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Abstract

Efficient handoff algorithms cost-effectively enhance the capacity and Qual-

ity of Service (QoS) of cellular systems. This research presents novel approaches

for the design of high performance handoff algorithms that exploit attractive

features of several existing algorithms, provide adaptation to dynamic cellular

environment, and allow systematic tradeoffs among different system character-

istics. A comprehensive foundation of handoff and related issues of cellular

communications is given. The tools of artificial intelligence utilized in this re-

search, neural networks and fuzzy logic, are introduced. The scope of existing

simulation models for macrocellular and microcellular handoff algorithms is

enhanced by incorporating several important features. New simulation mod-

els suitable for performance evaluation of soft handoff algorithms and overlay

handoff algorithms are developed. Four basic approaches for the development

of high performance algorithms are proposed and are based on fuzzy logic,

neural networks, unified handoff candidate selection, and pattern classification.

The fuzzy logic based approach allows an organized tuning of the handoff pa-

rameters to provide a balanced tradeoff among different system characteristics.

The neural network based approach suggests neural encoding of the fuzzy logic

systems to simultaneously achieve the goals of high performance and reduced

complexity. The unified candidacy based approach recommends the use of a

unified handoff candidate selection criterion to select the best handoff candidate

under given constraints. The pattern classification based approach exploits the



capability of fuzzy logic and neural networks to obtain an efficient architecture

of an adaptive handoff algorithm. New algorithms suitable for microcellular

systems, overlay systems, and systems employing soft handoff are described.

A basic adaptive algorithm suitable for a microcellular environment is pro-

posed. Adaptation to traffic, interference, and mobility has been superimposed

on the basic generic algorithm to develop another microcellular algorithm. An

adaptive overlay handoff algorithm that allows a systematic balance among the

design parameters of an overlay system is proposed. Important considerations

for soft handoff are discussed, and adaptation mechanisms for new soft handoff

algorithms are developed.
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Chapter 1

Introduction

This chapter introduces handoff, provides an outline of this dissertation, and summa-

rizes significant contributions of the research reported here.

1.1 Motivation

Cellular communications provides communication facility to users called mobile sta-

tions (MSs). A service area (or geographical region) is divided into a number of cells.

Several such cells constitute a cluster. The available frequency spectrum is used in

each cluster. Each cell in a cluster uses a fraction of the available channels in the

spectrum allocated according to a channel assignment strategy and is served by a

base station (BS). Handoff is a process of transferring a mobile station from one base

station or channel to another. The channel change due to handoff occurs through a

change in a time slot, frequency band, codeword, or combination of these for time

division multiple access (TDMA), frequency division multiple access (FDMA), code

division multiple access (CDMA), or a hybrid scheme, respectively. The handoff pro-

cess determines the spectral efficiency (i.e., the maximum number of calls that can

be served in a given area) and the quality perceived by users. Efficient handoff al-

gorithms cost-effectively preserve and enhance the capacity and Quality of Service

(QoS) of communication systems.

Many of the existing handoff algorithms do not exploit the advantages of multi-

criteria handoff, which can give better performance than single-criterion algorithms

1
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due to the flexible and complementary nature of handoff criteria. The existing al-

gorithms do not exploit knowledge about the sensitivities of handoff parameters to

different characteristics of a cellular environment. The adaptation and learning ca-

pabilities of artificial intelligence (AI) tools have not been fully utilized. The existing

algorithms fail to consider the behavior of other handoff algorithms in a given cellu-

lar environment and to provide a systematic procedure for the adaptation of handoff

parameters to the dynamic cellular environment. This research presents novel ap-

proaches for the design of high performance handoff algorithms that exploit attractive

features of several existing algorithms, provide adaptation to the dynamic cellular en-

vironment, and allow systematic tradeoff among different system characteristics.

1.2 Report Outline

This report contains twelve chapters. Figure 1.1 illustrates the organization of the re-

port. Chapter 2 provides background information and a literature survey on handoff,

believed to be the most comprehensive survey of the subject to the date. Chapter 3 in-

troduces the tools of AI used to develop adaptive intelligent handoff algorithms. The

mechanisms used to analyze handoff algorithms are explained in Chapter 4. Novel

generic handoff approaches are described in Chapters 5 through 8. Generic handoff

algorithms for different cellular system deployment scenarios such as microcells, over-

lays, and systems employing soft handoff are the topics of Chapters 9 through 11.

Chapter 12 is the concluding chapter. Details of the chapters are briefly described

here.

• Chapter 2: Foundation of Cellular Handoff. This chapter investigates
various aspects of handoff and includes an in-depth literature survey of handoff
related research work. Desirable features of handoff and complexities of handoff
are discussed. Several cellular system deployment scenarios that dictate certain
handoff constraints are illustrated. Handoff and other related resource manage-
ment tasks of cellular systems are described, and implementation of the handoff
process is explained.

• Chapter 3: Fuzzy Logic and Neural Networks. This chapter gives a brief
introduction to the AI related tools used in this research (artificial neural net-
works and fuzzy logic). In particular, concepts of fuzzy logic are explained. A
popular form of a fuzzy logic system is illustrated. The basic element of neural
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Figure 1.1: Report Organization

networks, the neuron, is introduced. Two ANN paradigms, multi-layer percep-
tron and radial basis function network, are briefly described. Characteristics
of fuzzy logic and neural networks are highlighted. Finally, the application of
fuzzy logic and neural networks to handoffs is briefly explained.

• Chapter 4: Analysis of Handoff Algorithms. This chapter explains mech-
anisms used to evaluate handoff related performance of cellular systems. Simula-
tion is the most widely used handoff evaluation mechanism. Several simulation
models used in this research are described. The scope of existing simulation
models for macrocellular and microcellular handoff algorithms is enhanced by
incorporating several important features. New simulation models suitable for
performance evaluation of soft handoff algorithms and overlay handoff algo-
rithms are proposed.

• Chapter 5: A Fuzzy Logic Based Algorithm. This chapter proposes a
new class of handoff algorithms that combines the attractive features of several
existing algorithms and adapts the handoff parameters using fuzzy logic. Known
sensitivities of handoff parameters are used to create a fuzzy logic rule base. The
design procedure for a generic fuzzy logic based algorithm is outlined.
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• Chapter 6: A Neural Encoded Fuzzy Logic Algorithm. This chapter
proposes neural encoding of a fuzzy logic system (FLS) to circumvent the large
storage and computational requirements of the FLS. The neural network learns
how the FLS works. The input-output mapping capability and compact data
representation capability of neural networks are exploited here to derive an
adaptive handoff algorithm that retains the high performance of the original
fuzzy logic based algorithm and that has an efficient architecture for storage
and computational requirements.

• Chapter 7: A Unified Handoff Candidacy Algorithm. This chapter
proposes a fuzzy logic based algorithm with a unified handoff candidate selection
criterion and adaptive direction biasing. The unified handoff candidate selection
criterion allows simultaneous consideration of several handoff criteria to select
the best handoff candidate under given constraints. Enhanced direction biasing
is achieved by adapting the direction biasing parameters.

• Chapter 8: Pattern Classification Based Algorithms. This chapter pro-
poses a new class of adaptive handoff algorithms that views the handoff problem
as a pattern classification problem. Neural networks and fuzzy logic systems
are good candidates for pattern classifiers due to their properties such as non-
linearity and to their generalization capability.

• Chapter 9: Microcellular Algorithms. Microcells impose distinct con-
straints on handoff algorithms due to the characteristics of the propagation
environment. A generic adaptive algorithm suitable for a microcellular envi-
ronment is proposed. Adaptation to traffic, interference, and mobility has been
superimposed on the basic generic algorithm to develop another algorithm.

• Chapter 10: Overlay Algorithms. An overlay system is a hierarchical
architecture that uses large macrocells to overlay clusters of small microcells.
Different handoff scenarios exist in an overlay environment, each with distinct
objectives. This chapter proposes an adaptive overlay handoff algorithm that
allows a systematic balance among the design parameters of an overlay system.

• Chapter 11: Soft Handoff Algorithms. Soft handoff exploits spatial diver-
sity to increase signal energy for improved performance. A good soft handoff
algorithm achieves a balance between the quality of the signal and the asso-
ciated cost. This chapter highlights important considerations for soft handoff
and develops adaptation mechanisms for new soft handoff algorithms.

• Chapter 12: Conclusion. This chapter discusses the significance of the re-
search work done as part of this dissertation and proposes several major areas
of future research.
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1.3 Significant Research Contributions

The following is a list of significant contributions of this dissertation research.

• Development of A New Class of Algorithms Based on Fuzzy Logic Systems.
This class of algorithms represents the first attempt to systematically develop
a truly adaptive algorithm using a comprehensive knowledge base in a unified
framework. The proposed approach allows an organized tuning of the handoff
parameters to provide a balanced tradeoff among different system characteris-
tics. The overall system performance enhancement is exemplified by a 1.7 dB
improvement in SIR distribution (or a 16% improvement in call drop probabil-
ity), a 2.8 call improvement in traffic distribution, and a six second reduction
in the handoff delay due to the interference, traffic, and mobility adaptation of
the proposed algorithm.

• Development of A New Class of Algorithms Based on Neural Encoded Fuzzy
Logic Systems. This algorithm answers the complexity concerns of the algo-
rithms based on fuzzy logic. This approach proposes neural encoding of the
fuzzy logic systems to simultaneously achieve the goals of high performance
and reduced complexity. The approach shows that the storage requirements
can be reduced by a factor of 7.2 and the computational requirements can be
reduced by a factor of 8.8 compared to the fuzzy logic based algorithms.

• Development of A New Class of Algorithms Based on Unified Candidacy. This
approach recommends the use of a unified handoff candidate selection criterion
to simultaneous consider several handoff criteria to select the best handoff can-
didate under given constraints. This approach also utilizes adaptive direction
biasing to obtain a fast handoff algorithm and provides additional degrees of
freedom in obtaining a tradeoff among critical design considerations.

• Development of A New Class of Algorithms Based on Pattern Classification.
This approach exploits the pattern classification capability of fuzzy logic and
neural networks to obtain an efficient architecture of an adaptive handoff al-
gorithm. The proposed algorithms can provide a 1.8 dB improvement in SIR
distribution and a four call improvement in traffic distribution over a conven-
tional algorithm.

• Development of Adaptive Handoff Algorithms for Microcellular Systems. Al-
gorithms that address specific problems of microcellular systems are proposed.
The proposed algorithms perform uniformly well in generic handoff scenarios in
microcells. The number of handoffs is reduced by 37%. Adaptation mechanisms
provide a 0.5 dB improvement in SIR distribution and a 0.25 call improvement
in traffic distribution without compromising the performance of the algorithms
in generic handoff scenarios.
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• Development of An Adaptive Handoff Algorithm for Macrocell-Microcell Overlay
Systems. An adaptive handoff algorithm that considers requirements of different
handoff scenarios in an overlay system and attempts to achieve the system’s
goals is proposed. Improved SIR and traffic distributions are obtained using
the proposed algorithm. For example, the call blocking probability is reduced
by a factor of 1.8 and the handoff blocking probability is reduced by a factor of
three.

• Development of Adaptive Soft Handoff Algorithms. Important considerations for
soft handoff are used to develop adaptation mechanisms for new soft handoff
algorithms. The adaptive algorithm provides a 1.1 dB improvement in RSS and
a two call improvement in traffic distribution and reduces the network load by
exploiting mobility adaptation.

• Development of a Simulation Test-Bed for the Performance Evaluation of Hand-
off Algorithms. Simulation is the most versatile tool for evaluating handoff re-
lated system performance. The existing simulation models for macrocellular
and microcellular handoff algorithms do not allow evaluation of all the major
design parameters of a system. The scope of such models has been enhanced by
providing additional means of performance evaluation. Information on good
simulation models that allow investigation of handoff algorithms in cellular
overlays and soft handoff situations has not appeared in the literature. The
simulation models proposed here for the analysis of overlay and soft handoff
algorithms can provide a strong foundation for the handoff research.

• Thorough Study of Handoff Related Design Issues and Creation of a Knowledge
Base for the Design of Adaptive High Performance Handoff Algorithms. A
comprehensive foundation for handoff and related cellular system design issues is
created. This knowledge base educates the reader on various aspects of handoff
and paves the way for designing several components of a cellular system from a
global perspective.



Chapter 2

Foundation of Cellular Handoff

This chapter presents various aspects of handoff and discusses handoff related features

of cellular systems. Desirable features of handoff are highlighted, and complexities

of handoff are described. Several system deployment scenarios that dictate specific

handoff requirements are illustrated. An account of handoff related resource man-

agement tasks of cellular systems is given. Implementation of the handoff process is

explained.

2.1 Introduction to Handoff

Some of the terminology used in cellular communications is explained next [5].

• Mobile Station (MS). The mobile station is intended for use while in motion
at an unspecified location.

• Base Station (BS). The base station is a fixed station used for radio commu-
nication with MSs.

• Mobile Switching Center (MSC). The mobile switching center coordinates
the routing of calls in a large service area. It is also referred to as the Mobile
Telephone Switching Office (MTSO).

• Forward Channel. The forward channel is the radio channel used for the
transmission of information from the base station to the mobile station. It is
also known as the downlink.

• Reverse Channel. The reverse channel is the radio channel used for the
transmission of information from the mobile station to the base station. It is
also known as the uplink.

7
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• Handoff. Handoff is a process of transferring a mobile station from one base
station or channel to another. The channel change due to handoff occurs
through a time slot for time division multiple access (TDMA), frequency band
for frequency division multiple access (FDMA), and codeword for code division
multiple access (CDMA) systems [1].

• Cochannel Interference (CCI). The cochannel interference is caused when
the desired signal and another signal in some remote cell are using the same
frequency or channel.

The following phases are involved in the planning of cellular communications [3]:

• Assessment of traffic density;

• Determination of cell sizes and capacity;

• Decisions about omnidirectional or sectored cells and antenna directions;

• Selection of best BS sites to cover the required area;

• Frequency allocation;

• Choice of power control parameters; and

• Selection of handoff parameters.

This chapter carries out an in-depth investigation of the handoff aspects of cellular

planning. The handoff process determines the spectral efficiency (i.e., the maximum

number of calls that can be served in a given area [2]) and the quality perceived

by users [3]. Efficient handoff algorithms cost-effectively preserve and enhance the

capacity and Quality of Service (QoS) of communication systems [4].

Figure 2.1 shows a simple handoff scenario in which an MS travels from BS A

to BS B. Initially, the MS is connected to BS A. The overlap between the two cells is

the handoff region in which the mobile may be connected to either BS A or BS B. At

a certain time during the travel, the mobile is handed off from BS A to BS B. When

the MS is close to BS B, it remains connected to BS B.

The overall handoff procedure can be thought of as having two distinct phases

[6]: the initiation phase (in which the decision about handoff is made) and the execu-

tion phase (in which either a new channel is assigned to the MS or the call is forced

to terminate). Handoff algorithms normally carry out the first phase.

Handoff may be caused by factors related to radio link, network management,

or service options [7] [8].
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Figure 2.1: Handoff Scenario in Cellular Systems

• Radio Link Related Causes. Radio link related causes reflect the quality
perceived by users. Some of the major variables affecting the service quality
are received signal strength (RSS), signal-to-interference ratio (SIR), and sys-
tem related constraints. Insufficient RSS and SIR reduce the service quality.
Moreover, if certain system constraints are not met, service quality is adversely
affected.

Handoff is required in the following situations due to reduced RSS [8]: (i) when
the MS approaches the cell boundary (the RSS drops below a threshold) and
(ii) when the MS is inside the signal strength holes in a cell (the signal is too
weak to be detected easily).

SIR drops as CCI increases, and handoff is required. Bit error rate (BER) can
be used to estimate SIR.

An example of a system related constraint is the synchronization requirement
in a TDMA system. In this case, when the propagation delay between the
transmitter and the receiver approaches a threshold, handoff is necessary.

• Network Management Related Causes. The network may handoff a call
to avoid congestion in a cell. For a macroscopic diversity call, the handoff of
calls in progress may be required since the same channel must be obtained in
a number of BSs. If the network identifies that the path used for information
transfer is malfunctioning or is not the shortest one, it may handoff the call.

• Service Options Related Causes. When an MS asks for a service that is
not provided at the current BS, the network may initiate a handoff so that the
desired service can be offered [7]. A handover may also be initiated by the MS
to connect to a service provider with a lower tariff.
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Network management and service related handoffs are usually infrequent and easy

to tackle. However, radio link related handoffs are most commonly encountered and

most difficult to handle.

A handoff made within the currently serving cell (e.g., by changing the fre-

quency) is called an intracell handoff. A handoff made from one cell to another is

referred to as an intercell handoff. Handoff may be hard or soft. Hard handoff (HHO)

is “break before make,” meaning that the connection to the old BS is broken before a

connection to the candidate BS is made. HHO occurs when handoff is made between

disjointed radio systems, different frequency assignments, or different air interface

characteristics or technologies [9]. Soft handoff (SHO) is “make before break,” mean-

ing that the connection to the old BS is not broken until a connection to the new BS

is made. In fact, more than one BS are normally connected simultaneously to the

MS. For example, in Figure 2.1, both the BSs will be connected to the MS in the

handoff region. Details of SHO are given in Section 2.9.3.

This chapter includes five major topics.

• Topic 1: Desirable Features and Complexities of Handoff. Topic 1 con-
sists of Section 2.2. Section 2.2.1 describes desirable features of handoff. An
efficient handoff algorithm can achieve many of these features by making appro-
priate tradeoffs. However, several factors such as topographical features, traffic
variations, propagation environments and system-specific constraints pose stiff
challenges to handoff algorithms and complicate the handoff process. These
complexities are discussed in Section 2.2.2.

• Topic 2: Deployment Scenarios and Handoff. Topic 2 describes different
system deployment scenarios and their constraints on the handoff procedure
and consists of Section 2.3. Handoff algorithms with a specific set of parameters
cannot perform uniformly well in different communication system deployment
scenarios since these scenarios are characterized by peculiar environments. Such
system scenarios are the focus of Section 2.3. Examples of different system
structures include macrocells, microcells, overlays, integrated cellular systems,
integrated cordless and cellular systems, and integrated terrestrial and satellite
systems. Note that these system structures are expected to co-exist in future
wireless communication systems, and they warrant a closer study.

• Topic 3: Handoff Algorithms. Topic 3 consists of Sections 2.4-2.6. Hand-
off algorithms are distinguished from one another in two ways: the variables
they use (called handoff criteria) and the strategies they use to process handoff
criteria. Handoff criteria are discussed in Section 2.4. Section 2.5 describes
conventional handoff algorithms, and Section 2.6 describes emerging handoff
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algorithms.

• Topic 4: Resource Management in Cellular Systems. Topic 4 views
handoff and other resource management tasks and details handoff related sys-
tem performance improvement and consists of Sections 2.7 and 2.8. Prioritizing
handoff is one way to improve handoff related system performance. Section
2.7 discusses handoff prioritization schemes (such as guard channels and queu-
ing). Handoff represents one of the radio resource management tasks carried out
by cellular systems. Other resource management functions include admission
control, channel assignment, and power control. If some of the resource man-
agement tasks are treated in an integral manner, better overall performance can
be obtained in a global sense by making appropriate tradeoffs. Such integrated
resource management is the topic of Section 2.8.

• Topic 5: Implementation of Handoff. Topic 5 describes how the handoff
procedure is implemented and consists of Section 2.9. The decision making
process of handoff may be centralized or decentralized. Handoff protocols char-
acterize the approaches used by different systems to execute the process of
handoff.

2.2 Desirable Features and Complexities of Hand-

off

2.2.1 Desirable Features of Handoff

An efficient handoff algorithm can achieve many desirable features by trading differ-

ent operating characteristics. Figure 2.2 summarizes the major desirable features of

handoff algorithms, and several desirable features of handoff algorithms mentioned in

the literature are described below [7, 2, 4, 10, 11, 12, 13, 14].

• Handoff should be fast so that the user does not experience service degradation
or interruption. Service degradation may be due to a continuous reduction in
signal strength or an increase in CCI. Service interruption may be due to a
“break before make” approach of HHO. Note that the delay in the execution of
a handoff algorithm adds to the network delay at the Mobile Switching Center
(MSC) or Mobile Telephone Switching Office (MTSO). Fast handoff also reduces
CCI since it prevents the MS from going too far into the new cell.

• Handoff should be reliable. This means that the call should have good quality
after handoff. SIR and RSS help determine the potential service quality of the
candidate BS.
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Figure 2.2: Desirable Features of Handoff Algorithms

• Handoff should be successful; a free channel should be available at the candi-
date BS. Efficient channel allocation algorithms and some traffic balancing can
maximize the probability of a successful handoff.

• The effect of handoff on the quality of service (QoS) should be minimal. The
quality of service may be poor just before handoff due to a continuous reduction
in RSS, SIR, etc.

• Handoff should maintain the planned cellular borders to avoid congestion, high
interference, and use of assigned channels inside the new cell. Each BS can
carry only its planned traffic load. Moreover, there is a possibility of increased
interference if the MS goes far into another cell site while still being connected
to a distant BS because cochannel distance is reduced and the distant BS tends
to use a high transmit power to serve the MS.

• The number of handoffs should be minimized. Excessive handoffs lead to heavy
handoff processing loads and poor communication quality, which may be due
to the following: (i) the more attempts at handoff, the more chances that a call
will be denied access to a channel, resulting in a higher handoff call dropping
probability, (ii) a lot of handoff attempts causes more delay in the MSC pro-
cessing of handoff requests, which will cause signal strength to decrease over
a longer time period to a level of unacceptable quality. Also, the call may be
dropped if sufficient SIR is not achieved. Handoff requires network resources to
connect the call to a new BS. Thus, minimizing the number of handoffs reduces
the switching load. Unnecessary handoffs should be prevented; the current BS
might be able to provide the desired service quality without interfering with
other MSs and BSs.
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Figure 2.3: Complexities of Handoff

• The target cell should be chosen correctly since there may be more than one
candidate BS for handoff. Identification of a correct cell prevents unnecessary
and frequent handoffs.

• The handoff procedure should minimize the number of continuing call drop-outs
by providing a desired QoS (e.g., by ensuring a certain SIR).

• Handoff should have minimal effect on new call blocking. For example, if some
channels (called guard channels) are reserved exclusively for handoff, new call
blocking probability will increase due to the reduction in the number of channels
available for a new call.

• The handoff procedure should balance traffic in adjacent cells, eliminating the
need for channel borrowing, simplifying cell planning and operation, and reduc-
ing the probability of new call blocking.

• The global interference level should be minimized by the handoff procedure.
Transmission of bare minimum power and maintenance of planned cellular bor-
ders can help achieve this goal.

2.2.2 Complexities of Handoff

Existing handoff algorithms can give good performance only under certain situations

due to complexities associated with handoff. There are several factors that complicate

the handoff process and necessitate the design of better handoff algorithms. Figure 2.3

shows the complexities associated with handoff.
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• Cellular Structure. Different cellular structures or layouts put different con-
straints on handoff algorithms. Disjoint microcells and macrocells are expected
to coexist in the cellular systems [4]. In this case, microcells cover hot spots,
while macrocells cover low traffic areas. Different radii cells require different
handoff algorithm parameters (threshold, bias, etc.) to obtain good perfor-
mance [15]. Some service areas may contain microcell-macrocell overlay in
which microcells serve high traffic areas and macrocells serve high speed users
and overflow traffic.

As the cell size decreases, the number of handoffs per call increases, the variables
such as RSS, SIR, and BER change faster, and the time available for processing
the handoff requests decreases [16]. Moreover, the number of MSs to be handled
by the infrastructure also increases.

• Topographical Features. A signal profile is characterized by the magnitude
of the propagation path loss exponent and the breakpoint (i.e., the distance at
which the magnitude of the propagation path loss exponent changes) and varies
according to the terrain. The performance of a handoff algorithm depends on
the signal profile in a region.

[17].

• Traffic. In practice, traffic distribution is a function of time and space [18]. The
system should perform well under traffic variations. Some of the approaches to
cope with spatial nonuniformities of traffic are traffic balancing in adjacent cells,
use of different cell sizes, nonuniform channel allocation in cells, and dynamic
channel allocation.

• Propagation Phenomena. The radio propagation is strongly affected by sur-
roundings. For example, due to a certain topological environment, the received
signal strength can be higher at places far from a BS than at places near the
BS [18]. Propagation characteristics in microcells are different from those in
macrocells (e.g., the street corner effect) [19]. In fact, it is shown in [13] that
environment dependent handoff parameters can give better performance than
environment independent handoff parameters.

• System Constraints. Some cellular systems are equipped with dynamic power
control algorithms that allow the MS to transmit the least possible power while
maintaining a certain quality of transmission. These systems coordinate power
control and handoff algorithms to achieve their individual goals [11]. It may be
beneficial to do channel allocation in conjunction with handoff and/or power
control (see Section 2.8).

• Mobility. When an MS moves away from a BS at a high speed, the quality
of communication degrades quickly. In such a case, handoff should be made
quickly.
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More importantly, the evolution of a network is usually an on-going process [3]; new

cells are gradually introduced, increasing the capacity to meet the demand. This net-

work evolution necessitates adaptive resource management. The performance of grow-

ing cellular systems needs to be monitored and re-engineered frequently to maintain

the QoS cost-effectively [20]. In summary, to obtain high performance in the dynamic

cellular environment, handoff algorithms should adapt to changing traffic intensities,

topographical alterations, and the stochastic nature of the propagation conditions.

2.3 Cellular System Deployment Scenarios

The radio propagation environment and related handoff challenges are different in dif-

ferent cellular structures. A handoff algorithm with fixed parameters cannot perform

well in different system environments. Specific characteristics of the communication

systems should be taken into account while designing handoff algorithms. Several

basic cellular structures (such as macrocells, microcells, and overlay systems) and

special architectures (such as underlays, multichannel bandwidth systems, and evo-

lutionary architectures) are described next. Integrated cordless and cellular systems,

integrated cellular systems, and integrated terrestrial and satellite systems are also

described.

2.3.1 Macrocells

Macrocell radii are in several kilometers. Due to the low cell crossing rate, centralized

handoff is possible despite the large number of MSs that the MSC has to manage.

The signal quality in the uplink and the downlink is approximately the same. The

transition region between the BSs is large; handoff schemes should allow some delay

to avoid flip-flopping. However, the delay should be short enough to preserve the

signal quality because the interference would increase as the MS penetrates the new

cell. This cell penetration is called cell dragging. Macrocells have relatively gentle

path loss characteristics [4]. The averaging interval (i.e., the time period used to

average the signal strength variations) should be long enough to get rid of fading

fluctuations. First generation and second generation cellular systems provide wide

area coverage even in cities using macrocells [19]. Typically, a BS transceiver in a

macrocell transmits high output power with the antenna mounted several meters high
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Figure 2.4: Seven-Cell Clusters in a Macrocellular System

on a tower to illuminate a large area. Figure 2.4 shows three clusters of seven cells in

a macrocellular system. A cluster consists of a group of cells marked A through G.

2.3.2 Microcells

Some capacity improvement techniques (e.g., improved methods for speech coding,

channel coding and modulation) will not be sufficient to satisfy the required service

demand. The use of microcells is considered the single most effective means of in-

creasing the capacity of cellular systems [19]. Microcells increase capacity, but radio

resource management becomes more difficult. Microcells can be classified as one-,

two-, or three-dimensional, depending on whether they are along a road or a highway,

covering an area such as a number of adjacent roads, or located in multilevel buildings

respectively [21]. Microcells can be classified as hot spots (service areas with a higher

traffic density or areas that are covered poorly), downtown clustered microcells (con-

tiguous areas serving pedestrians and mobiles) and in-building 3-D cells (serving office

buildings and pedestrians) [22] . The overlap region between the adjacent cells helps

provide a seamless handoff. The required overlap puts a constraint on the smallest

achievable cell size. Thus, there is a tradeoff between the size of the overlap region

(or the quality of communication during handoff) and the capacity of the system [15].

Cell boundaries expand and contract due to shadow fading [15].

Typically, a BS transceiver in a microcell transmits low output power with the
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antenna mounted at a lamp-post level (approximately 5m above ground) [19]. The MS

also transmits low power, which leads to longer battery life and increased mobility.

Since BS antennas have lower heights compared to the surrounding buildings, RF

signals propagate mostly along the streets [14, 23, 24]. The antenna may cover 100-

200m in each street direction, serving a few city blocks. This propagation environment

has low time dispersion, which allows high data rates [15].

Microcells are more sensitive than macrocells to the traffic and interference due

to short-term variations (e.g., traffic and interference variations), medium/long-term

alterations (e.g., new buildings), and incremental growth of the radio network (e.g.,

new base stations) [25]. The number of handoffs per cell is increased by an order

of magnitude, and the time available to make a handoff is decreased [26]. Using an

umbrella cell is one way to reduce the handoff rate. Due to the increase in the microcell

boundary crossings and expected high traffic loads, a higher degree of decentralization

of the handoff process becomes necessary [1]. The microcellular environment is highly

interference-limited (i.e., noise is negligible and interference is a major concern) [1].

Microcells present the following constraints not typically found with macrocells

[22]: (i) the amount of cabling must be reduced to enable the installation of several

BS antennas at lamp-post level, (ii) a much denser cluster of wire lines and BSs is

required, increasing the cost of infrastructure, (iii) the real estate is expensive in urban

areas. These constraints pose stiff technical challenges to microcell engineering, and

efficient resource management is required to achieve the maximum possible spectral

efficiency.

Microcells encounter a propagation phenomenon called corner effect. The corner

effect is characterized by a sudden large drop (e.g., 20-30 dB) in the signal strength

(e.g., in 10-20m distance) when a mobile turns around a corner. The corner effect is

due to the loss of the line of sight (LOS) component from the serving BS to the MS.

The corner effect demands a faster handoff and can change the signal quality very

quickly. The rapid change in the RSS due to the corner effect affects the uplink more

than the downlink in a microcellular environment. When a mobile turns a corner,

the RSS at the MS becomes weaker. The uplink interference remains the same and

downlink interference changes, potentially getting weaker [4]. A long measurement

averaging interval is not desirable due to the corner effect. Moving obstacles can

temporarily hinder the path between a BS and an MS, resembling corner effect.



CHAPTER 2. FOUNDATION OF CELLULAR HANDOFF 18

Figure 2.5: Half Square Cell Plan in a Microcellular System

In a microcellular system, there may be two types of handoff scenarios, a line-

of-sight (LOS) handoff and a non-line-of-sight (NLOS) handoff. An LOS handoff is a

handoff from one LOS BS to another LOS BS. An NLOS handoff is a handoff from

an NLOS BS to an LOS BS. In an LOS handoff, premature handoff requests should

be prevented. In an NLOS handoff, the handoff must be completed as quickly as

possible as the user turns around the corner. Some of the solutions to deal with these

different requirements for the LOS and NLOS handoffs in microcells are umbrella

cells, macro-diversity, and switching to mobile-controlled handoff [4].

Reference [27] studies the properties of symmetrical cell plans in a Manhattan-

type environment. Cell plans affect SIR performance in uplink and downlink signif-

icantly. The symmetrical cell plans have four nearest co-channel BSs located at the

same distance. Such cell plans can be classified into half square (HS), full square

(FS), and rectangular (R) cell plans. These cell plans are described next:

• Half Square Cell Plan. This cell plan places BSs with omni-directional an-
tennas at each intersection, and each BS covers half a block in all four directions.
This cell plan avoids the street corner effect and provides the highest capacity.
This cell plan has only LOS handoffs. Figure 2.5 shows an example of a half
square cell plan in a microcellular system.

• Full Square Cell Plan. A BS with an omni-directional antenna is located at
every other intersection, and each BS covers a block in all four directions. It is
possible for an MS to experience the street corner effect for this cell plan. The
FS cell plan can have LOS or NLOS handoffs. Figure 2.6 shows an example of
a full square cell plan in a microcellular system.
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Figure 2.6: Full Square Cell Plan in a Microcellular System

Figure 2.7: Rectangular Cell Plan in a Microcellular System

• Rectangular Cell Plan. Each BS, located in the middle of the cell, covers
a fraction of either a horizontal or vertical street. This cell plan is scalable;
fewer BSs can be used initially, and additional BSs can be added as the user
density increases. Figure 2.7 shows an example of a rectangular cell plan in a
microcellular system.

2.3.3 Macrocell/Microcell Overlays

The congestion of certain microcells, the lack of service of microcells in some areas,

and the high speed of some users are some reasons for higher handoff rates and

signaling load for microcells [7]. To alleviate some of these problems, a mixed cell
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Figure 2.8: A Microcell/Macrocell Overlay System

architecture (called an overlay/underlay system) consisting of large size macrocells

(called umbrella cells or overlay cells) and small size microcells (called underlay cells)

can be used. Figure 2.8 illustrates an overlay system.

The macrocell/microcell overlay architecture provides a balance between max-

imizing the number of users per unit area and minimizing the network control load

associated with handoff. Macrocells provide wide area coverage beyond microcell ser-

vice areas and ensure better intercell handoff [17]. Microcells provide capacity due to

greater frequency reuse and cover areas with high traffic density (called hot spots).

Examples of hot spots include an airport, a railway station, or a parking lot. In less

congested areas (e.g., areas beyond a city center or areas outside the main streets of a

city), traffic demand is not very high, and macrocells can provide adequate coverage

in such areas. Macrocells also serve high speed MSs and the areas not covered by

microcells (e.g., due to lack of channels or inadequate transmit power). Also, after the

microcellular system is used to its fullest extent, the overflow traffic can be routed

to macrocells. One of the important issues for the overlay/underlay system is the

determination of optimum distribution of channels in the macrocells and microcells

[28]. Reference [29] evaluates four approaches to sharing the available spectrum be-

tween the two tiers: Approach 1 uses TDMA for microcell and CDMA for macrocell;

Approach 2 uses CDMA for microcell and TDMA for macrocell; Approach 3 uses

TDMA in both the tiers; Approach 4 uses orthogonal frequency channels in both the
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tiers.

The overlay/underlay system has several advantages over a pure microcell sys-

tem [30]: (i) the BSs are required only in high traffic load areas, and since it is not

necessary to cover the whole service area with microcells, infrastructure costs are

saved; (ii) the number of handoffs in an overlay system is much less than that in a

microcell system because fast moving vehicles can be connected to the overlay macro-

cell; (iii) both calling from an MS and location registration can be easily completed

through the microcell system.

There are several classes of umbrella cells [30]. In one class, orthogonal chan-

nels are distributed between microcells and macrocells. In another class, microcells

use channels that are temporarily unused by macrocells [31]. In yet another class,

microcells reuse the channels already assigned to macrocells and use slightly higher

transmit power levels to counteract the interference from the macrocells. Within

the overlay/underlay system environment, four types of handovers need to be man-

aged [32]: microcell to microcell, microcell to macrocell, macrocell to macrocell, and

macrocell to microcell.

Reference [33] describes combined cell splitting and overlaying. Reuse of chan-

nels in the two cells is done by establishing an overlaid small cell served by the same

cell site as the large cell. Small cells reuse the split cell’s channels due to the large

distance between the split cell and the small inner cell while the large cell cannot reuse

these channels. Overlaid cells are approximately 50% more spectrally efficient than

segmenting, the process of distributing the channels among the small- and large-size

cells to avoid interference.)

A practical approach for implementation of a microcell system overlaid with

an existing macrocell system is proposed in [30]. This reference introduces channel

segregation (a self-organized dynamic channel assignment) and automatic transmit

power control to obviate the need to design channel assignment and transmit power

control for the microcell system. The available channels are reused automatically

between microcells and macrocells. A slight increase of transmit power for the mi-

crocell system compensates for the macrocell to microcell interference. Simulation

results indicate that the local traffic is accommodated by the microcells laid under

macrocells without any significant channel management efforts.

The methodology of the GSM-based system is extended to the macrocell/microcell
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overlay system in [34] that recommends the use of random frequency hopping and

adaptive frequency planning, and different issues related to handoff and frequency

planning for an overlay system are discussed.

Four strategies are designed to determine a suitable cell for a user for an overlay

system [35]. Two strategies are based on the dwell time (the time for which a call

can be maintained in a cell without handoff), and the other two strategies are based

on user speed estimation. A speed estimation technique based on dwell times is also

proposed.

A CDMA cellular system can provide full connectivity between the microcells

and the overlaying macrocells without capacity degradation. Reference [22] analyzes

several factors that determine the cell size, the SHO zone, and the capacity of the

cell clusters. Several techniques for overlay-underlay cell clustering are also outlined.

Reference [36] studies the feasibility of a CDMA overlay that can share the

1850-1990 MHz PCS band with existing microwave signals (transmitted by utility

companies, state agencies, etc.). The results of several field tests demonstrate the

application of such an overlay for the PCS band.

The issue of use of a CDMA microcell underlay for an existing analog macrocell

is the focus of [37]. It is shown that high capacity can be achieved in a microcell at

the expense of a slight degradation in macrocell performance. Reference [37] finds

that transmit and receive notch filters should be used at the microcell BSs. It shows

that key parameters for such an overlay are the powers of the CDMA BS and MS

transmitters relative to the macrocell BSs and the MSs served by the macrocells.

2.3.4 Special Architectures

There are several special cellular architectures that try to improve spectral efficiency

without a large increase in the infrastructure costs. Some of these structures, dis-

cussed here, include an underlay/overlay system (which is different from an over-

lay/underlay system described earlier) and a multichannel bandwidth system. Many

cellular systems are expected to evolve from a macrocellular system to an over-

lay/underlay system described earlier. A study that focuses on such evolution is

described in Section 2.3.4.
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Figure 2.9: An Underlay/Overlay System

Underlay/Overlay System

An underlay/overlay system explained here is different from an overlay/underlay sys-

tem described earlier in Section 2.3.3. In an overlay/underlay system, frequency spec-

trum is divided between the macrocells and microcells in such a way that a macrocell

uses certain channels throughout the cellular system. Also, the macrocell typically

has a separate BS and a transmission tower. However, in an underlay/overlay system,

a tighter reuse factor is used within an overlay.

For example, assume that there are thirty six channels in a cluster of twelve

cells. If there is no overlay or underlay, three channels will be available for each cell.

In the conventional overlay/underlay system, two channels per cell can be used in a

cluster of twelve microcells while the macrocell will use the remaining twelve chan-

nels throughout the cluster region. If uniform distribution of traffic is assumed, the

effective number of channels per cell will still be three (two channels from a micro-

cell and one channel from a macrocell). On the other hand, in one arrangement of

an underlay/overlay scheme, two reuse factors, twelve and six, will be used instead

of just one reuse factor, twelve, as shown in Figure 2.9. Within a cluster of twelve

cells, two channels per cell will be used in an overlay system (channels O1 through

O24 in Figure 2.9), and the remaining twelve channels will be distributed using the

reuse factor of six (channels U1 through U12 in Figure 2.9). Thus, within a single

overlay cluster, there will be two underlay clusters, and each underlay cluster has a
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Figure 2.10: A Multiple Channel Bandwidth System

reuse factor of six. Hence, effectively there will be four channels per cell in an under-

lay/overlay system compared to three channels per cell for a non underlay/overlay

system. Further improvement in capacity can be obtained by using an even tighter

reuse factor of three in an underlay cluster. In this case, there will be four underlay

clusters within an overlay cluster. The overlay cluster uses two channels per cell,

and the underlay cluster uses four channels per cell. Thus, effectively six channels

per cell will be available. The underlay/overlay scheme can enhance capacity of the

system without the infrastructure costs because the same BSs, transmission towers,

and other hardware can be shared.

Multiple Channel Bandwidth System

Multiple channel bandwidths can be used within a cell to improve spectral efficiency.

In a multiple channel bandwidth system (MCBS), a cell has two or three ring-shaped

regions with different bandwidth channels. Figure 2.10 shows an MCBS.

Assume that 30 kHz is the normal bandwidth for a signal. Now, for a three-ring

MCBS, 30 kHz channels can be used in the outermost ring, 15 kHz channels in the

middle ring, and 7.5 kHz channels in the innermost ring. The areas of these rings can

be determined based on the expected traffic conditions. Thus, instead of using 30 kHz

channels throughout the cell, different bandwidth channels (e.g., 15 kHz, and 7.5 kHz)

can be used to increase the number of channels in a cell. The MCBS uses the fact that
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a wide bandwidth channel requires a lower (C/I) ratio (carrier to interference ratio)

than a narrow channel bandwidth system for the same voice quality. For example,

(C/I) requirements for 30kHz, 15 kHz, and 7.5 kHz channel bandwidths are 18 dB,

24 dB, and 30 dB, respectively, based on subjective voice quality tests [2]. If the

transmit power at a cell cite is the same for all the bandwidths, a wide channel can

serve a large cell, while a narrow channel can serve a relatively small cell. Moreover,

since a wide channel can tolerate a higher level of CCI, it can afford a smaller (D/R)

ratio (the ratio of co-channel distance to cell radius). Thus, in the MCBS, more

channels become available due to multiple bandwidth signals, and frequency can be

reused more closely in a given service region due to different (C/I) requirements.

Evolutionary Architecture

Existing cellular systems are expected to evolve from large size cells to small size cells

to cope with the increasing service demand. This type of evolution is the focus of

[38], which considers three cell layout scenarios: the first layout has a non-layered

cell architecture with macrocells; the second layout has a layered architecture with

macrocells and medium size microcells; the third layout has macrocells and small size

microcells. For these layouts, the user penetration rate (the rate that the system

can withstand to meet the QoS requirements) is estimated. A simulation model

has also been developed to evaluate the performance of some handoff algorithms.

Different types of environment (such as domestic, office, streets) and different types

of services (such as circuit switched voice, packet switched voice, and packet switched

data services) have been taken into account.

2.3.5 Integrated Wireless Systems

Integrated wireless systems are exemplified by integrated cordless and cellular sys-

tems, integrated cellular systems, and integrated terrestrial and satellite systems.

Such integrated systems combine the features of individual wireless systems to achieve

the goals of improved mobility, low cost, etc.
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Integrated Terrestrial Systems

Terrestrial intersystem handoff may be between two cellular systems or between a

cellular system and a cordless telephone system. Examples of systems that need

intersystem handoffs include GSM-DECT, CDMA in macrocells, and TDMA in mi-

crocells.

When a call initiated in a cellular system controlled by an MSC enters a system

controlled by another MSC, intersystem handoff is required to continue the call [8].

In this case, one MSC makes a handoff request to another MSC to save the call. The

MSCs need to have software for intersystem handoff if intersystem handoff is to be

implemented. Compatibility between the concerned MSCs should be considered, too.

There are several possible outcomes of an intersystem handoff [8]: (i) a long

distance call becomes a local call when an MS becomes a roamer; (ii) a long distance

call becomes a local call when a roamer becomes a home mobile unit; (ii) a local call

becomes a long distance call when a home mobile unit becomes a roamer; (iv) a local

call becomes a long-distance call while a roamer becomes a home mobile unit.

There is a growing trend toward service portability across dissimilar systems,

such as GSM and DECT [39]. For example, it is nice to have an intersystem handoff

between the cordless and cellular coverage. Cost effective handoff algorithms for

such scenarios represent a significant research area. This paper outlines different

approaches to achieving intersystem handoff. Simulation results are presented for

handoff between GSM and DECT/WACS. It is shown that a minor adjustment to

the DECT specification can greatly simplify the implementation of an MS capable of

an intersystem handoff between GSM and DECT.

Integrated Terrestrial and Satellite System

In an integrated cellular/satellite system, advantages of satellites and cellular systems

can be combined. Satellites can provide wide area coverage, completion of coverage,

immediate service, and additional capacity (by handling overflow traffic). A cellular

system can provide a high capacity economical system. Some of the issues involved in

an integrated system are discussed in [40]. In particular, the procedures of the GSM

are examined for their application to the integrated systems.

The future public land mobile telecommunication system (FPLMTS) will pro-

vide a personal telephone system that enables a person with a handheld terminal to
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reach anywhere in the world [41]. The FPLMTS will include low-earth-orbit (LEO)

or geostationary-earth-orbit (GEO) satellites as well as terrestrial cellular systems.

When an MS is inside the coverage area of a terrestrial cellular system, the BS will act

as a relay station and provide a link between the MS and the satellite. When an MS

is outside the terrestrial system coverage area, it will have a direct communication

link with the satellite. Different issues such as system architecture, call handling,

performance analysis of the access, and transmission protocols are discussed in [41].

The two handoff scenarios in an integrated system are described below.

Handoff from the Land Mobile Satellite System (LMSS) to the Ter-

restrial System. While operating, the MS monitors the satellite link and evaluates

the link performance. The RSSs are averaged (e.g., over a thirty second time period)

to minimize signal strength variations. If the RSS falls below a certain threshold

N consecutive times (e.g., N=3), the MS begins measuring RSS from the terrestrial

cellular system. If the terrestrial signals are strong enough, handoff is made to the

terrestrial system, provided that the terrestrial system can serve the BS.

Handoff from the Terrestrial System to the Land Mobile Satellite

System (LMSS). When an MS is getting service from the terrestrial system, the

BS sends an acknowledge request at predefined intervals to ensure that the MS is

still inside the coverage area. If an acknowledge request signal from the MS is not

received at the BS for N consecutive times, it is handed off to LMSS.

Reference [42] focuses on personal communication systems with hierarchical

overlays that incorporate terrestrial systems and satellite systems. The lowest level

in the hierarchy is formed by microcells. Macrocells overlay microcells and form

the middle level in the hierarchy. Satellite beams overlay macrocells and constitute

the topmost hierarchy level. Two types of subscribers are considered, satellite-only

subscribers and cellular/satellite dual subscribers. Call attempts from satellite-only

subscribers are served by satellite systems, while call attempts from dual subscribers

are first directed to the serving terrestrial systems with the satellites taking care of

the overflow traffic. An analytical model for teletraffic performance is developed, and

performance measures such as traffic distribution, blocking probability, and forced

termination probability are evaluated for low speed and high speed users.
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2.4 Handoff Criteria

Several variables have been proposed and used as inputs, or handoff criteria, to hand-

off algorithms. The handoff criteria discussed here include signal strength, SIR, dis-

tance, transmit power, traffic, call and handoff statistics, and velocity.

• Received Signal Strength (RSS). This criterion is simple, direct, and widely
used. Many systems are interference limited, meaning that signal strength
adequately indicates the signal quality, and this is the motivation behind signal
strength based decision. Moreover, there is a close relation between the RSS
and the distance between the BS and the MS. The lack of consideration of CCI
is a disadvantage of this criterion. CCI is more important in microcells (with
a cell radius less than 1 km) than in macrocells since microcellular systems are
interference limited and macrocells are noise-limited, (with cell radius exceeding
35 km in rural areas). Moreover, several factors (e.g., topographical changes,
shadowing due to buildings, and multipath fading) can cause the actual coverage
area to be quite different from the intended coverage area. The RSS criterion
can also lead to excessive number of handoffs.

• Signal-to-Interference Ratio (SIR). An advantage of using SIR or C/I as a
criterion is that SIR is a parameter common to voice quality, system capacity
and dropped call rate. BER is often used to estimate SIR. When actual (C/I)
is lower than the designed (C/I), voice quality becomes poor, and the rate of
dropped calls increases. SIR also determines the reuse distance. Unfortunately,
CIR may oscillate due to propagation conditions and may cause the ping-pong
effect (in which the MS repeatedly switches between the adjacent BSs). Another
disadvantage is that even though BER is a good indicator of link quality, bad
link quality may be experienced near the serving BS, and handoff may not
be desirable in such situations [1]. In an interference-limited environment, a
deterioration in BER does not necessarily imply the need for an intercell handoff;
an intracell handoff may be sufficient [17].

In [43], two methods for estimating raw channel BER over a Rayleigh fading
channel are presented. The first method uses a preselected pseudo-noise (PN)
sequence as a frame synchronization pattern. This sequence is transmitted
over a Rayleigh fading channel. A decision variable is calculated by finding
the autocorrelation of the channel-corrupted PN sequence with the original PN
sequence. The autocorrelation value is related to the channel signal-to-noise
ratio (SNR) to compute the raw BER estimate. The second method assumes
that bounded distance decoders are used in a Reed-Solomon based system to
estimate the number of errors in a received word prior to decoding. First, the
channel symbol error rate (SER) is estimated by assuming that the number of
errors in a received word is less than the error correction capability of the code.
Then, using the channel SER, raw channel BER and post-decoder BER are
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derived.

Reference [41] proposes BER as a handoff criterion for an integrated system
that consists of a cellular system and a terrestrial system. The level crossing
rate (LCR) is an important quantity that characterizes the rate at which the
envelope of Rayleigh faded signals crosses a specified signal level in the positive
slope. The LCR is used to determine average signal strength. From the average
signal strength, the BER is determined based on the modulation scheme used
for data transmission.

• Distance. This criterion can help preserve planned cell boundary. The distance
can be estimated based on signal strength measurements [44], delay between the
signals received from different BSs [45], etc. Distance measurement can improve
the handoff performance [11]. If handoff occurs at the midway between two BSs,
it distributes the channel utilization evenly [26]. The distance measurement
requires some special technical equipment and is possible in systems with only
a common clock. Synchronization between the BSs is also required. Since future
systems will require the location information of the MS, distance measurement
will be available for use as a handoff criterion. The distance criterion may be
useful for a macrocellular system, but it is prohibitive in a microcellular system
since the precision of the distance measurement decreases with smaller cell sizes
[1]. Theoretical analysis in [46] does not consider distance criterion better than
others.

The determination of cell boundaries can avoid unnecessary handoffs. In the
German cellular system C, (C/I) and other data (such as signal strength, phase
jitter, and the phase difference of the received digital signals) are measured and
processed to detect the cell boundaries [47].

• Transmit Power. Transmit power can be used as a handoff criterion to reduce
the power requirement, reduce interference, and increase battery life.

• Traffic. Traffic level as a handoff criterion can balance traffic in adjacent cells
[3]. Reference [48] develops an analytical model for traffic performance analysis
of a system. Statistics of dwell times are important for teletraffic performance
evaluation [48].

• Call and Handoff Statistics. Statistics such as total time spent in the cell
by a call and arrival time of a call in a cell can also be used as handoff criteria
[7]. Elapsed time since last handoff is also a useful criterion since it can reduce
the number of handoffs [8].

• Velocity. Velocity is an important handoff criterion, especially for overlay sys-
tems and velocity adaptive algorithms. Several algorithms use an estimate of
velocity to modify handoff parameters. In [49], a method to adaptively change
the averaging interval in a handoff algorithm for both small and large cells is
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presented. The method is based on the estimation of mobile velocity through
maximum Doppler frequency fD. This paper also outlines a method for es-
timating fD from squared deviations of the signal envelope, both in Rayleigh
fading and Rician fading environments. An adaptive scheme for optimal av-
eraging has also been suggested. Some of the methods for estimating fD use
the following criteria: mobile velocity, level crossings, spectrum or autocorre-
lation analysis, and squared deviations of logarithmically compressed envelope
(amplitude) measurements. Reference [49] describes the last approach. The
effects of averaging interval, CCI, and additive white Gaussian noise (AWGN)
on fD estimation are analyzed. The fD estimates can then be used to modify
weighting factors of exponential averaging in a handoff algorithm.

2.5 Conventional Handoff Algorithms

Handoff algorithms are distinguished from one another in two ways, handoff criteria

and processing of handoff criteria. Conventional handoff algorithms are described

here while emerging handoff algorithms are described in Section 2.6. Figure 2.11

summarizes the various types of handoff algorithms.

2.5.1 Signal Strength Based Algorithms

There are several variations of signal strength based algorithms, including relative

signal strength algorithms, absolute signal strength algorithms, and combined abso-

lute and relative signal strength algorithms. These algorithms are briefly discussed

next.

Relative Signal Strength Algorithms

According to the relative signal strength criterion [14], the BS that receives the

strongest signal from the MS is connected to the MS. The advantage of this algo-

rithm is its ability to connect the MS with the strongest BS. However, the disadvan-

tage is the excessive handoffs due to shadow fading variations associated with the

signal strength. In many of the existing systems, measurements for candidate BSs

are not performed if field strength for the existing BS exceeds a prescribed threshold.

The advantage of this approach is that the reduced processing load. However, the

disadvantage is the MS’s retained connection to the current BS even if it passes the
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Figure 2.11: Handoff Algorithms at a Glance
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planned cell boundary as long as the signal strength is above the threshold. A varia-

tion of this basic relative signal strength algorithm incorporates hysteresis. For such

an algorithm, a handoff is made if the RSS from another BS exceeds the RSS from

the current BS by an amount of hysteresis. The North American Personal Access

Communication Systems (PACS) personal communication services (PCS) standard

combines hysteresis with a dwell timer [4]. Hysteresis reduces the number of unneces-

sary handoffs but can increase dropouts since it can also prevent necessary handoffs

by introducing a delay in handoff [13]. A necessary balance between the number of

handoffs and delay in handoff needs to be achieved by appropriate hysteresis and sig-

nal strength averaging. Reference [6] describes a software simulator that allows the

design of the number of samples to be averaged and of the hysteresis margin. Rect-

angular and exponential averaging windows are considered. The averaging should

consider the MS speed and shadow fading. The shadow fading is characterized by a

Gaussian distribution with zero mean and certain standard deviation (which depends

on the environment). A scheme for estimating the shadow fading standard deviation

based on squared deviations of the RSS at the MS is proposed in [50].

It is shown in [51] that the optimum handoff algorithm parameters are very sen-

sitive to shadow fading standard deviation. To achieve robustness, more averaging

and less hysteresis are required. However, to detect sudden changes in signal strength

(e.g., due to street corner effect), less averaging and more hysteresis are required. To

resolve this conflict, shadow fading deviation is estimated and used [49]. If the averag-

ing interval is too short, fading fluctuates greatly. If it is too long, handoff is delayed.

Thus, it is important to have an adaptive averaging interval. The time varying in-

tensity of Rayleigh fading depends on the maximum Doppler frequency proportional

to the mobile velocity. Similarly, shadow fading depends on the velocity due to its

dependence on distance. Thus, an averaging interval can be determined based on

maximum Doppler frequency. Reference [49] determines the adaptive averaging in-

terval through estimating maximum Doppler frequency by exploiting Rayleigh fading

fluctuations.

References [52] and [53] characterize the variance of signal strength of the cell

propagation environment and present its effect on handoff parameters such as signal

averaging time and hysteresis. The simulation results based on GSM indicate that

dynamic adjustment of propagation dependent handoff parameters could enhance the
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handoff performance.

In a microcellular environment, a large hysteresis will avoid the ping-pong effect

for LOS handoff while delaying NLOS handoff (that must be done very quickly to

save the call) [4]. The use of umbrella cells, the use of microdiversity, and mobile-

controlled handoff [19] are some solutions to such contradictory goals. The umbrella

cell approach provides compatibility with existing systems.

Absolute Signal Strength Algorithms

For this algorithm, when the RSS drops below a threshold level, handoff is requested.

Typical threshold values are -100 dBm for a noise-limited system and -95 dBm for an

interference-limited system [8]. Better handoff initiation can be obtained by varying

the threshold [8]. The threshold level should be varied according to the path loss

slope L of the RSS and the level crossing rate (LCR) of the RSS. If the slope L is

high or LCR is high, the MS is quickly moving away from the BS, and, hence, handoff

should be made fast (i.e., the handoff initiation threshold should be made higher in

magnitude). If the slope L or LCR is low, the MS is moving slowly. So, handoff can be

slow; the handoff initiation threshold can be made comparatively smaller. Thus, the

mobile velocity and path-loss slope L can be used to determine the handoff initiation

threshold dynamically such that the number of unnecessary handoffs is minimized

and necessary handoffs are completed successfully.

This algorithm has a serious disadvantage. When a threshold level is set based

on the RSS, the following situations pose a problem [8]: (i) when RSS is high due

to high interference, the handoff will not take place, although, ideally, handoff is

desirable to avoid interference; (ii) when RSS is low, handoff takes place even if voice

quality is good, although, ideally, such a handoff is not required, and some systems

use supervisory audio tone (SAT) information with the RSS to avoid handoff.

A variation of the basic threshold algorithm is a two-level algorithm, which

provides more opportunity for a successful handoff [8]. Two handoff thresholds, L1

and L2, are defined with L1 higher than L2 as shown in Figure 2.12. When the RSS

drops below L1, a handoff request is initiated. If the MS is in a signal strength hole

in the current cell or the candidate cell is busy, the possibility of handoff must be

assessed. In this case, handoff is requested periodically (e.g., every five seconds).

The handoff request is entertained only if the new RSS is stronger (Situation 1 in
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Figure 2.12: A Two-Level Handoff Algorithm

Figure 2.12). However, if the RSS reaches L2, handoff will be made regardless of the

relative signal strength of the candidate BS (Situation 2 in Figure 2.12). Due to the

two-level algorithm, the MS may come out of the hole, or the candidate BS may have

a free channel for handoff between L1 and L2. If a single threshold L2 were used,

the L2 boundary might have been close to the candidate BS, causing interference

(Situation 3 in Figure 2.12). However, in a two-level algorithm, L1 boundaries of the

BSs will have allowed handoff to be made earlier, avoiding high interference levels.

Combined Absolute and Relative Signal Strength Algorithms

According to this algorithm, handoff takes place if the following two conditions are

satisfied [54]: the average signal strength of the serving BS falls below an absolute

threshold T (dB), and the average signal strength of the candidate BS exceeds the

average signal strength of the current BS by an amount of h (hysteresis) dB. The

first condition prevents the occurrence of handoff when the current BS can provide

sufficient signal quality. Reference [24] has shown that an optimum threshold (T)

achieves the narrowed handoff area (and hence reduced interference) and a low ex-

pected number of handoffs. Basic variables for this handoff algorithm are the length

and shape of the averaging window, the threshold level, and the hysteresis margin [4].

Some of the findings of [15] for this algorithm are: (i) the probability of not

finding a handoff candidate channel decreases as the overlap region increases; (ii) the
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probability of not finding a handoff candidate increases as the handoff threshold in-

creases; (iii) the probability of a late handoff decreases as handoff threshold increases;

(iv) the probability of unnecessary handoffs (i.e., the ping-pong effect) increases as

handoff threshold increases; (v) the probability of unnecessary handoff decreases as

hysteresis increases.

2.5.2 Distance Based Algorithms

This algorithm connects the MS to the nearest BS. The relative distance measurement

is obtained by comparing propagation delay times. This criterion allows handoff at

the planned cell boundaries, giving better spectrum efficiency compared to the sig-

nal strength criterion [14]. German cellular system C450 uses this handoff criterion

[55]. However, it is difficult to plan cell boundaries in a microcellular system due to

complex propagation characteristics. Thus, the advantage of distance criterion over

signal strength criterion begins to disappear for smaller cells due to inaccuracies in

distance measurements. A relative signal strength based algorithm gives less inter-

ference probability compared to a relative distance based algorithm. In particular,

when an LOS path exists between the current and distant BS and the MS, the current

BS gives stronger signal strength compared to the nearer NLOS BS. In such cases,

the relative signal strength criterion can avoid interference; relative distance criterion

experiences more interference.

2.5.3 SIR Based Algorithms

For toll quality voice, SIR at the cell boundary should be relatively high (e.g., 18

dB for AMPS and 12 dB for GSM). However, a lower SIR may be used for capacity

reasons since cochannel distance and cluster size (i.e., the number of cells per clus-

ter) are small for lower SIR and channels can be reused more frequently in a given

geographical region [8]. SIR is a measure of communication quality. This algorithm

makes a handoff when the current BS’s SIR drops below a threshold and another BS

can provide sufficient SIR. Hysteresis can be incorporated in the algorithm. The lower

SIR may be due to high interference or low carrier power. In either case, handoff is

desirable when SIR is low. However, SIR-based handoff algorithms prevent handoffs



CHAPTER 2. FOUNDATION OF CELLULAR HANDOFF 36

near nominal cell boundaries and cause cell-dragging and high transmit power re-

quirements [56]. In analog systems, measuring SIR during a call is difficult. Hence,

sometimes interference power is measured before a call is connected, and combined

signal and interference power is measured during the call.

Reference [57] has suggested an uplink SIR-based algorithm for a power con-

trolled system. Each user tries to achieve a target SIR γt. Handoff is made when the

user’s SIR drops below a threshold γho, which is normally less than γt.

2.5.4 Velocity Adaptive Algorithms

Handoff requests from fast moving vehicles must be processed quickly. A handoff

algorithm with short temporal averaging windows can be used to tackle fast users.

However, the concept of a “short” averaging window is relative to the mobile speed.

Thus, optimal handoff performance will be obtained only at one speed if the length

of the averaging window is kept constant. A velocity adaptive handoff algorithm

provides good performance for MSs with different velocities by adjusting the effective

length of the averaging window [58]. A velocity adaptive handoff algorithm can

serve as an alternative to the umbrella cell approach to tackle high speed users if low

network delay can be achieved, which can lead to savings in the infrastructure. One of

the velocity estimation techniques uses level crossing rate (LCR) of the RSS in which

the threshold level should be set as the average value of the Rayleigh distribution

of the RSS [59], requiring special equipment to detect the propagation dependent

average receiver power. Reference [59] proposes a method of velocity estimation in a

Rayleigh fading channel based on velocity’s proportionality to the Doppler frequency.

The velocity estimation technique exploits diversity reception. If the MS is already

using selection diversity, special equipment is not required for this method.

In [58], velocity adaptive handoff algorithms for microcellular systems are char-

acterized. The amount of spatial averaging required for local mean estimation is

discussed. Three methods for velocity estimation are analyzed: level crossing rate

method, zero-crossing rate method, and covariance approximation method. Sensi-

tivity of algorithms to Rice (a type of fading) factors, non-isotropic scattering, and

additive Gaussian noise are also addressed. A method for choosing proper window

length using analog averaging has been analyzed. The signal statistics (e.g., mean)

are estimated, the accuracy of which depends on Rice factor K, averaging distance,
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and the angle of the specular component with the MS direction θ. The required spa-

tial averaging distance for local mean estimates in microcells depends on K and θ.

Discrete averaging can be used to determine the number and spacing of samples. It

is found that the spatial averaging distance required to sufficiently reduce the effects

of fading depends on K and θ. For sample averaging, sample spacing should be less

than 0.5 λ (half the wavelength). Usually, a spatial averaging distance of 20 λ to 40 λ

is sufficient for microcells. A velocity adaptive handoff algorithm can adapt the tem-

poral averaging window (i.e., a window with a certain time length) by either keeping

the sampling period constant and adjusting the number of samples per window or

vice versa.

2.5.5 Direction Biased Algorithms

In an NLOS handoff, the MS experiences the corner effect as explained in Section

2.3.2. Hence, if the MS moves fast and is not handed off quickly enough to another

BS, the call will be dropped. Connecting the fast moving vehicles to an umbrella cell

is one solution, and using better handoff algorithms is another solution. A direction-

biased handoff algorithm represents such an alternative solution [60]. Direction bias-

ing improves cell membership properties and handoff performance in LOS and NLOS

scenarios in a multi-cell environment. A handoff algorithm is said to possess good

cell membership properties if the probability that the MS is assigned to the closest BS

is close to one throughout the call duration [60]. Improvement in cell memberships

leads to fewer handoffs and reduced interference.

The basic idea behind this algorithm is that handoffs to the BSs towards which

the MS is moving are encouraged, while handoffs to the BSs from which the MS is

receding are discouraged. This algorithm reduces the probability of dropped calls

for hard handoffs (e.g., for TDMA systems). The algorithm also reduces the time a

user needs to be connected to more than one base station for soft handoffs (e.g., for

CDMA systems), allowing more potential users per cell.

A variation of the basic direction-biased algorithm is the pre-selection direction-

biased algorithm [60]. If the best BS is a receding one and has a quality only slightly

better than the second best BS which is being approached, the handoff should be

made to the second best BS because it is more likely to improve its chances of being

selected. This provides a fast handoff algorithm with good cell membership properties
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without the undesirable effects associated with large hysteresis. Another variation of

the basic direction-biased algorithm is a fuzzy logic based direction-biased algorithm

[60].

2.5.6 Minimum Power Algorithms

A minimum power handoff (MPH) algorithm that minimizes the uplink transmit

power by searching for a suitable combination of a BS and a channel is suggested in

[56]. This algorithm reduces call dropping but increases the number of unnecessary

handoffs. To avoid a high number of handoffs, the use of a timer is suggested. First,

the channel that gives minimum interference at each BS is found. Then, the BS that

has a minimum power channel is determined.

Reference [11] uses a power budget criterion to ensure that the MS is always

assigned to the cell with the lowest path loss, even if the thresholds for signal strength

or signal quality have not been reached. This criterion results in the lowest transmit

power and a reduced probability of CCI.

2.5.7 RSS and BER Based Algorithms

An algorithm based on both RSS and BER is described in [26]. For RSS, a threshold

is used for the current BS, and a hysteresis window is used for the target BS. For BER,

a separate threshold is defined. The target BS can be either included or excluded

from the handoff decision process. The latter scheme is used in GSM in which the

mobile does not know the signal quality of the target BS. In principle, it is possible

to measure BER of the control channel of the target BS. Three parameters consid-

ered in the simulations in [26] are RSS threshold, BER threshold, and RSS hysteresis

window size. The effects of these parameters on handoff probability are shown in this

paper. In general, a low threshold value reduces the handoff request probability. The

best threshold value is the average signal level at the mid-point between two BSs.

However, due to the propagation environment, this threshold must be estimated for

each base site. An RSS hysteresis delays handoff significantly. The higher the BER

threshold, the earlier the handoff request. Moreover, if the BER threshold of target

BS is used, handoff request is delayed. The handoff request probability differs signifi-

cantly with location (or BS sites), showing that propagation characteristics are highly
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dependent on local terrain features and environment. From experimental results, it

was found that the signal level and BER profiles varied significantly. RSS gives a

direct indication of the received energy at the MS, while BER gives an indication

of CCI and transmission quality. The effect of threshold level of RSS on handoff is

opposite to that of BER since the gradient of BER level is opposite to that of RSS

level. If the gradient of the signal level is steep, the handoff region is less sensitive to a

small variation in the threshold. Hysteresis is useful in preventing premature handoff

requests if signal profiles are fluctuating. This is very useful in small site cells. In

large site cells, hysteresis should be relatively small since it may introduce a delay in

handoff initiation. Actual data (i.e., measured RSS and BER) is used in a software

simulator that implements handoff schemes [26].

2.6 Emerging Handoff Algorithms

2.6.1 Dynamic Programming Based Handoff Algorithms

Dynamic programming allows a systematic approach to optimization. However, it

is usually model dependent (particularly the propagation model) and requires the

estimation of some parameters and handoff criteria, such as signal strengths. So far,

dynamic programming has been applied to very simplified handoff scenarios only.

Handoff is viewed as a reward/cost optimization problem in [61]. RSS samples

at the MS are modeled as stochastic processes. The reward is a function of several

characteristics (e.g., signal strength, CIR, channel fading, shadowing, propagation

loss, power control strategies, traffic distribution, cell loading profiles, and channel

assignment). Handoffs are modeled as switching penalties that are based on resources

needed for a successful handoff. Dynamic programming is used to derive properties

of optimal policies for handoff. Simulation results show this algorithm to be better

than a relative signal strength based algorithm.

Reference [62] views signal strength based handoff as an optimization problem

to obtain a tradeoff between the expected number of handoffs and number of service

failures, events that occur when the signal strength drops below a level required for

an acceptable service to the user. An optimal solution is derived based on dynamic

programming and is used for comparison with other solutions. The handoff problem

is defined as a finite horizon dynamic programming problem, and an optimal solution
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is obtained through a set of recursive equations. This optimal solution is complex and

requires a priori knowledge of the mobile trajectory. A locally optimal (or greedy)

algorithm has been derived that uses the threshold level and gives a reasonable number

of handoffs. A technique for adapting the algorithm is also suggested.

In [63], the handoff problem is formulated in a stochastic control framework.

A Markov decision process formulation is used, and optimum handoff strategies are

derived by dynamic programming. The optimization function includes a cost for

switching and a reward for improving the quality of the call. The optimum decision

is the hysteresis value representing the difference in RSSs from the BSs.

2.6.2 Pattern Recognition Based Handoff Algorithms

Reference [64] formulates the handoff problem as a pattern recognition problem. Pat-

tern recognition (PR) identifies meaningful regularities in noisy or complex environ-

ments. These techniques are based on the idea that the points that are close to each

other in a mathematically defined feature space represent the same class of objects or

variables. Explicit PR techniques use discriminant functions that define (n-1) hyper-

surfaces in an n-dimensional feature space. The input pattern is classified according

to their location on the hypersurfaces. Implicit PR techniques measure the distance

of the input pattern to the predefined representative patterns in each class. The

sensitivity of the distance measurement to different representative patterns can be

adjusted using weights. The clustering algorithms and fuzzy classifiers are examples

of implicit methods. The environment in the region near cell boundaries is unstable,

and many unnecessary handoffs are likely to occur. The PR techniques can help

reduce this uncertainty by efficiently processing the RSS measurements.

2.6.3 Prediction-based Handoff Algorithms

Prediction-based handoff algorithms use the estimates of future values of handoff cri-

teria, such as RSS. Reference [65] proposes this technique and shows it to be better

than the relative signal strength algorithm and the combined absolute and relative

signal strength algorithm via simulations. An adaptive prediction based algorithm

has been proposed to obtain a tradeoff between the number of handoffs and the over-

all signal quality [65]. Signal strength based handoff algorithms can use path loss
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and shadow fading to make a handoff decision. The path loss depends on distance

and is determinate. The shadow fading variations are correlated and hence can be

predicted. The correlation factor is a function of the distance between the two loca-

tions and the nature of the surrounding environment [66]. The proposed prediction

based algorithm exploits this correlation property to avoid unnecessary handoffs. The

future RSS is estimated based on previously measured RSSs using an adaptive FIR

filter. The FIR filter coefficients are continuously updated by minimizing the predic-

tion error. Depending upon the current value of the RSS (RSSc) and the predicted

future value of the RSS (RSSp), handoff decision is given a certain priority. Based

on the combination of RSSc and RSSp, hysteresis may be added if it will not affect

the handoff performance adversely. The final handoff decision is made based on the

calculated handoff priority.

2.6.4 Neural Handoff Algorithms

Most of the proposed neural techniques have shown only preliminary simulation re-

sults or have proposed methodologies without the simulation results. These tech-

niques have used simplified simulation models. Learning capabilities of several paradigms

of neural networks have not been utilized effectively in conjunction with handoff al-

gorithms to date.

Reference [1] presents a signal strength based handoff initiation algorithm using

a binary hypothesis test implemented as a neural network. However, simulation

results are not presented.

In [16], a methodology based on an ANN is proposed. Preliminary simulation

results show that this methodology is suitable for multicriteria handoff algorithms.

2.6.5 Fuzzy Handoff Algorithms

In [67], a fuzzy handoff algorithm is proposed. The fuzzy handoff algorithm has

been shown to possess enhanced stability (i.e., less frequent handoffs). A hysteresis

value used in a conventional handoff algorithm may not be enough for heavy fadings,

while fuzzy logic has inherent fuzziness that can model the overlap region between

the adjacent cells, which is the motivation behind this fuzzy logic algorithm.

Reference [64] uses a fuzzy classifier to process the signal strength measurements
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to select a BS to serve a call. The performance of this algorithm in a microcellular

environment is evaluated.

In [68], a handoff procedure using fuzzy logic is outlined. It incorporates signal

strength, distance, and traffic. Preliminary simulation results are presented.

Reference [12] explains the concept of cell membership degree to handoff. The

methodology proposed in this paper allows systematic inclusion of different weight

criteria and reduces the number of handoffs without excessive cell coverage overlap-

ping. It is shown that the change of RSS threshold as a means of introducing a bias

is an effective way to balance traffic while allowing few or no additional handoffs. It

is suggested that a combination of range and RSS modified by traffic weighting might

give good performance. Different fuzzy composition methods to combine the cell

membership degrees of different criteria methods are investigated. Effects of changes

in the cell membership degrees on handoff performance have been evaluated.

2.7 Handoff Prioritization

One of the ways to reduce the handoff failure rate is to prioritize handoff. Handoff

algorithms that try to minimize the number of handoffs give poor performance in

heavy traffic situations [69]. In such situations, a significant handoff performance

improvement can be obtained by prioritizing handoff.

2.7.1 Introduction to Handoff Priority

Channel assignment strategies with handoff prioritization have been proposed to re-

duce the probability of forced termination [70, 71]. Two basic methods of handoff

prioritization, guard channels and queuing, are explained next.

• Guard Channels.

Guard channels improve the probability of successful handoffs by reserving a
fixed or dynamically adjustable number of channels exclusively for handoffs. For
example, priority can be given to handoff by reserving N channels for handoffs
among C channels in the cell [72]. The remaining (C-N) channels are shared
by both new calls and handoff calls. A new call is blocked if the number of
channels available is less than (C-N). Handoff fails if no channel is available
in the candidate cell. However, this concept has the risk of underutilization of
spectrum. An adaptive number of guard channels can help reduce this problem.



CHAPTER 2. FOUNDATION OF CELLULAR HANDOFF 43

Efficient usage of guard channels requires the determination of optimum number
of guard channels, knowledge of the traffic pattern of the area, and estimation
of the channel occupancy time distributions.

• Queuing of Handoff.

Queuing is a way of delaying handoff [8]; the MSC queues the handoff requests
instead of denying access if the candidate BS is busy. Queuing new calls results
in increased handoff blocking probability. The probability of a successful hand-
off can be improved by queuing handoff requests at the cost of increased call
blocking probability and a decrease in the ratio of carried-to-admitted traffic
since new calls are not assigned a channel until all the handoff requests in the
queue are served. Queuing is possible due to the overlap region between the
adjacent cells in which an MS can communicate with more than one BS.

If handoff requests occur uniformly, queuing is not needed; queuing is effective
only when handoff requests arrive in groups and when traffic is low. Queuing’s
conditional effectiveness has two causes: first, if there is a lot of traffic, it is
highly unlikely that a queued handoff request will be entertained, and secondly,
when there is moderate traffic and when traffic arrives in bundles, a queued
handoff request is likely to be entertained due to potential availability of re-
sources in the near future and the lower probability of new handoff requests in
the same period.

Queuing is very beneficial in macrocells since the MS can wait for handoff be-
fore signal quality drops to an unacceptable level. However, the effectiveness of
queuing decreases for microcells due to stricter time requirements. The com-
bination of queuing and channel reservation can be employed to obtain better
performance [73].

Joint optimization of queuing and handoff parameters may be better due to the

reasons listed below[69].

• When handoff algorithms are designed to optimize dropout probability and
the number of unnecessary handoffs, excessive dropouts occur due to channel
blocking during high traffic intensities. These strategies minimize the number
of handoff attempts per boundary crossing, and sufficient time may not be
available for entertaining the handoff requests under heavy traffic conditions.

• Different handoff algorithms introduce different delays in handoff requests. Hence,
the delay associated with handoff queuing may not be acceptable for some hand-
off algorithms. The performance improvement achievable by handoff queuing is
variable and dependent on handoff algorithms.

• Some handoff requests may demand higher priority in a queue to save the call.
This can be investigated properly by noting both the traffic and transmission
characteristics.
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2.7.2 Handoff Priority Schemes

Reference [69] investigates the performance of different handoff priority schemes us-

ing a simulation model that incorporates transmission and traffic characteristics. The

priority scheme of GSM has been evaluated. The simulation results show that the

queuing and channel reservation schemes improve the dropout performance signifi-

cantly, and the priority schemes provide up to 16% further improvement.

Reference [71] presents a handoff prioritization scheme to improve the service

quality by minimizing handoff failures and spectrum utilization degradation. If all the

channels are occupied, new calls are blocked while handoff requests are queued. The

handoff queue is dynamically reordered based on the measurements. The performance

of the proposed handoff priority technique has been evaluated through simulations

and compared with nonprioritized call handling and the first in first out (FIFO)

queuing scheme. The proposed scheme is shown to provide a lower probability of

forced termination, a reduction in call blocking, a small reduction in traffic, and a

small reduction in delay compared to the FIFO scheme under all traffic conditions.

The new proposed scheme improves the probability of forced termination at the cost

of an increase in call blocking and a decrease in the ratio of combined-to-offered

traffic. The priorities are defined by the RSS at the MS from the current BS. The

degradation rate in service due to queuing depends on the velocity of the MS, and

the proposed method considers this degradation rate.

Reference [72] discusses two methods of giving priority to handoffs in a mobile

system with directed retry, a feature of a cellular system, which allows the user to

use a free channel in one of the neighboring cells [74]. Directed retry decreases the

call blocking probability by sacrificing the handoff failure rate because there are fewer

channels available for handoff in the candidate cell. This paper presents simulation

results of two handoff priority methods for a cellular system with directed retry.
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2.8 Handoff and Other Resource Management Tasks

2.8.1 Introduction to Resource Management

Some of the radio resource management tasks performed by cellular systems include

admission control, channel assignment, power control, and handoff [57, 75]. An inte-

grated radio resource management scheme can make necessary tradeoffs between the

individual goals of these tasks to obtain better performance. The integrated radio re-

source management can increase system capacity within specified quality constraints.

Due to the time and space varying nature of the cellular system, the radio resource

management tasks need to be adaptive to factors such as interference, traffic, and

propagation environment. Adaptive radio resource management tasks can reduce the

initial cell planning and make replanning easier, more organized, and more automatic.

Some of the important objectives of resource management are global minimization of

the interference level and handoffs and adaptation to varying traffic and interference

scenarios. A combination of individual radio resource management tasks is also pos-

sible. For example, handoff and channel assignment tasks can be combined [63]; a

handoff request can be queued, and handoff is made when a channel becomes avail-

able. It should be noted that traditional cell planning may not be able to utilize the

available spectrum efficiently due to highly environmentally dependent radio prop-

agation, rapid and unbalanced growth of radio traffic, and other factors [75]. The

radio resource management tasks are explained next.

• Admission Control.

New calls and continuing calls can be treated differently. New calls may be
queued. Handoffs may be prioritized. It is important to prevent the system
from being overloaded. On the other hand, capacity is the revenue for service
providers, and part of the perceived service quality can be attributed to the
accessibility of the network.

• Channel Allocation.

Reference [70] provides a tutorial on channel assignment (or allocation) strate-
gies. Channel assignment strategies can be classified into fixed, dynamic, and
flexible.

The Fixed Channel Assignment (FCA) strategy permanently assigns a set of
channels to each cell in a cluster . Some variations of the basic FCA strat-
egy are the FCA with Borrowing (FCAB), the FCA with Hybrid Assignment
(FCAHA), and the FCA with Borrowing-with-Channel-Ordering (FCABCO).
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In the FCAB, a channel can be borrowed from a neighboring cell if all the
channels in a cell are busy (provided that this does not result in excessive in-
terference). In the FCAHA, a set of channels in each cell is divided into two
groups, one group is reserved for the local use and the other is kept for the
lending purpose. The FCABCO extends the idea of FCAHA by dynamically
varying the ratio of the local-to-borrowable channels. Reference [76] compares
the performance of FCA and FCABCO with two proposed channel assignment
strategies. Simulations for a forty nine-cell network have been carried out under
uniform and nonuniform traffic conditions.

The Dynamic Channel Assignment (DCA) strategy makes all the channels in
a cluster available for use within a cluster. The actual channel assignment for
a new call attempt is based on the minimization of a cost function that de-
pends on future blocking probability, usage frequency of the candidate channel,
and reuse distance of the channel. Dynamic channel allocation does not re-
quire a priori frequency planning but must determine whether cochannel usage
is allowed or not. If adaptation to the changing propagation and interference
conditions is done in a channel allocation algorithm, such an algorithm must
guarantee a safe cochannel reuse distance. Hence, a measure of interference for
the handoff candidate channel is required as an input to the channel allocation
algorithm. Reference [77] deals with dynamic channel allocation using an ANN.
In microcells, the variations in the telephone traffic load are large compared to
those in macrocells. Reference [78] proposes a DCA algorithm that adapts to
these variations for a one-dimensional cellular system. The proposed algorithm
maximizes the number of assigned calls and is suitable for distributed imple-
mentation. DCA gives better performance than FCA at low loads since it can
adapt to traffic bursts. However, at high loads, DCA does not perform as well.
Hence, some hybrid schemes have been suggested.

The Flexible Channel Assignment (FLCA) strategy permanently distributes
some channels among the cells in a cluster and keeps the remaining channels
available for any cell’s use when that cell’s permanent channels are inadequate
to cope with high traffic demand.

As explained in Section 2.7, the use of guard channels exclusively for handoff
requests results in underutilization of the scarce channel resources. Reference
[79] presents a channel allocation algorithm that follows most critical first policy
in which a free channel is assigned to the handoff request that would be the
first to be cut-off if no channel were available at that time. Simulation results
indicate that this algorithm is effective in reducing handoff failures.

Reference [80] describes signal strength based distributed channel assignment
schemes for a one-dimensional cellular system.

• Power Control.
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Power control is used to increase battery life, reduce health hazards, and contain
interference. One way to exercise power control is to use SIR as a criterion. In
this case, MSs try to attain a target SIR through continuous power adjustments.
If the minimum possible power that meets the required (C/I) constraint at the
receiver is transmitted, spectrum efficiency will increase compared to uncon-
trolled transmit power systems. Increasing transmit power to increase (C/I) for
better transmission quality does not necessarily meet the objective since other
transmitters in the system may also increase their power levels to reduce their
interference, thus increasing the global interference level.

• Handoff.

One easy solution to BS assignment is to assign the MS to the nearest base
station. However, due to the factors described in section 2.2.2, the handoff
issue becomes very complex. Intercell handoff can be viewed as an adaptive
method of preserving the planned cell boundaries and subsequently reducing
the interference. Adaptation to the spatial distributions of radio traffic (or
interference) can be done by modifying cell areas and shapes dynamically by
adapting the handoff parameters. This effect is called cell breathing. In the
directed retry method, if the best BS is not available, the second best BS is
tried for handoff. However, directed retry increases the effectively used cell
areas, increasing the global interference level.

2.8.2 Resource Management Integrated Handoff Algorithms

Some algorithms that combine two or more radio resource management tasks are

described next.

Combined Intracell Handoff and Channel Assignment

Channel allocation algorithms that adapt to the instantaneous interference and traffic

situation can lead to an easier planning process. This is a tremendous advantage since

the system grows stepwise with the traffic demand in most cases [25].

Reference [25] proposes a channel allocation algorithm that is adaptive to traffic

and interference. It assumes that (C/I) of the current channel is measured periodi-

cally. This algorithm consists of several steps, which are outlined below.

1. For a new call setup or intercell handoff, reassignment is performed. In other

cases, reassignment is performed if (C/I)old for the current channel is less than

a threshold, (C/I)check.
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2. Since it may not be feasible to calculate (C/I) for all the channels, channels are

checked until a channel with good (C/I) is found. This channel is taken as a

candidate channel.

3. If (C/I) of the candidate channel, (C/I)cand, and (C/I)old are less than a thresh-

old, (C/I)block, the call is blocked.

4. In the absence of call setup or intercell handoff, the candidate channel is ac-

cepted only if (C/I)cand exceeds (C/I)old by some hysteresis value.

Uplink SIR-based Integrated Handoff Algorithm

Reference [57] proposes an integrated resource management based on four SIR thresh-

olds. The resource management tasks incorporated into the algorithm are admission

control, power control, handoff, and channel allocation. A call is dropped when SIR

drops below γdrop (e.g., 16 dB for AMPS). γdrop is considered to be the minimum

tolerable SIR for an acceptable speech quality. Power control is achieved by a target

SIR threshold γt. Each MS tries to attain γt through power control. Call admission

control is achieved by an SIR threshold γnew. A new call attempt succeeds only if it

can offer an SIR higher than γnew. This SIR threshold ensures that the system is not

packed too tightly. Otherwise, it may be difficult to find free channels for handoff.

Moreover, a new call, if admitted, will not cause severe interference to existing calls.

Handoff and channel assignment are combined in the sense that handoff is made to

the minimum interference channel when SIR drops below γho.

RSS-based Integrated Handoff Algorithm

The algorithm proposed in [75] uses RSS and transmission quality measure for the

channels as handoff criteria. The BS allocation, channel assignment, and power con-

trol are treated in an integral manner. A new BS is selected in the case of new call

setup and inter-cell handoff based on signal strength and possibly some network crite-

ria. The comparison between the candidate BSs is done under equal transmit power

levels. Power control is performed to increase spectral efficiency.
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Integrated Power Control and Handoff Algorithm

Reference [81] treats power control and BS assignment issues in an integral manner.

The objective is to find a combination of BS assignment and transmit power to provide

a feasible solution to the minimum transmit power (MTP) problem. An algorithm

called minimum power assignment (MPA) is proposed, which iteratively solves the

MTP problem. During an iteration of the algorithm, an MS chooses a combination of

BS and transmit power for which minimum power is needed to maintain an acceptable

CIR (assuming that the other MSs transmit fixed powers at that time).

Reference [82] also proposes a similar combined power control and BS selection

algorithm to achieve higher capacity in a spread spectrum cellular system. The pro-

posed algorithm adapts transmit powers of users and switches users between the BSs

to minimize interference. The algorithm also reduces traffic congestion in a cell by

moving the users to less congested adjacent cells.

2.9 Handoff Protocols

There are four basic types of handoff protocols, network controlled handoff (NCHO),

mobile assisted handoff (MAHO), soft handoff (SHO), and mobile controlled handoff

(MCHO). Figure 2.13 shows the tradeoff associated with the handoff protocols. As the

handoff decision making process is decentralized (i.e., moving from NCHO to MCHO),

handoff delay (i.e., the time required to execute a handoff request) decreases, but the

measurement information available to make a handoff decision also decreases. These

protocols are described next.

2.9.1 Network Controlled Handoff

Introduction to Network Controlled Handoff

In network controlled handoff (NCHO) protocol, the network makes a handoff deci-

sion based on measurements of the RSSs of the MS at a number of BSs. The handoff

command is sent on the voice channel by blanking the voice and sending data. Some-

times the network sets up a bridge connection between the old and new BS and thus

minimizes the duration of handoff. In general, the handoff process (including data
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Figure 2.13: Handoff Delay and Measurement Information for Handoff Protocols

transmission, channel switching, and network switching) takes 100-200 ms and pro-

duces a noticeable click in the conversation. This click is imperceptible in a noisy

voice channel; however, it is perceptible when handoff occurs at a reasonable signal

quality [10]. Information about the signal quality for all users is located at a single

point (the MSC). This information facilitates resource allocation. According to [83],

the overall delay can be approximately five to ten seconds. This type of handoff is

not suitable for a rapidly changing environment and a high density of users due to

the associated delay.

Network Controlled Handoff in Practice

This type of handoff is used in first generation analog systems such as AMPS, TACS,

and NMT [10]. Measurements are made only at BSs. RSSs of connected terminals

are observed. SIR is measured by a supervisory audio tone (SAT). The BS transmits

a tone with a frequency outside the audio range. This tone is echoed by the MS,

and the BS estimates the interference from the quality of the received tone. Handoff

is recognizable by the user as a clicking sound since a digital message is sent over

an analog link. The measurements are made by two receivers at the BS [5]. The

main receiver measures signal strengths of all its reverse voice channels. The locator

receiver determines signal strengths of mobile users in neighboring cells. Based on

the inputs from these receivers, the MSC decides whether handoff is necessary.
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2.9.2 Mobile Assisted Handoff

Introduction to Mobile Assisted Handoff

A mobile assisted handoff (MAHO) protocol distributes the handoff decision process.

The MS makes measurements, and the MSC makes decisions. According to [83], there

can be a delay of one sec; this delay may be too much to counteract the corner effect.

Mobile Assisted Handoff in Practice

The TDMA/FDMA based GSM and CDMA based IS-95 standards use MAHO. Hand-

off related aspects of GSM are discussed here. An IS-95 based system uses SHO in

conjunction with MAHO, and handoff related issues for such systems are discussed

in Section 2.9.3.

In GSM, Base Station Sub-system (BSS) includes a Base Station Transceiver

(BTS) and a Base Station Controller (BSC) [3]. The BTS is in contact with MSs

through the radio interface and includes radio transmission and receiver devices as

well as signal processing. The BSC is in contact with the network and is in charge of

the radio interface management, mainly the allocation and release of radio channels

and the handoff management. One BSC serves several BTSs, and several BSCs

are connected to one MSC. The handoff time (the time between handoff decision

and execution) in GSM is approximately one second [19]. First, handoff criteria in

GSM are described. The measurement process of handoff criteria is explained. Some

handoff algorithms based on GSM handoff criteria are briefly discussed. Different

types of handoffs in GSM are also described.

A list of parameters used as handoff criteria in GSM is given here [3]:

• static data such as maximum transmit power of the MS, the serving BTS, and
the BTSs of the neighboring cells;

• real-time measurements performed by the MS (such as the downlink transmis-
sion quality indicated by raw BER, downlink reception level on the current
channel, and downlink reception levels from the neighboring cells);

• the BTS measurements (such as the uplink transmission quality quantified by
raw BER, the uplink received level on the current channel, and the timing
advance);

• traffic considerations, cell capacity, and load.
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GSM’s TDMA structure consists of traffic channels (TCHs) and a number of control

channels (CCHs). Since a fixed training sequence is transmitted in a certain time slot,

the receiver can estimate its BER [11]. The BTS also measures the interference level

on idle traffic channels. Measurement of the BTS-MS distance is an optional feature.

The values measured by the MS are averaged and transmitted once in 480 ms over

the SACCH (Slow Associated Control Channel) to the BTS. The BTS algorithm pro-

cesses the thirty-two most recent measurements. The operators and manufacturers

have complete freedom to implement their own handoff algorithms based on avail-

able parameters. According to [53], most manufacturers have designed their handoff

algorithms based on signal strength. In this case, BER and the timing advance can

act as alarm condition indicators rather than handoff algorithm inputs. Handoff to

a different time slot on the same frequency channel is made for interference control

reasons [84].

In GSM, handoff can be internal or external. If the serving and target BTSs

are located within the same BSS, the BSC for the BSS can perform handoff without

the involvement of the MSC. This is referred to as intra-BSS handoff. In an external

handoff, the MSC coordinates the handoff. This type of handoff can further be

classified as intra-MSC (within the same MSC) and inter-MSC (between MSCs) [9].

GSM based handoff algorithms are evaluated in [11, 32, 52, 53]. Reference

[53] is of particular interest and describes a GSM-based handoff algorithm. The MS

measures the RSS of the serving BS and the neighboring BSs through Slow Associated

Control CHannel (SACCH) every 480 ms. These measurements are averaged over a

certain period of time. The averaged signal strength is compared with the threshold

level. The MS also ranks the neighboring cells according to the magnitude of their

RSSs. It compares the power budget criterion with the handover margin that helps

avoid unnecessary handoffs. When the power budget criterion is met, a handoff is

made to the top ranking neighboring cell if the RSS from that candidate cell is above

the threshold level. The threshold value prevents handoff at low signal levels.
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2.9.3 Soft Handoff

Introduction to Soft Handoff

Soft handoff (SHO) is a “make before break” connection, i.e., the connection to the

old BS is not broken until a connection to the new BS is made. SHO utilizes the

technique of macroscopic diversity. Macroscopic diversity is a technique in which

transmissions from an MS are received at different BSs and then used to obtain a

good quality communication link [85]. The same concept can be used at the MS too.

Macroscopic diversity is based on the principle of diversity combining that assumes

that different BSs transmit and receive the same call with uncorrelated signal paths.

Macroscopic diversity can provide good performance in terms of RSS and SIR for an

interference limited system. Interference limited systems can exploit spatial diversity

in the form of soft handoff. Macroscopic diversity is a form of spatial diversity and

uses signals from several BSs to mitigate the effect of shadow fading (signal strength

variations caused by buildings, foliage, and terrain features). It is shown in [86] that

a four-branch macroscopic diversity can provide a 13 dB improvement in RSS and a

15 dB improvement in SIR (for a path loss exponent of 4 and a 10 dB shadow fading

standard deviation).

Some of the diversity combining techniques include selection diversity, maximum

ratio combining, and equal gain combining [85]. In selection diversity, the signal with

the strongest SNR is selected. Maximum ratio combining uses co-phased signals

within each receiver, and each signal is given a weighting factor according to its SNR

before summation of the signals. Equal gain combining gives equal weightage to all

the signals before summation.

The MSs must decode the signals from all base stations, which may be using the

same or different channels. Such handoffs are called single channel SHO (SCSHO)

and multiple channel SHO (MCSHO), respectively [83].

• Single Channel SHO (SCSHO). In this type of SHO, each participating
base station transmits on the same channel. For high traffic situations, SCSHO
may suffice.

• Multichannel SHO (MCSHO). In this type of SHO, participating BSs use
different channels. The mobile receiver decodes the signals on these orthogonal
channels and achieves macroscopic diversity through diversity combining tech-
niques. In general, signal quality will be better for MCSHO than SCSHO since
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the receiver has more degrees of freedom. However, at high traffic intensities,
the MCSHO handoff scheme may not be feasible due to the unavailability of
channels.

Reference [83] investigates the effect of simulcasting in macrocellular and microcellular

systems. Simulcasting is an example of SHO in which the MS is simultaneously

connected to several BSs in the border region between the cells. The BSs participating

in SHO simulcast (i.e., simultaneously transmit) replicas of the same signal to the

MS.

There are several variations of SHO. The term soft handoff is used when old

and new BSs belong to two different cells. The term softer handoff is used when the

two signals correspond to the two different sectors of a sectorized cell [87]. When soft

and softer handoffs occur simultaneously, the term soft-softer handoff is used. As far

as the MS is concerned, there is no difference between SHO and softer handoff. For

the network, additional hardware overhead is required for soft handoff. One channel

element hardware and one BS-to-MSC trunk are required for each cell involved in

SHO. Additional frame-by-frame selection diversity is also required at the switch. No

additional hardware is required for softer handoff since the channel hardware can be

configured to transmit signal to multiple sector antennas and use diversity combining

techniques to process the signals from multiple sector antennas. The handoff threshold

needs to be small enough to bound the overall SHO percentage but large enough to

allow efficient diversity combining. The MS needs more than one demodulator to

exploit diversity combining techniques.

SHO can increase the capacity if exercised carefully. SHO increases the signal

energy, enhancing the robustness to combat interference. This can lead to the reduc-

tion in the channel reuse distance, thereby increasing the capacity. However, SHO

increases the level of cochannel interference and forces an increase in channel reuse

distance, thereby reducing the system capacity. There is a tradeoff between these two

conflicting factors. SHO has an advantage of changing SIR distribution. The MSs

far from the base station receive more signal energy, and this reduces outage proba-

bility. Another advantage of SHO, increased signal energy reduces the switching of

the call between the BSs. This reduces the computational load. In particular, proper

selection of the SHO region and its associated parameters can avoid the ping-pong

effect common in hard handoff [85]. A disadvantage of SHO, the mobile undergoing

SHO occupies channels between different BSs and the switch (MSC). Moreover, SHO
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tends to increase the traffic in the wired channels in a fixed network. The greater the

number of BSs involved in SHO, the more traffic in the fixed network. Also, SHO

requires an MS receiver capable of decoding multiple copies of the transmitted signal.

Soft Handoff in Practice

SHOs are common in CDMA. For IS-95, the BSs involved in SHO can transmit

on the same frequency and Walsh code, and the resultant signals are handled by the

receiver as additional multipaths to be incorporated into the decoded signal [9]. SHOs

are imperceptible to users and require a tight synchronization between all BSs in the

network to maintain data synchronization after handoff. The CDMA systems support

this function by using the global positioning system (GPS) to provide a master clock.

The IS-136 TDMA system does not currently support this function. Hard handoff is

a normal procedure for analog cellular systems. TDMA systems typically use hard

handoff unless synchronization between the BSs is available. CDMA systems forced

to handoff to a different Walsh function or different frequency use hard handoff. The

resultant break in connection causes speech and data to be lost; this hard handoff is

perceptible to users and is a a major research issue for CDMA.

In CDMA, the MS need not switch frequencies due to handoff. The candidate

BS communicates with the MS that is still connected to the old BS. The MS can

switch back and forth between the two BSs. After the MS is firmly established in the

new cell, the original BS disconnects the MS. Thus, CDMA based handoff provides

a make-before-break switching function. After a call is initiated, the MS scans the

pilots of the neighboring cells. When the MS finds the pilot signal greater than

the pilot of the current cell, it initiates a handoff. The system controller assigns a

modem located in the candidate cell-site to the handoff call, and the PN address of

the call is given to the modem. Each modem has digital modulator and digital data

receiver functions. The candidate modem finds the MS’s signal and transmits the

outband signal to the MS, which can switch over to the new signal after finding this

signal. The system controller connects the call to the new cell and makes the old cell

modem available for reassignment. This is a simple mode of handoff operation. In

another mode, called diversity mode, two or more BSs demodulate the data signal

from the MS. The BSs forward the demodulated signal and associated signal quality

indicator to the signal controller. The system controller selects the signal with the
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best quality and transmits it to a proper location. It is possible for BSs to transmit

undecoded or even undemodulated signals to the system controller so that a better

diversity combining process can be used. The MS also performs diversity combining

of the signals received from the BSs. The cell diversity mode is terminated when only

one BS can provide a good quality signal. The cellular diversity mode may also be

terminated if the system is overloaded and there are insufficient modems.

2.9.4 Mobile Controlled Handoff

In mobile controlled handoff (MCHO), the MS is completely in control of the handoff

process. This type of handoff has a short reaction time (on the order of 0.1 sec) and

is suitable for microcellular system [83]. The MS does not have information about

the signal quality of other users, and yet handoff must not cause interference to other

users. The MS measures the signal strengths from surrounding base stations and

interference levels on all channels. A handoff can be initiated if the signal strength

of the serving base station is lower than that of another base station by a certain

threshold. The MS requests the target BS for a channel with the lowest interference.

The MCHO is the highest degree of handoff decentralization. Advantages of

decentralization of handoff, handoff decisions can be made fast, and the MSC does

not have to make handoff decisions for every mobile, which is a very difficult task for

the MSC of high capacity microcellular systems [88].

The MCHO is used in the European standard for cordless telephones, Digital

European Cordless Telephone (DECT) [19]. The MS and the BS monitor the current

channel, and the BS reports measurements (RSS and BER) to the MS. The (C/I)s

of free channels are also measured. The handoff decisions are made by the MS. Both

intracell and intercell handoffs are possible. The handoff time is approximately 100

ms.

2.10 Conclusion

A high performance handoff algorithm can achieve many of the desirable features

by making appropriate tradeoffs. However, several factors such as topographical fea-

tures, traffic variations, propagation environments, and system-specific constraints

complicate the task of handoff algorithms. Different system deployment scenarios
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present different constraints on handoff procedure. Handoff algorithms with a specific

set of parameters cannot perform uniformly well in different communication system

deployment scenarios since these scenarios impose distinct restrictions and specific en-

vironments on the handoff process. These system structures are expected to co-exist

in future wireless communication systems and warrant a substantial study. The issues

involved in the design and analysis of handoff algorithms were thoroughly described.

In particular, different handoff criteria were analyzed. Both the conventional and

emerging approaches for designing handoff algorithms were discussed. Several met-

rics have been proposed and used to quantify the handoff related system performance.

A brief account of handoff performance measures was given. Handoff prioritization

can improve handoff related system performance. Two basic handoff prioritization

schemes, guard channels and queuing, were discussed. Handoff represents one of

the radio resource management tasks carried out by cellular systems. Other resource

management functions include admission control, channel assignment, and power con-

trol. If resource management tasks are treated in an integral manner, better overall

performance can be obtained to achieve global goals by making appropriate tradeoffs.
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2.11 Glossary

Acronym Full Name

AMPS Advanced Mobile Phone System

ANN Artificial Neural Network

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BS Base Station

BSC Base Station Controller

BSS Base Station Subsystem

BTS Base Station Transceiver System

C/I Carrier-to-Interference Ratio

CCH Control Channel

CCI Co-channel Interference

CDMA Code Division Multiple Access

CIR Carrier-to-Interference Ratio

DCA Dynamic Channel Assignment

DECT Digital European Cordless Telephone

DS-CDMA Direct Sequence CDMA

FCA Fixed Channel Assignment

FDMA Frequency Division Multiple Access

FIFO First In First Out

FLCA Flexible Channel Assignment

GEO Geostationary Earth Orbit

GPS Global Positioning System

GSM Global System for Mobile

HHO Hard Handoff

IS-95 Interim Standard-95

LCR Level Crossing Rate

LEO Low Earth Orbit

LOS Line of Sight
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Acronym Full Name

MAHO Mobile Assisted Handoff

MCBS Multichannel Bandwidth System

MCHO Mobile Controlled Handoff

MCSHO Multi Channel Soft Handoff

MPH Minimum Power Handoff

MS Mobile Station

MSC Mobile Switching Center

MTSO Mobile Telephone Switching Office

NCHO Network Controlled Handoff

NLOS Non Line of Sight

NMT Nordic Mobile Telephone

PACS Personal Access Communication System

PBX Private Branch Exchange

PCS Personal Communication Services

PN Pseudo Noise

PR Pattern Recognition

QoS Quality of Service

RSS Received Signal Strength

SACCH Slow Associated Control Channel

SAT Supervisory Audio Tone

SCSHO Single Channel Soft Handoff

SIR Signal-to-Interference Ratio

SNR Signal to Noise Ratio

TACS Total Access Communication System

TCH Traffic Channel

TDMA Time Division Multiple Access



Chapter 3

Fuzzy Logic and Neural Networks

There are several tools of AI that help utilize human knowledge about the systems to

develop high performance systems. Some of the major AI tools are artificial neural

networks, fuzzy logic, genetic algorithms, and expert systems. This research exploits

capabilities of neural networks and fuzzy logic to develop adaptive intelligent handoff

algorithms.

3.1 Introduction to Fuzzy Logic

Information can be represented by numbers or linguistic descriptions. For example,

temperature can be represented by the number 20oF or by the linguistic description

“cold.” The description “cold” is fuzzy and may represent any temperature between

10oF and 30oF , which can be called the fuzzy set (or fuzzy region) for the fuzzy

variable temperature. Since humans usually think in terms of linguistic descriptions,

giving these descriptions some mathematical form helps exploit human knowledge.

Fuzzy logic utilizes human knowledge by giving the fuzzy or linguistic descriptions a

definite structure.

A concise description of fuzzy logic theory is given next. First, basic concepts

of fuzzy logic are introduced. These concepts are then utilized to explain a popular

form of fuzzy logic system (FLS) that can serve as a building block in a system

incorporating fuzzy logic. A comprehensive theory of fuzzy logic can be found in [89].

• Fuzzy Set. Let U be a collection of objects and be called the universe of
discourse. A fuzzy set F ∈ U is characterized by a membership function µF (u) :

60
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Figure 3.1: An Example of Fuzzy Logic Membership Function

U → [0, 1] where µF (u) represents the degree (or grade) of membership of u ∈ U
in the fuzzy set F .

Figure 3.1 shows the membership functions of three fuzzy sets, “small,” “medium,”
and “large,” for a fuzzy variable SIR. The universe of discourse is all possible val-
ues of SIRs, i.e., U = [15, 25]. At an SIR of 19 dB, the fuzzy set “small” has the
membership value 0.6. Hence, µsmall(19) = 0.6. Similarly, µmedium(19) = 0.4,
and µlarge(19) = 0.

• Support. The support of a fuzzy set F is the crisp set of all points u ∈ U such
that µF (u) > 0.

• Center. The center of a fuzzy set F is the point (or points) u ∈ U at which
µF (u) achieves its maximum value.

• T-norm. A T-norm, denoted by *, is a two-place function from [0, 1]× [0, 1] to
[0, 1], which includes fuzzy intersection, algebraic product, drastic product, and
bounded product, defined as

x ∗ y = min(x, y)(fuzzy intersection) (3.1)

x ∗ y = xy(algebraic product) (3.2)

x ∗ y =


x : y = 1
y : x = 1
0 : x, y < 1

(drastic product) (3.3)

x ∗ y = max(0, x+ y − 1)(bounded product) (3.4)

where x, y ∈ [0, 1].
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• Fuzzy Relation. Let U and V be two universes of discourse. A fuzzy relation
R is a fuzzy set in the product space U×V , i.e., R has the membership function
µR(u, v) where u ∈ U and v ∈ V .

• Sup-Star Composition. Let R and S be fuzzy relations in U ×V and V ×W,
respectively. The sup-star composition of R and S is a fuzzy relation denoted
by RoS and is given by

µRoS(u, w) = supv∈V [µR(u, v) ∗ µS(v, w)] (3.5)

where u ∈ U , w ∈ W, and * could be any operator in the T-norm defined earlier.
It is clear that RoS is a fuzzy set in U ×W .

• Fuzzy Implications. Let A and B be fuzzy sets in U and V, respectively.
A fuzzy implication, denoted by A → B, is a special kind of fuzzy relation in
U × V with the following membership function:

µA→B(u, v) = µA(u) ∗ µB(v). (3.6)

This fuzzy implication is known as fuzzy conjunction. Other types of fuzzy
implications are also available [89].

Some of the popular FLS configurations include pure FLS, Takagi and Sugeno’s

fuzzy system, and Mamdani’s fuzzy system [89]. The components of the FLS pro-

posed by Mamdani [90] are fuzzifier, fuzzy rule base, fuzzy inference engine, and

defuzzifier as shown in Figure 3.2. This configuration of the FLS has been widely

used in industrial applications and consumer products. This FLS configuration has

the following advantages compared to other FLSs [89].

• This FLS has real-valued variables as its inputs and outputs, which is suitable
for engineering applications where measured variables are real-valued and not
fuzzy. (Pure FLSs require fuzzy variables as inputs.)

• This FLS provides a common framework, a rule base, for incorporating fuzzy
IF-THEN rules to exploit human knowledge.

• This FLS allows several degrees of freedom in the selection of different compo-
nents of the FLS.

• This FLS allows fusion of numerical information and linguistic information. For
example, numerical information (e.g., measurements) can be used to train the
FLS to derive an adaptive FLS.
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Figure 3.2: An Example of Fuzzy Logic System

The components of the Mamdani FLS are described next.

• Fuzzifier. The fuzzifier maps a crisp point, x = [x1, x2, ..., xn]T ∈ U , into a
fuzzy set A′ in U . Two choices for the fuzzifier forms are singleton fuzzifier and
nonsingleton fuzzifier.

Singleton Fuzzifier. A′ is a fuzzy singleton with support x, i.e., µA′(x
′) = 1 for

x′ = x and µA′(x
′) = 0 for all other x′ ∈ U with x′ 6= x.

Nonsingleton Fuzzifier. For this fuzzifier, µA′(x
′) = 1, and µA′(x

′) decreases

from 1 as x′ moves away from x. For example, µA′(x
′) = exp(− (x′−x)T (x′−x)

σ2 )
where σ is a parameter characterizing the shape of µA′(x

′) and T is a transpose
operation.

• Fuzzy Rule Base. A fuzzy rule base consists of a collection of fuzzy IF-THEN
rules. A typical form is shown here:

R(l) : IF x1 is F l
1 and ... and xn is F l

n, THEN y is Gl (3.7)

where F l
i and Gl are fuzzy sets in Ui ⊂ R and V ⊂ R, respectively, and where

x = [x1, x2, ..., xn]T ∈ U1×U2× ...×Un and y ∈ V are linguistic variables. Here,
l ranges from 1 to M with M representing the total number of rules.

Let a fuzzy rule be expressed as “ IF X is A, then Y is B” where X is the input
fuzzy variable, Y is the output fuzzy variable, and A and B are correspond-
ing fuzzy (linguistic) sets. A and B can be “small” and “big” respectively.
The “IF” clause of the rule is called the antecedent, and the “THEN” clause
the consequent. Each antecedent and consequent in a fuzzy logic rule forms a
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membership function that can be of different shapes, triangular and Gaussian
shapes being more popular. Each input or output fuzzy variable has a member-
ship degree of unity at the center value of the corresponding fuzzy set. Assume
that the support of the fuzzy set A is between ten and thirty, and that twenty
is the center value of the membership function for the fuzzy set A. Then, the
input fuzzy variable X has a membership degree of unity with set A when X is
twenty.

• Fuzzy Inference Engine. In the fuzzy inference engine, fuzzy logic principles
are used to combine the fuzzy IF-THEN rules in the fuzzy rule base, and fuzzy
sets in U = U1 × U2 × ...× Un are mapped into fuzzy sets in V. A fuzzy rule is
interpreted as a fuzzy implication F l

1 × ...× F l
n → Gl in U × V . Let a fuzzy set

A′ ∈ U be the input to the fuzzy inference engine. Then, each fuzzy IF-THEN
rule determines a fuzzy set Bl ∈ V using the sup-star composition:

µBl(u, w) = supx∈U [µF l1×...×F ln→Gl(x, y) ∗ µA′(x)]. (3.8)

Let F l
1 × ...× F l

n = A and Gl = B.

There are different interpretations for a fuzzy implication, and there are different
T-norms as defined earlier. Hence, the above equation can be interpreted in a
number of ways. One interpretation, called the product-operation rule, is shown
here:

µA→B(u, v) = µA(x) ∗ µB(y). (3.9)

This interpretation follows from the fuzzy conjunction implication by using the
algebraic product for *.

Overall mapping of the fuzzy inference engine is described next. For an input A′

(a fuzzy set in U), the output of the fuzzy inference engine can take two forms:
(1) M fuzzy sets Bl (l = 1, 2, ...,M) as in Eq. 3.8 with each one determined by
one fuzzy IF-THEN rule as in Eq. 3.7, (2) one fuzzy set B′, which is the union
of the M fuzzy sets Bl. Thus,

µB′(y) = µB1(y)
⋃
...
⋃
µBM (y). (3.10)

• Defuzzifier. The defuzzifier maps fuzzy sets in V into a crisp point, y ∈ V .
One of the choices for the defuzzifier is center average defuzzifier, defined as

y =

M∑
l=1

yl(µBl(y
l))

M∑
l=1

(µBl(y)l))
(3.11)

where yl is the center of the fuzzy set Gl, i.e., the point in V at which µGl(y)
achieves its maximum value, and µBl(y

l) is given by Eq. 3.5.
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3.2 Introduction to Neural Networks

Recently, artificial neural networks (ANNs) have been applied to many diverse prob-

lems. ANNs are one tool of artificial intelligence (AI) (others include fuzzy logic,

genetic algorithms, and expert systems). An ANN is a massively parallel distributed

processor that stores experimental knowledge; this knowledge is acquired by a learning

process and is stored in the form of parameters of the ANN [91]. Characteristics of

ANNs are massively parallel distributed architecture, ability to learn and generalize,

fault tolerance, nonlinearity, and adaptivity. The learning in ANNs can be unsuper-

vised or supervised. When an ANN undergoes learning in an unsupervised manner,

it extracts the features from the input data based on a predetermined performance

measure. When an ANN undergoes learning in a supervised manner, it is presented

with the input patterns and the desired output patterns. The parameters of the

ANN are adapted such that the application of an input pattern results in the desired

pattern at the output of the ANN.

First, a fundamental component of the ANN, an artificial neuron, is explained.

Using the model of the artificial neuron, two ANN architectures (or paradigms), mul-

tilayer perceptron (MLP) and radial basis function network (RBFN), are explained.

A procedure for using these ANN paradigms for function approximation is outlined.

Note that the specific task of interest is to map the inputs of the FLS to the outputs

of the FLS, and this mapping problem can be viewed as a function approximation

problem. The MLP and RBFN have been proven to be universal approximators [91],

and hence they are used here to approximate the functional mapping between the

FLS inputs and outputs.
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Figure 3.3: A Nonlinear Model of an Artificial Neuron

3.2.1 Fundamentals of ANNs

The ANN consists of a number of neurons arranged in a particular fashion. A non-

linear model of the artificial neuron is shown in Figure 3.3. The three basic elements

of a neuron are the synaptic weights (or weights), the summing junction, and the acti-

vation function (Figure 3.3). Different activation functions include hard limit, linear,

log-sig, and tan-sig. Threshold θk shown in Figure 3.3 can be considered as one of the

weights with -1 as input. The weights and threshold (also known as bias) are referred

to as parameters of the neuron. The activation functions can be used with or without

the bias. Usually, the ANN consists of more than one neuron. The output of a neuron

k is given by the following two equations:

uk =
p∑
j=1

wkjxj (3.12)

yk = f(uk − θk) (3.13)

where xj(j = 1, ..., p) are the inputs, wkj(j = 1, ..., p) are weights, θk is the threshold,

f(.) is the activation function, and yk is the output of the neuron.
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Figure 3.4: A Multilayer Perceptron

3.2.2 Paradigms of ANNs

Two paradigms of ANNs, MLP and RBFN, are briefly discussed next.

Two-layer Perceptron

Figure 3.4 shows a two-layer perceptron. Typically, the input layer is not counted

as a separate layer since it does not do any processing. The first layer is called hid-

den layer, and it consists of several artificial neurons. The output layer consists of

several neurons (equal to the number of outputs). An MLP can be trained in a su-

pervised manner by a very popular algorithm called the backpropagation algorithm.

The training of an ANN requires a training data set that consists of input patterns

and the desired output patterns. The backpropagation algorithm can be used to

change the parameters of perceptron to minimize the difference between the desired

outputs (for given input patterns) and the actual outputs of the network. Details
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of the backpropagation algorithm can be found in [91]. The basic idea of the al-

gorithm is explained here. The backpropagation algorithm consists of two distinct

passes through the layers of the network, a forward pass and a backward pass. In the

forward pass, an input pattern is applied to the input layer of the network, and it is

processed by the parameters of the network. This produces a pattern at the output

of the network. The output pattern is compared with the desired output pattern,

and the error is calculated. In the backward pass, this error is propagated backward

through the network, and the parameters of the network are modified by distributing

this error among the parameters of the network. The forward and backward passes

are made several times for all the training patterns. Gradually, the network begins to

produce output patterns that resemble those desired. A basic backpropagation algo-

rithm is very slow in convergence due to the requirements of small learning rates for

stable learning. However, there are several techniques that can improve the speed and

performance of the backpropagation algorithm, including Nguyen-Widrow weight ini-

tialization, use of momentum, and adaptive learning rate. It is shown in [92] that the

weights generated with certain constraints result in a better function approximation.

Use of Nguyen-Widrow initial conditions rather than random initial weights often

reduces the training time by an order of magnitude. Momentum helps the network

avoid getting stuck in shallow minima and leads to a better solution. Momentum can

be included in the backpropagation algorithm by making the weight changes equal

to the sum of a fraction (e.g., 0.95) of the last weight change and the new change

suggested by the backpropagation learning rule. Thus, momentum allows a network

to respond to both the local gradient and the recent trends in the error surface. Mo-

mentum allows the network to ignore small features in the error surface. An adaptive

learning rate mechanism keeps the learning rate as high as possible while keeping

the learning stable. The learning rate is adjusted based on the error performance.



CHAPTER 3. FUZZY LOGIC AND NEURAL NETWORKS 69

Figure 3.5: A Radial Basis Function Network

This research utilizes a two-layer perceptron with tan-sig activation functions in the

hidden layer and linear activation functions in the output layer. The Neural Network

Toolbox of MATLAB is used to train the two-layer perceptron.

Radial-Basis Function Network (RBFN)

The RBFN consists of three different layers, an input layer, a hidden layer, and an

output layer as shown in Figure 3.5. The input layer acts as an entry point for the

input vector; no processing takes place in the input layer. The hidden layer consists

of several Gaussian functions that constitute arbitrary basis functions (called radial-

basis functions); these basis functions expand the input pattern onto the hidden layer

space. This transformation from the input space to the hidden layer space is nonlinear

due to nonlinear radial-basis functions. The output layer linearly combines the hidden

layer responses to produce an output pattern. The rationale behind the working of the
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RBFN, a pattern-classification problem expressed in a high-dimensional space is more

likely to be linearly separable than in a lower-dimensional space. The parameters of

the RBFN are linear weights (in the output layer) and the positions and spreads of the

Gaussian functions. A complete learning procedure can be found in [91]. Basically,

in a supervised learning mode, these RBFN parameters are changed according to a

gradient descent procedure that represents a generalization of the least-mean-squares

(LMS) algorithm.

Two distinct phases of learning in the RBFN are selection of centers of the

radial basis functions and determination of linear weights. Some of the methods for

the selection of RBF centers are random selection (based on the training patterns),

unsupervised selection, and supervised selection. Some of the methods for linear

weight determination are pseudo-inverse memory and LMS algorithm. These weight

determination methods find a mapping between the hidden unit space and the output

layer. This research utilizes a three-layer RBFN. The Neural Network Toolbox of

MATLAB is used to train the RBFN.

3.3 Conclusion

The tools of AI, such as neural networks and fuzzy logic, possess certain useful features

such as nonlinearity, massive parallelism, learning capability, and human knowledge

encoding capability. In particular, this research uses a full-fledged fuzzy logic system

proposed by Mamdani. Two paradigms of neural networks, a multilayer perceptron

and a radial basis function network, are utilized in this research.



Chapter 4

Analysis of Handoff Algorithms

The performance analysis of handoff algorithms consists of two aspects, the perfor-

mance metrics (or performance measures) and performance evaluation mechanisms.

The performance metrics quantify the performance of handoff algorithms. The evalu-

ation mechanisms provide a means to collect statistics of performance metrics. Several

performance metrics appearing in and proposed in the literature are defined. Three

major handoff evaluation mechanisms (analytical, simulation, and emulation) are

briefly discussed. Basic constituents of simulation mechanisms are explained. Simu-

lation models used and developed for this research are described. Existing simulation

models for macrocellular and microcellular algorithms are enhanced by considering

several significant aspects of cellular systems. Simulation models that provide good

insight into the behavior of soft handoff and overlay algorithms are proposed.

4.1 Handoff Performance Measures

Figure 4.1 depicts the handoff analysis procedure, which consists of two major com-

ponents, performance evaluation mechanisms and performance metrics. Many perfor-

71
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Figure 4.1: Procedure for the Analysis of Handoff Algorithms

mance measures have been proposed and used to evaluate the handoff related system

performance [4] [7] [11] [60].

• Call blocking probability is the probability that a new call attempt is
blocked. Some handoff prioritization schemes sacrifice this measure to obtain
better handoff performance.

• Handoff blocking probability is the probability that a handoff attempt is
blocked. This measure is highly dependent on the channel assignment strategy
adopted in a system.

• Handoff probability is the probability that a handoff is made during a call.
Appropriate handoffs should be made, while unnecessary handoffs should be
avoided.

• Call dropping probability is the probability that an ongoing call is prema-
turely terminated. Proper handoffs can reduce the call dropping probability.

• Probability of an unnecessary handoff is the probability that a handoff is
made despite an acceptable quality of the ongoing call. A handoff algorithm
should try to minimize this measure.

• Handoff rate is the number of handoffs per unit of time. Higher handoff rate
leads to high processing load, which can have a detrimental effect on the system
performance, particularly at high traffic intensities.

• Duration of interruption is the time duration for which the MS is not con-
nected to any BS [17].
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• Delay is the time interval between the initiation of a handoff request and the
execution of the handoff request.

• Interference probability is the probability that the carrier-to-interference
ratio (C/R) is less than the protection ratio [14]. Small interference probability
leads to better spectrum efficiency. The cluster size in a cellular system is
primarily determined by the average interference probability.

• Assignment probability is the probability that the MS is connected to a
particular BS [14]). This measure can give an idea about the interference caused
by handoffs and the preservation of the planned cellular borders.

Some of these performance indices are dependent on channel allocation strategies

and not the handoff algorithm alone (e.g., call blocking probability, handoff blocking

probability). Some performance metrics may not be easily measurable in a given

simulation model. In such cases, it is possible to infer a performance metric based

on some other indirect measure. For example, call blocking probability and handoff

blocking probability can be inferred from the CDF (cumulative distribution function)

of traffic (i.e., number of calls in a cell) if a simulation model does not explicitly give

these probabilities. The average number of handoffs made during a travel can give

an idea about the handoff probability. CDFs of RSS and SIR can give an indication

of the call dropping probability.

4.2 Handoff Evaluation Mechanisms

Three basic mechanisms used to evaluate the performance of handoff algorithms in-

clude the analytical approach, the simulation approach, and the emulation approach.
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4.2.1 Analytical Approach

This approach can quickly give a preliminary idea about the performance of some

handoff algorithms for simplified handoff scenarios. This approach is valid only un-

der specified constraints (e.g., assumptions about the RSS profiles). Actual handoff

procedures are quite complicated, and they are not memoryless. This makes the an-

alytical approach less realistic. Real world situations make this approach complex

and mathematically intractable. Some of the analytical approaches appearing in the

literature are briefly touched upon below.

In [51], the level crossings of the difference between the RSSs from two BSs

were modeled as Poisson processes for stationary signal strength measurements. In

[93], this analytical work was extended to nonstationary signal strength measure-

ments, and the level crossings were modeled as Poisson processes with time-varying

rate functions. The results in [51] and [93] are useful for determining the averaging

interval and hysteresis level to achieve an optimum balance between the number of

unnecessary handoffs and the delay in handoff for a simplified scenario in which an

MS travels along a straight line from one BS to another at a constant velocity. Refer-

ence [94] incorporates the effect of CCI in the signal strength based handoff algorithm

analysis presented in [51]. Reference [54] develops an analytical model for analyzing

performance of handoff algorithms based on both absolute and relative signal strength

measurements and compares analytical results with simulation results.

Reference [88] derives bounds for some performance measures and gives an-

alytical expressions for the performance measures for a particular (linear) class of

algorithms. Linear handoff algorithms do not use hysteresis and use only one quality

measure (i.e., signal strength).

The effect of handoff techniques on cell coverage and reverse link capacity for a
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spread spectrum CDMA system is investigated in [95]. The paper shows that SHO

increases both the cell coverage and reverse link capacity significantly compared to

conventional hard handoff and derives quantitative performance improvement mea-

sures for cell coverage and capacity of the reverse link.

In [96], prioritized handoff schemes have been analyzed. It was assumed that

the probability density function (pdf) of the speeds of cell-crossing terminals is the

same as the pdf of the terminal speeds in cells. Reference [97] derives a more precise

pdf using biased sampling in boundaries. The resultant analysis is computationally

less complex and more accurate compared to the approach in [96].

An analytical model is proposed in [98] to study the traffic performance of a

microcell/macrocell overlay for a PCS architecture. If a call cannot be served by a

microcell, it is connected to a macrocell. The call is blocked if no channel is available

in the macrocell. The overflow traffic to the overlay macrocell is computed. The

residual time distribution for a macrocell is derived based on the assumed residual

time distribution for a macrocell. The call termination probability for the macrocell

is computed using the overflow traffic as input.

Reference [99] presents teletraffic performance of a highway microcellular system

with a macrocell overlay, assuming a TDMA scheme with 10 channels per carrier and

one carrier per BS. The teletraffic analysis assumes that the mobile speeds follow

truncated Gaussian distribution. The probability of new call blocking and handoff

call forced termination have been evaluated for three scenarios: when no priority is

given to any MS, when priority is given to handoff calls, and when a macrocell overlay

makes channels available to transfer calls from the MSs that would be blocked during

a microcellular handoff.

The teletraffic analysis of a hierarchical cellular network (in which umbrella cells

accept handoff requests that cannot be managed by microcells) is the focus of [100].
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The handoff flow from a microcell to a macrocell is modeled as a Markov modulated

Poisson process, and call blocking and call dropping probabilities are calculated.

4.2.2 Simulation Approach

The simulation approach is the most commonly used handoff evaluation mechanism.

Several simulation models suitable for evaluation of different types of handoff al-

gorithms under different deployment scenarios have been proposed and used in the

literature. Usually, the analytical studies of handoff algorithms consider handoff be-

tween two BSs. However, the simulation approach allows incorporation of many

features of a cellular system and a cellular environment into the evaluation frame-

work. This approach provides a common testbed for comparison of different handoff

algorithms. This approach also provides insight into the behavior of the system [4].

Despite being cost-effective, measurements made at the BSs for handoff performance

evaluation are not very useful since they cannot characterize small area performance.

Field measurements are useful, but they are time-consuming and expensive. Soft-

ware simulation provides fast, easy, and cost-effective evaluation. Simulation models

usually consist of one or more of the following components: cell model, propagation

model, traffic model, and mobility model. These components are described first, and

specific simulation models are discussed next. Figure 4.2 shows the components of a

typical simulation model.

Basic Components of Simulation Models

• Cell Model. Cell planning strategies differ in microcells and macrocells, which
can be considered as circles while considering handoff between two BSs in a
neighborhood of two, three, or four cells. A macrocellular system is sometimes
simulated as a 49-cell toroidal system that has seven-cell clusters with uniformly
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Figure 4.2: Simulation Model Components

distributed traffic. Reference [27] discusses microcell cell planning in Manhat-
tan environment. The city is modeled as a chessboard with squares represent-
ing blocks and streets being located between the blocks. Different cell plans
described in Section 2.3.2 can be used to simulate a microcellular environment.

• Propagation Model. The performance of wireless communication systems
depends on the mobile radio channel significantly. The radio wave propagates
through the mobile radio channel through different mechanisms such as reflec-
tion, diffraction, and scattering. Propagation models predict the average signal
strength and its variability at a given distance from the transmitter. Different
propagation models exist for outdoor and indoor propagation and for different
types of environments (such as urban or rural)[5]. Macrocells and microcells
have different propagation characteristics. Reference [101] presents signal at-
tenuation measurements for microcells and shows that the conventional prop-
agation models (e.g., Hata and Okumura models) are not valid for a microcell
environment. The 900 MHz and 1.8 GHz signal attenuation measurements were
carried out for BS antenna heights ranging from 5m to 20m and an MS antenna
height of 1.5m in Melbourne, Australia. The main features of the models dis-
cussed here have been experimentally validated in the literature. For example,
reference [102] suggests path loss, large-scale fading, and small-scale fading mod-
els for a microcellular system based on actual measurements. Reference [103]
describes computer models of Rayleigh, Rician, log-normal, and land mobile
satellite fading channels based on processing of a white Gaussian random pro-
cess. The propagation model usually consists of a path loss model, a large-scale
fading model, and a small-scale fading model.

Path Loss Model.
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In macrocells, the path loss model is used for several aspects of cell planning such
as BS placement, cell sizing, and frequency reuse [15]. The path loss models of
Hata and Okumura can be used for macrocells. Microcells have different models
for LOS and NLOS propagation.

For an LOS propagation, two frequently used models are a flat earth model and
a two slope model. In the flat-earth model, one direct ray and another reflected
ray (with 180 degree phase shift) contribute to the total received E-field. In
Reference [102], an empirical path loss model, a two slope model, is suggested.
The path loss increases with a certain slope to a threshold distance (called a
breakpoint) and then increases with a higher slope. In reality, wave propagation
in microcells is complicated and consists of reflections and diffractions in addi-
tion to free space propagation. However, the main features of path loss can still
be described by these empirical models. For certain parameter settings, the two
slope path loss model approaches the flat-earth model.

For an NLOS propagation, a LOS propagation is assumed to the street corner.
After the corner, propagation path loss is calculated by placing an imaginary
transmitter at the corner with the transmit power equaled to the power received
at the corner from the LOS BS.

Large-Scale Fading Model.

According to [102], the distribution of the large scale fading component is close
to a log-normal distribution for a majority of LOS and NLOS streets with
different standard deviations. The distribution is actually a truncated log-
normally distributed variation. In simulations, the variation should not be
greater than ±3 σ. For the measurements obtained in Reference [102], the
average value of σ was found to be 4 dB for LOS streets and 3.5 dB for NLOS
streets.

Reference [66] proposes an exponential autocorrelation model for shadow fad-
ing in mobile radio channels. The results show that the model fit is good for
moderate and large cells; the predictions are less accurate for microcells due to
multipath.

Small-Scale Fading Model.

Small-scale (or short term) fading is usually modeled as a Rician distribution
where parameter K (Rice factor) varies with distance. When K=0, the variation
is Rayleigh fading. Reference [102] suggests a small scale fading model in terms
of polynomials based on the Rician distribution. Small-scale fading is neglected
since it gets averaged out due to short correlation distance relative to that of
shadow fading.

• Traffic Model. Traffic can be assumed to be uniform for macrocells. However,
road structures need to be considered for microcells, and traffic can be allowed
only along the streets. The new call arrival process is modeled as an independent
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Poisson process with a certain mean arrival rate. The new call durations are
independent exponential random variables with a certain mean.

• Mobility model. The MSs have different velocities following a truncated
Gaussian distribution. The MS velocity is typically assumed to be constant
throughout the call.

Specific Simulation Models

A brief account of widely used simulation models is given here.

References [93, 51, 63, 88, 62, 12] use a two-BS model that is simple and widely

used for evaluating signal strength based algorithms. This model is suitable for small

size macrocells and LOS handoffs in microcells. In this model, an MS travels from

one BS to another in a straight line at a constant velocity. The path loss is calculated

using a single slope formula, and shadow fading is assumed to be log-normal with an

exponential correlation function.

A model suitable for evaluating the performance of signal strength algorithms

is used in [52, 53]. The model has a four-cell neighborhood, and the MS travels from

one BS to another in a straight line with a constant velocity. The model assumes that

there is no power control, and all BSs transmit at the same power level. The path

loss is calculated using Hata’s model, and shadow fading is log-normally distributed.

Reference [64] has a three-cell neighborhood instead of four-cell neighborhood as in

[52, 53].

Two routes of an MS in a cluster of seven cells are considered in [11]. The first

route is from one BS to another in which the MS crosses cell borders such that it

is inside the overlapping region for a minimum duration of time. This route gives

insight into the behavior of the handoff algorithm in the handoff area. The second

route is from one BS to another in which the MS is in the overlapping region most

of the time. This second route is more likely to have handoff complications than the
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first route. The four-cell model of [52] can be easily modified to create these two MS

routes by adjusting the cell radii.

Reference [56] uses an SIR-based model that can be used for integrated dynamic

resource management tasks. Twenty BSs are uniformly spaced on a ring. The traffic

model and the mobility models used in [56] are the same ones described earlier. The

new calls are uniformly distributed throughout the ring.

A model suitable for evaluating LOS and NLOS handoffs in a microcellular

environment is used in [60]. The LOS and NLOS propagation models are similar to

the ones described earlier. The log-normal shadow fading with exponential correlation

function for large-scale fading and Rician fading model for small-scale fading are used.

The model of [19] is suitable for a microcellular environment. Two NLOS paths

are considered, which give insight into the behavior of handoff algorithms when there

are multiple street crossings. The effect of (C/I) is studied in [19] for a particular cell

plan. A worst case scenario (i.e., (C/I) of 12 dB) is used to account for interference.

Reference [19] also studies the (C/I) distribution for the MS and the BS.

A comprehensive model for a microcellular system is presented in [75]. This

reference considers a Manhattan-like structure and places a BS at every other corner.

At every street crossing, an MS either goes straight or turns with a given probability.

The model is formed into a torus-like structure to avoid edge effects. The LOS

propagation model is taken from [101]. For the NLOS model, it is assumed that

buildings are infinitely tall, and there is a fixed loss of 20 dB every diffraction street

corner. Shadow fading is not considered, but small-scale fading is modeled as Rayleigh

fading.

A comprehensive simulation model suitable for macrocellular and microcellular

environments is described in [104, 13, 105]. The conventional macrocellular environ-

ment is modeled by a forty nine-cell toroidal structure that has seven-cell clusters
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with 1km radius cells [106]. The microcellular system has half-square cells with 100m

block size. The simulation model for a microcell system considers both the transmis-

sion and traffic characteristics. Such combined analysis of transmission and traffic

characteristics provides a more realistic scenario for performance evaluation of a cel-

lular system. Reference [20] gives a brief account of the simulation model (called

M2 simulation) developed at AT&T; this model includes the effects of propagation,

traffic, and system configuration.

The model of [73] is suitable for evaluating handoff performance in a mixed cell

environment. An urban Manhattan-like environment is simulated in which a cluster

consists of four microcells. Four clusters cover the service area with a macrocell

overlaying the microcells. User mobility has been modeled as Gaussian with the

mean value varying with the distance from the starting position of the MS. A sharp

linear velocity decrease is adapted before turning, and a linear increase has been

considered after the corner until the previous velocity is restored. The path loss is

calculated using the two-slope law. Second and fourth powers are used. The street

corner is simulated by a 4 dB/m linear decrease from the street corner, lasting up to

20m. Afterward, an NLOS propagation is assumed. Large-scale fading is simulated

by uncorrelated log-normal distribution. New calls follow Poisson model and are

uniformly distributed along the streets.

The performance of an SHO algorithm suitable for a CDMA system is analyzed

in [107]. Exploitation of diversity in the cell overlap region provides better hand-

off performance but requires additional resources. A compromise between diversity

usage and resource utilization has been analyzed here. The handoff performance is

quantified by the performance measures such as active set updates, number of BSs

involved in SHO, and outage probability. An SHO algorithm is modeled on conven-

tional handoff algorithms. When a user is in communication with both the BSs, the
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user is in SHO and is said to be in the active set. A balance between the number of

users in the active set and the number of active set updates is required. When a user’s

signal crosses a threshold, the user is added to the set. The user is removed from the

set when the MS is below another threshold for a certain period of time (controlled

by a timer). This timer reduces the number of active set updates significantly while

increasing the average size of the set slightly.

Reference [85] studies the application of SHO in wideband direct sequence

CDMA (DS-CDMA) systems. Propagation aspects of SHO are also presented.

In Reference [87], simulation results on soft/softer handoff in CDMA are pre-

sented. The effects of SHO and propagation factors including log-linear path loss and

log-normal shadowing are considered. The simulation model and results on soft/softer

handoff statistics for different thresholds and propagation environments are presented.

4.2.3 Emulation Approach

The emulation approach uses a software simulator consisting of a handoff algorithm to

process measured variables (such as RSS and BER). Actual propagation measurement

based simulation has the advantage of giving better insight into the behavior of the

radio channels, and it gives more accurate data. The main disadvantages to this

approach are periodic measurement requirements and inadequacy for comparison of

different handoff algorithms on the same platform.

Reference [26] uses measured data in handoff simulation (the measured data was

obtained by conducting 1700 MHz experiments in an urban environment in southern

England). The path loss was found to follow a two slope formula with different slopes

for different locations. The short term fading was found to be Rician with Rice factors

varying from ten to zero depending upon the distance between the MS and the BS.
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It was found that the optimal handoff threshold level was different for different cites

[26].

Reference [67] introduces an indoor propagation simulator. The indoor simula-

tor models trace thirteen rays over a cross-corridor and exhibit good agreement with

the experiments of 950 MHz propagation with multipath fadings.

Reference [108] describes an experimental digital cellular system that consists of

a PBX-based MSC, three BSs, two MSs, and a radio channel simulator. Experimental

results indicate that the handoff decision can be made within a second, and the

handoff procedure works well under typical microcell propagation conditions.

4.3 A Macrocellular Simulation Model

A simulation model usually consists of some of the following components: (i) Cell

Model, (ii) Propagation Model, (iii) Traffic Model, and (iv) Mobility Model. These

components are described here. The simulation model used here is a modified version

of the model used in [52] and [53].

• Cell Model and Mobility Model. The cell model consists of a neighborhood
of four cells as shown in Figure 4.3. Cell radius is 10 km, and the maximum
overlap between cell A and C is 2 km. The BS EIRP (Effective Isotropic Radi-
ated Power) is 100 W. The MS travels from one BS to another (BS A to BS C)
at a constant speed (e.g., 65 mph), and such a journey is repeated five hundred
times. The MS velocity remains constant throughout the journey.

• Propagation Model. Small-scale fading is neglected since it gets averaged
out due to short correlation distance relative to that of shadow fading.

Path Loss Model.

Hata’s model is used to calculate path-loss. A set of equations used in the
simulation model is taken from [5]. Path-loss is given by

L50(urban) = 69.55+26.16 log (fc)−13.82 log (hte)−ahre+(44.9−6.55 log (hte)) log (d)
(4.1)

where fc is the carrier frequency (in MHz), hte is the effective BS (or transmit-
ter) antenna height in m, hre is the effective MS (or receiver) antenna height
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Figure 4.3: Four BS Neighborhood Cell Model

in m, d is the transmitter-receiver (T-R) separation distance in km, and ahre is
the correction factor for different sizes of the coverage area. In simulations, the
following values are used: fc = 900MHz, hte = 30m, and hre = 3m.

For a medium size city,

ahre = (1.1 log (fc)− 0.7)hre − (1.56 log (fc)− 0.8). (4.2)

In general, the path loss models of Hata and Okumura can be used for macrocells
while different models are used for line-of-sight (LOS) and non-line-of-sight
(NLOS) propagation in microcells.

Large-Scale Fading Model.

According to [102], the distribution of the large-scale fading component is close
to a lognormal distribution. Reference [66] proposes an exponential autocor-
relation model for shadow fading for macrocells and microcells that has been
experimentally validated through measurements. The correlation at 100 m was
found to be 0.82 for a large cell in suburban environment. The correlation was
0.3 at 10 m in a microcell. It was found that the RSS measurements are highly
correlated in macrocells and less correlated in microcells.

The generation of a correlated shadow fading process from uncorrelated Gaussian
samples is described next. It is assumed that a sequence n is an uncorrelated
process with samples that have 0 mean and σ2 standard deviation. Assume
that the sequence n needs to be converted into a sequence x with 0-mean, σ1
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standard deviation, and an exponential autocorrelation function given by

ρ(d) = E[x(D)x(D + d)] = σ2
1 exp (−d/d0) (4.3)

where d is the distance separating two samples and d0 is a parameter that
can be used to specify correlation at a particular distance. For example, for a
normalized autocorrelation of 0.82 at a distance of 100m, d0 = 500m. In other
words, exp (−d/d0) = exp (−100/500) = 0.82.

Let x be the required correlated shadow fading process and ds be the sampling
distance. Then,

x(D + ds) = αx(D) + n(D). (4.4)

The parameter α needs to be determined. The autocorrelation is

E[x(D + ds)x(D)] = E[x(D)(αx(D) + n(D))] (4.5)

E[x(D + ds)x(D)] = αE[x(D)2] + E[n(D)x(D)] (4.6)

E[x(D + ds)x(D)] = ασ2
1 (4.7)

(since n(D) and x(D) are independent and 0-mean processes).

Equating Eq. 4.3 and Eq. 4.7,

E[x(D + ds)x(D)] = ρ(d) = σ2
1 exp (−d/d0) = ασ2

1. (4.8)

Hence,
α = exp (−d/d0). (4.9)

Now,

n(d) = x(D + ds)− αx(D) (4.10)

n2(d) = x2(D +Ds)− 2x(D + ds)αx(d) + α2x2(d) (4.11)

E[n2(d)] = E[x2(D +Ds)]− 2E[x(D + ds)x(d)]α + α2E[x2(d)] (4.12)

σ2
2 = σ2

1 − 2ασ2
1α + α2σ2

1 (4.13)

σ2
2 = σ2

1 − α2σ2
1 (4.14)

σ2
2 = σ2

1(1− α2). (4.15)

This derivation is in conformity with the results presented in [57] and indicates
that a 0-mean uncorrelated process can be used to create a 0-mean correlated
process with desired variance and autocorrelation.

• Traffic Model. Traffic distribution is assumed to be uniform in the four cells
under consideration.

The basic simulation model used in [52] was modified to model user mobility,

traffic, and interference. Traffic is quantified by the number of calls in a cell. The
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number of calls in the four BSs is changed uniformly between zero and sixty-two

(maximum number of trunked channels) every seventy-five simulation steps (15% of

the total simulation runs). Interference is modeled by considering a subset of the

cochannel BSs, located at a distance of D =
√
NR from the center of the cell. Here,

N is the cluster size (number of cells in a cluster), and R is the cell radius. The

actual number of such interfering BSs is selected uniformly between zero and six

every seventy-five simulation runs. Only the first tier of interferers is considered.

Note that traffic and interference have been modeled this way to get a preliminary

indication of the traffic and interference related performance of the handoff algorithm.

The simulation model used here provides several important performance metrics (such

as crossover distance and average number of handoffs during a journey) that may be

obscured in other models.

Some of the features of the basic simulation model are listed below.

1. This model is simple.

2. This model includes a realistic scenario in which an MS has a four base sta-

tion neighborhood and travels from one BS to another. A two base station

neighborhood is a less realistic scenario.

3. This model is applicable to a macrocellular environment where BS antennas are

tens of meters high and the BS transmits several Watts of power. This model

can be used for a microcellular environment after making proper modifications

in the propagation model.

4. This model allows a detailed study of the handoff process in a handoff region.

In particular, this model allows an in-depth analysis of the behavior of a handoff

algorithm in the cell overlap region, and it allows elegant evaluation of certain
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Figure 4.4: Generic Handoff Scenarios in a Microcellular System

significant handoff-related system performance metrics.

5. The effect of different cell radii and different size cell overlap regions on the

performance of a handoff algorithm can be investigated using this model.

4.4 A Microcellular Simulation Model

The simulation model has the following salient features.

• Cell Model. A four BS neighborhood shown in Figure 4.4 is used. The BS
transmit power is one Watt. The cell radius is R = 250m (the same as the city
block size in Figure 4.4).

• Propagation Model. Microcells have different models for LOS and NLOS
propagation. Here, a model similar to the one proposed in [102] is used. This
is an empirical path loss model called a two slope model in which the path loss
increases with a certain slope to a threshold distance (called a breakpoint) and
then increases with a higher slope. Mathematically, RSS at a distance d from
a LOS BS is given by

RSS(d) = Pt − (10a log d+ 10b log d/g) + s(d) (4.16)
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where Pt is the BS transmit power (in Watts), d is the distance of the MS
from the LOS BS (in m), and s(d) is correlated shadow fading sample. The
parameters a, b, and g define the path loss (a=2, b=2, and g=150). The corner
effect begins at 255m from BS 0. For an NLOS propagation, a LOS propagation
is assumed up to the street corner. After the corner, propagation path loss is
calculated by placing an imaginary transmitter at the corner with the transmit
power equal to the power received at the corner from the LOS BS. RSS at a
distance (d+R) from the NLOS BS is given by

RSS(d) = Pt − (10a log d+ 10b log d/g) + s(d) (4.17)

where Pt is the power received at the intersection from the NLOS power (in
Watts), d is the distance of the MS from the intersection (in m), (d + R) is
the distance of the MS from the NLOS BS (in m), R is the distance of the
intersection from the NLOS BS (in m), and s(d) is the correlated shadow fading
sample. Other parameters are the same as earlier. Note that Pt is calculated
using the path loss formula for the LOS case (Equation 4.16).

Correlated log-normal shadow fading is used to model large-scale fading. The
log-normal shadow fading deviation is 7 dB (medium intensity). A normal range
for shadow fading standard deviation for microcells is from 5 to 9 dB (8 dB to
14 dB for macrocells). An exponential autocorrelation model proposed in [66]
is used. The exponential autocorrelation function is given by

ρ(d) = E[x(D)x(D + d)] = σ2
1 exp (−d/d0) (4.18)

where d is the distance separating two samples and d0 is a parameter that can be
used to specify correlation at a particular distance. Here, a correlation distance
of 8.5 m is used, which gives a correlation of 0.3 at a distance of 10 m. In other
words, d0 = 8.5m, and exp (−d/d0) = exp (−10/8.5) = 0.3. Small-scale fading
is neglected since it gets averaged out due to short correlation distance relative
to that of shadow fading.

• Traffic, Mobility, and Interference Model. The MS travels at a constant
speed from BS 0 to BS 2 during a LOS handoff scenario and from BS 0 to BS
1 during a NLOS handoff scenario. The maximum speed is 35 mph (or 15.64
m/sec), the average speed is 25 mph (or 11.18 m/sec), and the minimum speed
is 15 mph (or 6.71 m/sec). There are a maximum of four LOS interferers. The
maximum number of channels per BS is twenty. The number of ongoing calls
in a cell and the number of interferers are chosen randomly every 10% of the
total simulation time during the travel of the MS from one BS to another.

• Measurement Sampling and Averaging. The measurement sample time is
0.1 sec, and the averaging distance is 6.3 m (which is a distance of 40λ). Sample
averaging is used to obtain velocity adaptive averaging.
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Figure 4.5: Cell Layout for an Overlay System

4.5 An Overlay Simulation Model

The simulation model proposed here allows evaluation of a handoff algorithm in

generic handoff scenarios in an overlay system. This model gives details of criti-

cal performance metrics that quantify performance of significant aspects of overlay

handoff. The model also gives an idea of traffic and interference related system per-

formance. Salient features of the proposed simulation model are discussed next.

• Cell Model. Figure 4.5 shows the cell layout, which consists of a cluster of
seven macrocells, with each macrocell overlaying a cluster of four microcells.

• Propagation Model. Hata’s model is used to calculate path-loss for macro-
cells. A set of equations used in the simulation model is taken from [5]. Path-loss
is given by

L50(urban) = 69.55+26.16 log (fc)−13.82 log (hte)−ahre+(44.9−6.55 log (hte)) log (d)
(4.19)
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where fc is the carrier frequency (in MHz), hte is the effective BS (or transmit-
ter) antenna height in m, hre is the effective MS (or receiver) antenna height
in m, d is the transmitter-receiver (T-R) separation distance in km, and ahre is
the correction factor for different sizes of the coverage area. In simulations, the
following values are used: fc = 900MHz, hte = 30m, and hre = 3m.

For a medium size city,

ahre = (1.1 log (fc)− 0.7)hre − (1.56 log (fc)− 0.8). (4.20)

For a microcell, a model similar to the one proposed in [102] is used. This is
an empirical path loss model called a two slope model in which the path loss
increases with a certain slope to a threshold distance (called a breakpoint) and
then increases with a higher slope. Mathematically, RSS at a distance d from
a BS is given by

RSS(d) = Pt − (10a log d+ 10b log d/g) + s(d) (4.21)

where Pt is the BS transmit power (in Watts), d is the distance of the MS from
the BS (in m), and s(d) is the correlated shadow fading sample. The parameters
a, b, and g define the path loss (a=2, b=2, and g=150).

Correlated log-normal shadow fading is used to model large-scale fading. The
log-normal shadow fading deviation is 11 dB for macrocells and 7 dB for mi-
crocells. An exponential autocorrelation model proposed in [66] is used. The
exponential autocorrelation function is given by

ρ(d) = E[x(D)x(D + d)] = σ2
1 exp (−d/d0) (4.22)

where d is the distance separating two samples and d0 is a parameter that can be
used to specify correlation at a particular distance. For macrocells, a correlation
distance of 500 m is used, which gives a correlation of 0.82 at a distance of 100
m. In other words, d0 = 500m, and exp (−d/d0) = exp (−100/500) = 0.82. For
a microcell, a correlation distance of 8.5 m is used, which gives a correlation
of 0.3 at a distance of 10 m. In other words, d0 = 8.5m and exp (−d/d0) =
exp (−10/8.5) = 0.3. Small-scale fading is neglected since it gets averaged out
due to short correlation distance relative to that of shadow fading.

• Traffic, Mobility, and Interference Model. The new call durations are in-
dependent exponential random variables with 120 sec mean. Traffic is assumed
to be uniform. The new call arrival process is modeled as an independent Pois-
son process with a certain mean arrival rate. The mean call arrival rate is given
by λ = TrloadMBµ where λ is the mean call arrival rate, Trload is the normal-
ized traffic load (0 to 1), M is the number of channels per base station, B is
the number of base stations in the cell, and µ = 1/cd (cd is the call duration
in sec). The MSs have different velocities following a truncated Gaussian dis-
tribution. The MS velocity is typically assumed to be constant throughout the
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call. The maximum speed is 70 mph, the average speed is 45 mph, and the
minimum speed is 20 mph. There are a maximum of six cochannel interferers.
The number of cochannel interferers is chosen randomly every 1% of the total
simulation time for every user in the system.

• Measurement Sampling and Averaging. The measurement sample time
is 0.25 sec, and the averaging distance is 260 m for macrocells and 50 m for
microcells. Sample averaging is used to obtain velocity adaptive averaging.

• Initial Cell Selection. When a new call arrives, the call is assigned to the
nearest macrocell if the user velocity is greater than the velocity threshold Vth
or if no microcell BS can provide sufficient RSS to the MS.

4.6 A Soft Handoff Simulation Model

The simulation model proposed here allows evaluation of a handoff algorithm in

generic handoff scenarios, such as the absence of soft handoff, two-way soft hand-

off, and three-way soft handoff. This model details critical performance metrics that

quantify the performance of significant aspects of soft handoff such as diversity us-

age, resource utilization, and network load. The model also gives a preliminary idea

of traffic and mobility related system performance. Salient features of the proposed

simulation model are discussed next.

• Cell Model. The fourteen BS neighborhood shown in Figure 4.6 is used. The
BS transmit power is one Watt. The cell radius is R = 3km.

• Propagation Model. Hata’s model is used to calculate path-loss. A set of
equations used in the simulation model is taken from [5]. Path-loss is given by

L50(urban) = 69.55+26.16 log (fc)−13.82 log (hte)−ahre+(44.9−6.55 log (hte)) log (d)
(4.23)

where fc is the carrier frequency (in MHz), hte is the effective BS (or transmit-
ter) antenna height in m, hre is the effective MS (or receiver) antenna height
in m, d is the transmitter-receiver (T-R) separation distance in km, and ahre is
the correction factor for different sizes of the coverage area. In simulations, the
following values are used: fc = 900MHz, hte = 30m, and hre = 3m.

For a medium size city,

ahre = (1.1 log (fc)− 0.7)hre − (1.56 log (fc)− 0.8). (4.24)
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Figure 4.6: Soft Handoff Cell Layout

In general, the path loss models of Hata and Okumura can be used for macro-
cells.

Correlated log-normal shadow fading is used to model large-scale fading. The
log-normal shadow fading deviation is 11 dB (medium intensity). A normal
range for shadow fading standard deviation for macrocells is from 8 dB to
14 dB. An exponential autocorrelation model proposed in [66] is used. The
exponential autocorrelation function is given by

ρ(d) = E[x(D)x(D + d)] = σ2
1 exp (−d/d0) (4.25)

where d is the distance separating two samples and d0 is a parameter that
can be used to specify correlation at a particular distance. Here, a correlation
distance of 500 m is used, which gives a correlation of 0.82 at a distance of
100 m. In other words, d0 = 500m, and exp (−d/d0) = exp (−100/500) = 0.82.
Small-scale fading is neglected since it gets averaged out due to short correlation
distance relative to that of shadow fading.

• Traffic, Mobility, and Interference Model. The MS travels at a constant
speed from BS 5 to BS 10. The maximum speed is 85 mph, the average speed
is 65 mph, and the minimum speed is 45 mph. There is a maximum of six
cochannel interferers. The maximum number of channels per BS is sixty. The
number of ongoing calls in a cell and the number of interferers are chosen ran-
domly every 10% of the total simulation time during the travel of the MS from
one BS to another.



CHAPTER 4. ANALYSIS OF HANDOFF ALGORITHMS 93

• Measurement Sampling and Averaging. The measurement sample time
is 0.5 sec, and the averaging distance is 260 m. Sample averaging is used to
obtain velocity adaptive averaging.

4.7 Conclusion

This chapter discusses the performance analysis of handoff algorithms. Different

performance measures proposed in the literature are defined. Three basic evalua-

tion mechanisms (analytical, simulation, and emulation) are briefly discussed. Basic

constituents of simulation mechanism are explained. Existing simulation models for

macrocellular and microcellular algorithms are enhanced by considering several sig-

nificant aspects of cellular systems. Simulation models that allow thorough analysis

of soft handoff and overlay algorithms are proposed.



Chapter 5

A Fuzzy Logic Based Algorithm

This chapter proposes a new class of handoff algorithms that combines the attractive

features of several existing algorithms and adapts the handoff parameters using fuzzy

logic. Known sensitivities of handoff parameters are used to create a fuzzy logic rule

base. The design procedure for a generic fuzzy logic based algorithm is outlined. Ex-

tensive simulation results for a conventional handoff algorithm (absolute and relative

signal strength based algorithm) and a fuzzy logic based algorithm are presented.

This chapter shows that an adaptive multicriteria fuzzy handoff algorithm performs

better than a signal strength based conventional handoff algorithm. More impor-

tantly, the proposed class of algorithms allows a systematic tradeoff among different

system characteristics in the dynamic cellular environment.

5.1 Introduction

This chapter presents a novel unified approach for the design of a class of handoff algo-

rithms that exploits attractive features of several existing algorithms, provides adap-

tation to the dynamic cellular environment, and allows systematic tradeoff among

94
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different system characteristics. The proposed class of algorithms exploits several

fuzzy logic attributes (such as efficient and complete utilization of system knowledge,

ability to resolve conflicting requirements, and simplicity) to adapt handoff param-

eters to obtain high performance in a complex cellular environment. A generalized

framework for the design of fuzzy logic based handoff algorithms is proposed, and a

complete design procedure is described.

Section 5.2 discusses various issues involved in the design and evaluation of

generic high performance handoff algorithms. A new class of fuzzy logic based hand-

off algorithms is proposed and illustrated in Section 5.3. The performances of a con-

ventional algorithm and a fuzzy logic algorithm are evaluated in Section 5.4. Finally,

Section 5.5 summarizes the chapter.

5.2 Handoff Algorithms: Design and Analysis Is-

sues

This section discusses design and analysis procedures for a handoff algorithm. Several

steps involved in the handoff algorithm design are outlined. Different metrics that

have been used to measure handoff related system performance are briefly touched

upon here. Three basic mechanisms used to evaluate performance of handoff algo-

rithms are discussed.

5.2.1 Design and Analysis Procedure

Figure 5.1 shows a block diagram that illustrates the design of high performance

handoff algorithms. Steps involved in the handoff algorithm design and analysis are

listed below.
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Figure 5.1: Block Diagram of a High Performance Handoff Algorithm

1. Analysis of Handoff Related System Goals. Study handoff related cellular

system goals. Analyze desirable features of a handoff algorithm, and determine

the required attributes of a handoff algorithm.

2. Determination and Preprocessing of Handoff Criteria. Determine hand-

off criteria based on desired goals, system requirements, and availability of mea-

surements. Preprocess handoff criteria before using them in a handoff algorithm.

For example, some criteria, such as RSS, may need averaging.

3. Handoff Strategy. Process the handoff criteria using a selected strategy.

Adapt the parameters of the handoff strategy by considering the performance

metrics and the desired goals.

4. Handoff Strategy. Evaluate the developed algorithm using a suitable simu-

lation model.

This research uses the simulation approach for evaluating the performance of handoff

algorithms. Details of the simulation model were given in Chapter 4.
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Figure 5.2: Block Diagram of Generic Fuzzy Logic Based Handoff Algorithms

5.3 A Class of Fuzzy Logic Based Adaptive Hand-

off Algorithms

5.3.1 Design Procedure

This chapter proposes a new class of adaptive handoff algorithms based on fuzzy

logic, and Figure 5.2 shows a generic block diagram of this proposed class. The main

idea is to combine attractive features of existing algorithms to obtain an efficient algo-

rithm and to adapt the parameters of this efficient algorithm to the dynamic cellular

environment using a fuzzy logic system. Major phases involved in the design of the

proposed class of algorithms are:

1. Identification of desirable features and associated handoff algorithm attributes;

2. Selection and processing of handoff criteria;

3. Determination of the basic conventional handoff algorithm;
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4. Design of a fuzzy logic system.

These phases are discussed in detail next.

Desirable Features and Associated Handoff Algorithm Attributes

Two major goals of handoff algorithms are high spectral efficiency and high com-

munication quality. Spectral efficiency is quantified by performance metrics such as

call blocking probability and handoff blocking probability. Communication quality

is quantified by performance metrics such as SIR and the number of dropped calls.

Several desirable features of handoff algorithms determine the extent to which these

goals are achieved, and some mentioned in the literature [7, 2, 4, 14, 13, 12, 11, 10]

are further explained here. An efficient handoff algorithm can achieve many of these

features by possessing certain attributes and making appropriate tradeoffs among

various operating characteristics. Chapter 2 describes desirable features of a handoff

algorithm. The attributes of an algorithm associated with these features are discussed

next.

• Handoff should be fast so the user does not experience service degradation or
service interruption. Service degradation may be due to a continuous reduction
in signal strength or an increase in co-channel interference (CCI).

Required Attributes.

1. A handoff algorithm should be simple so it can be executed quickly. How-
ever, a simple algorithm may be unable to make appropriate tradeoffs due
to restricted degrees of freedom.

2. There should be a buffer between the call drop received signal strength
(RSS) threshold and the handoff RSS threshold and between the call drop
signal-to-interference ratio (SIR) threshold and the handoff SIR threshold.

3. Higher threshold and lower hysteresis values should be used for vehicles
with a higher quality degradation rate. Lower threshold and higher hys-
teresis values should be used for vehicles with a lower quality degradation
rate to prevent excessive interference due to early handoffs.

• Handoff should be reliable; the quality of the call after handoff should be good.
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Required Attributes.

1. If the SIR threshold is included as part of a handoff algorithm, the search
for a better BS (i.e., a BS with better SIR) can be started early.

2. Hysteresis in RSS can help increase the chances of obtaining a better BS.

3. Measurements of the SIRs of candidate BSs may not be available, and in
such cases, RSS plays a more important role in ensuring the reliability of
handoff.

• Handoff should be successful; a free channel should be available at the candidate
BS.

Required Attributes.

1. Efficient channel allocation algorithms can maximize the probability of a
successful handoff. Channel allocation and handoff may be combined.

2. Traffic balancing can increase the probability of a successful handoff.

• The handoff procedure should balance traffic in adjacent cells, obviating the
need for channel borrowing, simplifying cell planning and operation, and reduc-
ing the probability of new call blocking and handoff blocking (thereby increasing
the number of potential users that can be accommodated in the future).

Required Attribute. Traffic adaptation can provide traffic balancing.

• Handoff should maintain the planned cellular borders to avoid congestion, high
interference, and use of the assigned channels of the previously serving cell while
inside the new cell. Each BS can carry only its planned traffic load. Moreover,
increased interference is possible if the MS goes deep into a new cell site while
still connected to the distant but currently serving BS. This interference occurs
because cochannel distance is reduced and because the BS and MS tend to use
a high transmit power when far apart.

Required Attributes.

1. Since RSS is an indicator of the distance between the BS and the MS, an
RSS based algorithm can help preserve planned cell boundaries.

2. It should be noted that even though intrinsic traffic balancing perturbs
planned cell boundaries, combined traffic and interference adaptation can
achieve a systematic tradeoff between traffic balancing and resultant inter-
ference.

• The number of handoffs should be minimized. Excessive handoffs lead to heavy
handoff processing loads and poor communication quality. The more handoff
attempts, the more chances that a call will be denied access to a channel,
which will result in a higher handoff dropping probability. If there are a lot of
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handoff attempts, there will be more delay in the processing of handoff requests
at the MSC. This increased delay may cause the signal strength to decay to
an unacceptable quality. Furthermore, the call may be dropped if the SIR
deteriorates too much. Handoff requires network resources to connect the call
to a new BS. Thus, minimizing the number of handoffs reduces the switching
load. Unnecessary handoffs should be prevented; the current BS might be able
to provide the desired service quality without interfering with other MSs and
BSs.

Required Attributes.

1. The target cell should be chosen correctly since there may be more than
one candidate BS for handoff. Identification of a correct cell prevents
unnecessary and frequent handoffs.

2. Velocity adaptive averaging, hysteresis, and direction biasing can help re-
duce the number of handoffs.

• The handoff procedure should minimize the number of continuing call drop-outs.

Required Attribute. A handoff algorithm should provide sufficient RSS and SIR
to help achieve this goal.

• The global interference level should be minimized by the handoff procedure.
Minimum power transmission and planned cellular border maintenance can help
achieve this goal.

Required Attributes.

1. Better RSS and SIR distribution allow the MS to transmit low power,
reducing the overall interference.

2. Reduction in handoff delay can help maintain planned cell borders.

Based on the desirable features discussed earlier and the study of the properties and

behavior of existing algorithms, a configuration of a generic handoff algorithm, shown

in Figure 5.3 and Figure 5.4, was derived. This configuration uses the combination

of an absolute and relative RSS based algorithm and an SIR based algorithm. The

RSS based algorithm has threshold (RSSthreshold) and hysteresis (RSShysteresis) as

parameters, while the SIR based algorithm has threshold (SIRthreshold) as a parame-

ter. The SIR threshold parameter allows the initiation of a better handoff candidate

search early. The RSS based parameters are adapted to the cellular environment.
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Figure 5.3: A Generic Adaptive Fuzzy Logic Based Algorithm

Figure 5.4: The Conventional Handoff Algorithm for the Generic Fuzzy Logic Based
Algorithm
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Specifically, SIR of the current BS (SIRc), traffic difference (Trd (i.e., the differ-

ence in the number of calls in the current and the neighboring BS, Trc − Trn)), and

call quality degradation rate (quantified by the MS velocity in the simulation model

considered here) are used to adapt the handoff parameters. It is assumed that the

MS makes necessary measurements. However, the proposed algorithm can be easily

extended to include BS measurements. Note that actual systems may have specific

requirements (e.g., maximum permissible round-trip delay). Such requirements can

be incorporated as part of either the basic conventional algorithm or the adaptation

mechanism. Handoff criteria averaged according to the velocity adaptive averaging

mechanism include RSS of the current BS (RSSc), RSS of the neighboring BS (RSSn),

and SIR of the current channel (SIRc). The MS velocity and the traffic difference

(Trd) are not averaged since their instantaneous values are of interest. Since the ba-

sic parameters to be adapted, RSSthreshold and RSShysteresis, are related to RSS, the

variables RSSc and RSSn are not used to adapt these parameters. An FLS is used

as an adaptive mechanism. The inputs to the FLS are SIRc, (Tr)d = (Tr)c − (Tr)n,

and MS velocity, and the outputs of the FLS are RSSthreshold and RSShysteresis. The

details of the FLS are given in Section 5.3.1.

Selection and Processing of Handoff Criteria

The handoff criteria and other variables need to be measured. If some measurements

are not available, estimates of these variables are required. Several handoff criteria

were discussed in Chapter 2. To keep the algorithm general and simple, RSS, SIR,

traffic, and velocity are used as handoff criteria, and transmit power and distance are

excluded. An improved SIR distribution can lead to potentially lower MS transmit

power. Since distance measurement accuracy decreases with decreasing cell size,

distance is not used as a criterion. However, both MS transmit power and distance
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measurements can be incorporated if desired.

Examples of preprocessing include averaging of measurements, putting different

emphases on different criteria, and direction biasing. Some of these preprocessing

techniques are briefly discussed next. Certain handoff criteria (e.g., RSS) need to

be averaged to mitigate the effects of the propagation environment. To prevent an

excessive number of dropped calls, handoff requests should be processed quickly for

vehicles that are moving away from the serving BS at high velocities. A fixed time

averaging interval gives best performance at only one velocity. For example, for a fixed

parameter handoff algorithm with a fixed time averaging window, two situations exist:

(i) for high velocities, handoff delay is long, and the number of handoffs are fewer

and (ii) for low velocities, the handoff delay is short, and the number of handoffs

are more. Also, there is a velocity (between the high and low extremes) that gives

optimum performance for both the handoff delay and the number of handoffs. To

provide similar performance (i.e., the desired tradeoff between the handoff delay and

the number of handoffs) to users with different velocities, the temporal window must

be adapted based on the MS velocity. Reference [58] proposes velocity adaptive

averaging algorithms for a microcellular environment. These algorithms provide good

performance for MSs with different velocities by adjusting the effective length of the

averaging window. A velocity adaptive handoff algorithm can serve as an alternative

to the umbrella cell approach to tackle high speed users if low network delay can be

achieved, which can lead to savings in the infrastructure. The temporal window length

can be changed by either keeping the sampling period constant and adjusting the

number of samples per window, or vice versa. For microcells, the sampling distance

of 0.5λ and the averaging distance of 20λ to 40λ are sufficient according to [58]. In this

chapter, the measurement sampling period Ts is 0.5 sec (as in GSM), and the number

of samples per window are adjusted according to the MS velocity. A spatial window
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of 780λ (i.e., 260 m for fc = 900MHz) is used. The averaging distance of 260m was

determined based on simulations. For a velocity of 65 mph (or 29.06 m/sec), eighteen

samples are used, while for a velocity of 85 mph (or 38 m/sec), fourteen samples are

used. This chapter assumes that velocity estimation is available. Several methods for

estimating velocity are described in [58].

The averaged criteria can be further processed before their use in a handoff

algorithm. For example, each criterion can be emphasized differently. Also, some

base stations (BSs) may be favored based on the direction in which the mobile sta-

tion (MS) is moving; this process is called direction biasing. The basic idea behind

direction biasing is to encourage handoff to the BS that the MS is approaching and to

discourage handoff to the BS from which the MS is receding. Reference [60] proposes

direction biased handoff algorithms which have better cell membership properties,

defined as a probability of close to one throughout the call duration [60]. Improved

cell membership properties can help preserve cell boundaries (thereby reducing the

interference) and reduce the number of handoffs.

A Basic Conventional Handoff Algorithm

A conventional algorithm based on RSS and SIR was used in conjunction with the

FLS. This algorithm is shown in Figure 5.4. According to the absolute and relative

RSS-based part of the algorithm, handoff takes place if the following two conditions

are satisfied [54]: (i) the average signal strength of the serving BS falls below an abso-

lute threshold (RSSthreshold) and (ii) the average signal strength of the candidate BS

exceeds the average signal strength of the current BS by an amount of (RSShysteresis).

Condition (i) prevents the occurrence of handoff when the current BS can provide

sufficient signal quality, while condition (ii) reduces the ping-pong effect. Reference

[24] has shown that an optimum threshold achieves a narrowed handoff area (and
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hence reduced interference) and a low expected number of handoffs. According to the

SIR based part of the algorithm, a handoff candidate search is initiated when SIRc

drops below a threshold, SIRthreshold. An algorithm based on both RSS and BER is

described in [26]. For RSS, a threshold is used for the current BS, and a hysteresis

window is used for the target BS. For BER, a separate threshold is defined. The

target BS can be either included or excluded from the handoff decision process. The

latter scheme is used in GSM where the mobile does not know the signal quality of

the target BS. In principle, it is possible to measure BER of the control channel of

the target BS.

A Fuzzy Logic System

A fuzzy logic rule base is created based on the known sensitivity of handoff algorithm

parameters (e.g., RSS threshold and RSS hysteresis) to interference, traffic, etc. This

research utilizes the Mamdani FLS described earlier. The singleton fuzzifier, the

product operation fuzzy implication for fuzzy inference, and the center average de-

fuzzifier are used. The fuzzy rule base is discussed next and is shown in the Table 5.1.

Each of the input fuzzy variables is assigned to one of the three fuzzy sets, “High”,

“Normal” or “Low”. Each of the output variables is assigned one of the seven fuzzy

sets, “Highest”, “Higher”, “High,” “Normal,” “Low,” “Lower,” or “Lowest.” An ex-

ample of the universes of discourse for the input and output fuzzy variables is shown

in Figure 5.5.
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Figure 5.5: Membership Functions of Fuzzy Variables
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For example, consider the fuzzy variable SIRc. Its universe of discourse is de-

fined from 14 dB to 22 dB. The fuzzy set “High” for the SIRc is defined from 18 dB

to 22 dB with the maximum membership at 22 dB. Similarly, the fuzzy set “Normal”

for the SIRc is defined from 14 dB to 22 dB with the maximum membership at 18 dB,

and the fuzzy set “Low” for the SIRc is defined from 14 dB to 18 dB with the maxi-

mum membership at 14 dB. The degrees of freedom for each of the fuzzy variables are

centers of the Gaussian membership functions, spreads of the membership functions,

and ranges of the universes of discourse. If equal weight is given to the input fuzzy

variables, the creation of the fuzzy logic rule base is facilitated. The sensitivity of

the input fuzzy variable to the output of the FLS can be controlled by changing the

universe of discourse. Moreover, the addition of more fuzzy sets in a given universe

of discourse can give improved resolution and better sensitivity control. To keep the

complexity of the fuzzy logic rule base low, the universe of discourse for each input

fuzzy variable was classified into three fuzzy sets. The universe of discourse for the

output fuzzy variable was divided into seven regions so that appropriate weight can

be given to the different combinations of the input fuzzy sets.

Examples. Assume that SIRc is “Low,” Trd is “High,” and MS velocity is

“High.” These conditions indicate that the handoff should be encouraged as much

as possible; this is rule number nineteen. To make the fastest handoff, RSSthreshold

is increased to the highest value, and RSShysteresis is decreased to the lowest value.

Now “High,” Trd is “Low,” and MS velocity is “Low,” handoff is discouraged as much

as possible. The philosophy behind the other rules states that if the majority of the

input variables suggest encouraging a handoff, threshold is increased and hysteresis is

decreased. On the other hand, if the majority of the input variables suggest discour-

aging a handoff, threshold is decreased, and hysteresis is increased. The extent to

which the threshold and hysteresis are changed to encourage or discourage a handoff
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Table 5.1: Fuzzy Logic Rule Base

Rule No. SIRc (TR)d MS Velocity RSSthreshold RSShysteresis

1 High High High High Low
2 High High Normal Normal Normal
3 High High Low Low High
4 High Normal High Normal Normal
5 High Normal Normal Low High
6 High Normal Low Lower Higher
7 High Low High Low High
8 High Low Normal Lower Higher
9 High Low Low Lowest Highest
10 Normal High High Higher Lower
11 Normal High Normal High Low
12 Normal High Low Normal Normal
13 Normal Normal High High Low
14 Normal Normal Normal Normal Normal
15 Normal Normal Low Low High
16 Normal Low High Normal Normal
17 Normal Low Normal Low High
18 Normal Low Low Lower Higher
19 Low High High Highest Lowest
20 Low High Normal Higher Lower
21 Low High Low High Low
22 Low Normal High Higher Lower
23 Low Normal Normal High Low
24 Low Normal Low Normal Normal
25 Low Low High High Low
26 Low Low Normal Normal Normal
27 Low Low Low Low High
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depends upon how many variables agree on a particular direction of the threshold and

hysteresis change. Resolving conflicting criteria in accordance with the global system

goals is an important advantage of fuzzy logic. For example, consider rule 2. “High”

SIRc discourages a handoff, while “High” Trd encourages a handoff. MS velocity is

neutral. Hence, the fuzzy logic rule makes the logical decision to keep the threshold

and hysteresis values nominal.

5.3.2 Analysis of Proposed Class of Algorithms

The proposed class of fuzzy algorithms has a number of advantages over existing

algorithms. Some of the significant advantages are mentioned here.

• Use of Good Features of Existing Algorithms. The proposed algorithm
utilizes several good features of existing algorithms. For example, a combined
RSS and SIR based algorithm with handoff parameters, such as threshold and
hysteresis, is used as a conventional algorithm in Figure 5.2. This algorithm
leads to fewer handoffs, reduced ping-pong effect, and fewer unnecessary hand-
offs. The proposed class of algorithms does not replace the existing algorithms;
it complements the existing algorithms. The proposed technique enhances the
performance of conventional algorithms by providing a robust adaptation mech-
anism to make appropriate tradeoffs.

• Use of Multiple Handoff Criteria. Multicriteria algorithms provide better
performance than single criterion algorithms due to the additional flexibility
and complementary nature of the criteria. For example, consider a situation
in which (i) the traffic in the handoff candidate cell is low and (ii) SIR for
the current cell is very high. If an adaptive single criterion handoff algorithm
based on traffic is used, it would increase the handoff threshold, encouraging
a handoff. An adaptive single criterion handoff algorithm based on SIR would
lower the handoff threshold, discouraging a handoff. However, a multicriteria
handoff algorithm can consider both measurements (traffic and SIR) and make
a decision that is consistent with the global system goals.

• Adaptation. The proposed algorithm is adaptive to interference, traffic, and
velocity. Adaptation to interference gives better RSS and SIR distribution,
resulting in fewer dropped calls, better communication quality, potentially lower
MS transmit power requirements, and better cell memberships. Adaptation to
traffic provides traffic balancing, reducing the blocking probability of new calls
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and handoff calls. Adaptation to velocity (or quality degradation rate) gives
good performance at different MS speeds.

• Fuzzy Logic Attributes. One of the advantages of fuzzy logic is simplicity.
Also, the knowledge about the system can be better exploited with fuzzy logic
algorithms than with conventional algorithms [89]. Moreover, conflicting criteria
can be resolved using fuzzy logic.

• Systematic Balance. The proposed algorithm allows a systematic compro-
mise among various characteristics by properly tuning the parameters of the
fuzzy logic rule base.

Increased complexity is a disadvantage of the proposed algorithms compared to con-

ventional algorithms. Nevertheless, inherent parallelism in an FLS partially offsets

this increase in complexity. Moreover, there are several ways of reducing this complex-

ity. For example, an FLS can be represented compactly using some neural network

paradigms, leading to the savings in the storage and computational requirements.

5.4 Performance Analysis of Proposed and Con-

ventional Algorithms

The performances of the proposed and conventional handoff algorithms have been

evaluated using several performance metrics, covering major aspects of handoff re-

lated system performance. These performance metrics include cumulative distribution

function (CDF) of RSS, CDF of SIR, CDF of traffic, average number of handoffs, and

cross-over distance. When an MS is connected to a BS, the RSS from the BS, the

downlink SIR, and the number of calls in the BS are stored, and these stored values

are used to derive CDFs of RSS, SIR, and traffic, respectively. The average number of

handoffs and the average 50% cross-over distance for an MS journey (i.e., the distance

of the MS from the BS where the probability that the MS is connected to the BS is

0.5) are also stored. The CDFs of RSS and SIR can imply the call drop probability,
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call quality, and potential uplink transmit power requirements. For example, high

values of RSS and SIR indicate that the call drop probability will be low, the call

quality will be good, and the MS can transmit comparatively less power. The traffic

CDF can give an idea of traffic balancing (or new call or handoff blocking probability).

For example, a lower number of calls in a cell implies a high probability of successful

network access since more new calls or handoff requests can be entertained by the

network. A lower number of handoffs indicates a lower switching load and a shorter

delay in the processing of a handoff request. The cross-over distance indicates the

interference level, handoff delay, and MS power requirements.

5.4.1 Interference Adaptation

Figure 5.6 shows the CDF of SIR for a conventional algorithm and the fuzzy algorithm,

illustrating that the CDF of the SIR for a fuzzy algorithm is to the right of the CDF

of SIR for the conventional algorithm with an improvement of approximately 1.0 dB.

Note that the traffic and velocity adaptation were not in effect when this simulation

result was obtained, isolating the performance improvement due to interference adap-

tation and showing the function of the interference adaptation part of the fuzzy logic

rule base. Also note that the improvement of SIR can be changed by tuning the fuzzy

logic parameters. For example, Figure 5.7 shows the CDF of SIR when there was less

improvement (0.6 dB) compared to Figure 5.6 tuning. On the other hand, Figure 5.8

shows the CDF of SIR when there was more improvement (1.5 dB) compared to the

Figure 5.6 tuning. The FLS parameters can be tuned in a number of ways, and here,

the definitions of the fuzzy sets “High” and “Low” for the fuzzy variables RSSthreshold

and RSShysteresis were changed. The centers of the membership functions for the fuzzy

set “High” of the fuzzy variable RSSthreshold were -130dBm, -132 dBm, and -134 dBm
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Figure 5.6: CDF of SIR (“Normal” Degree of Interference Adaptation)
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Figure 5.7: CDF of SIR (“Lower” Degree of Interference Adaptation)
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Figure 5.8: CDF of SIR (“Higher” Degree of Interference Adaptation)

for Figure 5.8, Figure 5.6, and Figure 5.7, respectively. The centers of the membership

functions for the fuzzy set “Low” of the fuzzy variable RSSthreshold were -142dBm,

-140 dBm, and -138 dBm for Figure 5.8, Figure 5.6, and Figure 5.7, respectively.

The centers of the membership functions for the fuzzy set “High” of the fuzzy vari-

able RSShysteresis were 20.0 dB, 18.5 dB, and 17.0 dB for Figure 5.8, Figure 5.6, and

Figure 5.7, respectively. The centers of the membership functions for the fuzzy set

“Low” of the fuzzy variable RSShysteresis were 12.0 dB, 13.5 dB, and 15.0 dB for Fig-

ure 5.8, Figure 5.6, and Figure 5.7, respectively. The same definitions of the “High”

and “Low” fuzzy sets for the fuzzy variables RSSthreshold and RSShysteresis were used

to obtain “Higher,” “Normal,” and “Lower” degrees of adaptation for different test

cases (such as interference adaptation and traffic adaptation). The centers of the

membership functions for the fuzzy sets “Normal” of the fuzzy variables RSSthreshold

and RSShysteresis were chosen to be -136 dBm and 16.0 dB, respectively, in all the test
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cases. Assume that the call is dropped at SIR of 14.0 dB. An approximate idea about

the call drop probability can be obtained by comparing the probabilities of SIR distri-

bution at this value of SIR for the conventional and fuzzy algorithms. The probability

that SIR is less than 14 dB is 0.1519 for the conventional algorithm and 0.1367 for the

fuzzy algorithm with “Normal” degree of interference adaptation. Thus, there is an

improvement of ((0.1519−0.1362)/0.1519)100% = 10%. For a “Low” degree of inter-

ference adaptation, there is an improvement of ((0.1519−0.1418)/0.1519)100% = 7%,

and for a “High” degree of interference adaptation, there is an improvement of

((0.1519 − 0.1275)/0.1519)100% = 16%. Thus, there can be a 7% to 16% improve-

ment in call drop probability depending upon the tuning of the fuzzy logic parameters.

The maximum possible improvement depends on system related constraints (e.g., the

maximum permissible MS transmit power and the maximum permissible distance

between an MS and a BS).

5.4.2 Traffic Adaptation

The traffic adaptation capability of the fuzzy logic system is demonstrated next for

traffic distribution. The interference and velocity adaptation were switched off during

this simulation to clearly show the effect of traffic adaptation. Figure 5.9 shows that

the CDF of traffic for the fuzzy algorithm is to the left of the CDF of traffic for the

conventional algorithm, giving an improvement of 1.8 calls in the traffic distribution.

Also note that the improvement of traffic can be changed by tuning the fuzzy logic

parameters. For example, Figure 5.10 shows the CDF of traffic when there was less

improvement (1.0 call) compared to the Figure 5.9 tuning, and Figure 5.11 shows

the CDF of traffic when there was more improvement (2.8 calls), compared to the

Figure 5.9 tuning.
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Figure 5.9: CDF of Traffic (“Normal” Degree of Adaptation)
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Figure 5.10: CDF of Traffic (“Lower” Degree of Adaptation)
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Figure 5.11: CDF of Traffic (“Higher” Degree of Adaptation)

5.4.3 Velocity Adaptation

The velocity adaptation capability of the fuzzy logic system is demonstrated next

for the cross-over distance. The interference and traffic adaptation were switched off

during this simulation result to show the effect of velocity adaptation. Figure 5.12

shows the 50% cross-over distance and the average number of handoffs during the

MS’s travel at different velocities. The minimum velocity is 45 mph (or 20 m/s),

the average velocity is 65 mph (or 29 m/s), and the maximum velocity is 85 mph

(or 38 m/s). The results corresponding to the fuzzy algorithm are shown by the

symbols “*,” “+,” and “x” without the circles, while the results corresponding to

the conventional algorithm are shown by encircled symbols. The symbols “*,” “+,”

and “x” are associated with minimum, average, and maximum velocities, respectively.

The operating point for the fuzzy algorithm is to the left of the operating point of
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Figure 5.12: Effect of Velocity Adaptation

the conventional algorithm because the fuzzy algorithm tends to reduce cross-over

distance, giving less interference. The improvement in the handoff delay can be

determined by comparing the reduction in cross-over distance for different velocities.

For the low velocity (20 m/s), there is a reduction of 60m in cross-over distance, an

improvement of 60/20 = 3.0 sec in handoff delay. For the average velocity (29 m/s),

there is a reduction of 150m in cross-over distance – an improvement of 150/29 = 5.1

sec in handoff delay. For the high velocity (38 m/s), there is a reduction of 230m in

cross-over distance, an improvement of 2350/38 = 6.1 sec in handoff delay. Thus, the

improvement in handoff delay conforms with the desired goal (i.e., handoff should be

faster for high velocities).
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Figure 5.13: Effect of Combined Adaptation on RSS Performance

5.4.4 Combined Interference, Traffic, and Velocity Adapta-

tion

Figure 5.13 shows the RSS distribution when all the components of adaptation are in

effect simultaneously. There is not much difference between the CDFs of the RSS for

conventional and fuzzy algorithms, but there is a marginal improvement (a fraction

of a dB) with the fuzzy algorithm.

Figure 5.14 shows the SIR distribution when all the components of adaptation

are in effect simultaneously. The fuzzy algorithm shows an improvement of 0.8 dB

over the conventional algorithm. Note that the SIR improvement depends on which

rules contribute to the overall fuzzy logic outputs. In practice, certain situations will

give higher improvement than that shown here. For example, there may have been

numerous occasions where conflicting requirements would have forced the FLS to keep
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Figure 5.14: Effect of Combined Adaptation on SIR Performance

the handoff parameters as nominal values, limiting the perceived SIR improvement.

If several events indicate that the handoff parameter changes to a higher degree,

more improvement in SIR would be visible. Figure 5.15 shows traffic distribution

when all the components of adaptation were in effect simultaneously, and the fuzzy

algorithm shows an improvement of 1.8 calls over the conventional algorithm. As

discussed earlier for SIR, certain situations in practice will give higher improvement

than that shown here. For example, if there is a non-uniform traffic distribution,

more improvement would be feasible. Figure 5.16 shows velocity adaptation when all

the components of adaptation work together and shows results for an average velocity

of 65 mph (29 m/s). This figure shows that the handoff delay is reduced by 160m or

160/29 = 5.5 sec with the fuzzy algorithm.
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Figure 5.15: Effect of Combined Adaptation on Traffic Performance
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5.5 Conclusion

This chapter introduces a new class of handoff algorithms that exploits the knowl-

edge of the working of several existing algorithms and uses fuzzy logic to adapt the

parameters of handoff algorithms. A fuzzy logic rule base is created using the known

sensitivities of handoff parameters. The design procedure for a generic fuzzy logic

based algorithm is outlined. Simulation results for both a conventional and fuzzy

logic based algorithm are analyzed in detail. It is shown that a multicriteria fuzzy

handoff algorithm gives better performance than a signal strength based conventional

handoff algorithm. Furthermore, the proposed approach allows tuning of the FLS pa-

rameters to achieve a balanced tradeoff among different system characteristics in the

dynamic cellular environment. Simulation results indicate that SIR distribution is

improved by 0.5 dB to 1.7 dB due to interference adaptation (giving 7% to 16% im-

provement in call drop probability), traffic distribution is improved by 1.0 to 2.8 calls

due to traffic adaptation, and handoff delay is reduced by three seconds to six seconds

due to velocity adaptation.



Chapter 6

A Neural Encoded Fuzzy Logic

Algorithm

This chapter proposes a new class of handoff algorithms that combines attractive fea-

tures of several existing algorithms and adapts the parameters of a handoff algorithm

using a neural encoded fuzzy logic system. Known sensitivities of handoff parame-

ters can be used to design a fuzzy logic system (FLS), which can then be used to

adapt the handoff parameters to obtain improved performance in a dynamic cellular

environment. However, the FLS has large storage requirements and high computa-

tional complexity. This chapter proposes neural encoding of the FLS to circumvent

these demands; a neural network learns how the FLS works. Several neural network

paradigms such as a multilayer perceptron (MLP) and a radial basis function net-

work (RBFN) can be universal approximators. The input-output mapping capability

and compact data representation capability of neural networks are exploited here to

derive an adaptive handoff algorithm that retains the high performance of the origi-

nal fuzzy logic based algorithm and that has an efficient architecture for storage and

computational requirements. Extensive simulation results for a conventional handoff

122
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algorithm (absolute and relative signal strength based algorithm) and a neural algo-

rithm are presented. It is shown in this chapter that an adaptive multicriteria neural

handoff algorithm performs better than a conventional signal strength based handoff

algorithm.

6.1 Introduction

An adaptive handoff algorithm based on neural networks is proposed in this chapter.

Known sensitivities of handoff parameters can be used to create a fuzzy logic sys-

tem (FLS). Since neural networks can represent information compactly, good savings

in storage and computational requirements can be obtained if the fuzzy logic rule

base is replaced by a neural network. This chapter discusses the utilization of two

neural networks, a multilayer perceptron (MLP) and radial basis function network

(RBFN), to mimic the working of the FLS. These network paradigms are trained

to learn the relationship among the inputs and the outputs of the fuzzy logic rule

base. The trained neural networks are used to adapt the parameters of a handoff

algorithm. The performance of this adaptive neural handoff algorithm is compared

with the conventional handoff algorithm. The simulation results show that the pro-

posed neural algorithm possesses a very low complexity architecture while retaining

the high performance of the original fuzzy logic based handoff algorithm.

The configuration of a generic handoff algorithm, shown in Figure 6.1 and Fig-

ure 6.2, was proposed in [109]. This configuration uses the combination of an

absolute and relative received signal strength (RSS) based algorithm and a signal-

to-interference ratio (SIR) based algorithm. The RSS based algorithm has threshold

(RSSthreshold) and hysteresis (RSShysteresis) as parameters, while the SIR based al-

gorithm has threshold (SIRthreshold) as a parameter. The SIR threshold parameter
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Figure 6.1: An Adaptive Fuzzy Logic Based Algorithm

Figure 6.2: A Conventional Algorithm for a Generic Fuzzy Logic Based Handoff
Algorithm



CHAPTER 6. A NEURAL ENCODED FUZZY LOGIC ALGORITHM 125

allows the initiation of the search for a better handoff candidate early on. The RSS

based parameters are adapted using the FLS. It is assumed that the MS makes nec-

essary measurements. However, the proposed algorithm can be easily extended to

include BS measurements. Note that in actual systems, there may be specific re-

quirements (e.g., maximum permissible round-trip delay). Such requirements can

be incorporated as part of either the basic conventional algorithm or the adaptation

mechanism. Handoff criteria that are averaged according to the velocity adaptive

averaging mechanism include RSS of the current BS (RSSc), RSS of the neighbor-

ing BS (RSSn), and SIR of the current channel (SIRc). The MS velocity and the

traffic difference Trd (i.e., the difference in the number of calls in the current BS and

the neighboring BS) are not averaged since their instantaneous values are of inter-

est. Since the basic parameters to be adapted, RSSthreshold and RSShysteresis, are

related to RSS, the variables RSSc and RSSn are not used to adapt these parame-

ters. An FLS is used as the adaptation mechanism. The inputs to the FLS are SIRc,

(Tr)d = (Tr)c − (Tr)n ((Tr)c is the number of calls in the current BS, and (Tr)n is

the number of calls in the neighboring BS), and MS velocity. The outputs of the FLS

are RSSthreshold and RSShysteresis.

The inherent parallelism in FLSs allows an efficient implementation of the fuzzy

logic based algorithm. However, the algorithm is still much more complex than con-

ventional algorithms that consist of only a few binary IF-THEN rules. Moreover, as

the number of inputs to the FLS increases or as the universes of discourse for the

fuzzy variables are divided into more fuzzy sets, the complexity of the FLS increases

even further. The complexity is two-fold, storage requirements and the number of

computations to be performed every measurement sample time. A simple handoff

algorithm with fewer computations and less storage requirements is desirable since it

can be executed quickly and does not consume a lot of the available resources. The
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simplicity of a handoff algorithm is becoming more and more important as the user

demand in cellular systems is expected to increase in the coming several years. The

simplicity can reduce the handoff delay, the number of dropped calls, and the num-

ber of blocked calls. Moreover, the savings in computation time gives the processing

unit (e.g., an MSC or a BS) an opportunity to devote time to other aspects (such as

collection of measurements or intelligent resource allocation) to improve the overall

system performance. Hence, it is advantageous to reduce the complexity to achieve

a relatively simple algorithm with faster execution time. In this chapter, neural en-

coding of the FLS is proposed to simultaneously achieve the goals of high performance

and reduced complexity. The storage requirements and computational savings are an-

alyzed. The neural encoded FLS based algorithm is evaluated comprehensively, and

its performance is compared with a conventional absolute and relative RSS based

algorithm and the original fuzzy logic based algorithm. The chapter shows that the

neural encoded FLS algorithm (NEFLSA) performs as well as the basic fuzzy logic al-

gorithm (FLA) and that the NEFLSA is less complex than the FLA. The parameters

of neural networks allow a tradeoff between the complexity and the approximation

accuracy. As long as the neural networks perform better than the conventional al-

gorithm and are of low complexity, the desired goals of good performance and low

complexity would be achieved. The simulation results shown in this chapter are not

intended to be the optimum results obtainable using fuzzy logic or neural networks.

A particular configuration of fuzzy logic system designed in [109] was chosen as a

basic FLS, and two paradigms of neural networks (MLP and RBFN) were trained to

mimic the operation of this FLS.

Section 6.2 describes a procedure for using a neural network as an adaptation

mechanism in place of the FLS. The performances of a conventional algorithm and

the proposed neural algorithm are evaluated in Section 6.3. Finally, Section 6.4
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Figure 6.3: Design Procedure for an ANN Application

summarizes the chapter.

6.2 Application of Neural Networks to Handoff

An ANN can be trained to learn complex relationships among the inputs and the

outputs of a system. After the ANN is trained, the parameters of the ANN can

be used to estimate the outputs for given inputs. Figure 6.3 shows the flowchart

illustrating the training mechanism of the ANN in a supervised learning mode. A

generic training procedure with its application to the FLS mapping is explained next.

1. Get the data set that contains the system inputs and desired outputs. Different

possible combinations of the inputs are applied to the FLSs, and the correspond-

ing outputs of the FLS are calculated. The FLS inputs and outputs constitute

the data set.
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2. Determine the structure of the neural network and the associated learning algo-

rithm. Since the problem of function approximation is a generalization problem,

two suitable paradigms, backpropagation network and radial-basis function net-

work, are considered here.

3. Determine the input set and the target output set for the neural network. Since

the mapping between the FLS inputs and outputs is static, input and output

data sets collected in Step 1 can serve as the input set and the target output set

with proper scaling. It is important to scale the training data set so that the

network parameters do not saturate. In general, the input data set obtained

in Step 1 may need to be preprocessed for use with the ANN when the system

outputs depend not only on the current inputs but also on the history of inputs

and outputs.

4. Select the training parameters (such as the learning rate and number of neurons)

and train the neural network using an appropriate algorithm. If the network

does not perform satisfactorily, several possible options are an increase in the

training time, preprocessing of inputs, use of a different ANN paradigm, or

use of different training parameters. Once the network has been trained, the

mapping between the FLS inputs and the corresponding outputs is stored in

the parameters of the ANN.

The complexity of a handoff algorithm can be analyzed in terms of storage re-

quirements and computational requirements. At every sampling instant, the outputs

of the adaptive mechanisms (FLS, MLP and RBFN) need to be calculated.
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The output of an FLS, y, is given by

y =

R∑
l=1

yl(µBl(y
l))

R∑
l=1

(µBl(y
l))

(6.1)

where R is the number of rules, yl is the center of the output fuzzy set, and µBl(y
l)

is calculated as

µBl(y
l) =

m∏
i=1

exp(−(
xi − xil
σli

)2) (6.2)

where m is the number of inputs to the FLS, xi
l is the center of the fuzzy set for

input i for rule l, and σli is the spread of the fuzzy set for input i for rule l. Since the

FLS considered here is a single-output system, two FLSs are required to calculate two

outputs. However, all the computations need not be carried out separately for these

two FLSs since the membership values (i.e., µBl(y
l)) are the same for a given input

vector. Only yl related calculations need to be carried out for individual outputs.

The output of an MLP is given by

Y = W2 tanh(W1X +B1) +B2 (6.3)

where W1 is a hidden layer weight matrix of size N × m, B1 is a hidden layer bias

matrix of size N × 1, W2 is an output layer weight matrix of size p × N , B2 is an

output layer bias matrix of size p×1, X is an m×1 input vector, Y is a p×1 output

vector, and “tanh” is the hyperbolic tangent function.

The output of an RBFN is given by

Y = W2A1 +B2 (6.4)

with

A1 = radbas(dist(W1, X)×B1). (6.5)
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Here, W1 consists of centers of Gaussian functions and is of size N × m, B1

consists of spreads associated with Gaussian functions and is of size N × 1, W2 is an

output layer weight matrix of size p × N , B2 is an output layer bias matrix of size

p×1, X is an m×1 input vector, Y is a p×1 output vector, and “dist” is the distance

between X and each row of W1. In other words,

dist(w,X) =

√√√√ p∑
j=1

(wj −Xj)2. (6.6)

Here, w represents one row of W1.

“Radbas” is the radial-basis function given by

radbas(x) = exp(−x2). (6.7)

The storage requirements of the FLS, MLP, and RBFN are derived next.

• FLS Storage Requirements.

For an FLS rule, m centers (xi
l) and m spreads (σli)for the antecedent part

of the rule and p centers (yl) for the consequent part of the rule are required.
Thus, for each rule, a total of (2m+p) elements are required (Eq. 6.1 and 6.2).
Since there are R rules in an FLS, a total of (2m + p)R elements need to be
stored for the FLS.

• MLP Storage Requirements.

For an MLP, W1, B1, W2, and B2 are required. Since W1 is of size N ×m and
B1 is of size N × 1, the number of elements for the first layer is Nm+N . Since
W2 is of size p × N and B2 is of size p × 1, the number of elements for the
second layer is pN + p. The total number of elements are Nm+N + pN + p =
m(N + 1) + p(N + 1) = (m+ p)(N + 1).

• RBFN Storage Requirements.

For an RBFN, the parameters W1, B1, W2, and B2 have the same dimensions
as in the case of an MLP. Hence, a total of (m+ p)(N + 1) elements are needed
for RBFN.

Table 6.1 summarizes the storage requirements for an FLS, MLP, and RBFN.

In this chapter, R=27, m=3, p=2, N=5 for BPNN, and N=8 for RBFN. Ta-

ble 6.2 gives the improvement in storage requirements for the neural techniques. The



CHAPTER 6. A NEURAL ENCODED FUZZY LOGIC ALGORITHM 131

Table 6.1: Storage Complexity of Adaptation Mechanisms

System Elements

FLS (2m+ p)R
MLP (m+ p)(N + 1)

RBFN (m+ p)(N + 1)

Table 6.2: Specific Examples of Storage Complexity

System Elements

FLS 216
MLP (N=5) 30

RBFN (N=8) 45

MLP and RBFN give an improvement of the factor 7.2 (i.e., 216/30) and 4.8 (i.e.,

216/45) over the FLS for storage requirements.

The computational complexities of the FLS, MLP, and RBFN are derived next.

The operations of addition and subtraction are grouped together and referred to as

adds. Also, the operations of multiplication and division are grouped together and

referred to as multiplies. Evaluations of functions (such as exponential, square-root)

are referred to as functions.

• FLS Computations. For each rule, the input vector is processed by Eq. 6.2.
There are one subtraction, one division, one multiplication (squaring operation),
and one function (exponential) evaluation for each element of the input vector
Xb that has m elements. Thus, there are one add, two multiplies, and one
function. For each rule, there are m adds, 2m multiplies, and m functions due
to m inputs. The m exponential terms and yl are multiplied, requiring m more
multiplies. Hence, there are mR adds, 3mR multiplies, and mR functions for R
rules. There are (R− 1) additions (of yl and µBl ) in the numerator of Eq. 6.1
and one division of the numerator and denominator in Eq. 6.1. Thus, there are
Rm+ (R− 1) = (m+ 1)R− 1 adds, 3mR+ 1 multiplies, and mR functions for
one output calculation. For each additional output, there are R multiplies (of yl

and µBl ) and (R−1) adds (of the terms ylµBl and one numerator-denominator
division). Hence, there are additional (R+1) multiplies and (R−1) adds for each
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additional output. If there are p outputs, (R + 1)(p − 1) additional multiplies
and (R−1)(p−1) additional adds are required. Thus, the total number of adds
is (m+1)R−1+(R−1)(p−1) = mR+R−1+Rp−R−p+1 = mR+Rp−p, the
total number of multiplies is 3mR+1+(R+1)(p−1) = 3mR+1+Rp−R+p−1 =
(3m+ p− 1)R+ p, and the total number of functions is mR.

• MLP Computations. Each row of W1X multiplication requires m multiplies
and (m − 1) adds. Since there are N rows in W1, a total of mN multiplies
and (m− 1)N adds are required. W1X and B1 addition requires N more adds.
Thus, (m−1)N+N = mN adds are required. Hence, mN multiplies, mN adds,
and N functions (tanh calculations) are required to carry out tanh(W1X +B1)
operation. The multiplication of W2 and tanh terms is between the p×N and
N × 1 matrices, requiring pN multiplies and (p− 1)N adds. The result of this
multiplication is added to the p × 1 matrix B2, requiring additional p adds.
Hence, the total number of adds are mN + pN = (m + p)N , and the total
number of multiplies are mN + pN = (m+ p)N .

• RBFN Computations. There are m subtractions, m multiplies (squaring
operation), (m − 1) adds, and one function (square-root) for each row of W1

in Eq. 6.6. Hence, there are (2m− 1) adds, m multiplies, and one function for
Eq. 6.6. For N rows of W1, there are (2m− 1)N adds, mN multiplies, and N
functions. The distance function is N × 1, and it is added to B1 of size N × 1.
This requires N additions. Hence, there are N(2m− 1) +N = 2mN adds, Nm
multiplies, and N functions for the argument of “radbas” in Eq. 6.5. The N ×1
matrix is processed by radial basis functions. In each radial function, there is one
multiplication (squaring) and one function evaluation (exponential) operation.
Thus, there are N more multiplies and N more function evaluations. Hence,
there are 2mN adds, Nm+N multiplies, and 2N functions for the calculation
of A1. The evaluation of Eq. 6.4 requires pN multiplies and pN adds. Hence,
there are a total of 2mN+pN = N(2m+p) adds, Nm+N+pN = (m+p+1)N
multiplies, and 2N functions.

Table 6.3 summarizes the computational requirements of the FLS, MLP, and

RBFN.

Table 6.4 shows the improvement in computational requirements for the neural

methods. There is an improvement of 8.8 (486/55 = 8.8) and 3.8 (486/128 = 3.8) for

MLP and RBFN, respectively, over the FLS.
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Table 6.3: Computational Complexity of Adaptation Mechanisms

System Multiplies Adds Function Evaluations

FLS 3m+R + p m+ 2R+ (p− 1)R mR
MLP N(m+ p) N(m− 1) + p(N − 1) +N + p N

RBFN N(p +m+ 1) N(p + 2m) 2N

Table 6.4: Specific Examples of Computational Complexity

System Multiplies Adds Function Evaluations Total Operations

FLS 272 133 81 486
MLP (N=5) 25 25 5 55

RBFN (N=8) 48 64 16 128

6.3 Performance Evaluation

Figure 6.4 shows the input data of the training data set. These different combinations

of inputs are applied to the FLS, and the corresponding FLS outputs are calculated.

The FLS outputs constitute the output data of the training data set. This output

data serves as the target or desired output when a neural network is trained. The

ranges of SIR, traffic difference, and velocity are from 15 dB to 21 dB, -2 to 2 calls, and

20 m/s to 38 m/s, respectively. Figure 6.5 shows the input test data used for testing

the generalization property of the trained ANNs. The test inputs were generated

randomly within the specified ranges of the variables. The corresponding FLS outputs

are the desired outputs. Hence, if an ANN has learned the input-output mapping of

the FLS well, the presentation of the test inputs shown here produces the outputs

that are similar to the desired test outputs.

Table 6.5 summarizes some of the results for MLP. Etrain is the Frobenius norm
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Figure 6.4: Training Data for Neural Networks



CHAPTER 6. A NEURAL ENCODED FUZZY LOGIC ALGORITHM 135

0 5 10 15 20 25
15

16

17

18

19

20

21

Index

S
IR

 (
dB

)
Test Data

0 5 10 15 20 25
−2

−1

0

1

2

Index

T
ra

ffi
c 

D
iff

er
en

ce
 (

N
o.

 o
f C

al
ls

)

0 5 10 15 20 25
20

25

30

35

40

Index

V
el

oc
ity

 (
m

/s
)

Figure 6.5: Test Data for Neural Networks
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Table 6.5: Training and Test Results for MLP

Number No. of Hidden Layer Neurons Etrain Etest

1 5 24.58 8.17
2 8 16.32 8.33
3 12 16.01 8.09
4 17 16.47 8.07
5 21 16.22 8.06

of the difference between the desired outputs and the outputs of the MLP for the

training data. Etest is the Frobenius norm of the difference between the desired

outputs and the outputs of the MLP for the test data. A different number of hidden

layer neurons were trained for different training times (5000 to 15000 epochs). One

epoch is one pass through the training set. In general, more neurons can lead to

an improved mapping. However, complexity increases as the number of neurons

increases. The number of neurons is chosen to be eight as a compromise between the

accuracy of generalization and complexity. Since the main interest is to represent the

FLS with as few neurons as possible, a tradeoff between the number of neurons and

the mapping accuracy must be achieved. For the application under consideration, the

error performance of the MLP is quite acceptable.

Figure 6.6 shows the desired (or actual) test data and the MLP output data.

The desired data and MLP predicted data are close to each other; however, they

are not identical. This means that the ANN has learned most of the FLS mapping

features, but it has not learned a perfect mapping. Hence, when the performances

of the fuzzy logic based algorithm and neural algorithm are compared, similar, but

not identical, performances should be expected. The FLS mapping can be learned

well by an ANN provided that appropriate processing is done and that a sufficient

number of neurons are used. Since the goal here is to use fewer neurons, no attempt
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Figure 6.6: MLP Test Data Performance

is made to obtain perfect FLS mapping.

Figure 6.7 shows the RBFN mapping performance. The RBFN has learned the

mapping well, but the mapping is not exact. Table 6.6 summarizes some of the results

for RBFN. Different spreads for radial basis functions and different numbers of radial

basis functions were tried. In general, higher numbers of radial basis functions give

an improved performance with the associated increase in complexity. The number

of radial basis functions is chosen to be ten as a compromise between accuracy of

generalization and complexity.

As in the case of MLP, the performances of the fuzzy logic based algorithm and

neural algorithm can be expected to be similar but not identical.

Figure 6.8 shows the cumulative distribution function (CDF) of RSS for con-

ventional, fuzzy logic (FL), and MLP algorithms. As expected, FL and MLP perfor-

mances are similar.



CHAPTER 6. A NEURAL ENCODED FUZZY LOGIC ALGORITHM 138

0 5 10 15 20 25
−145

−140

−135

−130

−125

−120

No. of Input Pattern

R
S

S
 T

hr
es

ho
ld

 (d
B

W
)

Actual (−) and RBFN Predicted (:) Outputs (Test Patterns)

0 5 10 15 20 25
5

10

15

20

25

R
S

S
 H

ys
te

re
si

s 
(d

B
)

No. of Input Pattern

Figure 6.7: RBFN Test Data Performance

Table 6.6: Training and Test Results for RBFN

Number No. of Radial Basis Functions Etrain Etest

1 5 34.50 8.28
2 10 24.42 6.82
3 14 20.25 5.47
4 19 17.80 5.29
5 24 15.73 5.16
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Figure 6.8: Distribution of RSS for Conventional, Fuzzy, and MLP Algorithms

Figure 6.9 shows the distribution of SIR for all the algorithms. Again, there

is a close match between FL and MLP performance. The small discrepancy can be

attributed to the stochastic nature of simulations and the approximate modeling of

the FLS by the MLP.

Figure 6.10 shows the traffic distribution for different algorithms. The FL and

MLP give similar traffic performances. Both the FL and MLP provide a two call

improvement over the conventional algorithm.

Figure 6.11 illustrates the operating point for the FL and MLP algorithms.

The symbols “*,” “+,” and “x” represent minimum (45 mph), average (65 mph),

and maximum (85 mph) velocities, respectively. These symbols represent the FL

operating points, while the encircled symbols represent the MLP operating points.

Both FL and MLP algorithms give similar performance.

Similar simulation tests were performed for an RBFN based algorithm. The
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Figure 6.9: Distribution of SIR for Conventional, Fuzzy, and MLP Algorithms
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Figure 6.11: Operating Points for Conventional, Fuzzy, and MLP Algorithms

results of two representative simulations are shown here.

Figure 6.12 shows the SIR distribution for FL and RBFN algorithms. The

performances of these algorithms are similar.

Figure 6.13 shows that the traffic distribution for the FL and RBFN algorithms

is similar.

6.4 Conclusion

An adaptive algorithm that encodes the working of an FLS is proposed. An FLS can

be designed using known sensitivities of handoff parameters, but the FLS requires the

storage of many parameters and needs a lot of computations. Several neural network

paradigms such as an MLP and an RBFN are universal approximators. The input-

output mapping capability and compact data representation capability of these neural
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network paradigms are exploited to represent the FLS. The neural representation of

the FLS provides an adaptive handoff algorithm that retains the high performance

of the original fuzzy logic based algorithm and that has an efficient architecture for

meeting storage and computational requirements. The analysis of the simulation

results indicates that an adaptive multicriteria neural handoff algorithm performs

better than a signal strength based conventional handoff algorithm and that the

fuzzy logic based algorithm and neural network based algorithm perform similarly.



Chapter 7

A Unified Handoff Candidacy

Algorithm

This chapter proposes a new fuzzy logic based algorithm with a unified handoff candi-

date selection criterion and adaptive direction biasing. The unified handoff candidate

selection criterion allows the simultaneous consideration of several handoff criteria

to select the best handoff candidate under given constraints. Direction biasing has

been proposed in the literature to obtain a fast handoff algorithm with certain useful

characteristics. This chapter proposes a fuzzy logic based handoff algorithm with

enhanced direction biasing by adapting the direction biasing parameters. Extensive

simulation results for the fuzzy algorithm and the proposed algorithm are presented.

This chapter shows that adaptive direction biasing improves the performance of the

basic fuzzy handoff algorithm and allows additional degrees of freedom in achieving

the desired balance among various system characteristics of interest.

144
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7.1 An Adaptive Fuzzy Handoff Algorithm with

Adaptive Direction Biasing

The algorithm proposed in this chapter incorporates adaptive direction biasing into

the fuzzy logic algorithm proposed in [109]. Direction biasing facilitates fast handoff.

Reference [60] proposed a direction biased handoff algorithm for a microcellular en-

vironment. Since microcells frequently encounter corner effect, fast moving vehicles

must be connected to an umbrella cell or better handoff algorithms must be used.

A direction-biased handoff algorithm represents such an alternative solution [60] and

has several nice features. Direction biasing improves cell membership properties and

handoff performance in LOS and NLOS scenarios in a multi-cell environment. The

direction biased algorithm reduces the probability of dropped calls for hard hand-

offs (e.g., for TDMA systems) and reduces the time a user needs to be connected to

more than one base station for soft handoffs (e.g., for CDMA systems), allowing more

potential users per cell.

The basic idea of the direction biased algorithm, handoffs to the BSs toward

which the MS is moving are encouraged, while handoffs to the BSs from which the

MS is receding are discouraged. Figure 7.1 shows the flowchart of a direction biased

algorithm. First, the direction biased algorithm selects the best handoff candidate

BS based on the link measurements. For example, if a BS (BSn, where n is the

BS identification) gives maximum RSS, it is selected as the best handoff candidate

BS. The currently serving BS (BSc) and BSn are classified into one of the sets, set

“Approach” (or set A) or set “Recede” (or set R). If the MS is moving toward a BS,

this BS is classified into set A. If the MS is moving away from a BS, this BS is classified

into set R. If both BSc and BSn are in set A or set R, the effective hysteresis (effh)

is kept the same as the normal hysteresis value (rssh). If BSc is in set A and BSn
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is in set R, the effective hysteresis is increased by the amount dirh (which represents

the amount of direction biasing). On the other hand, if BSc is in set R and BSn is in

set A, the effective hysteresis is reduced by the amount dirh.

A variation of the basic direction biased algorithm is the preselection direction

biased algorithm [60]. If the best BS is a receding one and has a quality only slightly

better than the second best BS, which is being approached, the handoff should be

made to the second best BS because it is more likely to improve its chances of be-

ing selected in future. This rule provides a fast handoff algorithm with good cell

membership properties without the undesirable effects associated with large hystere-

sis. Figure 7.2 shows the flowchart of the preprocessing for the preselection direction

biased algorithm. This algorithm processes the link measurements to bias the best

handoff candidate selection process. A BS is classified into set A or set R based on

the direction of the MS travel relative to the BS. If the BS is in set A, the link quality

measurement is enhanced by a preselection hysteresis (Hp) to improve the chances

of the selection of the BSs in set A as handoff candidates. However, if the BS is in

set R, the link quality measurement is reduced by a preselection hysteresis (Hp) to

deny the chances of the selection of the BSs in set R as handoff candidates. Once the

link measurements of all the BSs are preprocessed, a BS with the best preselection

biased link measurement is selected as the best handoff candidate. Then, the normal

direction biased algorithm is executed.

7.1.1 Proposed Algorithm

A pure direction biased handoff algorithm has four disadvantages.

1. This algorithm does not consider the effect of direction biasing on several sig-

nificant aspects of handoff.



CHAPTER 7. A UNIFIED HANDOFF CANDIDACY ALGORITHM 147

Figure 7.1: A Direction Biased Algorithm
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Figure 7.2: Preprocessing for Preselection Direction Biased Algorithm
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2. This algorithm does not adapt handoff parameters.

3. This algorithm can lead to unnecessary handoffs (i.e., this algorithm may make

a handoff even if the current BS provides good quality).

4. The direction biasing influences handoff decisions even if the mobile station

(MS) is relatively close to a base station (BS); there is a constant direction bias

throughout the journey of the MS. The constant direction biasing may cause this

algorithm to make premature handoffs, potentially increasing the MS transmit

power and causing high uplink interference.

An adaptive fuzzy logic algorithm proposed in [109] can take care of issues (1)

through (3). Since direction biasing has certain nice features, an adaptive version

of direction biasing has been incorporated into the basic fuzzy algorithm of [109].

This adaptive direction biasing overcomes the inherent drawback of the basic direc-

tion biasing algorithm (issue (4)) and provides improved performance. Moreover,

a unified preselection performance index (UPPI) has been formulated to simultane-

ously consider several handoff criteria. Figure 7.3 shows the block diagram of the

proposed fuzzy algorithm with UPPI and adaptive direction biasing. First, the best

handoff candidate is selected using the UPPI. Several measurements (such as RSSc,

RSSn, and SIRc) are averaged using the velocity adaptive averaging mechanism and

processed by the direction biased algorithm. This direction biased algorithm uses

two parameters (RSSthreshold and RSShysteresis) that are adaptive to the dynamic

cellular environment. An FLS provides such adaptive parameters based on certain

measurements. The value of RSShystersis is modified based on adaptive direction

biased hysteresis value (dirhyst). The mechanism of generating dirhyst is explained

later. The proposed handoff algorithm with adaptive direction biasing and unified
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Figure 7.3: Proposed Fuzzy Algorithm with UPPI and Adaptive Direction Biasing

preselection index has two distinct features that give the algorithm an edge over the

pure direction biased algorithm. These features are described below.

1. Unified Preselection Performance Index (UPPI). A unified preselection

performance index (UPPI) is proposed to select the best neighboring candidate

for handoff. A general structure of the UPPI is

UPPI(j) =
N∑
i=1

CiL
2
i (7.1)

where Li is the ith preprocessed link measurement, N is the total number of

link measurements (available from each potential handoff candidate BS), Ci is

the weightage given to the associated link measurement, and j is the BS index.

A BS that gives the maximum UPPI is selected as the best handoff candidate.

Preprocessing is necessary to normalize the measurements and to ensure that

maximizing the link measurement related component of the UPPI indeed leads
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to the maximization of the UPPI. For example, it is desirable to minimize Trn

(the number of ongoing calls in a cell) so that handoff blocking and call blocking

probabilities are reduced. Since the goal is to maximize UPPI, Trn must be

preprocessed so that the Trn related component of the UPPI increases when Trn

decreases. The UPPI considers available link measurements simultaneously so

a decision consistent with the global system goals can be made. The coefficients

Ci(i = 1, 2, ..., N) can be adapted to reflect the change in the constituents of

the dynamic cellular environment. For example, when traffic intensity in a

given service region is low, traffic balancing does not pay off. In such cases,

it is desirable to reduce the weight of traffic in the overall UPPI evaluation

and avoid perturbing planned cell boundaries. On the other hand, when traffic

intensity is high, traffic balancing reduces the handoff and call drop probability.

The weight of traffic can be increased in such cases to achieve a higher degree

of traffic balancing. In this chapter, two link measurements of the neighboring

cells, traffic in the cell and RSS from the BS, are assumed to be available. Hence,

these measurements are used as two link measurements (Li), and the weight of

these Li can be changed via coefficients (Ci) if desired. In other words,

UPPI(j) = C1L
2
1 + C2L

2
2 (7.2)

where L1 is the preprocessed RSS from BS 1 and L2 is the preprocessed traffic.

When C1 is zero, the selection of the best handoff candidate cell is based solely

on traffic. When C2 is zero, the selection of the best handoff candidate cell

is based solely on RSS. The UPPI allows additional degrees of freedom in ob-

taining balance between certain system characteristics. For example, different

weight can be given to RSS and traffic to obtain improved traffic balancing and

adaptation. Since the basic fuzzy algorithm takes into account two neighboring
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cell measurements (RSSn and Trn) for a handoff decision, this UPPI ensures

that the best BS is chosen (under the given constraints of available measure-

ments), providing the best handoff candidate in case handoff is necessary.

2. Adaptive Direction Biasing Parameters. Reference [60] uses fixed direc-

tion biasing parameters. As explained earlier, the biasing influences handoff

decisions even in the vicinity of the BS, which is the drawback of this algorithm.

However, a handoff should be discouraged even if the MS is receding from such

a BS. Moreover, the handoff region is located (approximately) midway between

the BSs, and a higher degree of direction biasing in the handoff region can pre-

vent the ping-pong effect, reducing the number of handoffs. Based on these

observations, direction biasing parameters are adapted using fuzzy logic. The

input to the fuzzy logic system (FLS) is the difference between the distances of

the MS from the serving BS and the candidate BS, and the output of the FLS is

the incremental hysteresis value (dirhyst). When the distance difference is high

(i.e., when an MS is very close to one BS compared to another BS), there is a

low degree of direction biasing. When the distance difference is low (i.e., when

an MS is almost equidistant from both neighboring BSs), there is a high degree

of direction biasing.

Rule No. DistanceDifference dirhyst

1 High Low

2 Normal Normal

3 Low High
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7.2 Performance Analysis of Proposed Algorithms

The performances of the basic fuzzy logic (FL), direction biased fuzzy logic (DBFL),

and adaptive direction biased fuzzy logic (ADBFL) algorithms are evaluated next. A

direction biased algorithm that considers only RSS as a UPPI component is a DBFL

algorithm, and a direction biased algorithm that includes both RSS and traffic as

UPPI components is a traffic direction biased fuzzy logic algorithm (TDBFL). For

FL and DBFL algorithms, C1 = 1 and C2 = 0. For TDBFL algorithm, C1 = 0.7

and C2 = 0.3. Thus, in the case of the TDBFL algorithm, traffic is important in

determining the best handoff candidate cell.

7.2.1 Performance Evaluation of FL, DBFL, and TDBFL

Algorithms

Figure 7.4 shows the cumulative distribution function (CDF) of the received sig-

nal strength (RSS) for FL, DBFL, and TDBFL algorithms. The RSS distribution is

identical for FL and DBFL algorithms, but there is a slight degradation in RSS distri-

bution for the TDBFL algorithm. This RSS degradation occurs because the selection

of the handoff candidate cell is based on both the RSS and the traffic in the neighbor-

ing cells. Hence, a slight degradation in RSS is expected. Figure 7.5 shows the SIR

distribution for FL, DBFL, and TDBFL algorithms. The FL and DBFL algorithms

perform similarly, but there is a 0.5 dB degradation in SIR performance of TDBFL

compared to FL and DBFL algorithms. The slight degradation in RSS contributes to

more degradation in SIR distribution for the TDBFL algorithm. Figure 7.6 shows the

traffic distribution for FL, DBFL, and TDBFL algorithms. Again, the performance

of the FL and DBFL is similar, but there is a one call improvement for TDBFL

compared to FL and DBFL algorithms. This result indicates that SIR performance
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Figure 7.6: Distribution of Traffic for FL, DBFL, and TDBFL Algorithms

can be traded for better traffic performance. More importantly, this result has even

more significant implications. Since the traffic performance is not critical under low

traffic intensities, a UPPI that is receptive to RSS can be used to provide improved

quality of service (quantified by voice quality, MS transmit power, etc.). When the

traffic intensity is high, UPPI should give more weight to traffic, and potentially,

more users can be served by trading voice quality. Thus, an appropriate structure

of UPPI can help achieve high performance in the dynamic cellular environment.

Figure 7.7 shows the cell membership properties for FL, DBFL, and TDBFL algo-

rithms. Pr(i)(i = 0, 1, 2, 3) is the probability that the MS is connected to BS i. The

MS travels from BS 0 to BS 2 at a constant velocity (65 mph). Pr(0) decreases from

one to zero as the MS recedes from BS 0. Pr(1) increases from zero to one as the

MS approaches BS 2. Both Pr(1) and Pr(3) increase until the midpoint of the MS’s

journey since the MS is moving toward these BSs. However, after the midpoint of the
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MS’s journey, Pr(1) and Pr(3) decrease since the MS is now moving away from these

BSs. As expected, the DBFL algorithm improves the cell membership properties

of the basic FL algorithm. Corroborating this statement, Pr(0) and Pr(2) for the

DBFL algorithm are lower and higher respectively than those for the FL algorithm.

Moreover, Pr(1) and Pr(3) are higher than those for the FL algorithm until the mid-

point of the MS’s journey. Also, Pr(1) and Pr(3) are lower than those for the FL

algorithm after the midpoint of the MS’s journey. There is not much difference be-

tween the DBFL and TDBFL algorithm performance. Figure 7.8 shows the operating

points for FL, DBFL, and TDBFL algorithms for different velocities. The DBFL al-

gorithm gives fewer handoffs and less cross-over distance than the FL algorithm. The

TDBFL gives even fewer handoffs than DBFL algorithm because traffic is important

in the handoff candidate selection process for the TDBFL and because these traffic

variations are less intense than RSS variations in the simulation environment. The

mid-point of the MS’s journey is 9km. An operating point is defined by the average

number of handoffs and the 50% cross-over distance.

7.2.2 Performance Evaluation of FL, DBFL, and ADBFL

Algorithms

Figure 7.9 shows the RSS distribution for FL, DBFL, and ADBFL algorithms. The

RSS distribution is identical for FL, DBFL, and ADBFL algorithms. Figure 7.10

shows the SIR distribution for FL, DBFL, and ADBFL algorithms. There is a slight

degradation (0.1 dB) in SIR performance of ADBFL compared to FL and DBFL

algorithms since, in the handoff region, a slightly better RSS cell may be available

but will not be selected due to increased direction biasing. Since the aim is to re-

duce the number of handoffs due to fading in the handoff region, RSS and SIR are
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traded off to obtain fewer handoffs. Figure 7.11 shows the traffic distribution for FL,

DBFL, and ADBFL algorithms. The distribution is identical for DBFL and ADBFL

algorithms and shows an improvement over the FL algorithm. Figure 7.12 shows

cell memberships for FL, DBFL, and ADBFL algorithms. This figure shows the dis-

tinct advantage of ADBFL over FL and DBFL algorithms; ADBFL improves cell

membership properties. This improvement is reflected in fewer handoffs and reduced

cross-over distance. Pr(0), Pr(2), and Pr(3) reduce quickly and Pr(4) increases

quickly after the midpoint of the MS journey. Figure 7.13 shows operating points for

FL, DBFL, and ADBFL algorithms. DBFL and ADBFL provide much better per-

formance than the FL algorithm. Also, the ADBFL algorithm gives fewer handoffs

and reduced crossover distance compared to the DBFL algorithm. Thus, the ADBFL

algorithm can help achieve an optimum operating point in a given environment.
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Figure 7.11: Distribution of Traffic for FL, DBFL, and ADBFL Algorithms

7.3 Conclusion

A new fuzzy logic based algorithm that uses a unified handoff candidate selection

criterion and adaptive direction biasing is proposed. The unified preselection criterion

allows additional degrees of freedom in obtaining desired tradeoff among the system

characteristics. This criterion also simultaneously considers several handoff criteria

so the best handoff candidate can be selected under specified constraints. Adaptive

direction biasing helps reduce both the number of handoffs and the handoff delay.

Simulation results show that the proposed algorithm enhances the performance of

the basic fuzzy logic and direction biased algorithms.
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Chapter 8

Pattern Classification Based

Algorithms

A new class of adaptive handoff algorithms that views the handoff problem as a

pattern classification problem is proposed. Neural networks and fuzzy logic systems

are good candidates for pattern classifiers due to their nonlinearity and generalization

capability. The proposed pattern classification based algorithms are designed by

considering several attractive features of existing algorithms and providing handoff

parameter adaptation in a dynamic cellular environment. Extensive simulation results

for a conventional handoff algorithm (absolute and relative signal strength based

algorithm) and for pattern classification based algorithms are presented. It is shown

that the proposed algorithms improve the distributions of SIR and traffic compared

to the conventional algorithm, increasing the spectral efficiency and quality of service

of the cellular system. Adaptive direction biasing is proposed to reduce the processing

load and improve the cell membership properties. It is also shown that the desired

balance among the system characteristics can be achieved by making appropriate

design tradeoffs in a pattern classification based handoff framework.

163
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8.1 Handoff as a Pattern Classification Problem

A multiple criteria handoff algorithm can provide better performance than a single

criterion handoff algorithm due to additional degrees of freedom and to a greater

potential for achieving the desired balance among different system characteristics.

Pattern classification (PC) (or pattern recognition (PR)) is a convenient and compact

way of implementing a multicriteria handoff algorithm. PC identifies meaningful

regularities in noisy or complex environments. These techniques are based on the

idea that the points that are close to each other in a mathematically defined feature

space represent the same class of objects or variables. There are two basic categories of

PC techniques, explicit techniques and implicit techniques. The explicit PC techniques

use discriminant functions that define (n-1) hypersurfaces in an n-dimensional feature

space. The input pattern is classified according to their location on the hypersurfaces.

The implicit PC techniques measure the distance of the input pattern to the predefined

representative patterns in each class. The sensitivity of the distance measurement

to different representative patterns can be adjusted using weights. The clustering

algorithms and neural and fuzzy classifiers are examples of implicit methods.

Fuzzy logic is a good candidate for PC for several reasons. An FLS can act

as a universal approximator and, hence, can mimic the working of an ideal PC by

learning the relationships among the variables of a training data set. There is an

inherent fuzziness in the actual cell boundaries due to the dynamics of the cellular

environment, and, by nature, an FLS can model this fuzziness. The concept of the

degree of membership in fuzzy logic is very similar to the PC concept of the degree

to which a pattern belongs to a class.

Neural networks are also good candidates for PC. Several paradigms of neural

networks can act as a universal approximator and, hence, can mimic the working of
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Figure 8.1: Pattern Classification Based Handoff Algorithm

an ideal pattern classifier through supervised learning on the training data set. The

dynamics of the cellular environment are very complex, and nonlinearity of neural

networks can model such enormous complexity. The PC concept of the degree to

which a pattern belongs to a class can be learned by a neural network.

Figure 8.1 shows the block diagram of a pattern classifier. A set of handoff

criteria is processed to create a pattern vector. This vector is classified into one

of the classes. The class may represent base station (BS) identification, or it may

represent the degree to which the mobile station (MS) belongs to a particular BS.

The output of this PC can be postprocessed to decide if handoff is required. The PC

approach to handoff has the following advantages:

1. The multicriteria nature of PC allows for the simultaneous consideration of

several significant aspects of the handoff procedure to enhance the system per-

formance in accordance with the defined global system goals;

2. PC is a direct approach for handoff in which testing of a sequence of binary

IF-THEN rules of a conventional algorithm is replaced by a single operation of

classification;
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3. PC has a high potential for parallel implementation, which facilitates imple-

mentation of a fast handoff algorithm;

4. PC is inherently a single output system, and hence it is relatively less complex

than the multiple output mechanisms used as part of adaptive multicriteria

handoff algorithms, which can lead to an improvement in both computational

and storage requirements;

5. Adaptation capability can be easily built into the PC by appropriately designing

the PC (e.g., by choosing appropriate decision rules for the PC);

6. Useful features of existing handoff algorithms can be easily incorporated into

the PC design by properly preprocessing the handoff criteria.

Reference [64] applies clustering algorithms and PC algorithms to RSS measurements

for determining the service area of BSs. Clustering algorithms utilize clusters, geo-

metrical regions where data points are concentrated according to distance measures,

to assign membership values to the input pattern. A clustering algorithm undergoes

unsupervised learning. Reference [64] uses a clustering algorithm called ISODATA

(Iterative Self-Organizing Data Analysis Techniques A), which minimizes the sum

of squared error function. The clustering algorithm works on a finite data set, and

clusters evolve based on this data set. A PC or PR algorithm assigns the input pat-

tern to a class based on the explicit or implicit decision rules that define boundaries

between the classification regions. The PC is based on supervised learning, and it

can assign membership values to new patterns after it is trained. The PC algorithm

proposed in [64] requires the knowledge of the measurement statistics. A PC algo-

rithm that overcomes this drawback and exploits several features of fuzzy logic and

neural networks to provide a high performance handoff algorithm is proposed. The
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Figure 8.2: Phases of Pattern Classifier Design

proposed algorithm exploits the strengths of a full-fledged fuzzy logic system (FLS)

rather than relying only on the concept of the degree of membership in a fuzzy logic

theory. Moreover, the proposed algorithm facilitates the design of a handoff algorithm

that performs in accordance with the defined global system goals.

A generic procedure for implementing an adaptive multicriteria handoff algo-

rithm in a PC framework is described in Section 8.2. The performances of a con-

ventional algorithm and the proposed neural algorithm are evaluated in Section 8.3.

Finally, Section 8.4 summarizes the chapter.

8.2 Design of a Pattern Classifier for Handoff

Figure 8.2 shows three distinct phases involved in the design of a PC: determination

of the training data set, determination of a PC structure, and actual operation of clas-

sification. These phases and the specific PC based handoff algorithms are discussed

next.
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Figure 8.3: The Concept of a Degree for the PC

8.2.1 Determination of the Training Data Set

The first step is to create a training data set that consists of representative patterns

and the corresponding class association degrees (i.e., the degree to which a given

pattern belongs to a class). The following handoff criteria are used to form a pattern

vector: RSSc − RSSthreshold, RSSn − (RSSc + RSShysteresis), SIRc − SIRthreshold,

Trd = Trc − Trn, and MS velocity. RSSc is the received signal strength (RSS) from

the current BS, RSSthreshold is the RSS threshold, RSSn is the received signal strength

(RSS) from the neighboring (or candidate) BS, RSShysteresis is the RSS hysteresis,

SIRc is the SIR of the current channel, SIRthreshold is the SIR threshold, Trd is the

traffic difference (i.e., the difference between the number of calls in the current cell

(Trc) and the number of calls in the neighboring cell (Trn)).

Figure 8.3 illustrates the concept of the association degree for the PC. Class c

denotes the class of the current BS, and class n denotes the class of the neighboring BS.

This figure is used with the following pieces of information to illustrate the creation
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of an appropriate training data set.

1. If all the elements of the pattern vector suggest that handoff should not be

made, the output of the PC is one. If all the elements of the pattern vector

suggest that handoff should be made, the output of the PC is ten. If an element

does not encourage or discourage handoff, its position is considered neutral.

2. If the majority of the pattern elements favor a “No Handoff” decision, the

output of the PC is in the range of one to five. Similarly, if the majority of

the pattern elements favor a “Handoff” decision, the output of the PC is in the

range of six to ten. The output value “1” indicates that the degree to which an

MS belongs to class c is strongest, and the output value “5” indicates that the

degree to which an MS belongs to class c is weakest. The output value “10”

indicates that the degree to which an MS belongs to class n is strongest, and

the output value “6” indicates that the degree to which an MS belongs to class

n is weakest.

3. The output value of the PC depends on the net agreements between the elements

of the pattern for a particular decision, “Handoff” or “No Handoff.”

4. The training data set should cover the entire range of interest for all the vari-

ables. To minimize the number of patterns in the training data set, representa-

tive examples should be chosen carefully.

• Examples for a “No Handoff” Decision. If there are three agreements
for “No Handoff” and two neutral positions, the net number of agreements is
three and the PC output is three. If there are one agreement and four neutral
positions, the net agreement is one and the output value is five. If there are four
agreements and one disagreement, the net number of agreements is three and
the output is three. Table 8.1 summarizes the PC outputs for the “No Handoff”
decision scenario.



CHAPTER 8. PATTERN CLASSIFICATION BASED ALGORITHMS 170

Table 8.1: PC Outputs for No Handoff Decision

Number Net Agreements PC Output

1 5 1
2 4 2
3 3 3
4 2 4
5 1 5

Table 8.2: PC Outputs for Handoff Decision

Number Net Agreements PC Output

1 5 10
2 4 9
3 3 8
4 2 7
5 1 6

• Examples for a “Handoff” Decision. If there are three agreements for
“Handoff” and two neutral positions, the net number of agreements is three
and the output is eight. If there are one agreement and four neutral positions,
the net agreement is one and the output value is six. If there are four agreements
and one disagreement, the net number of agreements is three and the output
is eight. Table 8.2 summarizes the PC outputs for the “Handoff” decision
scenario.

Several concepts of fuzzy logic were used to create a training data set. Each

fuzzy variable (each element of the input pattern vector called ipj , j ∈ [1, 5]) is divided

into three fuzzy sets (“High” (H), “Medium” (M), and “Low” (L)). Two basic rules

are used to derive a complete set of the rules, covering the entire region of interest:

• Rule 1. If ip1 is H, ip2 is L, ip3 is H, ip4 is L, and ip5 is L, the output is one;

• Rule 2. If ip1 is L, ip2 is H, ip3 is L, ip4 is H, and ip5 is H, the output is ten.

Since there are five fuzzy variables and three fuzzy sets, there are a total of

35 = 243 rules.



CHAPTER 8. PATTERN CLASSIFICATION BASED ALGORITHMS 171

8.2.2 Determination of a PC structure

The input to the PC is a pattern vector, and the output of the PC is a value that

indicates the degree to which the input pattern belongs to the class c (i.e., the current

BS) and class n (i.e., the neighboring BS). A technique can be used to learn the

training data relationships. Two architectures of neural networks, MLP and RBFN,

and the Mamdani FLS are used as PC structures. The details of neural network

paradigms can be found in [91], and the details of the Mamdani FLS can be found in

[89].

8.2.3 Actual Operation of Classification

If a pattern vector similar to one of the representative vectors is presented to the PC,

the PC classifies it into the class associated with the closest stored pattern vector.

The closeness can be quantified by the Euclidean distance between the stored patterns

and the input pattern vector. The output of the PC indicates the degree to which a

given pattern vector belongs to a class (or a BS).

8.2.4 Details of the PC Based Handoff Algorithms

Figure 8.4 shows the block diagram of a fuzzy logic PC (FLPC) based handoff algo-

rithm. The link measurements, RSSc, RSSn, and SIRc, are averaged using a velocity

adaptive averaging mechanism [60]. MS velocity and traffic difference Trd are not av-

eraged since their instantaneous values are of interest. The averaged RSSc, RSSn,

and SIRc are biased before forming a pattern to account for the thresholds. The

FLPC assigns a class association degree to the input pattern. If this degree is greater

than 5.5, handoff is made.

Figure 8.5 shows the block diagram of a neural network PC based handoff
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Figure 8.4: Block Diagram of a Fuzzy Logic Pattern Classifier Based Handoff Algo-
rithm

algorithm. This algorithm is similar to the FLPC algorithm except a neural network

is used as a PC instead of an FLS.

Figure 8.6 shows how adaptive direction biasing is incorporated into the ba-

sic PC based handoff algorithm. An adaptive direction biasing mechanism provides

adaptive RSShysteresis, which is used to form an input pattern for the PC. In other

respects, this algorithm is similar to the FLPC algorithm. Either an FLS or a neural

network can be used as a PC.

8.3 Performance Evaluation

This section compares the performances of the conventional and proposed algorithms

using several performance metrics. The conventional algorithm is a combined absolute

and relative signal strength based algorithm. The macrocelluar simulation model
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Figure 8.5: Block Diagram of a Neural Network Pattern Classifier Based Handoff
Algorithm

Figure 8.6: Block Diagram of a Direction Biased Pattern Classifier Based Handoff
Algorithm
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described in Chapter 4 is used here to analyze the algorithms.

The conventional algorithm has RSSthreshold, RSShysteresis, and SIRthreshold

as handoff parameters. RSSthreshold = −136 dBW, RSShysteresis = 16 dB, and

SIRthreshold = 28 dB. The center of the input membership function for the set

“Medium” of the variable ip1 is ip1nom = 0 dB, and the centers of the input mem-

bership functions for the sets “Low” and “High” of the variable ip1 are located at

the distance of ∆ip1nom = 15 dB from ip1nom . The center of the input membership

function for the set “Medium” of the variable ip2 is ip2nom = 0 dB, and the centers

of the input membership functions for the sets “Low” and “High” of the variable ip2

are located at the distance of ∆ip2nom = 7 dB from ip2nom . The center of the input

membership function for the set “Medium” of the variable ip3 is ip3nom = −10 dB,

and the centers of the input membership functions for the sets “Low” and “High”

of the variable ip3 are located at the distance of ∆ip3nom = 5 dB from ip3nom . The

center of the input membership function for the set “Medium” of the variable ip4 is

ip4nom = 0, and the centers of the input membership functions for the sets “Low”

and “High” of the variable ip4 are located at the distance of ∆ip4nom = 2 from ip4nom .

The center of the input membership function for the set “Medium” of the variable

ip5 is ip5nom = 29 m/sec, and the centers of the input membership functions for the

sets “Low” and “High” of the variable ip5 are located at the distance of ∆ip5nom = 9

m/sec from ip5nom . The maximum output is ten, and the minimum output is one. The

spreads of the membership functions are chosen in such a way that the membership

value drops to zero at the center of the membership function of the nearest set.
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Figure 8.7: Distribution of RSS for Conventional and Fuzzy Logic PC Algorithms

8.3.1 Evaluation of a Fuzzy Logic Pattern Classifier Hand-

off Algorithm

Figure 8.7 shows the cumulative distribution function (CDF) of RSS for the conven-

tional and fuzzy logic PC (FLPC) based algorithms. Both the algorithms have similar

performances.

Figure 8.8 shows the distribution of SIR for both the algorithms. The SIR

distribution for the FLPC is improved by 1.3 dB compared to the conventional algo-

rithm. This SIR improvement leads to better voice quality, fewer dropped calls, lower

transmit power, and lower overall global interference level. This improvement in SIR

is due to the interference adaptation of the proposed algorithm.

Figure 8.9 shows the traffic distribution for the algorithms. The FLPC gives a
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Figure 8.8: Distribution of SIR for Conventional and Fuzzy Logic PC Algorithms

4.3 call improvement in the traffic distribution. In other words, the FLPC can ac-

commodate 4.3 more users than the conventional algorithm, reducing call and handoff

blocking probabilities and enhancing spectral efficiency of the cellular system. Traffic

adaptation of the proposed algorithm provides this improvement in traffic distribu-

tion.

The conventional algorithm gives an average of 3.5 handoffs and a 50% cross-

over distance of 10.85km, while the FLPC gives an average of 6.2 handoffs and a 50%

cross-over distance of 11.03km. Thus, the FLPC tends to give a relatively higher

number of handoffs. Adaptation to the cellular environment (traffic and interference)

leads to more frequent handoffs since better handoff candidates are available that can

improve SIR and traffic related system performance.
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Figure 8.9: Distribution of Traffic for Conventional and Fuzzy Logic PC Algorithms

8.3.2 Evaluation of an MLP Pattern Classifier Handoff Al-

gorithm

This section analyzes the simulation results for a neural network based PC when an

MLP is used as a PC. Figure 8.10 shows the CDF of RSS for the conventional and

MLP PC algorithms. The MLP PC gives slightly better RSS distribution, which can

lead to better voice quality and improved cell membership properties.

Figure 8.11 shows the distribution of SIR for both the algorithms. The MLP

PC algorithm gives a 1.9 dB improvement in SIR over the conventional algorithm,

improving QoS related system performance.

Figure 8.12 shows the traffic distribution for different algorithms. The MLP PC

gives a 3.5 call better traffic distribution than the conventional algorithm, increasing

the potential number of new users.
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Figure 8.10: Distribution of RSS for Conventional and MLP PC Algorithms
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Figure 8.11: Distribution of SIR for Conventional and MLP PC Algorithms
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Figure 8.12: Distribution of Traffic for Conventional and MLP PC Algorithms

The conventional algorithm gives an average of 3.5 handoffs and a 50% cross-

over distance of 10.85km, while the MLP PC gives an average of 7.3 handoffs and a

50% cross-over distance of 10.80km. Thus, the MLP PC increases the network load

but reduces interference.

8.3.3 Evaluation of an RBFN Pattern Classifier Handoff

Algorithm

This section illustrates the simulation results for a neural network based PC when an

RBFN is used as a PC. Figure 8.13 shows the CDF of RSS for the conventional and

RBFN PC algorithms. The RBFN PC classifier has a slightly better RSS distribution.

Figure 8.14 shows the distribution of SIR for the algorithms. There is a 1.9 dB
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Figure 8.13: Distribution of RSS for Conventional and RBFN PC Algorithms

improvement for the RBFN PC algorithm.

Figure 8.15 shows the traffic distribution for the algorithms. The RBFN PC

classifier algorithm provides a 3.5 call improvement in traffic distribution. The con-

ventional algorithm gives an average of 3.5 handoffs and a 50% cross-over distance of

10.85km, while the RBFNPC algorithm gives an average of 7.5 handoffs and a 50%

cross-over distance of 11.00km.

8.3.4 Evaluation of a Direction Biased MLP Pattern Clas-

sifier Handoff Algorithm

Figure 8.16 shows the cumulative distribution function (CDF) of RSS for the conven-

tional and direction biased MLP PC algorithms. The direction biased MLP PC has

a slightly better RSS distribution.
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Figure 8.14: Distribution of SIR for Conventional and RBFN PC Algorithms

30 30.5 31 31.5 32 32.5 33 33.5 34 34.5 35
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

CD
F 

of
 th

e 
Tr

af
fic

Traffic (No. of Calls)

Performance of Conventional (−) and RBFN Pattern Classifier (−.) Algorithms

Figure 8.15: Distribution of Traffic for Conventional and RBFN PC Algorithms
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Figure 8.16: Distribution of RSS for Conventional and Direction Biased MLP PC
Algorithms

Figure 8.17 shows the distribution of SIR for the algorithms. The direction bi-

ased MLP PC is 1.5 dB better than the conventional algorithm. Note the reduction

in SIR improvement for the direction biased MLP PC compared to the non-direction

biased MLP PC algorithm. As discussed earlier, adaptive direction biasing can trade-

off SIR performance for a reduced number of handoffs and improved cell membership

properties. Figure 8.18 shows the traffic distribution for two different algorithms. The

direction biased MLP PC gives a 3.5 call improvement in the traffic performance.

The conventional algorithm gives an average of 3.5 handoffs and a 50% cross-

over distance of 10.85km, the non direction biased MLP PC gives an average of 7.3

handoffs and a 50% cross-over distance of 10.80km, and the direction biased MLP

PC gives an average of 6.5 handoffs and a 50% cross-over distance of 9.40km. The

distance of 9km is midway between the cells.
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Figure 8.17: Distribution of SIR for Conventional and Direction Biased MLP PC
Algorithms
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8.4 Conclusion

This chapter proposes a new class of adaptive handoff algorithms that formulates the

handoff problem as a pattern classification problem. Pattern classification facilitates

the efficient and convenient implementation of a multicriteria handoff algorithm. The

proposed pattern classification based algorithms are designed by incorporating sev-

eral attractive features of existing algorithms and providing adaptation capability in

a dynamic cellular environment through neural networks and fuzzy logic systems. Ex-

tensive simulation results for a conventional handoff algorithm (absolute and relative

signal strength based algorithm) and pattern classification based algorithms are pre-

sented. Adaptive direction biasing has been incorporated into the pattern classifier

algorithms to reduce the processing load and improve the cell membership properties.



Chapter 9

Microcellular Algorithms

Microcells increase system capacity but make resource management difficult. They

impose distinct constraints on handoff algorithms due to the characteristics of the

propagation environment. A fixed parameter handoff algorithm cannot perform uni-

formly well in various handoff scenarios encountered by a mobile station in a micro-

cellular environment. Adaptive handoff algorithms for microcells are proposed. The

proposed non-direction biased algorithm utilizes adaptive parameters supplied by a

fuzzy logic system that exploits characteristics of propagation environment. Direction

biasing has been incorporated into the basic non-direction biased algorithm to obtain

a good basic adaptive algorithm suitable for a microcellular environment. Adaptation

to traffic, interference, and mobility has been superimposed on the basic direction bi-

ased algorithm. It is shown that the proposed algorithms provide high performance

in generic handoff scenarios in a microcellular system.

185
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9.1 Introduction to Handoffs in Microcells

Microcells increase system capacity at the cost of an increase in the complexity of

resource management. In particular, the number of handoffs per call increases, and

fast handoff algorithms are required to maintain an acceptable level of dropped call

rate. Microcells impose distinct constraints on handoff algorithms due to the char-

acteristics of their propagation environment. For example, a mobile station (MS)

encounters a propagation phenomenon called corner effect, which demands a faster

handoff. Figure 9.1 shows two generic handoff scenarios in microcells, a line of sight

(LOS) handoff and a non-line of sight (NLOS) handoff.

Figure 9.1: Generic Handoff Scenarios in a Microcellular System

A LOS handoff occurs when the base stations (BSs) that serve an MS are LOS

BSs before and after the handoff. When the MS travels from BS 0 to BS 2, it

experiences a LOS handoff. A NLOS handoff occurs when one BS is a NLOS BS before

the handoff, and the other BS becomes a NLOS BS after the handoff. When the MS
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travels from BS 0 to BS 1, it experiences a NLOS handoff. A good handoff algorithm

performs uniformly well in both generic handoff scenarios. Important considerations

for designing handoff algorithms for a microcellular system are briefly described next.

• Mobility and Traffic Characteristics. The MS speeds are lower, and the
speed range is narrower compared to a macrocellular scenario. Traffic is nor-
mally allowed only along the streets.

• Propagation Features. The MS experiences the corner effect as discussed
earlier. Field measurements have shown that the shadow fading intensity is
lower in microcells than in macrocells.

• Measurement Averaging. The averaging interval (or averaging distance) is
shorter in microcells to respond to fast varying signal strength profiles. To
provide sufficient averaging to counteract shadow fading effects, a sufficient
number of samples are required, which may necessitate higher measurement
sampling frequency.

• Primary Handoff Requirements. A handoff algorithm should be fast and
should minimize the number of handoffs. A fixed parameter handoff algorithm
is suboptimal in a microcellular environment. For example, if hysteresis is
large, it will cause a delay in NLOS handoff, increasing the probability of a
dropped call. On the other hand, if hysteresis is small, it will increase the
likelihood of the ping-pong effect. Since the situation of LOS or NLOS handoff
cannot be known a priori, a proper tradeoff must be achieved between the LOS
and NLOS handoff performance. In general, a large hysteresis gives good LOS
handoff performance and poor NLOS handoff performance. A small hysteresis
gives good NLOS handoff performance and poor LOS handoff performance.

• Secondary Handoff Requirements. The algorithm should respond relatively
faster to fast moving vehicles, should attempt to balance traffic, and should be
adaptive to interference.

The requirement of a fast handoff for a NLOS handoff case can be met by deploying

a macrocellular overlay system over an existing microcellular system. However, this

is an expensive solution, and it complicates even further the resource management

of the already complex microcellular system. A better solution is to design a good

handoff algorithm that can perform well in both LOS and NLOS handoff cases. Some

research efforts have been made to cope with the problems associated with microcel-

lular handoffs. Reference [19] evaluates an RSS based algorithm with hysteresis for
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LOS and NLOS handoffs and indicates that fast handoffs can be made in a NLOS

case at the cost of a higher number of handoffs in a LOS case. A handoff algorithm

that consists of an OR circuit between two separate decision making mechanisms for

LOS and NLOS handoff cases is proposed in [110]. The LOS handoff decision making

mechanism uses longer averaging time and smaller hysteresis, while the NLOS hand-

off mechanism uses shorter averaging time and large hysteresis. The performance of

this algorithm is velocity sensitive; the best handoff performance is obtained only at

one velocity. Reference [58] overcomes this drawback by proposing velocity adaptive

handoff algorithms. Reference [60] develops direction biased handoff algorithms to im-

prove handoff performance in LOS and NLOS cases. These algorithms are evaluated

in a multi-cell environment (a four BS neighborhood model).

New adaptive handoff algorithms that perform well in both LOS and NLOS

handoff situations are proposed. These new algorithms are described in Section 9.2,

and Section 9.3 analyzes the performance of the algorithms from different significant

aspects. Finally, Section 9.4 summarizes the chapter.

9.2 Adaptive Handoff Algorithms

This section describes the development of a generic microcellular algorithm that at-

tempts to achieve a balance between LOS and NLOS handoff performance. The

objective of this generic algorithm is to provide a good basic algorithm that meets

the primary handoff requirements discussed earlier. An adaptive algorithm that at-

tempts to meet secondary handoff requirements after making sure that the primary

handoff requirements are satisfied is also described.
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Figure 9.2: Block Diagram of an Adaptive Microcellular Handoff Algorithm

9.2.1 A Generic Microcellular Algorithm

This section describes the development of a generic microcellular algorithm in two

stages. First, a non-direction biased algorithm is described, and then, direction bias-

ing is incorporated into the algorithm to provide a basic adaptive algorithm that can

perform well in a typical microcellular environment.

Non-Direction Biased Algorithm

Figure 9.2 shows the block diagram of an adaptive handoff algorithm suitable for a

microcellular system. Handoff criteria are averaged according to the velocity adaptive

averaging mechanism. The conventional algorithm is a combination of an absolute and

relative received signal strength (RSS) based algorithm and an SIR based algorithm.

The RSS based algorithm has threshold (RSSthreshold) and hysteresis (RSShysteresis)

as parameters while the SIR based algorithm has threshold (SIRthreshold) as a pa-

rameter. If RSS drops below RSSthreshold or SIR drops below SIRthreshold, a handoff

process is initiated. If another BS can provide RSS that exceeds the RSS of the current
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Figure 9.3: Handoff Situations in a Microcellular System

BS by an amount RSShysteresis, a handoff is made to the new BS. The SIR threshold

parameter allows the early initiation of a better handoff candidate search. The RSS

based parameters are adapted using an FLS. The input to the FLS is the difference

in RSS between two best BSs (i.e., BSs from which the MS receives maximum RSSs).

Generally, these BSs are LOS BSs since an MS has lower RSS from NLOS BSs. The

outputs of the FLS are adaptive handoff parameters, RSSthreshold, and RSShysteresis.

The geometry that underlines the philosophy behind the design of the FLS is illus-

trated in Figure 9.3. When an MS is relatively far from the intersection and close to

a BS, the difference in RSS at the MS from the LOS BSs is high since the MS receives

very high RSS from the closer BS and very low RSS from the far LOS BS. This situa-

tion is similar to a LOS handoff situation since the good handoff candidates are LOS

BSs. Under these circumstances, it is advantageous to use high RSShysteresis and low

RSSthreshold values to reduce the ping-pong effect. However, as an MS reaches the
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intersection, there is a likelihood of a NLOS handoff, and it is beneficial to use low

RSShysteresis and high RSSthreshold to make a fast handoff in case a NLOS handoff is

necessary. The intersection region is characterized by small (ideally, near zero) RSS

differences. After an MS crosses an intersection, the RSS difference keeps increasing,

and this situation is similar to a LOS handoff scenario. Again, it is important to use

high RSShysteresis and low RSSthreshold to reduce the ping-pong effect. Based on the

knowledge of such propagation characteristics of a microcellular environment, a fuzzy

logic rule base is created as shown in Table 9.1. Current RSS Difference and Previous

RSS Difference are inputs to the rule base, and RSSthreshold and RSShysteresis are the

outputs of the rule base. Current RSS Difference is the difference in RSS from two

best BS at the current sample time, and Previous RSS Difference is the difference in

RSS from two best BS at the previous sample time. Consider Rule 1. When Current

RSS Difference and Previous RSS Difference are high, the MS is close to a BS, and,

hence, RSSthreshold is made lowest and RSShysteresis is made highest to prevent the

ping-pong effect. On the other hand, when Current RSS Difference and Previous

RSS Difference are low, the MS is equally far from the BSs, and, hence, RSSthreshold

is made highest and RSShysteresis is made lowest to make a fast handoff in potential

NLOS handoff situations. The idea of using high hysteresis for LOS handoff situations

and low hysteresis for NLOS handoff situations conforms with the primary handoff

objectives.

Direction Biased Algorithm

Direction biasing has been proposed in [60] to improve handoff performance. Refer-

ence [60] also shows that it is extremely difficult to estimate the direction of the MS

with respect to the BSs at an intersection. Hence, direction biasing can be utilized

in an algorithm when there is sufficient confidence regarding direction estimates, and
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Table 9.1: Fuzzy Logic Rule Base

Rule No. Cur. RSS Diff. Prev. RSS Diff. RSShysteresis RSSthreshold

1 High High Lowest Highest
2 High Medium Lower Higher
3 High Low Low High
4 Medium High Low High
5 Medium Medium Medium Medium
6 Medium Low High Low
7 Low High Higher Lower
8 Low Medium Higher Lower
9 Low Low Highest Lowest

direction biasing can be switched off when direction estimates are deemed unreliable.

However, it is possible to exploit direction biasing even when direction estimates are

unreliable.

Figure 9.4 denotes the regions where direction estimates are unreliable by con-

tinuous lines and labels such regions as “No Direction Estimates” in the legend. As-

sume that the algorithm keeps track of reliable direction estimates and stores them

as previous direction estimates. Consider the LOS handoff case when the MS travels

from BS 0 to BS 2. The reliable direction estimates are available before the MS enters

the intersection. According to these estimates, the MS is moving away from BS 0

and is approaching BSs 1, 2, and 3. Assume that the direction biasing algorithm con-

tinues to use these estimates until new reliable direction estimates become available

(after the MS traverses some distance beyond the intersection). After crossing the

intersection, the MS is approaching BS 2, while moving away from BSs 0, 1, and 3.

Thus, the direction estimates are wrong for BS 1 and BS 3 and correct for BSs 0 and

2. However, note that after the MS clears the intersection, the handoff candidates are

LOS BSs, which are BS 0 and BS 2 in the case under consideration. Also note that the
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direction estimates being used by the algorithm are correct for both the good handoff

candidate BSs (BS 0 and BS 2). Thus, there is a very small region where the use

of previous direction estimates can have an adverse impact on handoff performance.

On the contrary, there is a relatively larger area where the use of previously reliable

direction estimates may have no significant adverse impact on handoff performance.

A similar situation exists for the NLOS handoff case. In the NLOS handoff case, the

MS travels from BS 0 to BS 1. Again, the reliable direction estimates are available

before the MS enters the intersection. According to these reliable estimates, the MS

is receding from BS 0 and moving toward BSs 1, 2, and 3. Assume that the direc-

tion biasing algorithm continues to use these estimates until new reliable direction

estimates become available (after the MS clears the intersection). After crossing the

intersection, the MS is approaching BS 1, while moving away from BSs 0, 2, and 3.

Thus, the direction estimates are wrong for BS 2 and BS 3 and correct for BS 0 and

1. However, note that after the MS clears the intersection, the handoff candidates

are LOS BSs, which are BS 1 and BS 3. Also note that the direction estimates being

used by the algorithm are correct for the BS being approached by the MS (BS 1).

Moreover, the direction estimate for BS 0 (away from which the MS is moving) is

also correct. There is a small region where the use of previously reliable direction

estimates can adversely affect handoff performance, but there is a relatively large area

where handoff performance does not suffer due to the use of previously reliable direc-

tion estimate. Thus, it is more advantageous to use previous direction estimates than

to switch off direction biasing completely when the direction estimates are unreliable.

Note that the benefit of using previous direction estimates will be more pronounced

for the LOS case than the NLOS case. In the LOS case, previous direction estimates

are the same as true direction estimates for both good handoff candidates (LOS BSs).
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Figure 9.4: Direction Biasing and Handoff Situations in a Microcellular System

In the NLOS case, the previous direction estimates are the same as true direction es-

timates only for one of the good LOS handoff candidates and for the BS away from

which the MS is moving.

Figure 9.5 shows the block diagram of a direction biased adaptive handoff algo-

rithm suitable for a microcellular system. The diagram is similar to the block diagram

for the earlier algorithm, and the conventional handoff algorithm is replaced by a pre-

selection direction biased handoff algorithm [60] that accepts the adaptive handoff

parameters from an FLS. Basically, the preselection direction biased algorithm en-

courages handoffs to the BSs toward which the MS is moving and discourages handoffs

to the BSs away from which the MS is moving. The RSS measurements from the BSs

are biased through a preselection procedure that selects a handoff candidate by bias-

ing the RSS measurements. Assume that there are two best handoff candidate BSs.

The best BS has a slightly better RSS than the second best BS, and the MS is moving
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Figure 9.5: Block Diagram of a Direction Biased Adaptive Microcellular Handoff
Algorithm

away from it. The MS is moving toward the second best BS. The preselection proce-

dure ensures that the second best BS is preferred to the best BS since the second BS

is more likely to be selected in the future than the currently best BS.

9.2.2 A Microcellular Algorithm with Interference, Traffic,

and Mobility Adaptation

Figure 9.6 shows the block diagram of a handoff algorithm that uses a secondary FLS

to provide interference, traffic, and mobility adaptation. This algorithm considers

secondary handoff requirements whenever primary microcellular handoff objectives

are not compromised. When an MS is near an intersection, there is a possibility of

NLOS handoff, and any handoff parameter adaptation to obtain better performance

in meeting secondary handoff objectives can adversely affect performance in meeting

primary handoff objectives. Hence, the proposed algorithm switches on the secondary

adaptation mechanism only under LOS handoff type situations (i.e., when an MS is

relatively far from an intersection). The vicinity of an MS to an intersection can be
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Figure 9.6: Block Diagram of a Microcellular Handoff Algorithm With Traffic and
Mobility Adaptation

predicted based on the RSS difference between best BSs or the reliability of direction

estimates. The primary FLS provides base values of the handoff parameters, while

the secondary FLS provides incremental variations in RSSthreshold and RSShysteresis

to reflect the dynamics of traffic, interference, and mobility. The inputs to the sec-

ondary FLS are SIRc, (Tr)d = (Tr)c − (Tr)n, and MS velocity, and the outputs

of the secondary FLS are incremental RSSthreshold (∆RSSthreshold) and incremental

RSShysteresis (∆RSShysteresis). SIRc is SIR of the current BS, and Trd is traffic dif-

ference (i.e., the difference in the number of calls in the current and the neighboring

BS, Trc − Trn).

MS velocity as an input to the FLS is the component of the MS velocity to-

ward the serving BS. If the MS is moving toward the serving BS, the velocity is

considered positive, and if the MS is moving away from the serving BS, the velocity

is considered negative. A complete fuzzy logic rule base for the secondary FLS is

shown in Table 9.2. The philosophy behind the design of this rule base is explained

next. When all the inputs suggest a change in the handoff parameters in the same
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direction (i.e., either increase or decrease), the parameters are changed to the maxi-

mum extent. For example, consider Rule 9. “High” SIRc indicates that the quality

of the current link is very good. “Low” (Tr)d indicates that there are very few users

in the current cell. “High” MS velocity indicates that the MS is moving toward the

current BS at a high speed. All these secondary FLS inputs suggest that handoff

from the current BS be discouraged. Hence, the FLS makes ∆RSSthreshold “Lowest”

(making overall RSSthreshold smaller) and ∆RSShysteresis “Highest” (making overall

RSShysteresis large).

9.3 Simulation Results

9.3.1 Parameters of the Microcellular Algorithms

The simulation model used for the evaluation of microcellular algorithms is de-

scribed in Chapter 4. The conventional algorithm has RSSthreshold, RSShysteresis,

and SIRthreshold as handoff parameters. RSSthreshold is set as the RSS at the inter-

section from a BS. Setting RSShysteresis as 7.5 dB gives a good compromise between

the LOS and NLOS handoff performance with good cross-over distance for the NLOS

case and a reasonable number of handoffs for the LOS case. SIRthreshold is chosen to

be 28 dB. For the non-direction biased algorithm, the center of the input membership

function for the set “Medium” is RSSdiffnom = 3.5dB, and the centers of the input

membership functions for the sets “Low” and “High” are located at the distance of

∆RSSdiff = 3.5 dB from RSSdiffnom . The center of the output membership function

“Medium” for the fuzzy variable RSShysteresis is located at RSShysteresisnom = 7.5

dB, and the centers of the output membership functions for the extreme sets (e.g.,

“Highest” and “Lowest”) are located at the distance of ∆RSShysteresis = 1.8 dB
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Table 9.2: Secondary Fuzzy Logic Rule Base

Rule No. SIRc (TR)d MS Velocity ∆RSSthreshold ∆RSShysteresis

1 High High Low High Low
2 High High Normal Normal Normal
3 High High High Low High
4 High Normal Low Normal Normal
5 High Normal Normal Low High
6 High Normal High Lower Higher
7 High Low Low Low High
8 High Low Normal Lower Higher
9 High Low High Lowest Highest
10 Normal High Low Higher Lower
11 Normal High Normal High Low
12 Normal High High Normal Normal
13 Normal Normal Low High Low
14 Normal Normal Normal Normal Normal
15 Normal Normal High Low High
16 Normal Low Low Normal Normal
17 Normal Low Normal Low High
18 Normal Low High Lower Higher
19 Low High Low Highest Lowest
20 Low High Normal Higher Lower
21 Low High High High Low
22 Low Normal Low Higher Lower
23 Low Normal Normal High Low
24 Low Normal High Normal Normal
25 Low Low Low High Low
26 Low Low Normal Normal Normal
27 Low Low High Low High
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from RSShysteresisnom. The spreads of the membership functions are chosen in such

a way that the membership value drops to zero at the center of the membership

function of the nearest set. For the direction biased algorithms, the hysteresis bias

is dirhysteresis = 1 dB and the preselection direction bias for RSS is hprss = 1.5 dB.

A direction biased algorithm that switches off direction biasing when the direction

estimates are unreliable is referred to as a restricted direction biased algorithm. A

direction biased algorithm that uses previous direction estimates when the direction

estimates are unreliable is referred to as a modified direction biased algorithm.

The performance of the algorithms is compared using an operating point as a

performance metric. An operating point is defined by the (x,y) pair where x is the 50%

cross-over distance and y is the average number of handoffs during a travel. Ideally,

it is desired that the number of handoffs be minimum and the cross-over distance be

as close as possible to the intersection (255m for the simulation model). It is assumed

that the conventional algorithm gives a good cross-over distance for the NLOS case,

and, hence, the proposed algorithms should try to reduce the number of handoffs

as much as possible while keeping the cross-over distance the same (or closer to the

intersection).

9.3.2 LOS Performance Evaluation of the Microcellular Al-

gorithms

Figure 9.7 shows the LOS operating points for the conventional and proposed non-

direction biased microcellular algorithms. The conventional algorithm has the op-

erating point (268.20, 2.74) for the LOS case. The proposed adaptive microcellular

algorithm has the operating point at (284.90, 1.66). As expected, the proposed algo-

rithm reduces the number of handoffs since higher hysteresis values are used except
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Figure 9.7: LOS Operating Points for Conventional and Proposed Adaptive Non-
Direction Biased Algorithms

near the intersection. Figure 9.8 shows the LOS operating points for the conventional

and proposed restricted direction biased algorithms. The restricted direction biased

algorithm has the operating point at (279.40, 1.67). The direction biasing helps reduce

the cross-over distance from 284.90 m to 279.40 m, an improvement of 5.50 m over the

non-direction biased basic algorithm. The number of handoffs are almost the same as

for non-direction biased and restricted direction biased algorithms. Figure 9.9 shows

the LOS operating points for the conventional and proposed modified direction biased

microcellular algorithms. The modified direction biased algorithm has the operating

point at (268.22, 1.72). The modified direction biasing helps reduce the cross-over

distance from 279.40 m to 268.22 m, an improvement of 11.18 m over the restricted

direction biased basic algorithm.
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Figure 9.8: LOS Operating Points for Conventional and Proposed Restricted Direc-
tion Biased Algorithms
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Figure 9.9: LOS Operating Points for Conventional and Proposed Modified Direction
Biased Algorithms
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Figure 9.10: NLOS Operating Points for Conventional and Proposed Adaptive Non-
Direction Biased Algorithms

9.3.3 NLOS Performance Evaluation of the Microcellular

Algorithms

Figure 9.10 shows the NLOS operating points for the conventional and proposed

non-direction biased microcellular algorithms. The conventional algorithm has the

operating point (267.1, 3.45) for the NLOS case. The proposed adaptive microcellular

algorithm has the operating point (269.34, 2.32). As expected, the proposed algorithm

reduces the number of handoffs. It should be noted that the tendency of the proposed

algorithm to use relatively higher hysteresis values leads to an increase in the cross-

over distance. However, direction biasing will help reduce the cross-over distance,

and, therefore, the non-direction biased algorithm focuses on reducing the number

of handoffs. Figure 9.11 shows the NLOS operating points for the conventional and

proposed restricted direction biased algorithms. The proposed restricted direction
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Figure 9.11: NLOS Operating Points for Conventional and Proposed Restricted Di-
rection Biased Algorithms

biased algorithm has the operating point (267.11, 2.36). The direction biasing helps

reduce the cross-over distance from 269.34 m to 267.11 m, an improvement of 2.23 m

over the adaptive non-direction biased algorithm.

Figure 9.12 shows the NLOS operating points for the conventional and proposed

modified direction biased algorithms. The modified direction biased algorithm has

the operating point (267.11, 2.38). The modified direction biasing gives almost the

same performance as the restricted direction biasing for the NLOS case.
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Figure 9.12: NLOS Operating Points for Conventional and Proposed Modified Direc-
tion Biased Algorithms

Table 9.3: Operating Points for Microcellular Algorithms

Scenario/Algorithm Conventional Adaptive Modified Direction Biased
LOS (268.20,2.74) (268.20,1.72)

NLOS (267.11, 3.45) (267.11, 2.38)

9.3.4 Performance Evaluation of the Microcellular Algo-

rithm with Interference, Traffic, and Mobility Adap-

tation

Table 9.3 summarizes the operating points for the LOS and the NLOS cases for the

proposed modified direction biasing algorithm and the conventional algorithm. The

number of handoffs is reduced by 1.02 (or 37%) for the LOS case and 1.07 (or 31%)

for the NLOS case, while the cross-over distances are preserved for both LOS and
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NLOS cases. Note that if the same number of handoffs were to be obtained for

the conventional algorithm for LOS and NLOS cases, it would have required larger

hysteresis, leading to higher cross-over distance, increasing the interference in the

LOS case and increasing the call drop probability (due to insufficient RSS) for the

NLOS case. Thus, the proposed algorithm is a good generic algorithm suitable for a

microcellular environment. This section uses the modified direction biased algorithm

as a basic algorithm and uses a secondary mechanism (an FLS) to obtain adaptation

to interference, traffic, and mobility. Adaptation to interference and traffic can be

judged based on the distribution of SIR and the number of active users in a cell,

respectively. The mobility adaptation can be analyzed using cross-over distance as a

performance metric. This section shows the advantages of incorporating interference,

traffic, and mobility adaptation into the modified direction biased algorithm.

Figure 9.13 shows the RSS distribution for the conventional and proposed adap-

tive algorithms for a LOS handoff scenario. As expected, there is a degradation in

the cumulative distribution function (CDF) of the RSS (maximum of 0.4 dB) for the

proposed algorithm since the direction biasing tends to use the BSs which have the

potential of being selected in the future and not the strongest RSS BSs at the present

time.

Figure 9.14 shows the SIR distribution for the conventional and proposed adap-

tive algorithms for a LOS handoff scenario. There is an improvement of 0.5 dB in the

SIR distribution for the proposed algorithm. This indicates that the proposed algo-

rithm is adaptive to interference, and BSs with potentially better quality (quantified

by higher SIR) are preferred.

Figure 9.15 shows the traffic distribution for the conventional and proposed

adaptive algorithms for a LOS handoff scenario. The traffic adaptation improves

the traffic distribution by 0.25 calls compared to the conventional algorithm. The



CHAPTER 9. MICROCELLULAR ALGORITHMS 206

−55 −54.5 −54 −53.5 −53 −52.5 −52 −51.5 −51 −50.5 −50
0.2

0.25

0.3

0.35

0.4

0.45

0.5
LOS : Conventional(−) and  Proposed(−.) Techniques

C
D

F 
of

 R
SS

Signal Strength (dBW)

Figure 9.13: RSS Distribution for Conventional and Proposed Algorithms (LOS
Handoff)
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Figure 9.14: SIR Distribution for Conventional and Proposed Algorithms (LOS Hand-
off)
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Figure 9.15: Traffic Distribution for Conventional and Proposed Algorithms (LOS
Handoff)

proposed algorithm allows relatively more users to be served by the system due to

this traffic balancing.

Figure 9.16 shows the RSS distribution for the conventional and proposed adap-

tive algorithms for a NLOS handoff scenario. There is a maximum degradation of

about 0.3 dB in the RSS distribution for the proposed algorithm due to direction

biasing.

Figure 9.17 shows the SIR distribution for the conventional and proposed adap-

tive algorithms for a NLOS handoff scenario. There is an improvement of 0.5 dB in

the SIR performance of the proposed algorithm.

Figure 9.18 shows the traffic distribution for the conventional and proposed

adaptive algorithms for a NLOS handoff scenario. The traffic adaptation improves

the traffic distribution by 0.25 calls compared to the conventional algorithm.
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Figure 9.16: RSS Distribution for Conventional and Proposed Algorithms (NLOS
Handoff)

22 22.5 23 23.5 24 24.5 25 25.5 26
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

NLOS : Conventional(−) and  Proposed(−.) Techniques

C
D

F 
of

 S
IR

SIR (dB)

Figure 9.17: SIR Distribution for Conventional and Proposed Algorithms (NLOS
Handoff)
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Figure 9.18: Traffic Distribution for Conventional and Proposed Algorithms (NLOS
Handoff)

Note that the proposed algorithm improves the performance of the handoff al-

gorithm with respect to interference, traffic, and mobility without compromising the

primary handoff objectives since the secondary adaptation mechanism is switched on

only during the LOS handoff situations. Hence, there is not a significant improve-

ment due to adaptation. Nevertheless, the proposed algorithm tends to obtain as

much improvement as possible under the given constraints.

9.4 Conclusions

The deployment of microcells increases system capacity but complicates resource

management. A good handoff algorithm is a cost-effective and elegant solution to

the problems associated with a microcellular environment. Microcells impose distinct
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constraints on handoff algorithms due to the characteristics of the propagation envi-

ronment. This chapter proposes handoff algorithms that perform uniformly well in

different handoff scenarios. Knowledge of the microcellular environment is utilized to

design fuzzy logic systems that render the algorithms adaptation capability. The pro-

posed modified direction biased algorithm exploits characteristics of the propagation

environment and direction biasing to design an adaptive microcellular algorithm. A

microcellular handoff algorithm adaptive to traffic, interference, and mobility has been

superimposed over the modified direction biased algorithm to meet both the primary

and secondary handoff objectives. The simulation results show that the proposed

algorithms provide high performance in generic handoff scenarios of a microcellular

system.



Chapter 10

Overlay Algorithms

An overlay system is a hierarchical architecture that uses large macrocells to overlay

clusters of small microcells. The overlay system attempts to balance maximizing

system capacity and minimizing cost. Resource management in the overlay system is

much more complex than in pure macrocell and microcell systems. Different handoff

scenarios exist in an overlay environment, each with distinct requirements. A fixed

parameter handoff algorithm cannot perform well in a complex and dynamic overlay

environment. This chapter proposes an adaptive overlay handoff algorithm that allows

a systematic tradeoff among the system design parameters and improves the overall

system performance in conformity with the desired goals.

10.1 Introduction to Handoffs in Cellular Over-

lays

An overlay system consists of large macrocells and small microcells. The macrocells

are also referred to as overlay cells and overlay a cluster of microcells. Figure 10.1

shows a macrocell-microcell overlay system and four generic handoff scenarios. Cell
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Figure 10.1: Generic Handoff Scenarios in a Macrocell-Microcell Overlay System

1 and Cell 2 are macrocells that overlay clusters of microcells. A cluster of microcells

consists of cells A, B, C, and D. Four generic types of handoffs are macrocell to

macrocell, macrocell to microcell, microcell to microcell, and microcell to macrocell.

When an MS travels from one macrocell to another (Case 1), a macrocell to macrocell

handoff occurs. This type of handoff typically occurs near the macrocell borders.

When an MS enters a microcell from a macrocell (Case 2), a macrocell to microcell

handoff occurs. Even though the signal strength from the macrocell is usually greater

than the signal strength from the microcell (due to relatively higher macrocell BS

transmit power), this type of handoff is made to utilize the microcell connection

that is economical, power efficient, and spectrally efficient and that generates less

interference. When an MS leaves a microcell (Case 3) and enters a macrocell, a

microcell to macrocell handoff is made to save the call since the microcell can no longer

provide a good quality communication link to the MS. When an MS travels from one
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microcell to another (Case 4), a microcell to microcell handoff is made to reduce power

requirements and get a better quality signal. An overlay system achieves a balance

between maximizing the system capacity and minimizing the cost. Microcells cover

areas with high traffic intensities while macrocells provide wide area coverage. Small

size cells can provide very high capacity but lead to an expensive system due to

infrastructure costs. An overlay system is more complex than a pure macrocell or

microcell system. Important considerations for designing efficient handoff algorithms

for overlay systems are outlined below.

• Service. An attempt should be made to maximize the microcell usage since
the microcell connection has a low cost due to the better frequency reuse factor
and low transmit power requirements. However, far regions should be served by
macrocells for a better quality communication link. Microcell overflow traffic
should be handled by macrocells.

• Mobility. High speed vehicles should be connected to macrocells to reduce the
handoff rate and the associated network load. This will also enable a handoff
algorithm to perform uniformly well for line of sight (LOS) and non line of sight
(NLOS) handoffs in microcells. The handoff parameters can now be optimized
for LOS handoff situations since the requirement of a very fast handoff for a
typical NLOS situation can be easily avoided by connecting high speed users to
macrocells.

• Propagation Environment. In an overlay system, a user experiences both
macrocell and microcell environments as the user travels across macrocells and
microcells. Different fading intensities (e.g., low and high) exist in macrocells
and microcells.

• Resource Management. Resource management in an overlay system is a
difficult task. One of the crucial issues is an optimum distribution of channels
between macrocells and microcells.

• Specific Handoff Requirements. A handoff algorithm should perform uni-
formly well in the four generic handoff situations described earlier. The algo-
rithm should attempt to achieve the goal of an overlay system (i.e., the balance
between the microcell usage and network load). The algorithm should balance
traffic in the cells.

Reference [73] considers an urban cellular system that has a single macrocell

overlaying four clusters of microcell with each cluster having four microcells. A
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tradeoff between the network capacity and the probability of handoff failure has been

examined. The roles of queuing of handoff requests at the microcell level and chan-

nel reservation at the macrocell level are investigated. Reference [98] proposes an

analytical model to study the performance of a PCS overlay system. An iterative

algorithm computes the overflow traffic from a microcell to macrocell and uses this

traffic measure to compute the call completion probability. The study shows that

the variance of the microcell residual time distribution and the number of microcells

covered by a macrocell significantly affect the call completion probability. Reference

[100] proposes call admission and handoff strategies for an overlay system. Macrocells

accept handoff requests that cannot be entertained by microcells. The performance

metrics evaluated include call blocking probability and call dropping probability. A

mobile speed sensitive handoff criterion is proposed in [32] to differentiate between

slow and fast users in an overlay system. Handoffs from macrocells to microcells

are avoided for fast moving vehicles while slow users are dropped from macrocells

and connected to microcells. The proposed handoff algorithm is compared with a

received signal strength (RSS) based algorithm using an emulation mechanism. The

paper shows that handoff rate can be reduced significantly using the speed sensitive

handoff criterion. A simple approach for implementing a microcell system within an

existing macrocell system is presented in [30]. The paper exploits a self-organized

dynamic channel assignment and automatic transmit power control to obviate the

need for their redesigning. The available channels are reused between macrocells and

microcells. A slight increase in transmit power for the microcells compensates for the

interference from macrocell to microcell.

A new adaptive handoff algorithm suitable for overlay systems is proposed and

is described in Section 10.2. Section 10.3 analyzes the performance of the algorithms

from various significant aspects. Finally, Section 10.4 summarizes the chapter.
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Figure 10.2: Block Diagram of a Conventional Overlay Handoff Algorithm

10.2 Overlay Handoff Algorithms

This section describes a conventional overlay algorithm and a proposed adaptive al-

gorithm. The objective of this adaptive algorithm is to meet the handoff objectives of

an overlay system by adapting handoff parameters. Figure 10.2 shows the block dia-

gram of a conventional algorithm for an overlay system. Handoff criteria are averaged

according to a velocity adaptive averaging mechanism. The Handoff Initiation Mech-

anism compares the RSS of the current BS (RSSc) with a fixed threshold (RSSth).

If the current BS cannot provide sufficient RSS, the handoff process is initiated. The

Cell Selection Mechanism determines the best macrocell “x” and the best microcell

“y” as potential handoff candidates. The Handoff Decision Mechanism is explained

next. If the currently serving cell is a macrocell, the sequence of Figure 10.3 is fol-

lowed, and if the currently serving cell is a microcell, the sequence of Figure 10.4 is

followed.

• If the current BS is a macrocell, the speed of the MS may be high or low. Hence,
based on the speed, there is a different sequence for a handoff decision. If the
MS speed is greater than the velocity threshold Vth, RSSc is compared with
RSSx and a handoff is made to the macrocell “x” if RSSx exceeds RSSc by
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Figure 10.3: The Sequence of Steps for a Current Macrocell Connection

an amount RSShyst (hysteresis value). If the MS speed is less than Vth, the
first attempt is made to connect the user to the microcell “y.” If RSSy exceeds
the absolute threshold RSSth by an amount RSShyst, a handoff is made to the
microcell “y.” However, if the microcell BS cannot satisfy this condition, an
attempt is made for a potentially better macrocell connection. If RSSx exceeds
RSSc by an amount RSShyst, a handoff is made to the macrocell “x.”

• If the current BS is a microcell, the MS speed is low and the speed does not
dictate a specific sequence of steps. If RSSy exceeds the threshold RSSthreshold
by an amount RSShyst, handoff is made to the microcell “y.” However, if
the microcell BS cannot meet this requirement, an attempt is made for the
macrocell BS. If RSSx exceeds RSSth by an amount RSShyst, handoff is made
to the macrocell “x.”

Figure 10.5 shows the block diagram of the proposed generic algorithm for an overlay

system. Handoff criteria are averaged according to a velocity adaptive averaging

mechanism. The Handoff Initiation Mechanism compares the RSS of the current BS

(RSSc) to a fixed threshold (RSSth). If the current BS cannot provide sufficient

RSS, the handoff process is initiated. A fuzzy logic system (FLS) serves as a Cell

Selection Mechanism to determine the best macrocell “x” and the best microcell “y”

as potential handoff candidates. The inputs of the FLS are RSSmicro (RSS from the

microcell BS), Trd (traffic difference or the difference in the number of calls in the

microcell and in the macrocell), and MS Velocity. The output of the FLS is the
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Figure 10.4: The Sequence of Steps for a Current Microcell Connection

Figure 10.5: Block Diagram of a Generic Overlay Handoff Algorithm
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Cell Selection Index, which indicates the degree to which a given user belongs to a

microcell or a macrocell. A high value of the Call Selection Index indicates that the

MS should be connected to a microcell, and a low value of the Call Selection Index

indicates that the MS should be connected to a macrocell. Table 10.1 shows the

entire rule base. Assume that RSSmicro is “Low,” Trd is “High,” and MS velocity

is “High.” These conditions indicate that the call should be encouraged to connect

to a macrocell as much as possible; this is rule number nineteen. To indicate the

highest degree of confidence for a macrocell connection, cell selection index is made

lowest. Now consider rule nine. Since RSSmicro is “High,” Trd is “Low,” and MS

velocity is “Low,” the call should be encouraged to connect to a microcell as much

as possible. This is done by making the cell selection index highest. If the output of

the FLS is greater than zero, a microcell is selected for the communication with the

MS; otherwise, a macrocell is selected.

The parameter adaptation for the proposed generic overlay algorithm is ex-

plained next.

• If the currently serving cell is a macrocell and the candidate cell is also a macro-
cell, an incremental hysteresis ∆hystmacro is found as shown in Figure 10.6. If
the MS is moving toward both the current and the candidate BSs or moving
away from the BSs, a fixed hysteresis hmacro is used. If the MS is moving
toward the current BS and moving away from the candidate BS, a handoff is
discouraged by increasing the hysteresis value by an amount ∆hmacro. However,
if the MS is moving toward the candidate BS and away from the current BS,
handoff is encouraged by decreasing the hysteresis value by an amount ∆hmacro.
The overall adaptive hysteresis is RSSeffective = RSShyst + ∆hystmacro where
RSShyst is the nominal value of the RSS hysteresis. This adaptation of hystere-
sis is based on direction biasing and helps reduce the ping-pong effect between
two macrocells. A handoff is made to the macrocell “x” if RSSx exceeds RSSc
by an amount RSSeffective.

• If the currently serving cell is a macrocell and the candidate cell is a microcell,
an incremental hysteresis is taken as ∆hmicro. The overall adaptive hysteresis
is RSSeffective = RSShyst −∆hmicro. This adaptation of hysteresis is based on
the idea of encouraging handoffs to the microcells to increase microcell usage.
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Table 10.1: Fuzzy Logic Rule Base for Cell Selection

Rule No. RSSmicro Trd MS Velocity Cell Selection Index
1 High High High Low
2 High High Normal Normal
3 High High Low High
4 High Normal High Normal
5 High Normal Normal High
6 High Normal Low Higher
7 High Low High High
8 High Low Normal Higher
9 High Low Low Highest
10 Normal High High Lower
11 Normal High Normal Low
12 Normal High Low Normal
13 Normal Normal High Low
14 Normal Normal Normal Normal
15 Normal Normal Low High
16 Normal Low High Normal
17 Normal Low Normal High
18 Normal Low Low Higher
19 Low High High Lowest
20 Low High Normal Lower
21 Low High Low Low
22 Low Normal High Lower
23 Low Normal Normal Low
24 Low Normal Low Normal
25 Low Low High Low
26 Low Low Normal Normal
27 Low Low Low High
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Figure 10.6: Adaptive Handoff Parameters for a Current Macrocell Connection

A handoff is made to the microcell “y” if RSSy exceeds RSSth by an amount
RSSeffective.

• If the currently serving cell is a microcell and the candidate cell is also a mi-
crocell, an incremental hysteresis ∆hystmicro is found as shown in Figure 10.7.
If the MS is moving toward the current BS and away from the candidate BS, a
handoff is discouraged by increasing the hysteresis value by an amount ∆hmicro.
However, if the MS is moving toward the candidate BS and away from the cur-
rent BS, a handoff is encouraged by decreasing the hysteresis value by an amount
∆hmicro. The overall adaptive hysteresis is RSSeffective = RSShyst+∆hystmicro.
This adaptation of hysteresis is based on direction biasing and helps reduce the
ping-pong effect between two microcells. A handoff is made to the microcell
“y” if RSSy exceeds RSSc by an amount RSSeffective.

• If the currently serving cell is a microcell and the candidate cell is a macro-
cell, an incremental hysteresis is taken as ∆hmacro. The overall hysteresis is
RSSeffective = RSShyst−∆hmacro. This adaptation of hysteresis is based on the
idea of encouraging handoffs to the macrocells from microcells to save the call
since the microcell coverage area is limited and since the call may be dropped
if handoff is not made early enough. A handoff is made to the macrocell “x” if
RSSx exceeds RSSth by an amount RSSeffective.
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Figure 10.7: Adaptive Handoff Parameters for a Current Microcell Connection

10.3 Simulation Results

The simulation model used to evaluate overlay handoff algorithms is described in

Chapter 4. Table 10.2 lists the parameters of the algorithms and simulation parame-

ters. The center of the input membership function for the set “Normal” of the fuzzy

variable RSSmicro is RSSnom = RSSmid − 7dB (RSSmid is the power received at

the boundary of a microcell in the absence of fading), and the centers of the input

membership functions for the sets “Low” and “High” are located at the distance of

∆RSS = 7dB from RSSnom. The center of the input membership function for the

set “Normal” of the fuzzy variable Trd is Trdnom = 0, and the centers of the input

membership functions for the sets “Low” and “High” are located at the distance of

two from Trdnom .The center of the input membership function for the set “Normal”

of the fuzzy variable MS Velocity is Vnom = 45mph, and the centers of the input

membership functions for the sets “Low” and “High” are located at the distance of

∆V = 25 from Vnom. The center of the output membership function “Normal” for
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Table 10.2: Simulation and Algorithm Parameters

Parameter Value
Macrocell Radius 2.5 km
Microcell Radius 700m

Macrocell BS Transmit Power 290 W
Microcell BS Transmit Power 0.1 mW

No. of Channels/BS 16
Mean Call Duration 120 sec

Normalized Traffic Load 0.7
hmacro 4dB

∆hmacro 4 dB
hmicro 2dB

∆hmicro 1 dB
Velocity Threshold Vth 45 mph

the fuzzy variable Cell Selection Index is located at Indexnom = 0, and the centers

of the output membership functions for the extreme sets (e.g., “Highest” and “Low-

est”) are located at the distance of ∆Index = 3 from Indexnom. The spreads of the

membership functions are chosen in such a way that the membership value drops to

zero at the center of the membership function of the nearest set.

Figure 10.8 shows the CDF of RSS for the conventional and proposed algorithm.

The proposed algorithm improves the RSS distribution that can be attributed to

the better cell selection mechanism. Figure 10.9 shows the CDF of SIR for the

conventional and proposed algorithm. The proposed algorithm improves the SIR

distribution, leading to better quality communication links.

Figure 10.10 shows the traffic distribution for the conventional and proposed

adaptive algorithms. The proposed algorithm improves the traffic distribution, bal-

ancing the traffic in the adjacent cells.

Figure 10.11 shows the microcell usage for the conventional and proposed adap-

tive algorithms as a function of time. A snapshot of the simulation for a time window
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Figure 10.8: Distribution of RSS for the Conventional and Proposed Algorithms
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Figure 10.9: Distribution of SIR for the Conventional and Proposed Algorithms
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Figure 10.10: Traffic Distribution for the Conventional and Proposed Algorithms

from 300 sec to 500 sec is shown. The microcell usage factor is defined as the fraction

of the total number of calls connected to microcells at a given instant. For example, if

all the users are connected to microcells at a given instant, the microcell usage factor

is one. If all the users are connected to macrocells at a given instant, the microcell

usage factor is zero.

Figure 10.12 shows the operating points for the conventional and proposed adap-

tive algorithms. An operating point is defined as the (x,y) pair with “x” denoting

the average number of handoffs per call and “y” denoting the macrocell usage factor

(which equals (1-microcell usage factor)). The proposed algorithm tends to increase

microcell usage as desired. This shows the importance of adaptive parameters since

the fixed parameter algorithm restricts the microcell usage by the limitation of fixed

parameters. The number of handoffs per call increases due to increased microcell us-

age. Note that the RSS performance is not compromised by the microcell connections
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Figure 10.11: Microcell Usage for Conventional and Proposed Algorithms

Table 10.3: Summary of Performance Metrics

Parameter Conventional Algorithm Proposed Algorithm
Average No. of Handoffs/Call 1.03 1.94

Microcell Usage Factor 0.12 0.14
New Call Blocking Probability 0.24 0.13
Handoff Blocking Probability 0.15 0.05

(evident from the improvement in RSS performance).

Table 10.3 summarizes some of the performance metrics for the algorithms.

Traffic balancing reduces the call blocking probability by a factor of 1.8 and

handoff blocking probability by a factor of 3.
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Figure 10.12: Operating Points for Conventional and Proposed Algorithms

10.4 Conclusions

Resource management tasks in the overlay system are complicated by the overlay

system environment. A good overlay handoff algorithm must consider several generic

handoff scenarios of an overlay system. A fixed parameter handoff algorithm cannot

perform well in the complex and dynamic overlay environment. This chapter de-

scribes an adaptive overlay handoff algorithm that enhances the system performance

by providing a balanced tradeoff among the system characteristics.



Chapter 11

Soft Handoff Algorithms

Soft handoff exploits spatial diversity to increase signal energy for improved perfor-

mance. A good soft handoff algorithm achieves a balance between the quality of

the signal and the associated cost. This chapter highlights important considerations

for soft handoff and develops adaptation mechanisms for new soft handoff algorithms.

Specifically, two new soft handoff algorithms that provide high performance by adapt-

ing to the dynamic cellular environment are proposed. It is shown that the proposed

algorithms can help obtain an appropriate design tradeoff among different system

characteristics of interest.

11.1 Introduction to Soft Handoffs

A mobile station (MS) in soft handoff communicates with more than one base station

(BS) simultaneously. Soft handoff exploits spatial diversity to increase overall signal

energy for better performance. A multiple access scheme called code division multiple

access (CDMA) implements soft handoff.

Figure 11.1 shows generic soft handoff scenarios in a cellular system. When an

227
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Figure 11.1: Generic Soft Handoff Scenarios in a Cellular System

MS is close to a BS (e.g., near BS C), it communicates with only that BS (BS C).

However, near cell borders, it is relatively far from all adjacent BSs, and the RSS

from a single BS may not be sufficient to provide a good quality communication link.

In such a case, the MS combines RSSs from different BSs to obtain a good quality

signal using one of the diversity combining techniques such as equal gain combining,

selection combining, and maximal ratio combining. For example, in the overlap region

between Cell A and Cell D, the MS is connected to both BS A and BS D, leading to

a two-way soft handoff scenario. There may also be a three-way soft handoff in which

the MS communicates with three BSs (e.g., BSs A, B, and C in Figure 11.1).

Research work on soft handoff is briefly discussed next. Reference [21] discusses

system design aspects of CDMA including signal and waveform design, power con-

trol, soft handoff, and variable data rates. Reference [85] explains the concepts of

macroscopic diversity and soft handoff. Results are reported for propagation studies
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that evaluate soft handoff performance using a wideband correlation type channel

sounding system. The advantages of soft handoff are also highlighted. Reference

[87] presents simulation results on the effects of soft handoff, frequency reuse, and

non-ideal antenna sectorization on CDMA system capacity. The simulation results

provide statistics of soft and softer handoffs for different values of handoff parameters.

The simulation model consists of a cell layout of nineteen hexagonal cells with either

omni-directional or three sectored antennas. The mobiles are uniformly distributed

in the service region. The propagation model consists of log-linear path loss with un-

correlated log-normal shadowing. The pilot powers received at the MS from the BSs

are ranked according to the signal strengths and compared with a handoff threshold.

The number of pilots, K, with power greater than a handoff threshold is counted, and

the distribution of K is found as a function of handoff threshold. It is recommended

that the MS have at least three demodulators to efficiently combine the signals from

the BSs. Reference [107] analyzes the tradeoff between diversity exploitation and

effective resource utilization in soft handoff. The analysis quantifies the handoff per-

formance by the number of active set updates, the number of BSs involved in soft

handoff, and the outage probability of the received signal. The analysis results are

validated with a simulation model that consists of a cell layout with two BSs and

the MS traveling from one BS to another at a constant velocity. The propagation

environment is characterized by log-linear path loss with correlated shadow fading.

High performance soft handoff algorithms need to consider several aspects spe-

cific to soft handoff situations. A good soft handoff algorithm attempts to achieve

a balance between the quality of the signal and the associated cost. In general, the

greater the number of BSs involved in soft handoff, the better the quality of the signal

due to increased diversity gain and the higher the degree to which the network re-

sources are consumed. Important considerations for designing soft handoff algorithms
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are described next.

• Cellular System Layouts. Soft handoff may be implemented in a macro-
cellular, microcellular, or overlay system. Traffic, mobility, and propagation
environment in these distinct system deployment scenarios should be consid-
ered.

• Primary Soft Handoff Requirements. The handoff algorithm should try
to maximize signal quality and minimize the number of BSs involved in soft
handoff. The number of Active Set (i.e., the set that contains the list of BSs in
soft handoff) updates should be minimized to reduce the network load.

• Secondary Soft Handoff Requirements. The algorithm should correspond
to vehicle speed. The algorithm should attempt to balance traffic.

This chapter proposes adaptive soft handoff algorithms that meet primary and

secondary soft handoff requirements (or objectives). These new algorithms are listed

below.

11.2 Adaptive Soft Handoff Algorithms

Two new algorithms are described here. The first algorithm attempts to satisfy

primary handoff requirements. The second algorithm uses the first algorithm to meet

primary handoff objectives and implements an adaptation mechanism to achieve the

secondary handoff goals.

11.2.1 A Generic Soft Handoff Algorithm

Figure 11.2 shows the block diagram of a generic adaptive soft handoff algorithm.

A velocity adaptive averaging mechanism is used to average handoff criteria. The

conventional soft handoff algorithm is illustrated in Figure 11.3. The conventional

algorithm has threshold (RSSthreshold) and hysteresis (RSShysteresis) as handoff pa-

rameters. To qualify as a member of the Active Set, the BS must pass two tests: Test

1 evaluates an absolute strength of the BS, and Test 2 compares the relative strength
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Figure 11.2: Block Diagram of an Adaptive Microcellular Handoff Algorithm

Figure 11.3: A Conventional Soft Handoff Algorithm
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of the BS with respect to the best BS in the Active Set. Test 1 ensures that the

BS, if admitted to the Active Set, can contribute significantly to the improvement in

overall signal quality. Test 2 keeps only the best available BSs in the Active Set and

tries to minimize resource utilization. According to Test 1, if RSS of a BS c (RSSc)

exceeds RSSthreshold, BS c is considered one of the potential soft handoff participants.

According to Test 2, BS c actually becomes a member of the active set if RSSc is

greater than the RSS of the best BS in the active set (RSSbest) minus RSShysteresis.

The RSS of each BS is evaluated using this comparison procedure, and a set of the

BSs that pass these tests is determined. The number of BSs in the Active Set is

limited to the number of demodulators, N, available at the MS. The Active Set con-

sists of best N BSs if all of these N BSs have passed the tests explained earlier. The

handoff parameters are adapted using a fuzzy logic system (FLS). The input to the

FLS is the RSS at the MS at the previous sample time. The outputs of the FLS are

adaptive handoff parameters, RSSthreshold and RSShysteresis. The design philosophy

for the FLS is explained next. When an MS is relatively close to a BS, the RSS at

the MS is very high, and there is no need to initiate soft handoff since the current

communication link already has sufficiently high RSS. To discourage any BS from

becoming a member of the current Active Set (that consists of only the current BS),

RSSthreshold is set very high and RSShysteresis is set very low. When the MS is far

from the neighboring BSs and the MS is connected to only one BS, RSS is very low,

and, hence, soft handoff should be initiated to increase overall signal strength. Soft

handoff can now be encouraged by setting RSSthreshold very low and RSShysteresis

very high. When the MS is far from the neighboring BSs but the MS is connected

to more than one BS, RSS may be high or low depending upon the number of BSs

and the quality of existing MS-BS connections. If RSS is low, the number of BSs

involved in soft handoff can be kept the same by using nominal values of RSSthreshold



CHAPTER 11. SOFT HANDOFF ALGORITHMS 233

Table 11.1: Primary Fuzzy Logic Rule Base

Rule No. RSS RSSthreshold RSShysteresis

1 Very High Very High Very Low
2 High High Low
3 Medium Medium Medium
4 Low Low High
5 Very Low Very Low Very High

and RSShysteresis, or it can be increased by setting RSSthreshold low and RSShysteresis

high depending upon the overall quality of the existing links. If RSS is high, the

number of BSs involved in soft handoff can be kept the same by using nominal values

of RSSthreshold and RSShysteresis or, it can be decreased by setting RSSthreshold low

and RSShysteresis high. Based on such knowledge, a fuzzy logic rule base is created.

Table 11.1 shows the entire rule base.

11.2.2 A Soft Handoff Algorithm with Traffic and Mobility

Adaptation

Figure 11.4 shows the block diagram of a handoff algorithm with traffic and mo-

bility adaptation. This algorithm uses the primary FLS to provide adaptive handoff

parameters to the conventional soft handoff algorithm and a secondary FLS to meet

the secondary handoff goals. As discussed earlier, the input to the primary FLS is

the RSS at the MS at the previous sample time. The outputs of the primary FLS are

adaptive handoff parameters, RSSthreshold and RSShysteresis. Inputs to the secondary

FLS are Tr (traffic or number of users in a cell) and MS velocity (component of the

velocity toward the BS). If the MS is moving toward a BS, the velocity is consid-

ered positive, and if the MS is moving away from the BS, the velocity is considered

negative. The output of the secondary FLS is a preselection index that indicates the
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Figure 11.4: Block Diagram of a Soft Handoff Algorithm with Traffic and Mobility
Adaptation

degree to which the BS is a good candidate for the Active Set if traffic and mobility

were the only considerations. A complete fuzzy logic rule base is shown in Table 11.2.

Consider Rule 7. The traffic in the cell is “Low” (meaning that there are very few

users in the cell), and the velocity is “High” (meaning that the MS is moving at a

high velocity toward the BS). This situation suggests that the BS under consideration

should be encouraged to the maximum extent to become a member of the Active Set.

This would help achieve traffic balancing and reduce the number of Active Set up-

dates. Now consider Rule 3. The traffic in the cell is “High” (meaning that there are

many users in the cell), and the velocity is “Low” (meaning that the MS is moving

at a high velocity away from the BS). This situation suggests that the BS under con-

sideration should be discouraged to the maximum extent from becoming a member

of the Active Set. This would again help achieve traffic balancing and reduce the

number of Active Set updates. The modified soft handoff algorithm is similar to the

conventional soft handoff algorithm, but it selects the BSs according to the priority

suggested by the preselection index. Note that the primary objectives have not been



CHAPTER 11. SOFT HANDOFF ALGORITHMS 235

Table 11.2: Secondary Fuzzy Logic Rule Base

Rule No. Traffic (Tr) Velocity Preselection Index
1 High High Medium
2 High Medium Low
3 High Low Very Low
4 Medium High High
5 Medium Medium Medium
6 Medium Low Low
7 Low High Very High
8 Low Medium High
9 Low Low Medium

compromised since the adaptive handoff parameters are supplied by the primary FLS.

11.3 Simulation Results

11.3.1 Performance Evaluation of the Generic Soft Handoff

Algorithm

The simulation model used to evaluate soft handoff algorithms is described in Chapter

4. The conventional algorithm has RSSthreshold and RSShysteresis as handoff param-

eters. RSSthreshold is the RSS at the distance of cell radius (excluding the fading

variations), and RSShysteresis = 8 dB.

For the primary FLS, the center of the input membership function for the set

“Medium” is RSSnom the same as RSSthreshold for the conventional algorithm. The

centers of the input membership functions for the sets “Low” and “High” are located

at the distance of ∆RSSnom dB from RSSnom where ∆RSSnom is the difference in the

RSS at the distance of R and 0.8R from a BS. R is the cell radius. The centers of the

input membership functions for the sets “Very Low” and “Very High” are located at
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the distance of 2∆RSSnom dB from RSSnom. The center of the membership function

for the fuzzy set “Medium” of the output fuzzy variable RSSthreshold, RSSthresholdnom,

is the RSS at the distance of 1.2R from a BS. The centers of the membership functions

for the sets “Low” and “High” of the output fuzzy variable RSSthreshold are located

at the distance of ∆RSSthresholdnom dB from RSSthresholdnom where ∆RSSthresholdnom

is half the difference in RSS at the distance of 1.3R and 1.2R from a BS. The cen-

ters of the membership functions for the sets “Very Low” and “Very High” of the

output fuzzy variable RSSthreshold are located at the distance of 2∆RSSthresholdnom

dB from RSSthresholdnom. The center of the membership function for the fuzzy set

“Medium” of the output fuzzy variable RSShysteresis, RSShysteresisnom = 8 dB. The

centers of the membership functions for the sets “Low” and “High” of the output

fuzzy variable RSShysteresis are located at the distance of ∆RSShysteresisnom = 2 dB

from RSShysteresisnom. The centers of the membership functions for the sets “Very

Low” and “Very High” of the output fuzzy variable RSShysteresis are located at the

distance of 2∆RSShysteresisnom dB from RSShysteresisnom. The spreads of the member-

ship functions are chosen in such a way that the membership value drops to zero at

the center of the membership function of the nearest set.

For the secondary FLS, the center of the input membership function for the set

“Medium” of the input fuzzy variable Traffic is Trafficnom = 30. The centers of

the input membership functions for the sets “Low” and “High” of the fuzzy variable

Traffic are located at the distance of ∆Trafficnom = 28 from Trafficnom. The

center of the input membership function for the set “Medium” of the input fuzzy

variable V elocity is V elocitynom = 0 m/sec. The centers of the input membership

functions for the sets “Low” and “High” of the fuzzy variable V elocity are located

at the distance of ∆V elocitynom = 29 m/sec from V elocitynom. The centers of the

output membership functions of the fuzzy sets are located equidistant from the centers
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Figure 11.5: Base Stations in the Active Set as a Function of Distance

of the adjacent fuzzy sets. The spreads of the membership functions are chosen in

such a way that the membership value drops to zero at the center of the membership

function of the nearest set.

Figure 11.5 shows the number of base stations in the active set as a function of

distance. The distance is measured from BS 5. As expected, both the conventional

and proposed algorithms use more BSs near the cell borders to exploit diversity.

The proposed soft handoff algorithm tends to use more BSs in the cell border region,

which indicates that a fixed parameter conventional algorithm cannot fully exploit the

diversity advantage of soft handoff if not properly tuned. Such tuning uncertainties

can be partially compensated by using an adaptive algorithm such as the proposed

generic algorithm.

Figure 11.6 shows the cumulative distribution function (CDF) of RSS for the
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Figure 11.6: Distribution of RSS for the Conventional and Proposed Algorithms

conventional and proposed algorithm. The proposed algorithm provides a 1.2 dB im-

provement in the RSS distribution, which can be attributed to the increased diversity

usage.

Figure 11.7 shows the RSS outage probability and the average number of base

stations in the active set for the conventional and proposed algorithms. As expected,

the increased diversity usage by the proposed algorithm reduces the RSS outage

probability from 1.76 × 10−3 to 0.85 × 10−3 (a reduction by a factor of two) and

increases the number of BSs in the Active Set from 1.75 to 2.12.

Figure 11.8 shows the SIR outage probability and the average number of base

stations in the active set for the conventional and proposed algorithms. The increased

diversity usage by the proposed algorithm reduces the SIR outage probability from

1.45× 10−3 to 0.43× 10−3, a reduction by a factor of 3.4.
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Figure 11.7: RSS Outage Probability and Average Number of BSs in the Set
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Figure 11.9: RSS Distribution for the Conventional and Proposed Algorithms

11.3.2 Traffic and Mobility Performance of Soft Handoff

Algorithms

This section evaluates the traffic and mobility performance of the conventional and

the proposed algorithm with traffic and mobility adaptation.

Figure 11.9 shows the RSS distribution for the conventional and proposed adap-

tive algorithms. The adaptive algorithm provides a 1.1 dB improvement in RSS, which

is comparable with the improvement provided by the generic soft handoff algorithm.

This shows that the adaptation to traffic and mobility does not affect the diversity

gain of the generic algorithm significantly since the BSs that meet traffic and mobility

requirements still must pass the tests of the conventional soft handoff algorithm with

the adaptive handoff parameters supplied by the primary FLS.

Figure 11.10 shows the traffic distribution for the conventional and proposed

adaptive algorithms. The proposed algorithm improves the traffic distribution by
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Figure 11.10: Traffic Distribution for the Conventional and Proposed Algorithms

two calls, balancing the traffic in the adjacent cells.

Figure 11.11 shows the RSS outage probability and the average number of base

stations in the Active Set for the proposed algorithms. As expected, the increased

diversity usage by the proposed algorithm reduces the RSS outage probability from

1.76× 10−3 to 0.8× 10−3 (a reduction by a factor of two) and increases the number

of BSs in the Active Set from 1.75 to 2.12.

Figure 11.12 shows the SIR outage probability and the average number of base

stations in the active set. The increased diversity usage by the proposed algorithm

reduces the SIR outage probability from 1.45× 10−3 to 1.28× 10−3, a reduction by a

factor of 1.13. The SIR improvement is not significant for the adaptive algorithm since

no explicit interference adaptation is built into the secondary adaptation mechanism.

The slight degradation in RSS distribution of the adaptive algorithm (compared to

the generic algorithm) is reflected in less improvement in SIR distribution for the
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Figure 11.11: RSS Outage Probability and Average Number of BSs in the Set

proposed adaptive algorithm.

When the MS speed is low (20 m/sec), the average number of Active Set updates

during a travel is 38.83. When the MS speed is average (29 m/sec), the average

number of Active Set updates is 37.74. When the MS speed is high (38 m/sec), the

average number of Active Set updates is 35.74. This is in line with the goal of velocity

adaptation since a BS is selected based on the relative magnitude and direction of

the velocity with respect to the BS. When the speed is high, an appropriate BS is

selected relatively earlier (compared to a low speed scenario), reducing the frequency

of Active Set updates.

11.4 Conclusions

A good soft handoff algorithm helps achieve a desired tradeoff between the quality

of the signal and the associated cost. This chapter considers several aspects of soft
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Figure 11.12: SIR Outage Probability and Average Number of BSs in the Set

handoff and proposes mechanisms to adapt the handoff parameters of soft handoff

algorithms. Specifically, two new soft handoff algorithms are proposed to provide

high performance by adapting to the dynamic cellular environment. The chapter

shows that the proposed algorithms address critical system design issues related to

soft handoff. In particular, the proposed algorithm enhances the degree of diversity

exploitation if the associated cost (e.g., traffic in a cell) is not high.



Chapter 12

Conclusion

This chapter summarizes the dissertation research and discusses potential directions

for future research in the area.

12.1 Summary

Handoff is an integral component of cellular communications. The handoff process

determines the spectral efficiency and the quality perceived by users. The existing

algorithms do not exploit knowledge about the sensitivities of handoff parameters

to different characteristics of the cellular environment. Efficient handoff algorithms

help preserve and enhance the capacity and QoS of communication systems. Many

of the existing handoff algorithms do not exploit advantages of multi-criteria handoff.

The adaptation and learning capabilities of AI tools have not been fully utilized.

The existing algorithms fail to provide a systematic procedure for the adaptation

of handoff parameters to the dynamic cellular environment. This research creates a

knowledge base for handoff algorithms and proposes novel approaches for designing

high performance handoff algorithms.

244
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Chapter 2 discusses different aspects of handoff and provides a literature survey

of handoff related research work. The contents of this chapter are extremely valuable

since the full potential of any new approaches for an efficient handoff process cannot

be realized without the essential knowledge about the cellular system and the response

of the cellular system to different handoff parameters. This chapter can also be useful

for optimization of different system design parameters to meet global system goals.

Chapter 3 introduces two major tools of AI that are utilized in this research.

Background information on fuzzy logic and neural networks is given. These tools

provide an efficient and convenient architecture to represent the designer’s knowledge

about the system and its environment.

Chapter 4 describes different mechanisms used to evaluate handoff related per-

formance of cellular systems. Several simulation models used in this research are

explained. Existing simulation models for evaluating macrocellular and microcellu-

lar handoff algorithms do not allow evaluation of important design considerations.

Hence, the scope of such simulation models is enhanced by incorporating several

important features. Information on simulation models suitable for comprehensive

performance evaluation of soft handoff algorithms and overlay handoff algorithms

has not appeared in the literature. The proposed simulation models fill this gap and

will facilitate handoff research in these areas.

Chapter 5 outlines a design procedure for a generic fuzzy logic based algorithm.

The fuzzy logic rule encodes known sensitivities of handoff parameters and adapts

the handoff parameters.

Chapter 6 exploits the input-output mapping capability and compact data repre-

sentation capability of neural networks to circumvent large storage and computational

requirements of the FLS. Using neural networks, an adaptive handoff algorithm that

retains the high performance of the original fuzzy logic based algorithm and that has
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an efficient architecture for storage and computational requirements is developed.

Chapter 7 introduces an algorithm with two distinct features, a unified handoff

candidate selection criterion and adaptive direction biasing. Several handoff criteria

can be considered in a unified framework so the best handoff candidate can be cho-

sen under given constraints. Adaptation of direction biasing parameters leads to an

enhanced form of direction biasing.

Chapter 8 views the handoff problem as a pattern classification problem and

utilizes neural networks and fuzzy logic systems as pattern classifiers. The pattern

classification framework can be massively parallel, providing an architecture that is

efficient from the computational and storage points of view.

Chapter 9 considers distinct constraints posed by microcells on handoff algo-

rithms due to the characteristics of the propagation environment. A generic adaptive

algorithm suitable for a microcellular environment is proposed. Adaptation to traf-

fic, interference, and mobility has also been incorporated to develop a full-fledged

adaptive algorithm.

Chapter 10 addresses handoff related issues in an overlay system and proposes

an adaptive handoff algorithm that allows a systematic balance among the critical

system design parameters.

Chapter 11 investigates different aspects of soft handoff. This chapter highlights

important considerations for soft handoff and develops adaptation mechanisms for

new soft handoff algorithms. The proposed algorithm allows tuning of the handoff

parameters to achieve a balance between the quality of the signal and the associated

cost.

This work can be extended in several directions as described next.
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12.2 Major Areas of Future Work

Some of the major future directions in handoff related research are listed and briefly

discussed here.

• Other Classes of Handoff Algorithms. This dissertation research focuses
on AI assisted algorithms and pattern recognition based algorithms. Some of the
other potential new classes of algorithms capable of providing high performance
may include prediction based algorithms and self-tuning algorithms. Several
system characteristics can be predicted using AI tools to create fast and robust
handoff algorithms. The handoff parameters can be tuned on-line by observing
the behavior of the handoff algorithms on a larger time-scale by minimizing a
predetermined performance index.

• Application of the Developed Algorithms to the Cellular Standards.
This dissertation has proposed generic handoff algorithms. The algorithms can
be tailored to specific cellular standards such as GSM and IS-95. A cellular
standard may have provisions for several measurements (e.g., both uplink and
downlink measurements). These measurements can be incorporated into the
handoff criteria vector used in the proposed algorithms. Specific system con-
straints (e.g., maximum round-trip delay) can also be taken into account as part
of the adaptation mechanisms.

• Handoff Algorithms for Integrated Systems. Integration of cellular and
other services (such as cordless telephone) complicates the process of handoff.
Integration of terrestrial and satellite systems is emerging as the next generation
of wireless communication systems aims at providing global communications.
Such hybrid systems require highly complex, and high performance handoff
algorithms. The proposed algorithms can serve as a basis to obtain high per-
formance algorithms for the next generation of wireless systems.

• Integrated Resource Management. The proposed algorithms can be inte-
grated with other resource management tasks such as call admission control,
channel assignment, and power control. A joint optimization of these tasks can
enhance overall system performance. For example, one of the handoff prior-
ity schemes called guard channel reserves some channels exclusively for handoff
calls. The number of such channels can be adaptively changed in conjunction
with a handoff algorithm.

This dissertation develops high performance handoff algorithms and addresses

the critical design issues of generic cellular systems. This research will facilitate the

evolution of the next generation communication systems through the comprehensive
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system knowledge base and the organized tradeoff procedures discussed in this work.



Bibliography

[1] G. Liodakis and P. Stavroulakis, “A novel approach in handover initiation for

microcellular systems,” in Proc. 44th IEEE VTC, pp. 1820–1823, 1994.

[2] W. C. Y. Lee, Mobile Communications Design Fundamentals. John Wiley &

Sons Inc., 2 ed., 1993.

[3] M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications.

Michel Mouly and Marie-Bernadette Pautet, 1992.

[4] G. P. Pollini, “Trends in handover design,” in IEEE Communications Magazine,

pp. 82–90, March 1996.

[5] T. S. Rappaport, Wireless Communications. Prentice-Hall Inc., 1996.

[6] G. Corazza, D. Giancristofaro, and F. Santucci, “Characterization of handover

initialization in cellular mobile radio networks,” in Proc. 44th IEEE VTC,

pp. 1869–1872, 1994.

[7] M. Anagnostou and G. C. Manos, “Handover related performance of mobile

communication networks,” in Proc. 44th IEEE VTC, pp. 111–14, 1994.

[8] W. C. Y. Lee, Mobile Cellular Telecommunications. McGraw Hill, 2 ed., 1995.

249



BIBLIOGRAPHY 250

[9] V. K. Garg and J. E. Wilkes, Wireless and Personal Communications Systems.

Prentice-Hall Inc., 1996.

[10] E. A. Frech and C. L. Mesquida, “Cellular models and handoff criteria,” in

Proc. 39th IEEE VTC, pp. 128–135, 1989.

[11] W. Mende, “Evaluation of a proposed handover algorithm for the GSM cellular

system,” in Proc. 40th IEEE VTC, pp. 264–269, 1990.

[12] D. Munoz-Rodriguez and K. Cattermole, “Multicriteria for handoff in cellular

mobile radio,” in IEE Proc., vol. 134, pp. 85–88, 1987.

[13] G. H. Senarath and D. Everitt, “Comparison of alternative handoff strategies

for micro-cellular mobile communication systems,” in Proc. 44th IEEE VTC,

pp. 1465–1469, 1994.

[14] T. Kanai and Y. Furuya, “A handoff control process for microcellular systems,”

in Proc. 38th IEEE VTC, pp. 170–175, 1988.

[15] A. J. Ransom, “Handoff considerations in microcellular systems planning,” in

Proc. PIMRC, pp. 804–808, 1995.

[16] D. Munoz-Rodriguez, J. Moreno-Cadenas, M. Ruiz-Sanchez, and F. Gomez-

Casaneda, “Neural supported handoff methodology in microcellular systems,”

in Proc. 42nd IEEE VTC, vol. 1, pp. 431–434, 1992.

[17] S. Chia, “The control of handover initiation in microcells,” in Proc. 41st IEEE

VTC, pp. 531–36, 1991.

[18] G. Falciasecca, M. Frullone, G. Riva, and A. Serra, “Comparison of different

handover strategies for high capacity cellular mobile radio systems,” in Proc.

39th IEEE VTC, pp. 122–127, 1989.



BIBLIOGRAPHY 251

[19] O. Grimlund and B. Gudmundson, “Handoff strategies in microcellular sys-

tems,” in Proc. 41st IEEE VTC, pp. 505–510, 1991.

[20] A. Rosenburg, “Simulation of power control and voice-channel selection in cel-

lular systems,” in Proc. 35th IEEE VTC, pp. 12–15, May 1985.

[21] A. Salmasi and K. Gilhousen, “On the system design aspects of CDMA applied

to digital cellular and personal communication network,” in Proc. 41st IEEE

VTC, pp. 57–62, 1991.

[22] J. Shapira, “Microcell engineering in CDMA cellular networks,” in IEEE Trans.

on Veh. Tech., vol. 43, no. 4, pp. 817–825, Nov. 1994.

[23] D. Cox and D. O. Reudink, “Layout and control of high capacity systems,”

in Microwave Mobile Communications, (Wiley, New York), pp. 542–622, 1974.

Chapter 7: W.C. Jakes Jr. (ed.).

[24] R. Beck and F. Ho, “Evaluation and performance of field strength related han-

dover strategies for microcellular systems,” in Third Nordic seminar on Digital

Land Mobile Radio Communication, (Copenhagen, Denmark), September 12-15

1988.

[25] R. Beck and H. Panzer, “Strategies for handover and dynamic channel allocation

in micro-cellular mobile radio systems,” in Proc. 39th IEEE VTC, pp. 178–185,

1989.

[26] S. Chia and R. J. Warburton, “Handover criteria for a city microcellular radio

systems,” in Proc 40th IEEE VTC, pp. 276–281, 1990.

[27] M. Gudmundson, “Cell planning in manhattan environments,” in Proc. 42nd

IEEE VTC, pp. 435–438, April 1992.



BIBLIOGRAPHY 252

[28] M. Frullone, P. Grazioso, and G. Rive, “On the optimum allotment of frequency

resources in mixed cellular layouts,” in IEICE Trans. on Fundamentals of Elec-

tronic, Communications and Computer Sciences, Dec. 1992.

[29] C.-L. I, L. Greenstein, and R. Gitlin, “A microcell/macrocell cellular architec-

ture for low- and high-mobility wireless users,” in IEEE JSAC, vol. 11,no. 6,

pp. 885–891, Aug. 1993.

[30] H. Furukawa and Y. Akaiwa, “A microcell overlaid with umbrella cell system,”

in Proc. 44th IEEE VTC, pp. 1455–59, 1994.

[31] J. Worsham and J. Avery, “A cellular band personal communication systems,”

in Proc. 2nd Universal Personal Communications, pp. 254–257, 1993.

[32] K. Ivanov and G. Spring, “Mobile speed sensitive handover in a mixed cell

environment,” in Proc. 45th IEEE VTC, pp. 892–96, 1995.

[33] J. F. Whitehead, “Cellular spectrum efficiency via reuse planning,” in Proc.

35th IEEE VTC, pp. 16–20, 1985.

[34] J. N. et al, “An evolution of GSM,” in Proc. 44th IEEE VTC, pp. 348–52, 1994.

[35] C. Sung and W. Wong, “Use speed estimation and dynamic channel allocation

in hierarchical cellular system,” in Proc. 44th IEEE VTC, pp. 91–95, 1994.

[36] L. B. M. et. al., “On the feasibility of a CDMA overlay for personal communi-

cations networks,” in IEEE JSAC, vol. 10, no. 4, pp. 655–668, May 1992.

[37] D. M. Grieco, “The capacity achievable with a broadband CDMA microcell

underlay to an existing cellular macrosystem,” in IEEE JSAC, vol. 12, no. 4,

pp. 744–750, May 1994.



BIBLIOGRAPHY 253

[38] G. Lyberopoulos, J. Markoulidakis, and M. Anagnostou, “The impact of evo-

lutionary cell architectures on handover in future mobile telecommunication

systems,” in Proc. 44th IEEE VTC, pp. 120–24, 1994.

[39] N. Whinnett, “Handoff between dissimilar systems: general approaches and air

interface issues for tdma systems,” in Proc. 45th IEEE VTC, pp. 953–57, 1995.

[40] E. D. Re and P. Iannucci, “The GSM procedures in an intergrated cellu-

lar/satellite system,” in IEEE JSAC, vol. 13, no. 2, pp. 421–430, February

1995.

[41] H. K. Lau, P. Liu, and K. C. Li, “Handoff analysis for an integrated satellite

and terrestrial mobile switch over a fading channel,” in Proc. IEEE PIMRC,

pp. 397–401, 1992.

[42] L.-R. Hu and S. Rappaport, “Personal communications systems using hierar-

chical cellular overlays,” in Proc. IEEE ICUPC, pp. 397–401, 1994.

[43] K.G.Cornett and S. B. Wicker, “Bit error rate estimation techniques for digital

land mobile radios,” in Proc. 41st IEEE VTC, pp. 543–548, 1991.

[44] M. Hata and T. Nagatsu, “Mobile location using signal strength measurements

in cellular systems,” in IEEE Trans. on Veh. Tech., vol. VT 29, no. 2, pp. 245–

252, 1980.

[45] G. D. Ott, “Vehicle location in cellular mobile radio systems,” in IEEE Trans.

Veh. Tech., vol. VT-26, No. 1, pp. 43–36, Feb. 1977.

[46] A. Gamst, R. Beck, R. Simon, and E. Zinn, “The effect of handoff algorithms

with distance measurement on the performance of cellular radio networks,”



BIBLIOGRAPHY 254

in Proc. International Conf. on Digital Land Mobile Radio Communications,

pp. 367–373, 1987.

[47] M. Greiner, L. Low, and R. Lorenz, “Cell boundary detection in the German

cellular mobile radio: system C,” in IEEE JSAC, vol. SAC-5, no. 5, pp. 849–854,

June 1987.

[48] S. Rappaport, “Blocking, handoff and traffic performance for cellular commu-

nication systems with mixed platforms,” in IEE Proceedings-I, vol. 140, Oct.

1993.

[49] J. M. Holtzman and A. Sampath, “Adaptive averaging methodology for handoffs

in cellular systems,” in IEEE Trans. on Veh. tech., vol. 44, no. 1, pp. 59–66,

1995.

[50] A. Sampath and J. M. Holtzman, “Adaptive handoffs through estimation of

fading parameters,” in Proc. ICC, May 1994.

[51] R. Vijayan and J. Holtzman, “Sensitivity of handoff algorithms to variations

in the propagation environment,” in Proc. 2nd IEEE Intl. Conf. on Universal

Personal Communications, (Otawa, Canada), Oct. 1993.

[52] P. Dassanayake, “Effects of measurement sample on performance of GSM han-

dover algorithm,” in Electronic Letters, vol. 29, pp. 1127–1128, June 1993.

[53] P. Dassanayake, “Dynamic adjustment of propagation dependent parameters

in handover algorithms,” in Proc. 44th IEEE VTC, pp. 73–76, 1994.

[54] N. Zhang and J. Holtzman, “Analysis of handoff algorithms using both absolute

and relative measurements,” in Proc. 44th IEEE VTC, vol. 1, pp. 82–86, 1994.



BIBLIOGRAPHY 255

[55] G. Rolle, “The mobile telephone system C 450- a first step towards digital,” in

Proc. Second Nordic Seminar, (Stockholm), Oct. 1986.

[56] C.-N. Chuah and R. D. Yates, “Evaluation of a minimum power handoff algo-

rithm,” in Proc. IEEE PIMRC, pp. 814–818, 1995.

[57] C.-N. Chuah, R. D. Yates, and D. Goodman, “Integrated dynamic radio re-

source management,” in Proc. 45th IEEE VTC, pp. 584–88, 1995.

[58] M. D. Austin and G. L. Stuber, “Velocity adaptive handoff algorithms for mi-

crocellular systems,” in IEEE Trans. Veh. Tech., vol. 43, no. 3, pp. 549–561,

August 1994.

[59] K. Kawabata, T. Nakamura, and E. Fukuda, “Estimating velocity using diver-

sity reception,” in Proc. 44th IEEE VTC, pp. 371–74, 1994.

[60] M. D. Austin and G. L. Stuber, “Directed biased handoff algorithm for urban

microcells,” in Proc. 44th IEEE VTC, pp. 101–5, 1994.

[61] M. Asawa and W. E. Stark, “A framework for optimal scheduling of handoffs

in wireless networks,” in Proc. IEEE Globecom, pp. 1669–1673, 1994.

[62] O. Kelly and V. Veeravalli, “A locally optimal handoff algorithm,” in Proc.

IEEE PIMRC, pp. 809–813, 95.

[63] R. Rezaiifar, A. Makowski, and S. Kumar, “Optimal control of handoffs in

wireless networks,” in Proc. 45th IEEE VTC, pp. 887–91, 1995.

[64] H. Maturino-Lozoya, D. Munoz-Rodriguez, and H. Tawfik, “Pattern recognition

techniques in handoff and service area determination,” in Proc. 44th IEEE VTC,

vol. 1, pp. 96–100, 1994.



BIBLIOGRAPHY 256

[65] G. E. V. Kapoor and R. Sankar, “Handoff criteria for personal communication

networks,” in Proc. ICC, pp. 1297–1301, 1994.

[66] M. Gudmundson, “Correlation model for shadow fading in mobile radio sys-

tems,” in Electronic Letters, vol. 27, no. 23, pp. 2145–2146, Nov. 1991.

[67] Y. Kinoshita and T. Itoh, “Performance analysis of a new fuzzy handoff algo-

rithm by an indoor propagation simulator,” in Proc. 43rd IEEE VTC, pp. 241–

245, 1993.

[68] D. Munoz-Rodriguez, “Handoff procedure for fuzzy defined radio cells,” in Proc.

37th IEEE VTC, pp. 38–44, 1987.

[69] S. G.H. and D. Everitt, “Performance of handover priority and queuing systems

under different handover request strategies for microcellular mobile communi-

cation systems,” in Proc. 45th IEEE VTC, pp. 897–901, 1995.

[70] S. Tekinay and B. Jabbari, “Handover and channel assignment in mobile cellular

networks,” in IEEE Comm. Mag., pp. 42–46, Nov. 1991.

[71] S. Tekinay and B. Jabbari, “A measurement-based prioritization scheme for

handovers in mobile cellular networks,” in IEEE JSAC, vol. 10(8), October

1992.

[72] P. Gassvik, M. Cornefjord, and V. Svensson, “Different methods of giving pri-

ority to handoff traffic in a mobile telephone system with directed retry,” in

Proc. 41st IEEE VTC, pp. 549–553, May 1991.

[73] D. Giancristofaro, M. Ruggieri, and F. Santucci, “Queuing of handover requests

in microcellular network architectures,” in Proc. 44th IEEE VTC, pp. 1846–

1849, 1994.



BIBLIOGRAPHY 257

[74] B. Eklundh, “Channel utilization and blocking probability in a cellular mobile

telephone system with directed retry,” in IEEE Trans. Comm., vol. COM-34,

pp. 329–337, April 1986.

[75] H. Panzer and R. Beck, “Adaptive resource allocation in metropolitan area

cellular mobile radio systems,” in Proc. 40th IEEE VTC, pp. 638–645, May 6-9

1990.

[76] Zhang and P. T.-S. Yum, “Comparisons of channel-assignment strategies in

cellular mobile telephone systems,” in IEEE Trans. Veh. Tech., vol. vol. 38, no.

4, pp. 211–215, Nov. 1989.

[77] E. D. Re, R. Fantacci, and L. Ronga, “A dynamic channel allocation technique

based on hopfield neural networks,” in IEEE Trans. on Veh. Tech., vol. 45, no.

1, pp. 26–32, February 1996.

[78] M. Frodigh, “Optimum dynamic channel allocation in certain street microcel-

lular radio systems,” in Proc. 42nd IEEE VTC, pp. 658–661, May 1992.

[79] B. Narendran, P. Agrawal, and D.K.Anvekar, “Minimizing cellular handover

failures without channel utilization loss,” in Proc. IEEE Globecom, pp. 1679–

1685, 1994.

[80] S. A. G. D. J. Goodman and R. Vijayan, “Distributed dynamic channel assign-

ment schemes,” in Proc. 43rd IEEE VTC, pp. 532–535, May 1993.

[81] R. D. Yates and C. Y. Huang, “Integrated power control and base station

assignment,” in IEEE Trans. on Veh. Tech., 1995.

[82] S. Hanly, “An algorithm for combined cell-site selection and power control to

maximize cellular spread spectrum capacity,” in IEEE JSAC, 1995.



BIBLIOGRAPHY 258

[83] P.-E. Ostling, High Performance Handoff Schemes for Modern Cellular Systems.

Royal Institute of Technology, September 1995. Ph. D. Dissertation.

[84] R. C. V. Macario, Cellular Radio- Principles and Design. The McGraw-Hill,

Inc., 1993.

[85] C. Simmonds and M. Beach, “Network planning aspects of DS-CDMA with

particular emphasis on soft handoff,” in Proc. 43rd IEEE VTC, pp. 846–849,

1993.

[86] R. Bernhardt, “Macroscopic diversity in frequency reuse radio systems,” in

IEEE JSAC, vol. SAC-5, no. 5, pp. 862–870, 1987.

[87] S.-W. Wang and I. Wang, “Effects of soft handoff, frequency reuse and non-

ideal antenna sectorization on CDMA system capacity,” in Proc .43rd IEEE

VTC, pp. 850–854, 1993.

[88] M. Gudmundson, “Analysis of handover algorithms,” in Proc. 41st IEEE VTC,

pp. 537–54, 912.

[89] L.-X. Wang, Adaptive Fuzzy Systems and Control. Englewood Cliffs, New Jer-

sey: PTR Prentice Hall, 1994.

[90] E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,”

in Proc. IEE, vol. 121, no. 12, pp. 1585–1588, 1974.

[91] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice-Hall Inc.,

1994.

[92] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptive weights,” in International

Joint Conference of Neural Networks, vol. 3, pp. 21–26, July 1990.



BIBLIOGRAPHY 259

[93] R. Vijayan and J. Holtzman, “Analysis of handover algorithm using nonsta-

tionary signal strength measurements,” in Proc. IEEE GLOBECOM, (Orlando,

Florida), Dec. 1992.

[94] M. D. Austin and G. Stuber, “Cochannel interference modeling for signal

strength based handoff analysis,” in Electronic Letters, vol. 30, pp. 1914–1915,

Nov. 1994.

[95] A. J. Viterbi, A. M. Viterbi, K. S. Gilhousen, and E. Zehavi, “Soft handoff ex-

tends CDMA cell coverage and increases reverse link capacity,” in IEEE JSAC,

vol. 12, no. 8, pp. 1281–1288, October 1994.

[96] D. Hong and S. Rappaport, “Traffic model and performance analysis for cellu-

lar mobile radio telephone systems with prioritized and nonprioritized handoff

procedures,” in IEEE Trans. Veh. Tech, vol. VT-35, no. 3, pp. 77–92, Aug.

1986.

[97] H. Xie and S. Kuek, “Priority handoff analysis,” in Proc. 43rd IEEE VTC,

pp. 855–858, 1993.

[98] Y.-B. Lin, L.-F. Chang, and A. Noerpel, “Modeling hierarchical micro-

cell/macrocell pcs architecture,” in Proc. ICC, pp. 405–9, 1995.

[99] S. El-Dolil, W. Wong, and R. Steele, “Teletraffic performance of highway mi-

crocells with overlay macrocell,” in IEEE JSAC, vol. SAC-7, pp. 71–78, Jan.

1989.

[100] X. Lagrange and P. Godlewski, “Teletraffic analysis of hierarchical cellular net-

works,” in Proc. 45th IEEE VTC, pp. 882–86, 1995.



BIBLIOGRAPHY 260

[101] P. Harley, “Short distance attenuation measurements at 900 MHz and 1.8 GHz

using low antenna heights for microcells,” in IEEE JSAC, vol. 7, pp. 5–11, Jan.

1989.

[102] R. B. J-E. Berg and F. Lotse, “Path loss and fading models for microcells at

900 MHz,” in Proc. 42nd IEEE VTC, pp. 666–671, May 1992.

[103] C. Loo and N. Secord, “Computer models for fading channels with applications

to digital transmission,” in IEEE Trans. Veh. Tech., vol. VT-40, pp. 700–707,

1991.

[104] G. N. Senarath and D. Everitt, “Combined analysis of transmission and traffic

characteristics in micro-cellular mobile communication systems,” in Proc. 43rd

IEEE VTC, 1993.

[105] G. N. Senarath and D. Everitt, “Combined analysis of transmission and traf-

fic characteristics in micro-cellular mobile communication systems, emphasis:

handoff modeling,” in Proc. Seventh Australian Teletraffic Conf., (Adelaide),

Nov. 15-17 1992.

[106] D. Everitt and D. Manfield, “Performance analysis of cellular mobile commu-

nication systems with dynamic channel assignment,” in IEEE JSAC, vol. 7(8),

pp. 22–34, October 1989.

[107] N. Zhang and J. Holtzman, “Analysis of a CDMA soft handoff algorithm,” in

Proc. IEEE PIMRC, pp. 819–23, 1995.

[108] T. Kanai, M. Taketsugu, and S. Kondo, “Experimental digital cellular system

for microcellular handoff,” in Proc. 38th IEEE VTC, pp. 170–175, June 15-17

1988.



BIBLIOGRAPHY 261

[109] N. D. Tripathi, J. H. Reed, and H. F. VanLandingham, “A new class of fuzzy

logic based adaptive handoff algorithms for enhanced cellular system perfor-

mance,” in Proc. Wireless ’97, vol. 1, (Calgary, Alberta, Canada), pp. 145–164,

July 1997.

[110] A. Murase, I.C.Symington, and E. Green, “Handover criterion for macro and

microcellular systems,” in Proc. 41st IEEE VTC, pp. 524–530, 1991.



262

Vita

Nishith D. Tripathi was born in Ahmedabad, Gujarat, India, on January 22, 1971.

He received his B.S. degree from the Gujarat University in 1992 and ranked second

in the university. He received the M.S. degree from Virginia Polytechnic Institute

and State University (Virginia Tech), Blacksburg, in Fall, 1994, and continued his

studies toward a Ph.D. Degree at Virginia Tech. He is a Graduate Research and

Teaching Assistant working with the Mobile and Portable Radio Research Group

(MPRG). He is also a member of the Control Systems Group and Motion Control

Systems Research Group. He worked with Dr. Jeffrey H. Reed for the development

of a new wireless communications course (DSP Implementation of Communication

Systems) as part of an NSF sponsored Combined Research and Curriculum Devel-

opment (CRCD) program. He worked with several faculty members in the Bradley

Department of Electrical and Computer Engineering and has written several papers

in diverse fields of communications, signal processing, and controls. He has published

six papers. He has published two conference papers and submitted over ten jour-

nal papers and two conference papers on his dissertation research. His research and

teaching interests are communications, signal processing, controls, and applications

of artificial intelligence techniques.


