp □ 0ther

Before installation contact local jurisdiction to confirm all requirements are met. Jurisdictions may vary. Generac recommends contacting local authorities prior to installation.

LOADS: Look for heavy building loads such as refrigeration, air conditioning, pumps or UPS systems.

Use the following for sizing and determining generator kW.

TABLE 8	Motor Load Table (refer to Table 1)					
Device	HP	RA	LRA	kW Running (= HP)	Starting kW ¹	

To Calculate kW 120 V 1ø Amps x 120/1000 = kW 240 V 1ø Amps x 240/1000 = kW 208 V 3ø (Amps x 208 x 1.732 x PF) /1000 = kW 240 V 3ø (Amps x 240 x 1.732 x PF) /1000 = kW

(Amps x 480 x 1.732 x PF) /1000 = kW

¹ See Table 430.7(B) for staring kVA per HP for motor loads.

TABLE 9	Non-Motor Load Table (refer to Table 2)					
Device		Amps	kW			

PF is application power factor (worst case 1.0) Typical application power factor is 0.95.

RTSW – 10	0, 150, 200, 300 and 400 Amp service rated			
RTSN – 100)–800 3ø and 600–800 1ø Amp			
RTSC - 100, 200, 400, 600, 800 Amp				
GenReady	– 200 Amp service panel			
-	RTS and GenReady switches only work			
	with the Evolution or Nexes Controller.			

RECOMMENDED GENERATOR SIZE ______ Refer to Generator Sizing Instructions on other side of this sheet.

Install Notes:

1. Consult manual for installation recommendations.

2. Consult local authority having jurisdiction for local requirements.

GENER

Applications

The QT Series does not meet the necessary requirements for the following applications:

NEC 695	Fire Pumps
NEC 700	Emergency Systems
NFPA 20	Fire Pumps
NFPA 99	Healthcare

NFPA 110 Emergency Systems

Reference Codes Related Codes and Standards:

480 V 3ø

NEC 225	Branch Circuits and Feeders
NEC 240	Overcurrent Protection
NEC 250	Grounding
NEC 445	Generators
NEC 700	Emergency Systems
NEC 701	Legally Required Standby
NEC 702	Optional Standby
NFPA 37	Installation & Use of
	Stationary Engines
NFPA 54	National Fuel Gas Code
NFPA 58	LP Gas Code
ICC	Fuel Gas Code

GENERAC

Generator Sizing Instructions:

There is not a single correct sizing solution. Following are several methods that, when mixed with good judgement, should result in an appropriately sized generator. Remember to consider load growth, seasonality, and effects of starting motors.

As municipalities and states adopt the new 2017 NEC Electrical Code, there may be new sizing requirements, spelled out in the code book, which the installation technician must follow. Always check with the local inspection department to confirm which code cycle will affect your install.

Never add Amps when sizing a generator. Convert Amps to kW and add kW to determine the required generator size. Power factors for various motor loads vary widely. Adding Amps without properly accounting for the power factor and/or mixing voltages will result in improperly sizing the generator.

When motors start, they create a current surge that step loads the generator and creates a voltage dip. After selecting a generator, reference the generator's surge capability using **table 3**. Verify that voltage dip is adequate for the application. Most commercial applications should be limited to about 15% voltage dip and residential applications should be limited to a 30% voltage dip.

Some applications utilize an uninterruptible power supply (UPS) to back up critical loads. Please read sizing guide for this load type.

Measurement Method 220.87 Exception NEC 2017

Connect a recording ammeter or power meter that is capable of measuring the maximum peak kW demand continuously over a minimum 30 day period. The maximum kW demand shall be taken while the building is occupied and shall include the larger of the heating or cooling loads. The peak kW demand shall be multiplied by 125%.

Peak kW demand X 125% = Calculated kW demand

Size the generator to the next standard size and verify UPS and motor load compatibility.

Determining Existing Loads/Billing History Method 220.87 NEC 2017

Many customers have a utility rate structure that has a peak demand charge. Using a year's worth of electric bills, size the generator 25% larger than the largest peak demand.

Verify motor and UPS load compatibility. Peak Demand = _____

Project Layout

Load Summation Method

- Enter running kW for all motor loads (except the largest) expected to run during peak load levels into table 8. Refer to table 1 for typical motor load sizes and electrical requirements.
- Enter kW for all non-motor loads expected to run during peak load levels into table 9. Refer to table 2 for typical residential loads and rules of thumb.
- Add the running motor load kW, non-motor load kW, and the starting kW of the largest motor load.

Motor load running total	(minus largest motor):		
Non-motor load total:			kW (ref. table 9)
Starting load from larges	st cycling motor:		
Total electrical loads:		=	kW
Select generator:	Commercial (add 20 to	25% to total kW)	

Residential (add 10 to 20% to total kW)

 Confirm that voltage dip is within acceptable limits by comparing motor LRA to generator surge capability (see table #3).

5) Confirm UPS compatibility (see page 11).

System Capacity – Load Calculation

If the local municipality or state you are in has adopted the 2017 NEC Code, you may be required to use this step. Article 702 of the 2017 NEC includes a new requirement for sizing (702.4). If no other method for sizing is acceptable, sizing of the generator shall be made in accordance with Article 220 of the NEC. The system capacity estimating sheet will guide you through this process.

SMM Load Control Module

702.4 (B) (2) (a) NEC 2017

The SMM Load Control Module is a 50 amp contact housed in a NEMA 3R enclosure for indoor and outdoor installation applications. Through the use of the SMM Modules in conjunction with any of the 100–600 amp Smart Switches, household or business loads can be intelligently managed enabling the use of a smaller, more efficient generator system. Up to four SMM Modules can be used with a single switch.

Ball Park Estimates (Do not use for final sizing)

Estimate based on 60% service size: (commercial)

240 Volts, 1 Ø:	Amps x .15 =	kW
208 Volts, 3 Ø:	Amps x .22 =	kW
240 Volts, 3 Ø:	Amps x .25 =	kW
480 Volts, 3 Ø:	Amps x .50 =	kW

Estimate based on 40% service size: (residential)

240 Volts, 1 Ø:	Amps x .10 = _	kW
208 Volts, 3 Ø:	Amps x .15 =	kW
240 Volts, 3 Ø:	Amps x .17 =	kW
480 Volts, 3 Ø:	Amps x .34 =	kW

Estimate based on square footage

Fast food, convenience stores, restaurants, grocery stores	kW = 50 kW + 10 watts/sq. ft.
Other commercial applications	kW = 30 kW + 5 watts/sq. ft.
Square footage =	Estimated kW =

Amps to kW Rule of Thumb (assumes .8 pf)

For 480 volt systems	Amps = kW x 1.5
For 208 volt systems	$Amps = kW \times 3.5$
For 240 volt 3 Ø systems	$Amps = kW \times 3$
For 240 volt 1 Ø systems	$Amps = kW \times 4$

System Capacity – Load Calculator

GENERAC

DIRECTIONS FOR NEC 2017, ARTICLE 220, PART IV

Worksheet — NE	C 2017, 220 P	art IV			
Contractor		Email			
Phone		Fax			
Job Name					
Date	Location			ļ	
Voltage (Circle)	240V -1Ø		1.51/		
Fuel	100.4mm	NG	LPV		
Elec. Service NET SQUARE FOOTAGE	100 Amp	200 Amp	400 Amp	Ot	ier I
					Loads (kW)
GENERAL LOADS	Qty	Rating (Load)	Factor	Loads (VA)	$(VA \div 1,000)$
General Lighting and General Use Receptacles		3 VA/ft ²	100%		
Branch Circuits (1500 VA/ft ²)					
Small Appliance Circuits (20 Amp)		1500	100%		
Laundry Circuits		1500	100%		
Fixed Appliances		Full Curre	-		
Well			100%		
Sump Pump			100%		
Freezer			100%		
Microwave (Not counter-top model)			100%		
Disposal			100%		
Dishwasher			100%		
Range			100%		
Wall-Mounted Oven			100%	1 1	
Counter-Mounted Cooking Surface			100%		
Water Heater			100%	i i	
Clothes Dryer			100%		
Garage Door Opener			100%	1 1	
Septic Grinder			100%	1 1	
Other (list)			100%	1 1	
			100%	1 1	
			100%	1 1	
			100%	1 1	
			100%	+ +	
			100%		
			100%		
			100%		
			100%		
			100%		
Total General Loads	I			VA	kW
HEAT / A-C LOAD	1		1000/	,	1
A-C / Cooling Equipment			100%		
Heat Pump					
Compressor (if not included as A-C)		ļ	100%	ļļ	
Supplemental Electric Heat	ļ	ļ	65%	ļ ļ	
Electric Space Heating		ļ		ļ ļ	
Less than 4 separately controlled units	ļ		65%	ļ	
4 or more separately controlled units			40%		
System With Continuous Nameplate Load			100%		
Largest Heat / A-C Load (VA) VA kW					
GENERAL LOADS					
 1st 10 kW of General Loads 100% kW 			100%	kW	
Remaining General Loads (kW) 40% kW			40%	kW	
CALCULATED GENERAL LOAD (kW) kW					kW
LARGEST HEAT / A-C LOAD 100% kW kW					kW
TOTAL CALCULATED LOAD (Net General Loads + Heat/A-C Load)					kW

NOTES

0172610SBY 11/2016 ©2016 Generac Power Systems, Inc. All rights reserved. Specifications are subject to change without notice. Generac Power Systems, Inc. S45 W29290 Hwy. 59 Waukesha, WI 53189 1-888-GENERAC (1-888-436-3722)