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Abstract- This paper describes a new approach to finding a
global solution for the fuzzy least trimmed squares clustering.
The least trimmed squares (LTS) estimator is known to be a
high breakdown estimator, in both regression and clustering.
From the point of view of implementation, the feasible solution
algorithm is one of the few known techniques that guarantees a
global solution for the LTS estimator. The feasible solution
algorithm divides a noisy data set into two parts - the non-
noisy retained set and the noisy trimmed set, by implementing
a pairwise swap of datum between the two sets until a least
squares estimator provides the best fit on the retained set. We
present a novel genetic algorithm-based implementation of the
feasible solution algorithm for fuzzy least trimmed squares
clustering, and also substantiate the efficacy of our method by
three examples.

I. INTRODUCTION

Clustering procedures produce a partition of data into
clusters, with similar entities grouped in a cluster and
dissimilar entities in different clusters. The K-Means class
of clustering algorithms generate non-overlapping k-
partitions of the data by minimizing the least squares (LS)
residual within every cluster. Fuzzy c-Means (FCM) is the
fuzzy extension of the ever popular K-Means and generates
overlapping clusters where every entity is shared (with
varying degrees of membership) across all the clusters.
However, classical non-robust estimators like the LS
residual minimization techniques fail miserably when the
data set is contaminated with noise and/or outliers. The
breakdown point for such estimators - the minimum fraction
of outliers present in the data set to cause the estimator to be
arbitrarily wrong - approaches zero when the sample size
gets larger. To be useful in practice, when most of the data
that analysts deal with are inherently noisy, clustering
techniques should be robust with an ability to generate
natural clusters even in the presence of outliers.

In the field of regression statistics, several robust
estimators, such as the L1 estimator, M-estimator,
generalized R-estimators and L-estimators, have been
proposed and have been shown to be resistant to noise.
However, they are all low breakdown regression estimators
which severely restricts their usability. In fact, these
estimators can withstand a large number of outliers in the
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dependent variable but break down easily in the presence of
leverage points. The first high breakdown ( 50%0)
regression estimator proposed was the Repeated-Median
estimator [1], following which Rousseeuw [2] introduced his
least median of squares (LMS) estimator. More recently, the
least trimmed squares (LTS) and the re-weighted least
trimmed squares (RLS) estimator [3] have been proposed.
These estimators belong to a family of so-called S-
estimators. Rousseeuw was also the first to extend the idea
of robust estimators to clustering with his K-Mediod
algorithm [3], which used the absolute residual (L1) instead
of the squared residual minimization in LS-based
techniques. The Robust c-Prototypes (RCP) [4] and the
robust Fuzzy c-Means (RFCM) [5] both used M-estimators
in slightly different ways to cluster noisy datasets. The
Fuzzy c-Least Median of Squares (FCLMS) is a robust
clustering technique based on the LMS estimator [6]. Kim
et al. [7] used the LTS estimator to build a prototype-based
robust clustering algorithm known as the fuzzy trimmed c-
prototypes (FTCP) algorithm. However, these attempts to
use high breakdown estimators in a prototype-based
clustering algorithm, by adjusting the FCM minimization
functional, still suffer from FCM related problems. The
goodness of the results is heavily contingent on a good
initialization and none of the techniques guarantee an exact
solution.

In this paper, we present a class of algorithms that
implement the feasible solution algorithm for high
breakdown estimators especially the LTS estimator which is
guaranteed to lead to the exact LTS solution. The solution
space is innovatively searched using a genetic algorithm
with classical operators. In the next section, the feasible
solution algorithm is described, followed by a discussion on
the use of genetic algorithms and evolutionary techniques in
data clustering in section III. In section IV, we propose the
algorithm and in section V, we present experimental results,
followed by conclusions in section VI.

II. THE FEASIBLE SOLUTION ALGORITHM

The best LS regression fit is the line that minimizes the
sum of squared residuals from the line to all the n random
observations. If however, only h of these observations are
true and the rest recorded erroneously, the best LS fit will be
biased towards these erroneously-recorded leverage points.
The LTS regression estimator rectifies this bias by
minimizing the sum of squares of the smallest h of the total
n residuals. The estimator achieves robustness by trimming
the (n - h) observations, the ones with the large residuals.
The LTS functional is of the form,
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where (r2 )1 n <... < (r2 )n:n are ordered squared residuals.

The motivation for using the LTS criterion does not
provide any clue to its implementation, which involves
determination of which cases to trim. If the size of the
dataset is small, then a combinatorial scheme which involves
fitting regression to every possible subset of size h and
subsequently finding the minimal residual sum of squares
can be used. Also popular is the basic resampling scheme
[2, 8], which uses elemental subsets of size p (p << h),
where p is the dimension of the data set and hence, has
manageable combinatorics. The fit obtained however, is
crude with a high degree of approximation (depending on
the number of elemental subsets used) and does not in
general yield the exact LTS solution.

The exact LTS solution is the ordinary LS fit to some
subset of size h of the data which cannot be improved by
any single pairwise exchange of one observation in the
subset for one out of the subset. This known form of the
exact solution and the resulting necessary condition form the
basis of the simulated annealing approach [9] and the
feasible solution approach [10, 11]. These are probabilistic
schemes with guaranteed convergence to a global optimum
under certain assumptions. A feasible solution is defined as
a local optimum fit obtained by a refinement (pairwise
swapping) process from a randomly picked starting subset of
size h, called the retained set. From a starting retained set,
observations are swapped with the trimmed subset (of size n
- h) and the starting retained set is modified to include the
observation that produces the largest reduction in the
residual sum of squares in the retained set. This modified
starting subset is then subject to further refinement until no
pairwise swap results in a reduction of the residual sum of
squares. The retained subset is called a feasible solution and
a single application of the refinement process will always
lead to a feasible solution. To obtain the globally optimum
fit, the refinement process needs to be repeated using
distinct starting subsets and following each to its feasible
solution. The exact solution is the feasible solution with the
lowest residual of squares. For a detailed discussion of the
theoretical aspects of the feasible solution algorithm, the
reader is referred to [10, 11].

The feasible solution algorithm and its implementation
provided the basis for the fuzzy least trimmed squares
clustering (FLTS) algorithm [12], an unsupervised
clustering methodology that uses a cluster validity index to
pick an appropriate value of h. In the present work, the
feasible solution algorithm is implemented as a structured
search through the solution space, instead of a pairwise swap
which is a computationally expensive process. The
structured search is done using a genetic algorithm with
classical genetic operators.

III. GENETIC ALGORITHMS IN CLUSTERING

Genetic algorithms (GA) are search algorithms based on
the mechanics of natural selection and genetics [13]. A
subclass of evolutionary computing-based search and
optimization techniques, GAs differ from conventional
search procedures in that they work with a coding of the
parameter set, not the parameters themselves, and search for
a solution from a population of prospective solutions (as
against improving a single solution). The prospective
solutions are first coded into binary chromosome strings,
followed by an evaluation of each string to measure the
goodness of the individual string. This is done by using a
predefined problem-specific fitness function. As with
nature, strings having higher fitnesses are preferred over
others. These high-fitness individuals are selected to fill up
a mating pool, a process known as selection. The
individuals are then combined together using two genetic
operators, called crossover and mutation, to produce
offspring for the next generation. This process of selection,
crossover and mutation is carried on iteratively until some
predefined termination criterion is met. GAs distinguish
themselves from other optimization techniques because of
their implicit parallelism and diversity. In the last two
decades, GAs have gained immense popularity as an
optimization tool in engineering, social and physical
sciences, computer sciences, and operations research among
others.

Perhaps the first to use evolutionary techniques in fuzzy
clustering were Bezdek et al. [14]; they performed a hard c-
means taking the membership degrees and prototype
locations as the parameters for the GA. Klawonn and Keller
[15] argue that optimizing both the cluster prototypes and
the membership matrix (a c x n real-valued parameter set)
seems redundant, and as a result they optimize only the
cluster prototypes. They achieved promising results
partitioning datasets with solid rectangular clusters, and
spherical clusters (typical for FCM), but not so optimistic
results with shell-clustering. The genetically guided
algorithm (GGA) was proposed to ameliorate FCM's overt
dependence on initialization of prototypes [16]. A non-
fuzzy clustering implementation using a GA-based
optimization technique can also be found in [17], where
instead of coding the parameters for the location of cluster
prototypes, the investigators used a non-binary
representation for their genotypes. In the resulting
algorithm called the clustering genetic algorithm (CGA), the
phenotypes are represented as one-dimensional integer
arrays with n + 1 elements, the first n bits of the arrays
represent cluster labels (1,.., c) for each datum and the last
bit represents the number of clusters, c. The CGA, not only
optimized the structure of the partition, it also made no a
priori assumptions about the value of c. The only previous
work in robust clustering using GAs is the hard (and fuzzy)
implementation of LMS, called the C-LMedS (and Fuzzy C-
LMedS) [6]. The c-prototypes to be optimized are coded
and concatenated into a binary string, the fitness function is
arbitrarily chosen as the fourth-root of the inverse of the
LMS objective functional, and classical genetic operators



are used (although there is very little information provided
about the genetic selection procedure).

IV. THE GENETIC FuzzY LEAST TRIMMED SQUARES
CLUSTERING (GEN-FLTS) ALGORITHM

The family of feasible solution algorithms proposed by
Hawkins [11] all note that the subset of retained entities
giving rise to the exact optimum must satisfy the necessary
condition stated as - the criterion cannot be improved by
exchanging any of the currently trimmed entities for any of
the currently retained entities. In other words, the retained
set can be improved by populating it with good entities (and
at the same time jettisoning noisy entities), until no further
improvement is possible. GAs are tailor-made for such
optimization problems. This section describes the GA used
to optimize the construction of the retained set and the
trimmed set.

A. Representation

Instead of parameterizing the c-prototypes, a binary
representation similar to [17] is adopted. In our
representation, the data are assigned either to the retained set
or the trimmed set. The size of the trimmed set is not
predefined - in other words, h is unknown. If n is the
number of data points to be clustered, the Is in the binary
string of n-bits correspond to entities in the retained set, and
the Os correspond to entities in the trimmed set.

B. Fitness Evaluation
The strings produced in a particular population are

evaluated relative to each other. The fitness function is the
basis of this evaluation, and the objective of the GA is
always to maximize the fitness of its strongest strings,
thereby driving the process to a better solution. In our case,
the retained set is partitioned by a fuzzy clustering routine
(FCM) for a fixed value of c. The functional minimized by
FCM is given by,

c n
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where Uik is the membership of the datum k in cluster i, m
is the fuzzifier (1.2 or 2.0 in our experiments), Xk is the
datum representation of k in d-dimensions (a d-dimensional
vector), vi is the prototype representation of cluster i (in d-
dimensions) and I. II is the inner product norm. However, the
functional in (1) decreases as the size of the retained set gets
smaller. In our case, since we make no assumptions on the
amount of contamination present in the data (the size of the
trimmed set is not known a priori), if the fitness function is
considered to be some inverse function of (1), as in [6], then
the algorithm will be driven to find the smallest (or the
densest) regions of the data set, which may or may not
correspond to an actual cluster. Hence, we need a function
to compensate for the size of the retained set, of a form
shown in (2),

J Jm - hn.a (2)

where a is a suitably chosen scaling constant, and hn is
the size of the retained set (hn < n). The functional in (2) is
then normalized based on the maximum value in the given
population, so that the string with the maximum value of (2)
gets a fitness of zero. In other words, we convert the min(J)
problem to a max(J) problem where,

J= (Jmax -J) / Jmax (3)

The string with the smallest J value thus gets to be the
fittest string (fitness < 1.0). In case this smallest value in a
given population is negative, we scale up all the T values by
subtracting each of them by the smallest value.

C. Selection
The survival of the fittest ensures only the stronger

individuals pass on their genetic material to the next
generation. The average fitness of the new generation is
higher than the fitness of the old one. In our experiments,
the stochastic tournament selection technique [13]
performed better than roulette wheel sampling, deterministic
sampling, and remainder stochastic sampling. The sum of
fitnesses of the individuals selected by the stochastic
tournament selection was found to be consistently higher
than that of the other selection procedures. An elitist
strategy to retain the strongest individual for the next
generation was later adopted in our experiments.

D. Crossover and Mutation
A single-point crossover operator combines two selected

strings, at a randomly chosen crossover point. Depending
on the probability of crossover, Pc, a maximum of t/2
crossover operations are possible, where t is the size of the
population. Mutation is a bit-inversion operator carried out
after crossover, with a predefined probability, Pm. The three
operators - selection, crossover and mutation, generate a
new population of size t, to replace the old population. Each
string in the new population corresponds to a new retained
set-trimmed set combination.

E. GEN-FLTS: The Algorithm
An initial population of size t is created with random n-

bit binary strings. Data corresponding to unit locations in
the string are then passed on to the clustering routine, which
returns the functional value in (2). Strings are then
evaluated on the basis of their fitness values in (3); a pool of
size t is created that contains the fitter-than-usual strings,
using either the stochastic tournament selection or the elitist
tournament selection processes. A pair of strings from this
pool is then mated (crossover and mutation, depending on PC
and Pm respectively), and a new population is created. As
the fuzzy partition created by FCM depends heavily on the
initialization procedure used, we perform ten FCM partitions
every time and consider the average functional value over
the ten runs. The process of selection, crossover, mutation,
and creation is repeated for a fixed number of generations,
usually a function of t.



V. SIMULATIONS

The proposed GEN-FLTS algorithm is tested on three
different data sets. For the purpose of illustration,
classification results on a simple two-cluster synthetic data
set are first presented. The other data sets used are the birth-
death data earlier analyzed in [12] and the Wisconsin breast
cancer data, previously presented in [17].

A. Example-i. Synthetic Two-Cluster Data

This synthetic dataset shown in fig. 1 consists of two
Gaussian clusters each comprised of 35 two-dimensional
vectors with means and variance,

solution stabilize for the first 10 generations (the first 10
generations are hence omitted from the fig. 2 and 3).
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Fig. 1. Two-cluster data set (n = 100, h = 70, c = 2)

For all the simulations with this data set, we chose
population size, t = n. The GEN-FLTS algorithm was run

for a fixed number of generations (also equal to n). The data
was so labeled that the first 70 bits of the string
corresponded to the data in the two Gaussian clusters, and
the last 30 positions were the noise datum. A visual
examination of the best string after every generation was

enough to confirm the efficacy of the proposed technique.
The simulations were carried out for a range of
combinations of PC and Pm, and it was seen that the
procedure quickly converges to the optimum solution for PC
= 0.9 and Pm = 0.01. However, choosing a correct value of
a which compensates for reduction in the size of the retained
set, was something we expected to learn from this
simulation. We performed clustering for a = 1, 10, 50 and
100, and found that the solution only converges for a = 50
after about 50 generations (shown in fig. 2). If the whole
dataset is clustered using FCM (n = 100, c = 2, m = 2.0), Jm
= 5177.50 and Jmln = 51.775 - 50. This provides us with a

heuristic to chose the value of a, (this was later confirmed
by the succeeding simulations). The maximum, minimum
and the average values of J for Pc = 0.9 and Pm = 0.01, over

100 generations, at a= 50, are plotted in fig. 3. Because of
random initialization of the population strings, we let the
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Fig. 3. Plot of Maximum, Minimum and Average value of the functional J
vs. Generations for a = 50.0, P, = 0.9, P, = 0.01. (Note that smaller the

value ofJ, better the fitness of the string)

B. Example-2: Birth-Death Rate Data

The birth-death data analyzed in [12] is revisited here.
The data is a collection of birth and death rates of 70
countries and is shown as a scatter plot in fig. 4. The three
outliers are Denmark (death rate exceeding birth rate),
Ghana and Ivory Coast (abnormally high birth rates).
Unlike the analysis in [12], we do not assume h = 67. The
parameters for the algorithm are, a = 10, t = n and the
algorithm is run for a maximum number of generations =

2*n (= 140). The strings are processed by an FCM routine
(with m = 1.2) for c = 2 and c = 4. The two choices of c

(which obviously correspond to either two clusters separated
on the basis of birth rates, or further classified on their death
rates into four clusters) does not seem to affect the
convergence of the strings and the simulation converges

very quickly sometimes within 20 generations. When the
noisy data set (n 70) is clustered with FCM, we get Jm =

3180.33 and Jmln 45.5; we hence tried using a = 50 for
this set of simulations as well. Selecting a value for a based
on Jmln seems sound because a = 50 is the only test case that
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converged to the exact solution (correctly identified the
three outliers).
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Fig. 4. The birth-death rate data set (n = 70, h = 67, c = 2 or 4)
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Fig. 5. Plot of Maximum, Minimum and Average value of the functional J
vs. Generations for a = 50, P, = 0.9, Pm = 0.001, c = 2

C. Example-3: Wisconsin Breast Cancer Data

This database in available at the UCI Machine Learning
Repository [18] and has been analyzed as a two-class
problem in [17]. Each entity is defined by nine attributes
(ranks in the range of 1-10) and an associated class label
(benign or malignant). The two classes are known to be
linearly inseparable. Hence, the smaller class (malignant
data) can safely be assumed to be noise among datum
corresponding to the larger class (benign entities). There are

699 total cases out of which 16 have a single missing
feature. These cases were removed and the remaining 683
cases (444 benign and 239 malignant - 3500 noise) in nine
dimensions constituted the input data for this problem.
Chakravarthy and Ghosh [19] report uncovering three
significant clusters using radial basis functions for
classification. Kothari and Pitts [20] found two clusters with
a 94.28 accuracy of classification. This was followed by
the CGA [17] reporting 95.75% accuracy in finding the two
classes. In this work, we use a range of cluster values c, to
test the classification accuracy in detecting the 239
malignant cases (classified as noise). The best results are

obtained for c = 5, with 236 out of 239 malignant cases

uncovered which translated to an accuracy of 98.75%. This

however, seems to be heavily dependent on the choice of (1)
P, and Pm, (2) the selection criteria, and (3) the number of
clusters uncovered in the benign set, c (retained set), but not
so much on the choice of a (as long as a - Jm n, = 10 in this
case). The classification accuracy falls for values of Pc <
0.8 and Pm > 0.01. It is also seen that for a population size
of t = 300 (maximum number of generations allowed = 300),
the stochastic tournament selection scheme fails to retain the
fittest string across generations, forcing us to use an elitist
strategy that preserves the fittest individual. Another
tournament selection strategy that preserves half (or less
than half) of a generation is also found to work well
although the implementation is considerably slower.

VI. CONCLUSIONS

The fuzzy-LTS (FLTS) clustering scheme, built on the
high breakdown LTS estimator, is known to be extremely
robust, although the feasible solution algorithm is one of the
only two known implementations of the LTS estimator that
guarantees a global solution. The FLTS feasible solution
algorithm implementation in [12] is computationally
expensive. The evaluation of the trimmed and retained set
(by pairwise swapping of entities between the sets) is a
classic optimization problem, and is perfect fodder for a
genetic algorithm. An elegant implementation of the FLTS
feasible solution algorithm using a genetic algorithm for
optimization has been presented in this paper, and results of
clustering on three datasets of varying degrees of complexity
have been presented. These results have been compared to
those reported on the same datasets in literature and have
been shown to be superior in many cases.

Although quite promising, there are a lot of avenues
open for improvement. A better fitness functional needs to
be investigated, a function perhaps on the lines of s(i)
proposed in [17]. The sensitivity of the value of a on the
overall fitness of an individual also needs to be studied.
Lastly, as an addendum to the algorithm presented in this
paper, we are working on a real-time robust clustering
procedure to simultaneously ascertain the correct number of
the number of clusters.
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