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Abstract

Background: The Sapsaree is a breed of dog (Canis familiaris) native to Korea, which became perilously close to
extinction in the mid-1980s. However, with systematic genetic conservation and restoration efforts, this breed was
rescued from extinction and population sizes have been gradually increasing over the past few decades. The aim
of this study was to ascertain novel information about the genetic diversity, population structure, and demographic
history of the Sapsaree breed using genome-wide single nucleotide polymorphism data. We characterized the
genetic profile of the Sapsaree breed by comparison with seven foreign dog breeds with similar morphologies to
estimate genetic differentiation within and among these breeds.

Results: The results suggest that Sapsarees have higher genetic variance compared with the other breeds analyzed.
The majority of the Sapsarees in this study share a discrete genetic pattern, although some individuals were slightly
different, possibly as a consequence of the recent restoration process. Concordant results from analyses of linkage
disequilibrium, effective population size, genetic diversity, and population structural analyses illustrate a relationship
among the Sapsaree and the Tibetan breeds Tibetan terrier and Lhasa Apso, and a small genetic introgression from
European breeds. The effective population size of the Sapsaree has contracted dramatically over the past generations,
and is currently insufficient to maintain long-term viability of the breed’s genetic diversity.

Conclusions: This study provides novel insights regarding the genetic diversity and population structure of the native
Korean dog breed Sapsaree. Our results suggest the importance of a strategic and systematic approach to ensure the
genetic diversity and the authenticity of the Sapsaree breed.
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Background
The domestic dog (Canis familiaris) is the most pheno-
typically diverse mammalian species, and one of the first
animals to be domesticated by humans [1–3]. While
dogs are the closest animal companion of humans, they
are still used for specialized tasks including herding,
hunting, retrieving, pulling sleds, and even for military
tasks [4–6]. The gray wolf (Canis lupus) is the common
ancestor of domesticated dogs, which have since been
differentiated through artificial selection of the hugely

diverse features of modern breeds [7, 8]. It has been hy-
pothesized that the domestication of dogs began nearly
33,000 years ago in South East Asia. Ancestral canines
accompanied humans in a migration to Africa and the
Middle East around 15,000 years ago, and then to
Europe around 10,000 years ago [6, 9–11].
Although evidence suggests dogs have been present on

the Korean peninsula for a long period of time, the spe-
cifics of canine domestication are not well understood.
Some have hypothesized that current dog breeds on the
Korean peninsula were gradually introduced with the in-
flux of humans. Today, there are more than 150 dog
breeds on the Korean peninsula, and over 400 recog-
nized dog breeds worldwide [12, 13]. Among the native
Korean dog breeds, the Jindo, Sapsaree, and Donggyeong
are protected as a designated ‘natural monument’ by the
Korean government (Cultural Heritage Administration
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of Korea, #54, 368, and 540 respectively) [12, 14, 15].
The Poongsan breed was also designated as a natural
monument during the Japanese colonial period (number
128), but the designation was removed by the Korean
government in 1962 [12, 16].
The Sapsaree is a shaggy-haired and droopy-eared dog

breed believed to reflect the character of the Korean people.
They have a medium body size (54–62 cm in height) and
two distinguishable coat colors: the ‘Chung’, or blue
Sapsaree, and the ‘Hwang’, or yellow Sapsaree [12, 16, 17].
Historical evidence suggests that Sapsarees were used

as military dogs by nobles of the Silla dynasty. Following
the collapse of the unified Silla, Sapsarees were featured
in the classical literary works of the Joseon dynasty and
have since gained popularity throughout the Korean
peninsula. Their disposition is friendly and gentle, and
their loyalty has long been recognized [16, 18, 19].
The population size of Sapsaree was substantially de-

creased and became perilously close to extinction during
the Japanese colonial period (1910–1945) and the Korean
War (1950–1953). In 1969, a Sapsaree revival was initiated
by Kyungpook National University, however the restor-
ation process and systematic genetic conservation begin
by 1985 at the Sapsaree Breeding Research Institute in
Gyeongsan, South Korea. In 1992, the Sapsaree was regis-
tered as a national treasure of Korea and their breeding
and sale were strictly regulated to protect the purity of the
breed [17–23]. Current total Sapsaree population is ap-
proximately 4000 including the 500 dogs maintained at
the Sapsaree Breeding Research Institute [19]. The exist-
ing Sapsaree population size is relatively small, and it will
therefore be necessary to expand the population size to
maintain the sustainability of the breed.
Understanding the genetic diversity of domesticated

species is important to establish effective conservation de-
cisions and management strategies [24, 25]. Advances in
genome technology and the availability of high density
genome-wide single nucleotide polymorphism (SNP) data
have facilitated the characterization of genetic diversity
and breed composition [26, 27]. Linkage disequilibrium
(LD), effective population size (Ne), and heterozygosity are
parameters widely used to understand the genetic diversity
of populations [24]. The evolutionary history of a popula-
tion is estimated through LD, by estimating the non-ran-
dom association between two genetic markers that results
from various evolutionary and demographic processes [28,
29]. Another important parameter for estimating the
demographic history of a population is Ne, which esti-
mates the rate of genetic drift, inbreeding, and the effects
of evolutionary forces such as mutation, selection, and mi-
gration [30, 31]. Heterozygosity is also a widely used par-
ameter to measure genetic variation within a population
[23, 32]. Information regarding genetic diversity, LD, Ne,
and heterozygosity would therefore be useful for

establishing a breeding program that avoids inbreeding
while maintaining the breed purity of Sapsarees. However,
there are a limited number of scientific studies on the gen-
etic diversity of Sapsaree populations [20, 21, 23, 33]. In
this study, we used high-density SNP data to estimate the
genetic diversity of the Sapsaree. We characterized the
genetic profile of the Sapsaree by comparison with seven
foreign dog breeds with similar morphology and estimated
the genetic differentiation within and among these breeds.

Results
As LD is expected to decay with recombination and in-
crease the physical distance between markers [48], Fig. 1
shows different estimates of genome-wide LD for each
of the eight populations, and declines in LD with in-
creasing genomic distance across and within breeds.
However, the rates of decay were different among
breeds. Large differences were observed between Sap-
saree, Lhasa Apso, and the other breeds. LD dropped off
rapidly over a short distance in all breeds. Sapsaree and
Lhasa Apso showed the lowest average LD across the
genome. The breeds with the highest average LD were
the Soft-coated Wheaten Terrier at the short marker dis-
tance but, the Tibetan Terrier at the long-distance
marker. However, the LD values of Tibetan Terrier and
Soft-coated Wheaten Terrier were not significantly
different toward the long-distance.
The estimated effective population size (Ne) at t gener-

ations ago is shown in Fig. 2. The results suggest that Ne

was lower in the recent past compared with the ancient
past (Fig. 2). Based on the genomic data 11 generations
ago, the highest Ne was for Sapsaree which approxi-
mately 54 individuals, followed by Lhasa Apso (51 indi-
viduals) and the lowest Ne was approximately 17
individuals for the Tibetan Terrier (Fig. 2). In the more
distant past of 1400 generations ago, the Ne was highest
for Sapsaree approximately 2098 then 1966 for Lhasa
Apso, and lowest for Soft-coated Wheaten terrier
(approximately 764).
Heterozygosity was highest in the Sapsaree (0.342),

followed by the Lhasa Apso (0.309) and Tibetan Terrier
(0.273). The Old English Sheepdog (0.179) and Great
Pyrenees (0.232) showed the lowest heterozygosity in the
present generation (Fig. 3). Results suggest that hetero-
zygosity will decline drastically in the future and is pre-
dicted to reduce by half within 25 generations. The
estimated heterozygosity after 50 generations was also
highest in the Sapsaree (0.118), with the Tibetan Terrier
(0.003), Soft-coated Wheaten terrier (0.012), and Old
English Sheepdog (0.000) showing the lowest values.
Ancestry-based models of admixture analysis were used

to show the genetic structure and admixture proportion of
the canine ancestors (Fig. 4 and Additional file 3: Figure
S3). Additional file 1: Figure S1 shows that the lowest CV
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error (0.583) was obtained at K = 10. The relationship of
ancestry for Sapsaree and other breeds was visualized using
K = 10, where K is the number of ancestors. Admixture
models illustrated the greater degree of diversity and ad-
mixture in Sapsaree than the other breeds. Moreover, the
admixture analysis was done with several other related dog
breeds based on the genetic distance (Additional file 4:
Figure S4) also revealed a greater genetic heterogeneity
within the Sapsaree breed. Afghan Hound, Lhasa Apso,

Great Pyrenees, Old English Sheepdog, Soft-coated
Wheaten terrier, and Mastiff seem to have little or no ad-
mixture from other breeds, indicating that they have less
remaining from other interacted ancestral breeds. Sapsaree
indicated low levels of admixture with the Lhasa Apso and
Tibetan terriers. Moreover, Sapsaree showed a small level
of introgression with one of the oldest European breed
Mastiffs ancestry, Great Pyrenees and the Old English
Sheepdogs. However, admixture analysis indicated that

Fig. 1 The decline in genome-wide linkage disequilibrium (LD), estimated as a function of genomic distance by calculating r2 values between all
pairs of SNPs with inter-SNP distances of less than 1 Mb. Lines are colored based on breeds

Fig. 2 Trends in effective population size (Ne) over generations based on LD (r2). Lines are colored based on breeds
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Fig. 3 Estimated decay of heterozygosity over 50 generations. Lines are colored based on breeds

Fig. 4 Population structure plots using K = 10 ancestry models. Each colored vertical line represents proportions of ancestral populations for each individual.
K inferred the number of estimated ancestors and which differentiated by colors. Optimum K value was determined by Admixture’s cross-validation (CV)
procedure. (Additional file 1: Figure S1)
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major ancestries of Sapsaree were not shared with the
other breeds used in this study.
The phylogenetic tree clearly indicates a monophy-

letic clade of Sapsaree that is diverge from the other
breeds, which supports the admixture analysis results
(Fig. 5). The European breeds (Mastiff, Old English
Sheepdog, Soft-coated Wheaten terrier, and Great
Pyrenees) were grouped together in a single clade,
and the Tibetan breeds (Tibetan Terrier and Lhasa
Apso) comprise an adjacent monophyletic clade. The
Afghan Hound was used as a root to construct the
phylogenetic tree because it is an ancient breed, and
more closer to a “real dog” than other domesticated
breeds [7, 26, 49–51]. Our phylogenetic tree also indi-
cates that the Afghan Hound is highly diverged from
the other breeds.
MDS analysis was used to visualize the quantitative es-

timates of genetic distance among the breeds (Fig. 6).
Consistent with the admixture results, MDS also re-
vealed that Sapsaree was clustered farthest from the
other breeds, which supports assemblages into a single
clade on the phylogenetic tree. However, Sapsaree clus-
ters with the Mastiff, Old English Sheepdog, and Tibetan
terrier when dimension 3 was plotted against dimension
4 (Additional file 2: Figure S2).

Discussion
In this study, genome-wide SNP data was used to
characterize the genetic diversity, population structure,
and demographic history of an aboriginal Korean dog
breed, the Sapsaree. The non-random association of genes
at different loci is assessed as LD, which gives insight to
the structure of present populations and evolutionary
demographic events [52, 53]. Similar LD and Ne patterns
in the Lhasa Apso and Sapsaree reflect their historical
similarities [54]. Alam et al. [20] indicated that five genera-
tions ago, LD and Ne were approximately 0.2 and 64–75,
respectively, which differs from our results. This variation
may be due to discrepancies between samples and different
algorithms used [6]. Ascertainment bias may have also
caused the systematic deviation of population genetic
structure from its theoretical expectations [55, 56]. Ne has
long been recognized as a useful criterion for evaluating
conservation status and threats to the genetic health of a
population [57]. Meuwissen. [58] suggested that a thresh-
old level of 50 or 100 for Ne would be necessary to main-
tain viable genetic diversity. Our results also emphasize
that care should be taken to maintain the reasonable gen-
etic diversity of the Sapsaree breed.
Ancient events, as well as the recent breeding program,

can lead to dramatic changes in the genetic diversity

Fig. 5 Phylogenetic tree of Sapsaree (blue) and other dog breeds (Afghan Hound, orange; Tibetan Terrier, magenta; Lhasa Apso, red; Great Pyrenees,
black; Old English Sheepdog, gray; Soft-coated Wheaten terrier, purple; and Mastiff, green). The phylogenetic tree was rooted with the Afghan Hound.
Canine images not drawn to scale. Afghan Hound, Tibetan Terrier, Lhasa Apso, Great Pyrenees, Old English Sheepdog, Soft-coated Wheaten terrier, and
Mastiff images were obtained from http://dogtime.com/ and the Sapsaree image was obtained from http://www.worldlydogs.com/sapsaree.html
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among the individual dogs [6, 59–63]. Our analyses sug-
gest that the Sapsaree has higher variance and discrete
genetic compared to the other breeds studied here, con-
sistent with the results of other studies [21, 23, 33]. Previ-
ous studies have also provided evidence that genetic
diversity is high in dogs native to Korea [14, 21 9, 55] or
East Asia [6, 64].
Heterozygosity is considered a useful parameter in es-

timating a population’s genetic diversity [32, 52, 65], and
the Sapsaree has shown greater heterozygosity compared
with foreign breeds [21, 23, 33]. One study indicated that
the observed and expected mean heterozygosities in the
Sapsaree were 0.460 and 0.543, respectively [23]. A
recent study by Choi et al. [55] has suggested high het-
erozygosity (0.4) in Korean dogs (Poongsan, Donggyengi
and Jindo). However, compared with the previous
studies, there was low heterozygosity in the Sapsarees in
this study. We were also determined that the Tibetan
Terrier exhibits greater heterozygosity than the Mastiff
[66] and alignment with the present results Mortlock et
al. [67] showed multiple-locus heterozygosity of Mastiff
was 0.206.
Population bottlenecks can dramatically reduce the gen-

etic diversity of populations [68–71], and Sapsarees have

experienced severe population bottlenecks during the
Japanese colonial rule and the Korean War and subsequent
economic crisis [18, 20, 23]. Interestingly, Sapsarees have
still been able to maintain more genetic variation than
other breeds.
Reductions in genetic variability or heterozygosity pri-

marily depend on bottleneck size, rate of population
growth, and mutation rate [72–74]. Although declines in
genetic variability are expected following a bottleneck,
variation may accumulate through mutations as the
population size increases. Correspondingly, Kekkonen et
al. [65] reported fairly high genetic diversity of white-
tailed deer (Odocoileus virginianus) in Finland, even
though the population was founded by four individuals
in 1934 and remained isolated from other deer popula-
tions. In contrast, the German Leonberger breed had
similar experience as which was nearly wiped out during
World War I by violence and starvation. Their genetic
variation drastically declined but was re-established in
1992 using five females and two males. However, their
genetic variation was still low compared with other
breeds [51, 69, 75].
Admixture, MDS, and phylogenetic analyses showed

the unique diversity of the Sapsaree breed. Other studies

Fig. 6 Clustering of breeds based on multidimensional scaling of genetic distance. Individuals are plotted on the first and second dimensions.
Each dot represents an individual and colored shapes represent each dog breed
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have also found that native Korean dogs have substan-
tially different genetic patterns than other foreign dog
breeds [33, 55]. Furthermore, admixture analysis (Fig. 4
and, Additional file 3: Figure. S3 and Additional file 4:
Figure S4) and structure analysis (Additional file 5: Fig-
ure S5) revealed a greater genetic heterogeneity within
the Sapsaree compared to the other breeds. The conse-
quences of the restoration process might be a reason for
the increased genetic diversity of the breed. In 1986, the
Sapsaree population was restored using eight individuals
collected based on their similar characteristics with the
original breed such as color and body shape. A system
of non-restricted selection was then established to in-
crease the population size [18, 76]. In alignment with
the present results, several previous studies showed a
greater genetic diversity of Sapsaree compared with for-
eign dog breeds [21, 23, 33]. Moreover, a small fraction
of Sapsaree deviated from major genetic patterns, also
possibly as a consequence of recent restoration pro-
cesses. Founder animals were collected based on pheno-
typic characteristics, which might be lead some dogs
having distance genetic pattern from majority of the
Sapsaree population.
Correspondingly, Han et al. [22] showed that Sapsarees

have greater genetic diversity based on several morpho-
logical traits such as tongue spots, dewclaws, tail-set, and
coat, nose, and eye color. The Coat color of the Sapsaree
also revealed the heterogeneous nature of the breed, indi-
cating two distinct group of blue and yellow including
several subdivisions such as blue black, grey black, deep yel-
low, yellow and light yellow [77]. On the other hand, some
studies have also shown discrete phenotypic diversity such
as Kim et al. [19] revealed that they can be divided into
two groups based on gene expression patterns for physio-
logical activities. Accordingly, the results suggest that sys-
tematic approach is needed to select the individuals for
breeding to established the breed while ensuring the
authenticity.
There was evidence of introgression into Sapsaree in the

admixture analysis, which might have occurred prior to
the restoration process when the population levels were
low. Introgression from non-tested breeds could also have
contributed to the high levels of genetic diversity noted in
the Sapsaree. The admixture and MDS analyses provide
compelling evidence that the ancestor of the Sapsaree is
related to Tibetan long-haired breeds. The Tibetan Terrier
and Lhasa Apso are native to Tibet, where they lived in
nobles palaces and Buddhist monasteries as watch dogs,
companions, and ‘good luck charms’. There are definitive
evidences that which used as a special gift, tokens of es-
teem and good fortune when spreading the Buddhism
[78–82]. Buddhism was introduced to Korea in fourth
century CE [83, 84], and the introgression of Tibetan dog
breeds might be an outcome of that relationship.

Additionally, our results suggested the admixture of Euro-
pean dog breeds, which were introduced to the Korean
peninsula as a result of cultural exchange. Christianity in-
vaded Korea from Europe during the eighteenth century
[81, 85], and some European dog breeds accompanied
those missions. Afterwards, numerous European delega-
tions and military correspondence with Korea occurred
during World War I and the Korean War [86–88]. Fur-
thermore, the Silk Road was a historical network of inter-
national trade routes from ancient China to Europe,
stretching from Korea and Japan to the Mediterranean
Sea. In addition to silk as the major commodity, compan-
ion animals were also exchanged on this route [89–91].
Comas et al. [92] suggested that genetic diversity was also
traded along the Silk Road between Europe and eastern
Asia. Consistent with our phylogenetic results, vonHoldt
et al. [26] illustrated that European dog breeds, such as
the Mastiff and Old English Sheepdog, are phylogenetic-
ally clustered, while Choi et al. [55] showed that the Tibe-
tean Terrier and Lhasa Apso grouped into a single clade.
Although, Jeong at al [23] suggested a great genetic dis-
tance between Sapsaree and the European breeds, their
structure analysis showed a low level of genetic sharing
among them, which support the current findings.

Conclusions
Our results provide novel information regarding the
genetic diversity and population structure of the native
Korean dog, Sapsaree. Consistent with previous studies,
our results also revealed higher genetic diversity in Sap-
sarees compared with other breeds. The majority of the
breed showed a discrete genetic pattern, while a small
fraction was genetically divergent and might be a conse-
quence of recent restoration process. The Ne of the
breed has declined drastically and is currently insuffi-
cient to maintain long-term viability of genetic diversity.
Therefore, we suggest a strategic and systematic ap-
proach to ensure the purity and genetic diversity of the
Sapsaree breed, a Korean natural treasure. Admixture
analysis revealed a complex pattern of Sapsaree, where
major ancestries were not shared with the other breeds
analyzed in this study. LD, Ne, genetic diversity, and
population structural analyses indicate a relationship be-
tween Sapsaree and the long-haired breeds Tibetan
Terrier and Lhasa Apso. Introgression from European
breeds was also revealed.

Methods
Animals, genotyping, and quality control
All research methods were approved by the Institutional
Animal Care and Use Committee of the Rural Develop-
ment Administration in South Korea. To investigate the
genetic origin of the Sapsaree breed, we selected seven
foreign dog breeds analyzed in a previous study Shannon
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et al. [34] based on their phenotypes, such as long haired
and body conformation [35]. The Sapsaree (n = 96),
Lhasa Apso (n = 15), Great Pyrenees (n = 10), Tibetan
Terrier (n = 7), Afghan Hound (n = 7), Old English
Sheepdog (n = 9), Soft-coated Wheaten Terrier (n = 10),
and Mastiff (n = 22) dog breeds were categorized as an-
cient or modern breeds according to Vonholdt et al.
[26] and Parker et al. [13]. Based on a memorandum of
understanding between the research team and the Sap-
saree conservation center, blood samples were collected
by veterinarians in an ethical manner according to the
animal health and welfare guidelines (Approval num-
bers: 2016–177).
Samples were genotyped using Illumina CanineSNP20

BeadChip. Other breeds were genotyped by [34] using
the Illumina CanineHD array and merged into our data-
set. The CanineSNP20 BeadChip is Illumina’s first non-
human standard genotyping panel contains more than
22,000 evenly spaced and validated SNP probes derived
from the CanFam2.0 assembly. The CanineHD Genotyp-
ing BeadChip contains more than 170,000 markers
placed also on the CanFam2.0 reference sequence. This
presents an average of greater than 70 markers per
megabase (Mb), providing ample SNP density for robust
within-breed association and copy number variation
(CNV) studies (www.illumina.com). The quality of SNP
data was maintained with the use of PLINK 1.9 [36] to
filter SNPs with low call rates (< 90%) or missing geno-
types (> 10%). To reduce bias, the number of minor
allele frequencies was limited to 1%, and deviations from
Hardy-Weinberg equilibrium (P > 0.001) were also ex-
cluded [37]. Non-autosomal SNPs were also removed
from analyses.

Linkage disequilibrium, effective population size, and
heterozygosity
The extent of LD between markers was measured using
the squared correlation coefficient of allele frequencies at
pairs of loci (r2) with inter-SNP distance within 1Mb, both
within a given breed and across all breeds [38]. Pairwise
LD between adjacent SNPs was calculated for each
chromosome using the default PLINK V1.9 approach [39].
Effective population size (Ne) was estimated based on the
LD value (r2) using the SNeP V1.1 tool [29, 40–42]. Het-
erozygosity over the next 50 generations was estimated as
described by [43]. Statistical software package R [44] was
used to produce graphical representations. Wright–Fisher
model was used to calculate the forward derivation of
heterozygosity, assuming that N diploid parents produce a
large number of gametes, these gametes randomly unite
to produce a large number of zygotes, and from these
zygotes, N progeny are randomly chosen to form the next
generation [43].

Genetic diversity and population structure
Population structure and genetic diversity were studied
using multi-dimensional scaling (MDS) analysis, ancestor’s
admixture prediction, and phylogenetic comparisons. To
create a matrix representation of interbreed relationships,
MDS algorithms of pairwise genetic distances were imple-
mented in PLINK [39] and depicted as coordinates in R.
Population substructures and the extent of mixture be-
tween ancestral populations of Sapsaree and unrelated
individuals of other studied breeds were evaluated through
the model-based clustering algorithm using ADMIXTURE
v.1.23 [45]. To reduce prediction error, admixture’s cross-
validation (CV) procedure was used to determine the opti-
mal K-value by minimizing CV error. These results were
graphed using R. A phylogenetic tree was developed using
the SNPhylo software package and illustrated using
FigTree software v. 1.4.2 to infer the evolutionary relation-
ships among breeds [46, 47].

Additional files

Additional file 1: Figure S1. Cross-validation plot of admixture analysis.
The x-axis represents the number of clusters (K) in the model and the y-axis
represents cross-validation error values. (DOCX 33 kb)

Additional file 2: Figure S2. Clustering of animals from Sapsaree and
other selected breeds based on multidimensional scaling of genetic distance.
Individuals are plotted for the third and fourth dimension. (DOCX 22 kb)

Additional file 3: Figure S3. Population structure plots using K = 8 and
K = 11 ancestry models. Each colored vertical line represents proportions of
ancestral populations for each individual. K inferred the number of estimated
ancestors and which differentiated by colors. (DOCX 214 kb)

Additional file 4: Figure S4. Ancestry model for Sapsaree including
related dog breeds based on the genetic distance. Each colored vertical line
represents proportions of ancestral populations for each individual. K inferred
the number of estimated ancestors and which differentiated by colors.
Optimum K value (K = 16) was determined by Admixture’s cross-validation
(CV) procedure. (DOCX 64 kb)

Additional file 5: Figure S5. The population structure bar plots
generated by STRUCTURE software at K = 8. (DOCX 73 kb)

Additional file 6: Figure S6. Heat map of relatedness between the
individuals of Sapsaree and other studied breeds. (DOCX 95 kb)

Additional file 7: File S7. Genotype information of Sapsaree. (BED 524 kb)

Additional file 8: File S8. Genotype information of Sapsaree. (BIM 697 kb)

Additional file 9: File S9. Genotype information of Sapsaree. (FAM 2 kb)
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