
Chapter 6: Fatigue Failure (Review) 

I) Sec 6-17 Road Maps and Important Equations 

II) Loading 

Simple loading 

- Axial loading 

- Torsion 

- Bending 

Combined Loading 

III) Characterizing Stress (Fig. 6-23d, e, f) 

Completely reversed stress 

Repeated stress 

Fluctuating stress 

IV) Endurance Limit 𝑺𝒆
′  (Eq. 6-8) 

Correction Factors: 𝒌𝒂 𝒌𝒃 𝒌𝒄 𝒌𝒅 𝒌𝒆 (Sec. 6-9) 

Corrected Endurance Limit 𝑺𝒆 (Sec. 6-18) 

V) Equivalent Stresses 

Theoretical stress concentration factors: 𝒌𝒕 𝒌𝒕𝒔 (A-15) 

North sensitivity: 𝒒 𝒒𝒔𝒉𝒆𝒂𝒓 (Sec. 6-10) 

Fatigue stress concentration factors: 𝒌𝒇 𝒌𝒇𝒔 (Eq. 6-32) 

Von Mises Stress for alternating comp. (Eq. 6-55) 

Von Mises Stress for mid-range comp. (Eq. 6-56) 

VI) 𝝈𝒎
′ = 𝟎 (𝑺𝒆𝒄. 𝟔 − 𝟖) 

If 𝝈𝒂
′ ≤ 𝑺𝒆 ; infinite life and factor of safety is: 

𝒏 =
𝑺𝒆

𝝈𝒂
′   

Else finite life and number of stress cycles 𝑵 is by (Eq. 6-16) where 𝝈𝒓𝒆𝒗 is set to 𝝈𝒂
′  

 

𝝈𝒎
′ > 𝟎 (𝑺𝒆𝒄. 𝟔 − 𝟏𝟐) 

Decide what to use, Soderberg? Modified Goodman? Gerber? ASME Elliptic? 

(Eq. 6-45 to Eq. 6-48) for factor of safety 𝒏. 

If 𝒏 ≥ 𝟏, finite life. 

Else finite life and 𝑵 is by (Eq. 6-16) but 𝝈𝒓𝒆𝒗 is per Step 4 on pp. 340. 



 

Figure 1: Fluctuating Stress 

 

Figure 2: Repeated Stress 

 

Figure 3: Completely Reversed Stress 



Example (1): A low carbon steel stock is lathe-turned to have a diameter of 1” The stock has 𝑆𝑢𝑡 =

100 𝑘𝑠𝑖, 𝑆𝑦 = 76 𝑘𝑠𝑖. Axial load varies −10~50 𝑘𝑖𝑝𝑠. Fatigue stress concentration factor is 𝐾𝑓 = 1.3. 

Find factor of safety 𝑛 if infinite life, or number of cycles 𝑁 if infinite life. Assume room temperature and 

99% reliability. 

Case: Simple loading, fluctuating stress 

𝐹𝑚𝑖𝑛 = −10 𝑘𝑖𝑝𝑠 

𝐹𝑚𝑎𝑥 = 50 𝑘𝑖𝑝𝑠 

𝜎𝑚𝑖𝑛 =
𝑘𝑓𝐹𝑚𝑖𝑛

𝐴
= −16.552 𝑘𝑠𝑖 

𝜎𝑚𝑎𝑥 =
𝑘𝑓𝐹𝑚𝑎𝑥

𝐴
= 82.761 𝑘𝑠𝑖 

𝜎𝑚 = 33.105 𝑘𝑠𝑖 

𝜎𝑎 = 49.657 𝑘𝑠𝑖 

𝑆𝑒
′ = 0.5𝑆𝑢𝑡 = 50 𝑘𝑠𝑖 

𝑘𝑎 = 0.797 

𝑘𝑏 = 1 

𝑘𝑐 = 0.85 

𝑘𝑑 = 1 

𝑘𝑒 = 0.814 

𝑆𝑒 = 27.572 𝑘𝑠𝑖 

Criterion Equation 𝑛 

Soderberg 6-45 0.45 

Modified Goodman 6-46 0.47 

Gerber 6-47 0.54 

ASME-elliptic 6-48 0.54 

∴ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑖𝑓𝑒 

𝑓 = 0.845 

𝑎 = 258.97 𝑘𝑠𝑖 

𝑏 = −0.16213 

Criterion 𝜎𝑟𝑒𝑣, ksi 𝑁 

Soderberg 87.981 779 

Modified Goodman 74.231 2223 

Gerber 55.769 12974 

ASME-elliptic 55.166 13874 

 

(see pp. 314 for procedure) 

 

 



Chapter 7: Shafts and Shaft Components 

Part 1 

(7-1): Introduction 

(7-2): Shaft Materials 

(7-4): Design for Stress 

Part 2 

(7-5): Deflection Calculations 

(7-6): Critical Speeds for Shafts 

Part 3 

(7-3): Shaft Layout 

(7-7): Misc. Shaft Components 

(7-8): Limits and Fits 

 

(7-1): Introduction 

Shaft Loading 

• Power transmission shafting is to transmit power/motion from an input source (e.g. motors, 

engines) to an output work site. 

• Shafts are supported by bearings, and loaded torsionally, transversely, and/or axially as the 

machine operates. 

• Shafts can be solid or hollow, and are often stepped. 

• They are widely required by virtually all types of machinery and mechanical systems. 

New Shaft Design Procedure 

• Conceptual sketch for shaft layout, based on functional spec. and system config (7-3)  

• Shaft materials (7-2) 

• An appropriate design factor 

• Support reactions, bending moment diagrams (in tow planes, as well as resultant/combined), 

and torque diagram, critical cross-sections. 

• Shaft diameters based on strength requirement (7-4) 

• Slopes and Deflections at locations of interest in order to select bearings, couplings, etc.: or to 

ensure proper functioning of bearings, couplings, gears, etc. (7-5) 

• Critical Speeds and other vibration characteristics (7-6)  

Calculations Needed 

• Shaft diameters based on strength requirement > by ANSI/ASME standard B106-1M-1985 

“Design for Transmission Shafting”, or by other practices. 

• Slopes and deflections > simplified / approximate geometry, numerical, graphical, FEA; 

• Critical speed and other vibration characteristics > specific deflections of shaft. 

 (7-2): Shaft Materials 

• Requiring generally/typically high strength and high modulus of elasticity 

• Typical selection: low carbon steel (cold-drawn or hot-rolled) such as ANSI 1020-1050 steels 

• If higher strength is required, alloy steels plus heat treatment such as ANSI 1340-50, 4140, 4340, 

5140, 8650. 



• Cold-drawn steel is used for diameters under 3 inches; machining is not needed where there is 

no fitting with other components. 

• Hot-rolled steels should be machined all over. 

• Stainless steels when environment is corrosive, for example. 

Equations for the Fatigue Failure Criteria 

(6-40) Soderbeg 

(6-41) Modified Goodman 

(6-42) Gerber 

(6-43) ASME-Elliptic 

For factor of safety: 

Replace 𝑆𝑎  with 𝑛𝜎𝑎 

Replace 𝑆𝑚  with 𝑛𝜎𝑚 

Resulting in Equations (6 − 45) ~ (6 − 48) 

For 𝜎𝑟𝑒𝑣  (which is needed for number of cycles 𝑁): 

Replace 𝑆𝑎  with 𝜎𝑎 

Replace 𝑆𝑚  with 𝜎𝑚 

Replace 𝑆𝑒 with 𝜎𝑟𝑒𝑣  

 and solving for 𝜎𝑟𝑒𝑣  

 

Modified-Goodman line – too dangerous, goes directly to 𝑆𝑢𝑡  

Soderberg – too conservative 

Most of the time, we’ll be using ASME-elliptic line, not  

Example (2): A non-rotating shaft is lathe-turned to have a 1”-diameter. The shaft is subject to a torque 

that varies 0~𝑇𝑚𝑎𝑥(𝑖𝑛 𝑙𝑏 − 𝑖𝑛). Determine 𝑇𝑚𝑎𝑥 such that the shaft will have an infinite life with a 

factor of safety of 1.8. The shaft’s material has 𝑆𝑢𝑡 = 100 𝑘𝑠𝑖 and 𝑆𝑦 = 76 𝑘𝑠𝑖. Assume room 

temperature and 99% reliability. Fatigue stress concentration factor is 𝑘𝑓𝑠 = 1.6. 



Answer: Based on simple loading and ASME-elliptic criterion, 𝑇𝑚𝑎𝑥 ≈ 2480 𝑙𝑏 − 𝑖𝑛  

Design Factor vs. Factor of Safety (not from the text) 

• Design factor is to indicate the level of overload that the part/component is required/intended to 

withstand 

• Safety factor indicated how much overload the designed part will actually be able to withstand. 

• Design factor is chosen, generally in advance and often set by regulatory code or an industry’s 

general practice. 

• Safety factor is obtained from design calculations. 

The following are some recommended values of design factor based on strength considerations. They 

are valid for general applications. 

• 1.25 - 1.5: for reliable materials under controlled conditions subjected to loads and stresses known 

with certainty; 

• 1.5 – 2: for well-known materials under reasonably constant environmental conditions subjected to 

known loads and stresses; 

• 2 – 2.5: for average materials subjected to known loads and stresses; 

• 2.5 – 3: for less well-known materials under average conditions of load, stress and environment; 

• 3 – 4: for untried materials under average conditions of load, stress and environment; 

• 3 – 4: for well-known materials under uncertain conditions of load, stress and environment. 

Courtesy of Mechanical Design, 2nd Edition, P. Childs, Elsevier Ltd. (p. 95) 

(7-4): Shaft Design for Stress 
Loads on a Shaft 

• The primary function of a shaft is to transmit torque, typically through only a portion of the shaft; 

• Due to the means of torque transmission, shafts are subject to transverse loads in two planes such 

that the shear and bending moment diagrams are needed in two planes. 

Shaft Stress from Fatigue Perspective 

• In 1985, ASME published ANSI/ASME Standard B106.1M-1985 “Design for Transmission Shafting”. 

However, it was withdrawn in 1994. 

o Little or no axial load 

o Fully reversed bending and steady (or constant) torsion 

• General case: Fluctuating bending and fluctuating torsion 

o As considered by the text 

Fully reversed bending and steady torsion is in fact special cases of the general one. In reality, the 

general case is not as common as the typical case of fully reversed bending and steady torsion.  

Critical Locations 

Stresses are evaluated at the critical locations. Look or where: 

• Bending moment is large 

• There is torque 

• There is stress concentration 



Factor of Safety or Required Shaft Diameter – General Case 

Generally, 𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 𝜎𝑚  and 𝜎𝑎 

And 𝜏𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 𝜏𝑚  and 𝜏𝑎  

Assuming negligible axial load, due to fluctuating bending and fluctuating torsion, the amplitude and 

mean stresses are given by (Eq. 7-1) and (Eq. 7-2): 

 

For solid shaft, stresses can be written in terms of 𝑑, the diameter, see (Eq. 7-3) and (Eq. 7-4): 

 

Next, the equivalent (von Mises) amplitude and mean stresses are determined, resulting in (Eq. 7-5) and 

(Eq. 7-6): 

 

Now, define terms A and B (pp. 361): 

 

Finally, the pair of equations determining factor of safety and diameter, are (DE stands for distortion 

energy): 

• For DE-Goodman: (Eq. 7-7), (Eq. 7-8) 



 

• For DE-Gerber: (Eq. 7-9), (Eq-7-10) 

 

• For DE-ASME-Elliptic: (Eq. 7-11), (Eq. 7-12) 

 

• For DE-Soderberg: (Eq. 7-13), (Eq. 7-14) 



 
After the above fatigue-based calculations, it is customary to check against static failure. 

• The factor of safety against yielding in the first loading cycle is (Eq. 7-16): 

 

Where the equivalent maximum stress is 𝜎𝑚𝑎𝑥
′  by (Eq. 7-15) 

 

• A quick but conservative check against yielding in the first loading cycle is, see the paragraph 

following (Eq. 7-16): 

𝑛𝑦 =
𝑆𝑦

𝜎𝑎
′ + 𝜎𝑚

′  

Factor of Safety or Required Shaft Diameter – Typical Cases 

The typical case is defined as, fully reversed bending and steady (or constant) torsion. Therefore, setting 

𝑀𝑚 = 0 and 𝑇𝑎 = 0 in above equations will result in what are needed.  

ASME-Elliptic: 

Setting 𝑀𝑚 = 0 and 𝑇𝑎 = 0, (Eq. 7-5) and (Eq. 7-6) and the A and B terms become: 

𝜎𝑎
′ = √𝜎𝑎

2 = √(𝐾𝑓

32𝑀𝑎

𝑛𝑑3
)

2

=
𝐾𝑓32𝑀𝑎

𝑛𝑑3
 



𝜎𝑚
′ =

√3𝐾𝑓𝑠16𝑇𝑚

𝑛𝑑3
 

𝐴 = 2𝐾𝑓𝑀𝑎  

𝐵 = √3𝐾𝑓𝑠𝑇𝑚 

(Eq. 7-11) and (Eq. 7-12) become, 

𝑛 =
1

√(
𝜎𝑎

′

𝑆𝑒
)

2

+ (
𝜎𝑚

′

𝑆𝑦
)

2
=

𝑛𝑑3
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1

√(
𝐴
𝑆𝑒

)
2
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𝐵
𝑆𝑦

)
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𝑑 = √
16

𝑛𝑑3
√(

𝐴

𝑆𝑒
)

2

+ (
𝐵

𝑆𝑦
)

23

 

And (Eq. 7-15) simplified to: 

𝜎𝑚𝑎𝑥
′ =

16

𝑛𝑑3
 √𝐴2 + 𝐵2 

Estimating 𝑺𝒆 

• Shaft design equations involve 𝑆𝑒 which in turn involves five modification factors. 

• Therefore, it requires knowing the material, its surface condition, the size and geometry (stress 

raisers), and the level of reliability. 

• Material and surface condition can be decided before the analysis. 

• The sizes and geometry are however unknown in the preliminary stage of design.  

• For size factor, a diameter may be determined from safety against yielding, or use 0.9 as the 

estimate of size factor. 

• Reliability is typically set at 90%. 

• Stress concentration factors 𝐾𝑡  and 𝐾𝑡𝑠 for first iteration are given in (Table 7-1, pp. 365) 

 

After that (For values not in table - second round), we would have to use (A-15) 



Example 7-1 

Loading and design details are given. We are asked to, (1) determine 𝑛 using DE-Goodman, DE-Gerber, 

DE-ASME, and DE-Soderberg; and (2) check against yielding failure by evaluating 𝑛𝑦  

Example 7-2 

Countershaft AB carries two spur gears at G and J; is supported by two bearings at A and B. Its layout is 

shown in Figure 7-10. Gear loads are 

𝑊23
𝑟 = 197 𝑙𝑏 

𝑊23
𝑡 = 540 𝑙𝑏 

𝑊54
𝑟 = 885 𝑙𝑏 

𝑊54
𝑡 = 2431 𝑙𝑏 

 

We are to select appropriate materials and/or diameters at various cross sections, based on fatigue with 

infinite life. Design factor is 1.5. 

The text starts with cross-section 𝐼 where there are torque and bending moment, and a shoulder for 

stress concentration. Generous shoulder fillet (r/d = 0.1) is assumed DE-Goodman is used to determine 

diameters. 

Example  

A critical cross-section of a shat is subject to a combined bending moment of 63-lb-in and a torque of 74 

lb-in. The cross-section is the seat of a rolling-element bearing, and sharp shoulder fillet is expected. 

Shaft material is SAE 1040 CD. Estimate the shaft’s diameter at the cross-section for infinite life with 

𝑛? = 1.5. Base calculations on ASME-Elliptic criterion. Operating conditions are typical. 

 



Solution 

(1) First iteration 

𝑀𝑎 = 63 𝑙𝑏 − 𝑖𝑛 

𝑇𝑚 = 74 𝑙𝑏 − 𝑖𝑛 

𝑆𝑢𝑡 = 85 𝑘𝑠𝑖 

𝑆𝑦 = 71 𝑘𝑠𝑖 

𝑆𝑒
′ = 42.5 𝑘𝑠𝑖 

𝑘𝑎 = 2.7(85)−0.265 = 0.832 
𝑘𝑏 = 0.9 

𝑘𝑐 = 1 

𝑘𝑑 = 1 

𝑘𝑒 = 0.897 

𝑆𝑒 = 28.55 𝑘𝑠𝑖 

𝑘𝑡 = 2.7 

𝑘𝑡𝑠 = 2.2 

Set 𝑞 = 𝑞𝑠ℎ𝑒𝑎𝑟 = 1, so that 𝐾𝑓 = 𝐾𝑡 = 2.7 and 𝐾𝑓𝑠 = 𝐾𝑡𝑠 = 2.2, and  

𝐴 = 2𝐾𝑓𝑀𝑎 = 340.2 𝑙𝑏 − 𝑖𝑛 

𝐵 = √3𝐾𝑓𝑠𝑇𝑚 = 282.0 𝑙𝑏 − 𝑖𝑛 

𝑑 = √
16𝑛

𝜋
√(

𝐴

𝑆𝑒
)

2

+ (
𝐵

𝑆𝑦
)

23

= 0.458" 

Round off 𝑑 = 12 𝑚𝑚 = 0.472" 

(2) Second iteration 

𝑀𝑎 = 63 𝑙𝑏 − 𝑖𝑛 

𝑇𝑚 = 74 𝑙𝑏 − 𝑖𝑛 

𝑆𝑢𝑡 = 85 𝑘𝑠𝑖 

𝑆𝑦 = 71 𝑘𝑠𝑖 

𝑆𝑒
′ = 42.5 𝑘𝑠𝑖 

𝑘𝑎 = 2.7(85)−0.265 = 0.832 

𝑘𝑏 = 0.879(0.472)−0.107 = 0.953 

𝑘𝑐 = 1 

𝑘𝑑 = 1 

𝑘𝑒 = 0.897 

𝑆𝑒 = 30.23 𝑘𝑠𝑖 

𝑟

𝑑
= 0.02, then 𝑟 = 0.009” , and 𝑞 = 0.57, 𝑞𝑠ℎ𝑒𝑎𝑟 = 0.6, so that 𝐾𝑓 = 1.91 and𝐾𝑓𝑠 = 1.66 

Finally, 

𝐴 = 2𝐾𝑓𝑀𝑎 = 240.7 𝑙𝑏 − 𝑖𝑛 

𝐵 = √3𝐾𝑓𝑠𝑇𝑚 = 212.8 𝑙𝑏 − 𝑖𝑛 



𝑛 = (
𝜋𝑑3

16
)(

1

√(
𝐴
𝑆𝑒

)
2

+ (
𝐵
𝑆𝑦

)
2

= 2.4 

𝜎𝑚𝑎𝑥
′ =

16

𝜋𝑑3
√𝐴2 + 𝐵2 = 15.56 𝑘𝑠𝑖 

𝑛𝑦 =
𝑆𝑦

𝜎𝑚𝑎𝑥
′ = 4.6 

Therefore, 𝑑 = 12 𝑚𝑚 or 0.472" is sufficient, giving a factor of safety against fatigue at 2.4 and a factor 

of safety against yielding at 4.6. 

(7-5) Deflection Consideration 

Why deflection considerations? 

• Shaft deflects transversely like a beam. 

• Shaft also has torsional deflection like a torsion bar. 

• Excessive deflections affect the proper functioning of gears and bearings, for example. Permissible 

slopes and transverse deflections are listed in Table 7-2. 

• To minimize deflections, keep shaft short, and avoid cantilever or overhang. 

How to Determine Beam Deflection 

• Analytically 

Closed-form solutions (4-4) 

Superposition (4-5) 

Singularity Functions (4-6) 

Strain Energy (4-7) 

Castigliano’s 2nd Theorem (4-8) 

Statically indeterminate beams (4-10) 

….. 

and so on. 

Limitations: effective when EI=const. (but a stepped shaft does not have constant I) 

 

• Numerical integration 

Simplified geometry; for example, small shoulders (diameter-wise and length-wise), fillets, keyways, 

notches, etc., can be omitted. 

May be tedious. 

 

 

 

 

 

 

 

 

 

 



Example 

A stepped shaft is shown below, which is supported by ball bearings at A and F. Determine its maximum 

(in magnitude) lateral deflection, and the slopes at A and F. Use 𝐸 = 30 𝑀𝑝𝑠𝑖. 

 

 
 

1) Plot bending moment 𝑀(𝑥) 

 

2) Plot 𝑀/𝑑4   

∴
𝑀

𝐸𝐼
=

(
64
𝜋𝐸

) 𝑀

𝑑4
= 𝑘𝑀/𝑑4 

 

3) Integrate  
𝑀

𝑑4
=> "𝑠𝑙𝑜𝑝𝑒" 

 

4) Integrate "𝑠𝑙𝑜𝑝𝑒" 
𝑀

𝑑4
=> "𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛" 

 

5) Baseline 

 

6) Deflection 

 

7) Slope 

 



 
 

 
 

 



 
 

 

 
 

To obtain deflection curve of step (6), at any cross-section, subtract value obtained in step (4) from 

baseline value. 

For example, at B, step (4) has 5107.0;  

baseline value is 26,123; 

∴ 21,106 = 26,123 − 5107.0 will be used in step (6) 



 

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑚 =
117,552 

36"
 (

𝑙𝑏

𝑖𝑛
) = 3265.3 𝑙𝑏/𝑖𝑛2  

 

7) Subtract the slope of the baseline from value obtained in step (3) 

 
 

 

 

117,552 lb/in 



𝑘 =
64

𝜋𝐸
= 0.6791 ∗ 10−6 (

𝑖𝑛2

𝑙𝑏
) 

∴ 𝛿𝑚𝑎𝑥 = (26,113
𝑙𝑏

𝑖𝑛
) (0.679 ∗ 10−6

𝑖𝑛2

𝑙𝑏
) 

= 0.0177 𝑖𝑛 ↓ 

𝜃𝐴 = (3265.3
𝑙𝑏

𝑖𝑛2
) (0.679 ∗ 10−6

𝑖𝑛2

𝑙𝑏
) 

= 0.00222 𝑟𝑎𝑑 ↓ 𝑇𝑂𝐷𝑂 𝑐𝑢𝑟𝑣𝑒 

𝜃𝐹 = 0.00181 𝑟𝑎𝑑 ↑ 𝑇𝑂𝐷𝑂 𝑐𝑢𝑟𝑣𝑒 

 

Comments regarding the numerical integration method: 

Applicable to simple supports as outlined; 

Fixed supports? 

More divisions for better accuracy; 

Vertical plane, horizontal plane, and vector sum. 

 

An exact numerical method for determining the bending deflection and slope of stepped shafts, C.R. 

Mischke, in Advanced in reliability and stress analysis, ASME winter annual meeting, December 1978 

 

Mechanical Design of Machine Elements and Machines, J.A. Collins, John Wiley & Sons, 2003 (Sec. 8.5) 

 

Example (7-3) 

By the end of Example 7-2, diameters 𝐷1 through 𝐷7 were determined. The layout is shown below 

(Figure 7-10). Here we are to evaluate the slopes and deflections at key locations. 

 

The text uses “Beam 2D Stress Analysis” (a software with FEA-core) for the evaluation. 

 

The results are verified by the above numerical integration method implemented with MATLAB. 

 

 



Diameter 𝐷1 = 𝐷7 𝐷2 = 𝐷6 𝐷3 = 𝐷5 𝐷4 

Example 7-2 1.0 1.4 1.625 2.0 

 

Point of Interest Example 7-3 Numerical Integration 

Slope, left bearing (A) 0.000501 rad 0.000507 rad 

Slope, right bearing (B) 0.001095 rad 0.001090 rad 

Slope , left gear (G) 0.000414 rad 0.000416 rad 

Slope, right gear (J) 0.000426 rad 0.000423 rad 

Deflection, left gear (G) 0.0009155 in 0.0009201 in 

Deflection, right gear (J) 0.0017567 in 0.0017691 in 

 

How to Determine Torsional (Angular) Deflection 

• Important for shafts carrying components that are required to function in sync with each other; for 

example, cam shafts; 

• For a stepped shaft with individual cylinder length 𝑙𝑖, torque 𝑇𝑖  and material 𝐺𝑖 the angular 

deflection is, 

 
7-6 Critical Speeds for Shafts 

It is about applying knowledge of vibrations and deflections of shafts in the design of shafts. 

 

 

 



 

 
 

 

The organization of this section: 

(Eq. 7-22): Exact solution of critical speed for a simply supported shaft with uniform cross section and 

material 

 
(eq. 7-23): Rayleigh’s method to estimate critical speed. 

 
(Eq. 7-24): Through (Eq. 7-32) Derivation of Dunkerley’s method to estimate critical speed. 

(see pp. 376-377) 



Example (7-5) 

Notes: (a) Rayleigh’s and Dunkerley’s methods only give rise to estimates; (b) They yield the upper and 

lower bound solutions, respectively. That is, 𝜔1(𝐷𝑢𝑛𝑘𝑒𝑟𝑙𝑒𝑦) < 𝜔1 < 𝜔1(𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ); (c) The methods and 

their derivations fall under vibrations/dynamics of continuum by energy method. 

 

Critical Speeds 

• Critical speeds refer to speeds at which the shaft becomes unstable, such that deflections (due to 

bending or torsion) increase without bound. 

• A critical speed corresponds to the fundamental natural frequency of the shaft in a particular 

vibration mode. 

• Three shaft vibration modes are to be concerned: lateral, vibration, shaft whirling and torsional 

vibration. 

• Critical speeds for lateral vibration and shaft whirling are identical. 

• Numerically speaking, two critical speeds can be determined, one for lateral vibration or shaft 

whirling, and another for torsional vibration. 

• Focus will be the critical speed for lateral vibration or shaft whirling. Regarding critical speed for 

torsional vibration, one can reference “rotor dynamics” and the transfer matrix method. 

• If the critical speed is 𝜔1, it is required that the operating speed 𝜔 be: 

 

If the shaft is rigid (shafts in heavy machinery): 
𝜔

𝜔1
≥ 3 

 

If the shaft is flexible (shafts that are long with small-diameters): 
𝜔

𝜔1
≤ 1/3 

 

The text recommends:  
𝜔

𝜔1
≤ 1/2 

 

Exact solution, (Eq. 7-22) 

 
Simply supported, uniform cross-section and material. 

 
 

 



Rayleigh’s Method for Critical Speed, (Eq. 7-23) 

Shaft is considered massless and flexible; Components such as gears, pulleys, flywheels, and so on, are 

treated as lumped masses; The weight of the shaft, if significant, will be lumped as a mass or masses. 

 

 

 
Textbook equation should be updated to include the following absolute symbols: 

𝜔1 = √𝑔
∑ 𝑤𝑖|𝑦𝑖|

∑ 𝑤𝑖𝑦𝑖
2  

Where: 

𝑤𝑖 = weight of mass 𝑖 

𝑤𝑖  should be treated as a force with a magnitude equation the weight of mass 𝑖; 

 

Forces 𝑤𝑖  (𝑖 = 1, … ) should be applied in such a way that the deflection curve resembles the 

fundamental mode shape of lateral vibration. 

 

𝑦𝑖 = lateral deflection at location 𝑖 (where 𝑤𝑖  is applied) and caused by all forces. 

 

Dunkerley’s Method for Critical Speed, (Eq. 7-32) 

The model for Dunkerley’s method is the same as that for Rayleigh’s. 

 

and 𝜔𝑖𝑖 = √
𝑔

|𝑦𝑖𝑖|
 

Where 𝑦𝑖𝑖 is the lateral deflection at location 𝑖 and caused by 𝑤𝑖  only. 𝜔𝑖𝑖  represents the critical speed 

with only 𝑤𝑖  on the shaft. 

 



Deflections 𝒚𝒊 𝒚𝒊𝒋  and 𝜹𝒊𝒋 

𝑦𝑖𝑗 is the deflection at location 𝑖 and due to a load applied at location 𝑗. When the load at location 𝑗 is a 

unit load, then 𝑦𝑖𝑗 is denoted by 𝛿𝑖𝑗. 𝛿𝑖𝑗 is also known as the influence coefficient. 

𝑦𝑖 is the deflection at location 𝑖 and caused by all applied loads. Therefore, 

𝑦𝑖 = ∑ 𝑦𝑖𝑗

𝑗

 

unit load, then Type equation here.unit load, then 𝑦𝑖𝑗 is denoted at 𝛿𝑖𝑗. 𝛿𝑖𝑗Problem Solving 

Closed-form solutions (Sec. 4-4 and Table A-9). 

Superposition (Section 4-5); 

Indexes 𝑖 and 𝑗each runs 1 through the number of masses/forces; 

𝑦𝑖𝑗 are signed numbers; 

Example: 

Evaluate the range of the shaft’s critical speed corresponding to its lateral vibration, in terms of 𝐸𝐼 

where 𝐸𝐼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

𝑖 = 1,2 

𝑗 = 1,2 

 

 

 

 



From previous example: 

{
Table A − 9

Case 10
 

𝑦12 = 𝑦𝐴𝐵|𝑥=0.45 =
(−700)(0.225)(0.45)(0.92 − 0452)

(6 ∗ 0.9)𝐸𝐼
 

= −
7.9738

𝐸𝐼
 

𝑦22 = 𝑦𝑡 = −
(−700)(0.225)2(0.9 + 0.225)

3𝐸𝐼
=

13.289

𝐸𝐼
 

{
Table A − 9

Case 5
 

𝑦11 = 𝑦𝑚𝑎𝑥 = −
(900)(0.9)3

48𝐸𝐼
= −

(13.669)

𝐸𝐼
 

𝑦𝐴𝐵 =
𝐹𝑥

48𝐸𝐼
(4𝑥2 − 3𝑙2) 

𝜃𝐴𝐵 =
𝑑𝑌𝐴𝐵

𝑑𝑥 
=

𝐹

16𝐸𝐼
(4𝑥2 − 𝑙2)     ;      0 ≤ 𝑥 ≤

𝑙

2
 

𝜃𝐴 =
(900)(−0.92)

16𝐸𝐼
= −

45.563

𝐸𝐼
 

𝑦21 = (−𝜃𝐴)(0.225) =
10.252

𝐸𝐼
 

Or: 

𝑦21 = (𝜃𝐶)(0.225) =
10.252

𝐸𝐼
 

∴ 𝑦1 = 𝑦11 + 𝑦12 = −
21.643

𝐸𝐼
 

𝑦2 = 𝑦21 + 𝑦22 =
23.541

𝐸𝐼
 

Rayleigh’s Method: 

∴ 𝜔1 = √
𝑔(∑ 𝑤𝑖|𝑦𝑖|)

(∑ 𝑤𝑖𝑦𝑖
2

)
 

= √(9.81)
(900) (

21.643
𝐸𝐼

) + (700) (
23.541

𝐸𝐼
)

(900) (
21.643

𝐸𝐼
)

2

+ (700) (
23.541

𝐸𝐼
)

2  

= 0.66011√𝐸𝐼 

Dunkerley’s Method: 

𝑦11 = −
13.669

𝐸𝐼
 

𝑦22 =
13.289

𝐸𝐼
 

𝜔11
2 =

𝑔

|𝑦11|
= 0.71768 𝐸𝐼 



𝜔22
2 =

𝑔

|𝑦22|
= 0.73820 𝐸𝐼 

∴
1

𝜔1
2 =

1

𝜔11
2 +

1

𝜔22
2 =

2.7480

𝐸𝐼
 

𝜔1 = √
𝐸𝐼

2.7480
= 0.60324√𝐸𝐼 

Take 𝐸 = 200 𝐺𝑃𝑎, 𝑑 = 25 𝑚𝑚 

√𝐸𝐼 = 1261.6 (𝑁 ∙ 𝑚2) 

∴  𝜔1(𝐷𝑢𝑛𝑘𝑒𝑟𝑙𝑒𝑦) = (0.60324)(1261.6) 

= 761.0 𝑟𝑎𝑑/𝑠 

𝑂𝑟 𝑛1(𝐷𝑢𝑛𝑘𝑒𝑟𝑙𝑒𝑦) = 7267 𝑟𝑝𝑚  

𝐴𝑙𝑠𝑜 𝜔1(𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ) = 832.8 𝑟𝑎𝑑/𝑠 

𝑂𝑟 𝑛1(𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ) = 7952 𝑟𝑝𝑚 

∴ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 ≤
1

3
𝜔1 

𝑂𝑟 𝑛 ≤ 2422 𝑟𝑝𝑚 

7-3 Shaft Layout 

• Between a shaft and its components (e.g., gears, bearings, pulleys, etc.), the latter must be located 

axially and circumferentially. 

• Means to provide for torque transmission 

Keys 

Splines 

Setscrews 

Pins 

Press/shrink fits 

Tapered fits 

etc. 

• Means to provide for axial location – large axial load shoulders 

Shoulders 

Retaining rings 

sleeves 

Collars 

etc. 

• Means to provide for axial location – small axial load 

Press/shrink fits 

Setscrews 

etc. 

• Locating rolling element bearings 

See Ch. 11 



7-7 Miscellaneous Shaft Components 

Includes: 

- Setscrews 

- Keys and pins 

- Retaining rings  

 

Focus: 

Keys 

Example 7-6 

 

7-8 Limits and Fits 

• Fits (clearance, transition, and interference) are to ensure that a shaft and its 

components/attachments will function as intended. 

• Preferred fits are listed in Table 7-9 

• Medium drive fit and force fit will give rise to the press/shrink fits. 

• Press-fit is typically for small hubs; Shrink fit (or expansion fit) it used with larger hubs 

• How much diameter interference to have? 

0.001” for up to 1” of diameter 

0.002” for diameter 1” to 4” 

• Press/shrink fits can be designed to transfer torque and axial load. 

• Press/shrink fits are known to be associated with fretting corrosion (loss of material from the 

interface) 

• (Section 3-14) for stress distributions in thick-walled cylinder under pressures. 

• (Section 3-16) for stresses developed in the shaft and hub due to pressure induced by a press/shrink 

fit; or (Eq 7-39) to (Eq. 7-47) 

• Axial load and torque capacities: (Eq. 7-48) and (Eq. 7-49) 

• Radial interference versus diametral interference (not necessarily the same thing). 

 

  



Chapter 11: Rolling-Contact Bearings 

Part 1: (Introduction) 

11-1 Bearing Types 

Part 2: (The Basics) 

11-2 Bearing Life 

11-3 Bearing Life at Rated Reliability 

11- 4Reliability versus Life – The Weibull Distribution 

11-5 Relating Bearing Load, Life and Reliability 

Part 3: (Selection of Bearing) 

11-6 Combined Radial and Thrust Bearing 

11-8 Selection of Ball and Roller Bearings 

11-7 Variable Loading 

11-10 Design Assessment  

Part 4: Others 

11-12 Mounting and Enclosure 

11-11 Lubrication 

11-9 Selection of Tapered Roller Bearings 

11-1 Bearing Types 

Nomenclature 

See Figure 11-1 

 

Classifications 

• By shape of rolling elements (sphere, cylinder, tapered, etc.) 

• By type of loads taken (radial only, axial only, combination) 

• By permissible slope (Self-aligning, non-self-aligning) 

• Sealed? Shielded? 

• Figures 11-2, 11-3 



 
 

 

11-2 Bearing Life 

Why Bearing Life? 

• Bearings are under cyclic contact stresses (compressive as well as shear). As a result, they may 

experience crack, putting, spalling, fretting, excessive noise, and vibration. 

• Common life measures are: 

o Number of revolutions of the inner ring (outer ring stationary) until the first evidence of 

failure; and 

o Number of hours of use at standard angular speed until the first evidence of fatigue 

• Number of revolutions is more common 



Rating Life (or Rated Life) 

• This is the terminology used by ABMA (American Bearing Manufacturers Association) and most 

bearing manufacturers. 

• It is defined as, of a group of nominally identical bearings, the number of revolutions that 90% of the 

bearings in the group will achieve or exceed, before failure occurs. 

• It is denoted as 𝐿10 or 𝐵10 life. 

• The typical value for 𝐿10 or 𝐵10 is 1 million. 

• However, a manufacturer can choose its own specific rating life. 

• For example, Timken uses 90 million for tapered roller bearings, but 1 million for its other bearings. 

• Refer to bearings catalog for value(s) of 𝐿10. 

11-3 Bearing Life at Rated Reliability 

• At rated reliability of 90%, bearing life 𝐿 relates to bearing’s radial load 𝐹 by: 

𝐹𝐿1/𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

Where 𝑎 = 3 for ball bearings and 𝑎 = 10/3 or roller bearings.  

Figure 11-4 shows the meaning of (Eq. 11-1) 

 
o It’s a straight line on log-log scales; 

o Points on the line will have the same reliability; 

o The line corresponding to 90% reliability is called the rated line. 

• To determine the constant on the RHS of (Eq. 11-1), 𝐿 is set to 𝐿10. The corresponding 𝐹 is 

designated as 𝐶10. 

𝐶10 is called the Basic Dynamic Load Rating, or the Basic Dynamic Rated Load It is defined as the 

radial load that causes 10% of the group of nominally identical bearings to fail at or before 𝐿10 

(1 million, or 90 million, or revs as chosen by a manufacturer). 

• (Equation 11-1) becomes: 

𝐹𝐷𝐿𝐷
1/𝑎

= 𝐶10𝐿10
1/𝑎

                                                                   (11 − 3)∗ 

 



Where the subscript 𝐷 means design. (Equation 11-3)* is essentially (Eq. 11-3) of the text. In (Eq. 11-3), 

the subscript 𝑅 means rated. 

• Example 11-1: find 𝐶10 from known 𝐿𝐷, 𝐹𝐷  and 𝐿10 

11-4 Reliability versus Life – The Weibull Distribution 

11-5 Relating Load, Life and Reliability 

• At 90% reliability, (Eq. 11-3*) forms the basis for selecting a bearing. 

• What if the reliability is not 90%? 

Figure 11-5 shows the process of going from the rated line to a different line. 

𝐴 → 𝐷, with 𝐵 being the intermediary. 

 
• 𝐴 → 𝐵: Load is constant, and life measure (which is a random variable) follows a three-parameter 

Weibull distribution 

• 𝐵 → 𝐷: Reliability is constant, and (Eq. 11-3*) is valid; The mathematics is given in (Sec. 11-4) and 

(Sec. 11-5). 

• Another approach is to use a reliability factor 𝑎1, the value of which depends on 𝑅, the reliability. 

Values of 𝑎1 are available from a number of references. 

 

R, % Reliability Factor, 𝒂𝟏 

90 1.00 

95 0.62 

96 0.53 

97 0.44 

98 0.33 

99 0.21 

 

• The factor 𝑎1 can be determined by (courtesy of, for example SKF catalog) 

𝑎1 = 4.48 (ln
100

𝑅
)

2/3

 

Where 𝑅 is in %, e.g., 𝑅 = 92.5. Note: 𝑅 ≤ 99. 



• Timken recommends the following formula for 𝑎1 

𝑎1 = 4.26 (ln
100

𝑅
)

2/3

+ 0.05 

Where 𝑅 ≤ 99.9 

 

The Basic Bearing Equation 

The basic bearing equation can now be obtained by, in (Eq. 11-3), introducing the reliability factor 𝑎1 

and a load-application factor 𝑘𝑎. That is,  

𝐹𝐷𝐿𝐷
1/𝑎

= 𝐶10𝐿10
1/𝑎

 

Becomes, 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

𝑘𝑎  is given in (Table 11-5) 

 
This basic equation can be used for bearing selection and for assessment after selection. 

 

Example 1 

A SKF deep-groove ball bearing is subjected to a radial load of 495 lb. The shaft rotates at 300 rpm. The 

bearing is expected to last 30,000 hours (continuous operation). Catalog shows a 𝐶10 = 19.5 𝑘𝑁 on the 

basis of 106 revs. (1) is the bearing suitable for 90% reliability? (2) Also assess the bearing’s reliability. 

Set 𝑘𝑎 = 1. 

 

Solution:  

The basic bearing equation is: 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

(Where 𝑎 and 𝐿10 are generally set by the manufacturer, 𝑘 is a variable we can change.) 

 

Where: 

𝐶10 = 19.5 𝑘𝑁 = 4387.5 𝑙𝑏; 𝐿10 = 106 𝑟𝑒𝑣𝑠; 𝑘𝑎 = 1; 𝑎 = 3 

Also 𝐹𝐷 = 495 𝑙𝑏; and 𝐿𝐷 = (30,000)(60)(300) = (540)(106) 𝑟𝑒𝑣𝑠. 

Assume 90% reliability, then 𝑎1 = 1. From the basic bearing equation, 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

Substituting values, 𝐿𝐻𝑆 = 8.92, 𝑅𝐻𝑆 = 8.14. Therefore, (𝐿𝐷 , 𝐹𝐷) is not on the rated line. 



There are a number of ways to seek the answer. 

90% reliability, 𝑎1 = 1; 

 

The first: similar to the typical calculations done for selecting a bearing 

Set 𝐹𝐷 = 495 𝑙𝑏; 𝐿𝐷 = (540)(106) 𝑟𝑒𝑣𝑠; and 𝐿10 = 106 𝑟𝑒𝑣𝑠; find 𝐶10 and check if it is less than the 

4387.5 𝑙𝑏 that the bearing is capable of providing. 

From: 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

Substituting known values: 

𝐶10

(1)(495)
= (

(540)(106)

(1)(106)
)

1/3

 

 

Resulting in 𝐶10 = 4031 𝑙𝑏 

Since it’s less than the catalog’s 𝐶10, or 4387.5 𝑙𝑏, the selected bearing is suitable for 90% reliability. 

 

The second: can be used to select a bearing (pre-selecting a bearing, then checking to make sure it is 

suitable) 

Set 𝐿𝐷 = (540)(106) 𝑟𝑒𝑣𝑠, find 𝐹𝐷 , and check is 𝐹𝐷 ≥ 495 𝑙𝑏.  

From: 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

Substituting known values: 

(4387.5)

(1)𝐹𝐷
= (

(540)(106)

(1)(106)
)

1/3

 

Solving gives 𝐹𝐷 = 538.8 𝑙𝑏 

∴ with 90% reliability and a life of (540)(106) 𝑟𝑒𝑣𝑠, the bearing can take on a maximum radial load of 

538.8 𝑙𝑏. Since the applied radial load is only 495 𝑙𝑏, the bearing will have better than 90% reliability.  

 

The third: similar to post-selection calculation to evaluate the life of the bearing. 

Set 𝐹𝐷 = 495 𝑙𝑏, find 𝐿𝐷, and check if 𝐿𝐷 ≥ (540)(106) 𝑟𝑒𝑣𝑠.  

From: 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

Substituting known values: 

(4387.5)

(1)(495)
= (

𝐿𝐷

(1)(106)
)

1/3

 

Solving gives 𝐿𝐷 = (696)(106) 𝑟𝑒𝑣𝑠 

With a radial load at 495 𝑙𝑏, the bearing has 90% chance proabability to survive at least 

(696)(106) 𝑟𝑒𝑣𝑠. The chance of surviving only (540)(106) 𝑟𝑒𝑣𝑠 is better than 90%. 

 

(2) Set 𝐹𝐷 = 495 𝑙𝑏; 𝐿𝐷 = (540)(106) 𝑟𝑒𝑣𝑠 

To assess reliability means to evaluate 𝑎1. This is typically done after selection. 



From: 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

Substituting known values: 

(4387.5)

(1)(495)
= (

(540)(106)

𝑎1(106)
)

1/3

 

Solving gives 𝑎1 = 0.775 

 

Finally, from: 

𝑎1 = 4.26 (ln
100

𝑅
)

2/3

+ 0.05 

Solving for 𝑅 results in 𝑅 = 93%. 

With the radial load at 495 𝑙𝑏, there is a 7% of chance that the bearing would fail at or before 540 

millions of revs. 

It shows that the bearing is more than suitable for 90% reliability. 

 

Example 2 

Select bearings A and B for the shaft of Example 7-2. They are to be used for a minimum of 1,000 hours 

of continuous operation. Shaft rpm is 450. Radial loads are, 𝐹𝐴 = 375 𝑙𝑏 and 𝐹𝐵 = 1918 𝑙𝑏. Shaft 

diameter at both locations is 1" (𝐷1 and 𝐷7 in Figure 7-10). Assume 90% reliability. 

 

Solution:  

Table 11-2 

Table 11-3 

Since there is no thrust load, deep-groove ball bearings may 

 

 

 

 



Example 2 

Select bearings A and B for the shaft of Example 7-2. They are to be used for a minimum of 1,000 hours 

of continuous operation. Shaft rpm is 450. Radial loads are, 𝐹𝐴 = 375 𝑙𝑏 and 𝐹𝐵 = 1918 𝑙𝑏. Shaft 

diameter at both locations is 1" (𝐷1 and 𝐷7 in Figure 7-10). Assume 90% reliability. 

 

Solution:  

Since there is no thrust load, deep-groove ball bearings are first considered. Table 11-2 has a list of 02-

series deep groove ball bearings. 

 

 
 

𝑎1 = 1; 

𝑘𝑎 = 1.2 (𝑇𝑎𝑏𝑙𝑒 11 − 5,   𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑔𝑒𝑎𝑟𝑖𝑛𝑔,   1.1~1.3); 

𝐿10 = 106 𝑟𝑒𝑣𝑠; 

𝐿𝐷 = 1000 ∙ 60 ∙ 450 = 27 ∙ 106 𝑟𝑒𝑣𝑠; 



 
Bearing 𝐵: 𝐹𝐷 = 𝐹𝐵 = 1918 𝑙𝑏 = 8535 𝑁. From: 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

It’s found that 𝐶10 = 30,726 𝑁. Note 𝑎 = 3. 

 

Table 11-2 Shows that the smallest (in dimensions) bearing meeting the requirements is the one with 

bore diameter of 40 𝑚𝑚 and its 𝐶10 is 30.7 𝑘𝑁. 

 

Switch to roller bearing (Table 11-3). With 𝑎 = 10/3, then 𝐶10 = 27,529 𝑁. 

From Table 11-3, under 02-series, the bearing with 35-mm bore has 𝐶10 = 31.9 𝑁; 

Under 03 series, the bearing with 25-mm bore has a 𝐶10 = 28.6 kN.  

 



Select 03-series, 𝑏𝑜𝑟𝑒 =  25 𝑚𝑚, 𝑂𝐷 =  62 𝑚𝑚, 𝑤𝑖𝑑𝑡ℎ =  17 𝑚𝑚, and 𝐶10  =  28.6 𝑘𝑁 

 

Assessing reliability: 𝑎1 = 0.88, and 𝑅 = 91.7 

Bearing 𝐴: 𝐹𝐷 = 𝐹𝐴 = 375 𝑙𝑏 = 1669 𝑁. Use the same bearings as at B. 

 

Assessing reliability: 𝑎1 = 0.00382, 𝑅 = 99.9975. So 𝑅 ≥ 99. 

The two bearings combined will have a reliability of (0.917) ∗ (0.99) = 0.91 

 

11-6 Combined Radial and Thrust Loading 

Equivalent Radial Load 𝑭𝒆 

• 𝐶10, the Basic Dynamic Load Rating, is a radial load. 

• A ball or roller bearing s typically capable of taking radial as well as some thrust loads. 

• Thrust loads shortens a ball or roller bearing’s life faster than radial load; that is, thrust load does 

more damage. 

• Equivalent radial load 𝐹𝑒 is 

𝐹𝑒 = 𝑋𝑉𝐹𝑟 + 𝑌𝐹𝑎 

Where: 

𝐹𝑟  and 𝐹𝑎  are the radial and thrust loads applied to the bearing (from FBD) 

𝐹𝑒 is the equivalent radial load; => 𝐹𝐷  

𝑉, 𝑋 and 𝑌 are factors whose values depend on specific bearing. 

𝑉: the rotation factor 

𝑋: the radial load factor 

𝑌: the thrust load factor 

 

For 𝑋 and 𝑌: 

Table 11-1 lists the 𝑋 and 𝑌 values for ball bearings. 𝑋 and 𝑌 depend on 𝑒, which in turn depends on 

𝐹𝑎/𝐶0. 𝐶0 is the Basic Status Load Rating. 

 

 
 

𝐹𝑎/(𝑉𝐹𝑟) ≤ 𝑒 𝐹𝑎/(𝑉𝐹𝑟) > 𝑒 



For straight or cylindrical roller bearings, 𝑌 = 0. 

 

It is highly recommended to use the 𝑋 and 𝑌 values published by the manufacturer. Methods or 

processes to evaluate 𝑋 and 𝑌 vary with manufacturers. 

 

For 𝑉: 

𝑉 = 1 if inner ring rotates; 

𝑉 = 1.2 if outer ring rotates 

𝑉 = 1 if using self aligning bearings. 

 

Basic Static Load Rating 𝑪𝟎 

• Basic Static Load Rating or Basic Static Rated Load 𝐶0 is defined as the load that will produce a total 

permanent deformation (in the rolling elements and raceways) at any contact point of 0.0001 times 

the diameter of the rolling elements. 

• 𝐶0 can also be defined as the load that will produce a maximum contact (compressive) stress of 

4 𝐺𝑃𝑎 (580 𝑘𝑠𝑖) at the contact point. 

• 𝐶0 can be exceeded. It takes about 8 times of 𝐶0 to fracture a bearing. 

 

11-8 Selection of Ball and Roller Bearings 

General Principles/Considerations 

• Always refer to a catalog and read the engineering section 

• Type of load to be carried 

o Radial 

o Axial 

o Radial + Axial 

• Rating Loads (dynamic and static) 

• Limiting Speed 

• Permissible Alignments 

• Space Limitation (bore, OD, width) 

• Mounting/Dismounting, and Enclosure 

 

General Procedure (not meant to be followed mechanically) 

1. Use FBD of the shaft to determine the radial load 𝐹𝑟 , and thrust (axial) load 𝐹𝑎. 

2. Set design life 𝐿𝐷; Table 11-4 lists typical values. 

3. Set reliability factor, application factor (and other factors if required). 

4. Select type of bearing. 

5. Pre-select a bearing, say, based on bore diameter and/or permissible misalignment, and/or 

permissible speed, so as to facilitate selecting 𝑋 and 𝑌 values. 

6. Evaluate the equivalent dynamic (radial) load 𝐹𝑒.  

7. Determine 𝐶10. 

8. Select appropriate bearing(s) from the catalog. 

9. If necessary, iterate (back to step 6) until a suitable bearing is chosen. Note that all bearings require 

iterations. 

10. Once a bearing is chosen, assess its reliability. 



Example 3 

A bearing is subject to 𝐹𝑟 = 5400 𝑁 and 𝐹𝑎 = 1900 𝑁. The following is known 𝑏𝑜𝑟𝑒 = 35 𝑚𝑚, at least 

30 ∙ 106 𝑟𝑒𝑣𝑠, 90% reliability, and 𝑘𝑎 = 1.5. Select a suitable bearing from 𝑇𝑎𝑏𝑙𝑒 11 − 2. 

 

Solution: 

From Table 11-2, 02-series single-row deep-groove ball bearing with a 35 − 𝑚𝑚 bore has 𝐶10 =

25.5 𝑘𝑁 and 𝐶0 = 13.7 𝑘𝑁. 

𝐹𝑎/𝑉𝐹𝑟 = 0.352 and 𝐹𝑎/𝐶0 = 0.139 

From Table 11-1, 𝐹𝑎/𝐶0 is between 0.11 and 0.17. So, 𝑒 < 0.34.  

That means, 𝐹𝑎/𝑉𝐹𝑟 = 0.352 > 𝑒, therefore 𝑋2 = 0.56 and 𝑌2 = 0.138 by linear interpolation. 

So,  𝐹𝑒 = 𝑋𝑉𝐹𝑟 + 𝑌𝐹𝑎 = 5646 𝑁. 

Use the basic bearing equation to determine 𝐶10: 

𝐶10

(1.5)(5646)
= (

(30)(106)

(1)(106)
)

1/3

 

So, 𝐶10 = 26,315 𝑁. Therefore the 02-series single-row deep-groove ball bearing is not suitable. 

 

Consider 02-series angular contact ball bearing with the same bore diameter. It has 𝐶10 = 27.0 𝑘𝑁 and 

𝐶0 = 15.0 𝑘𝑁. 

Since 𝐹𝑎/𝐶0 = 0.127, then 𝑒 < 0.34 and 𝐹𝑎/𝑉𝐹𝑟 > 𝑒. 

Then 𝑋2 remains at 0.56, but 𝑌2 becomes 1.41. 

Now 𝐹𝑒 = 5703 𝑁, and 𝐶10 is found to be 26,581 𝑁, which is less than the catalog’s 27.0 𝑘𝑁. 

So, the 02-series single-row angular contact ball bearing is suitable. 

The actual reliability is 90.6% under the given loads and a life of 30-million revs. 

 

11-7 Variable Loading 

6-15 Cumulative Fatigue Damage 

Sec. 11-7 is simply Sec. 6-15 as applied to bearings. 

 

Cumulative Fatigue Damage 

The first half of Sec 6-15 is about the rain-flow counting technique which is used to determine the 

minimum and maximum stresses at different load cycles. 

 

The technique is aimed for irregular stress-time plots such as: 

 



Details of the technique can be found in ASTM E1049-85(2017), “Standard Practices for Cycle Counting 

in Fatigue Analysis.” 

 

The outcome of rain-flow counting is a list of information such as cycle index 𝑖, maximum and minimum 

stresses 𝜎𝑚𝜎𝑥_𝑖 and 𝜎𝑚𝑖𝑛_𝑖, and the number of cycles 𝑛𝑖, within a repetitive time block. 

 

For example, the stress-time plot of 𝑄1 of 𝐴1 can be summarized as follow: 

Cycle index 𝜎𝑚𝜎𝑥_𝑖  𝜎𝑚𝑖𝑛_𝑖  𝑛𝑖  

1 8 -8 13 

2 16 -16 4 

3 20 -20 2 

4 28 -28 1 

 

The orders of occurrence of the stress cycles are not taken into account. This simplified the cumulative 

fatigue damage analysis, but is however a well recognized drawback of the analysis. 

 

The second half of Sec. 6-15 contains the Palmgren-Miner rule (or known as Miner’s rule in North 

America) for cumulative fatigue damage analysis. 

 

The basic premise is, if it takes N cycles to fail (by fatigue) a component, then each cycle contributes 

towards the eventual failure, or does damage, by the amount of 1/N. When the damage adds up to 1 

(i.e. 100%), the component fails. 

 

The rule states that: 

 

Where 𝑛𝑖  is the number of cycles at stress level 𝜎𝑖, and 𝑁𝑖 is the number of cycles to failure as if all 

cycles were loaded at stress level 𝜎𝑖. 𝑛𝑖  is determined from load-time plot; 𝑁𝑖 is by finite life calculation. 

 

The constant 𝑐 is determined experimentally. It is found that 𝑐 = 0.7~2.2. But 𝑐 = 1 is typically used. 

 
When evaluating 𝑁𝑖, if the component is found to have infinite life, 𝑁𝑖 is set to ∞ and 𝑛𝑖/𝑁𝑖 = 0. 

 

Finally, stress level 𝜎𝑖 means 𝜎𝑟𝑒𝑣_𝑖, the i-th 𝜎𝑟𝑒𝑣. 

 

Bearings under Variable Loading 

Applying Eq. (6-58) to bearings, the result is 

 



Where 𝐿𝑖  is the bearing life (in revs) under load level 𝐹𝑒𝑖, and 𝐼𝑖  is the number of revs under load 𝐹𝑒𝑖. 

 

• (Eq. 11-16) is only applicable to piecewise constant (including zero) loadings, see Figure 11-10. 

 
• If the load is continuous (see Figure 11-11), the summation is to be replaced by integral. Example 11-

6 shows how it is done. 

 

 
• (Eq. 11-16) can be used to find 

o The life of a bearing under variable loading 

o The equivalent radial load under variable loading 

 
Where 𝑓𝑖  is the fraction of revs under 𝐹𝑒𝑖, the equivalent radial load in load cycle 𝑖; and 𝑘𝑎𝑖  is the 

load-application factor associated with loading condition for load cycle 𝑖. 

 

𝐹𝑒𝑞  is to replace all the individual 𝐹𝑒𝑖′𝑠 with the aim of simplifying the calculation. The load 

application factor on 𝐹𝑒𝑞  is 1. 

 

 



Example 11-5 

A ball bearing is run under four piecewise continuous steady loads. Information is given in tabular format, 

cols. (1), (2), (5) to (8) in particular. Other columns are from calculations. 

(1) 
Time 

Fraction 

(2) 
Speed 

rev/min 

(3) 
Product 
Column 

(4) 
Turns 

Fraction, 

(5) 
F 
 

(6) 
F 

(7) 
F 

(8) 
𝑎𝑓𝑖 

(9) 
(7)x(8) 

0.1 2000 200 0.077 600 300 794 1.10 873 

0.1 3000 300 0.115 300 300 626 1.25 795 

0.3 3000 900 0.346 750 300 878 1.10 966 

0.5 2400 1200 0.462 375 300 668 1.25 835 
∑    2600 1.000      

 

Note: 

The 𝑎𝑓𝑖 in Col. (8) are load application factors 𝑘𝑎𝑖, which are either given, or selected from Table 11-5. 

Last row of Col. (3) gives the equivalent rpm; 

Col. (4) gives the 𝑓𝑖  

 

Example 4 

The table below lists the information relating to four piecewise constant loads that a ball bearing is 

subjected to. 

Load case 
index 𝑖 

𝑓𝑖  𝐹𝑒𝑖, lb 𝑘𝑎𝑖  
(𝑘𝑎𝑖𝐹𝑒𝑖)𝑎x103 

𝑙𝑏3 
𝑓𝑖(𝑘𝑎𝑖𝐹𝑒𝑖)𝑎x106 

𝑙𝑏3 
1 0.08 794 1.10 666.25 53.30 

2 0.115 626 1.25 479.13 55.01 

3 0.35 878 1.10 900.87 315.3 

4 0.455 668 1.25 582.18 264.9 
∑       688.5 

 

The chosen bearing has 𝐶10 = 9.56 𝑘𝑁 (rated at 106 revs). Determine the life of the bearing. Reliability is 

95%, All other conditions (such as rotating inner ring, room temperature, non-corrosive environment, 

and so on) are assumed typical. 

 

Solution: 

There are two ways to find 𝐿𝐷 . 

(1) 𝐹𝑒𝑞 → 𝐿𝐷  by the basic bearing equation. For 𝐹𝑒𝑞, we need 𝑓𝑖(𝑘𝑎𝑖𝐹𝑒𝑖)𝑎 

(Eq. 11-15)a: 

𝐹𝑒𝑞 = √688.6(106)
3

= 833.0 𝑙𝑏 = 3929 𝑁 → 𝐹𝐷  

 

Life of the bearing is then evaluated: 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1/𝑎

 

9560

(1)(3929)
= (

𝐿𝐷

(0.62)(106)
)

1/3

 

So, 𝐿𝐷 = 8.93 million revs. 



 

(2) 𝐹𝑒𝑖 → 𝐿𝑖  for each load case by the basic bearing equation. Then use the Miner’s rule to find 𝐿𝐷. 

Load case index 𝑖 𝑓𝑖  𝐹𝑒𝑖  
lb 

𝑘𝑎𝑖  𝐿𝑖  
x106, revs 

1 0.08 794 1.10 9.23 

2 0.115 626 1.25 12.83 

3 0.35 878 1.10 6.82 

4 0.455 668 1.25 10.56 

 

If 𝐿𝐷  denotes the life of the bearing under the given variable loading, then 𝑙𝑖 = 𝑓𝑖𝐿𝐷  

 

(𝐸𝑞. 11 − 16) becomes: 

∑
𝑙𝑖

𝐿𝑖
=

0.08𝐿𝐷

9.23(106)
+ ⋯ +

0.455𝐿𝐷

10.56(106)
= 1 

So 𝐿𝐷 = 8.93 million revs. 

 

11-10 Design Assessment for Selected Bearings  

Once a selection was made, assessing for the following: 

• Reliabilities of individual bearings, and of pairs of bearings; 

• Shouldering on shaft and housing; 

• Journal’s and housing’s tolerance; 

• Lubrication; (see Sec. 11-11) 

• Pre-load, where applicable. (see Sec. 11-12) 

 

Reliability 

• The reliability of a pair of bearings A and B is 𝑅 = 𝑅𝐴𝑅𝐵; 

• If 𝑅 ≥ 90% is required, ten one bearing (or both bearings) has (or have) to have more than 90% 

reliability. For example, (0.9)(0.99) ≈ 0.9; (0.95)(0.95) ≈ 0.9; On the other hand, (0.9)(0.9) ≈

0.81 

 

Shoulders and Fillets 

 

 

 

𝑑𝑠 is the shaft shoulder diameter. Catalogs may list the min and max 

values of 𝑑𝑠. If only one value is given, it is typically the minimum 

value. 

 

𝑑𝐻 is the housing shoulder diameter. Catalogs may list the min and 

max values of 𝑑𝐻. If only one value is given, it is typically the 

maximum value. 

 

 

 



 
 

Fits between Journal Bearing, and Bearing and Housing 

Rotating ring: press fit; 

Nonrotating ring: push fit or tap fit; 

 

Tolerances on Journal and Housing 

Bearings manufacture tolerances are specified by ABEC (Annular Bearing Engineering Committee). There 

are 5 AEBC grades/scales, 1, ,3 , 5, 7 and 9. The higher the grade, the higher the precision. 

 

Catalogs provide details of bearing tolerances. 

 

Tolerances are then assigned to the journal and housing, based on the required or chosen fits. 

 

In general, with rotating journals, choices are j6 (or k6, m6 n6, j5) Note that these are transition fits. 

 

For stationary housing, we may choose H7 (or G7, F7, H8). They are clearance fits. 

 

Catalogs have detailed recommendations. 

 
 

 



11-11 Lubrication  

• Purpose of lubrication; 

• Types of lubricant (grease and oil); 

• When to use what? 

See the rules listed near the end of Section 11-11. 

 

 
 

11-12 Mounting and Enclosure 

• An enclosure is used to prevent dirt and foreign matter from a entering a bearing, and to retain 

lubricant. 

• Figure 11-26 shows typical means of external (to bearing) seals. That is, shaft and components inside 

the housing will be protected as well. 

 
• Shielded bearings (Figure 11-2d) provide some protection against dirt, but not a complete closure. 

 
• A sealed bearing, when sealed on both sides (Figure 11-2e), keeps lubricant in, for life, but can be 

relubricated. 

 



Mounting 

• Mounting bearings in a trouble-free and low-cost way is an important but challenging part of any 

design. 

• Bearing catalogs area good source of information and guide, giving details for many design 

situations. 

• The following is to be considered: 

o Axially locating a single bearing on a shaft 

o Locating and non-location arrangements of a pair of bearings 

o Misalignment 

o Preloading 

 

Axially Locating a Single Bearing 

Shoulder or spacer, and locknut or end plate or snap ring or retaining ring, for example. 

 

Locating and Non-location Arrangements 

• Such arrangements are the methods to locate the shaft as well as to allow for thermal expansion or 

contraction in the axial direction. 

• The principle behind is: thrust load in each direction much be carried by one and only one bearing. 

• Figure 11-20 and Figure 11-21 illustrate the locating and non-location arrangements, respectively, 

for two situations where the shaft is to be supported by two bearings, one at or near each end of 

the shaft. 

 



 

• For the so-called cantilevered shafts, refer to Figures 11-22 and 11-23, for example; or catalogs. 

Misalignment 

The permissible misalignment of a bearing depends on its type, and other design details of the bearing. 

See Table 7-2 for typical permissible misalignments or maximum slopes. 

Preloading 

Although many design applications require little attention to stiffness or bearings, there are plenty of 

applications requiring high stiffness, high natural frequencies, low deflection, and low noise level. 

Under such circumstances, preloading on bearings is to be considered.  

Preloading can also remove internal clearance, and increase fatigue life, amongst others. 

Too much preload causes early or premature failure. The key is to apply the appropriate amount of 

preload. Catalogs usually provide details of how much preload to apply, and how to apply. 

 

roller 



 

 

 

  

(linear) 

(non-linear) 



11-9 Selection of Tapered Roller Bearings 

Figure 11-13: terminology 

 

A few notes about the terminology: 

We don’t call them inner and outer rings (Inner = cone, Outer = cup) 

The larger end of the cone is the back face.  

The smaller end of the cone is the front face. 

𝐺 is the point of load application (radial and axial). 

When 𝐺 is inside the back face of a cone as shown, 𝑎 will be given a negative value. 

• Figure 11-14: direct mounting (back-to-back in terms of cone faces and indirect mounting (front-to-

front in terms of cone faces). 

• 𝐴0 (point 𝐺 of bearing 𝐴) and 𝐵0 (point G or bearing 𝐵) are the points of application of loads, or 

locations of bearings or supports for analyses; 𝑎𝑒 is the effective length between bearings or 

supports. 



 

• How to select tapered roller bearings? 

The induced thrusts, see Figure 11-16. 

 

From FBD of the shaft: 𝐹𝑟𝐴  and 𝐹𝑟𝐵  are the radial loads, and 𝐹𝑎𝑒 is the externally applied axial load. 



𝐹𝑖𝐴 and 𝐹𝑖𝐵 are the induced axial loads. 

The value of an induced axial load depends on the geometry of the bearing, and the radial load on it. 

 

𝐾 is found from catalogs. 

The process to determine the equivalent radial loads 𝐹𝑒𝐴 and 𝐹𝑒𝐵: 

• The pair will be labelled A and B; 

• Bearing A is the one being “squeezed” by 𝐹𝑎𝑒. Label the other at 𝐵; 

• The equivalent radial loads 𝐹𝑒𝐴 and 𝐹𝑒𝐵 will then be determined by (Eq. 11-19) or (Eq. 11-20) 

 

Which bearing is bearing A? Figures 11-17 and 11-19: 

 
Shaft is moving, housing stationary. 

 
Shaft is stationary, housing is moving. 



• The above discussion re: induced axial load is applicable to angular-contact ball bearings. 

Methodology of finding 𝐹𝑖  and 𝐹𝑒 can be found form catalogs or manufacturers. 

Example 11-8 

The shaft runs at 800 rpm and is supported by two direct mounted taper-roller bearings. The design life 

of the bearings is to be 5000 hours. The helical gear mounted on the shaft is subject to tangential, radial, 

and axial loads. The reliability of the pair of bearings is set to 99% and 𝑘𝑎  is 1. 

 

Select suitable Timken tapered-roller bearings from Figure 11-15. Would the reversal of direction of the 

shaft’s rotating require smaller/larger bearings? 

Solution: 

(1) Current direction of rotation 

Assume 150-mm is the effective span; proceed with FBD’s and finding support reactions. The vector 

sums of the support reactions are: 

𝑅𝐴 = 2170 𝑁 

𝑅𝐵 = 2654 𝑁 

𝐹𝑎𝑒 = 1690 𝑁 

Also, 𝐿𝐷 = (800)(60)(5000) = 240(106) revs, and 𝐿10 = (500)(60)(3000) = 90(106) revs 

Reliabilities of the individual bearings are √0.99 = 0.995. 

Factor 𝑎1 is then 0.175. 

All bearings in Figure 11-15 have a bore of 25 mm. Select 07096/07196. It has 𝐶10 = 6,990 𝑁 and  

𝐾 = 1.45. 



From (Eq. 11-18): 

 

𝐹𝑖𝐴 =
(0.47)(2170)

(1.45)
= 703.4 𝑁 

𝐹𝑖𝐵 =
(0.47)(2654)

(1.45)
= 860.3 𝑁 

Since 𝐹𝑖𝐴 ≤ 𝐹𝑖𝐵 + 𝐹𝑎𝑒, (Eq. 11-19) is used to determine 𝐹𝑒. 

{
𝐹𝑒𝐴 = 0.4𝐹𝑟𝐴 + 𝐾𝐴(𝐹𝑖𝐵 + 𝐹𝑎𝑒)
𝐹𝑒𝐵 = 𝐹𝑟𝐵                                      

} 

Therefore, 𝐹𝑒𝐴 = (0.4)(2170) + (1.45)(860.3 + 1690) = 4566 𝑁 

𝐹𝑒𝐵 = 2654 𝑁 

Apply basic bearing equation for 𝐶10 

𝐶10

𝑘𝑎𝐹𝐷
= (

𝐿𝐷

𝑎1𝐿10
)

1
𝑎

 

𝐶10

(1)(4566)
= (

(240)(106)

(0.175)(90)(106)
)

3
10

 

The result is 𝐶10 = 10,337 𝑁. So, 07096/07196 is not sufficient. 

Reselect 15101/15243. 𝐶10 = 12,100 𝑁, and 𝐾 = 1.67. Repeat above calculations: 

𝐹𝑖𝐴 = (0.47) (
2170

1.67
) = 519.8 𝑁 

𝐹𝑖𝐵 = (0.47) (
2654

1.67
) = 614.1 𝑁 

𝐹𝑒𝐴 = (0.4)(2170) + (1.67)(614.1 + 1690) = 4716 𝑁 
𝐹𝑒𝐵 = 2654 𝑁 

And 𝐶10 = 10,677 𝑁, which is less than 12,100 N. 

For reliability assessment, recall 

𝑎1 = (4.26) (ln
100

𝑅
 )

2
3

+ 0.05 

So, bearing A has 𝑎1 = 0.115, 𝑅 = 99.8; bearing B has 𝑎1 = 0.0169. Since 𝑎1 < 0.05, 𝑅 ≥ 99.9; 

combined reliability is (0.998)(0.999) = 0.997, which is more than 0.99. 

Therefore, 15101/15243 is sufficient for both locations. 

 



(2) Reversal in direction of rotation 

Re-label the bearings as L(eft) (used to be bearing A) and R(ight) (used to be bearing B) 

FBD and calculations give rise to 𝑅𝐿 = 1431 𝑁 and 𝑅𝑅 = 3516 𝑁. 

Bearings are 15101/15243 with 𝐶10 = 12,100 𝑁 and 𝐾 = 1.67. 

𝐹𝑖𝐿 = (0.47) (
1431

1,67
) = 402.7 𝑁 

𝐹𝑖𝑅 = (0.47) (
3516

1.67
) = 989.5 𝑁 

Now because the right bearing s being “squeezed”. 

Because 𝐹𝑖𝑅 ≤ 𝐹𝑖𝐿 + 𝐹𝑎𝑒, therefore (Eq. 11-19) gives 

𝐹𝑒𝑅 = (0.4)(3516) + (1.67)(402.7 + 1690) = 4901 𝑁, and 𝐹𝑒𝐿 = 1431 𝑁 

Calculating the required 𝐶10 for the right bearing 

𝐶10

(1)(4901)
= (

(240)(106)

(0.175)(90)(106)
)

3
10

 

Then 𝐶10 = 11,096 𝑁, which is less than the catalog’s 12,100 𝑁. 

So, the selection is suitable for opposite direction of the shaft’s rotation. 

Or, assessing the bearings’ reliabilities; the left bearing has 𝑎1 = 0.00217, so 𝑅 ≥ 99.9; the right 

bearing has 𝑎1 = 0.131, 𝑅 = 99.7; As a result, the combined reliability is (0.999)(0.997) = 0.997, 

which is more than 0.99. 

So, the 15101/15243 bearings can be used in either direction of rotation. 
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12-9 Steady State Conditions in Self-Contained Bearings 

12-11 Pressure-Fed Bearings 

12-14 Thrust Bearings 

12-15 Boundary-Lubricated Bearings 

12-1 Types of Lubrication 

• Thick-film (full-film) lubrication: 

o There is complete separation of contact surfaces by a relatively thick film of lubricant; 

o There is no metal-t-metal contact; 

o Typical minimal film thickness is 0.008 − 0.020 𝑚𝑚 or 0.0003 − 0.0008 𝑖𝑛; 

o Resulting coefficient of friction is 0.002 − 0.01; 

 

Ways to achieve thick-film lubrication: 

o Hydrodynamic lubrication: The journal is lifted by the wedge-action effect of the lubricant; It 

requires proper lubricant, speed, and clearance; Applicable in situations of high speeds, high 



loads, high overloads, and high temperature (e.g., engines, pumps, compressors, turbines, 

motors, and so on). 

o Hydrostatic lubrication: Lubricant is pressured (force-fed) by external means to separate the 

two parts; applicable in cases of low speeds and light loads. 

 

• Elastohydrodynamic lubrication (EHL):  

o Lubricant is introduced between surfaces that deform elastically; 

o Hard EHL occurs between surfaces in rolling contact, such as mating gears, cams/followers, 

and rolling-elements and raceways in rolling-contact-bearings; 

o Soft EHL occurs when contact region is relatively large, e.g. brushing. 

 

• Mixed-film lubrication:  

o There is only partial full-film lubrication; 

o Surfaces may be in intermittent contact; 

o Coefficient of friction is 0.004 − 0.1. 

 

• Boundary lubrication: 

o It is when 90% or more of surface asperity is in contact; 

o Coefficient of friction is 0.05 − 2. 

 

• Solid-film lubrication 

o Used when bearings must be operated at high to extreme temperatures; 

o Lubricants are of powder form; 

o Graphite, molybdenum disulfide, for example; 



Note: above diagrams courtesy of Fundamentals of Machine Components Design, 3rd ed. R.C. Juvinall and 

K.M. Marshek, Wiley & Sons, 2000. 

12-2 Viscosity 

• Viscosity is a measure of the internal friction resistance of the fluid. 

• Units for absolute or dynamic viscosity 𝜇: 

In ips (inch-pound-second) units: 𝑙𝑏 ∙ 𝑠/𝑖𝑛2 or reyn  

In SI units: 𝑁 ∙ 𝑠/𝑚2 or 𝑃𝑎 ∙ 𝑠 

• Units used in journal bearing design: 

o In ips: microreyn (𝝁𝒓𝒆𝒚𝒏) 

1 𝜇𝑟𝑒𝑦𝑛 = 10−6 𝑟𝑒𝑦𝑛 

o In SI units: centipoise (𝒄𝑷) 

1 𝑐𝑃 = 1 𝑚𝑃𝑎 ∙ 𝑠 = 10−3 𝑃𝑎 ∙ 𝑠 

• Kinematic viscosity: not used in journal bearing designs 

12-3 Petroff’s Equation 

12-4 Stable Lubrication 

12-5 Thick-Film Lubrication 

12-6 Hydrodynamic Theory  

Available Theories/Solutions of Hydrodynamic Lubrication 

• Petroff’s equation for concentric journal bearings (1883) 

• Reynolds equation for eccentric journal bearings (1886) 

• Sommerfeld’s equation for (very) long bearings (1904) 

• Ocvirk’s solution for (very) short bearings (1952) 

• Raimondi & Boyd’s numerical solution for finite-length bearings (1958) 

Petroff’s Equation 

• Assume that bearing and shaft are concentric; hence seldom use in design. 

• But it was the first to explain the friction phenomenon in bearings. 

 

𝑊: bearing load, in lb or newton 

𝑙: bearing length, in inch of m 



𝑟: shaft/journal radius, in inch or m 

𝑃 =
𝑤

2𝑟𝑙
: pressure or unit load, in psi or Pa 

𝑁: rotating speed, in rps (rotation per second) 

𝜇: absolute viscosity, in reyn or Pa∙s 
𝜇𝑁

𝑃
: bearing characteristic 

𝑐: radial clearance, in inch or m 
𝑟

𝑐
: radial clearance ratio 

Then the coefficient of friction, 𝑓, is related to the bearing characteristic 
𝜇𝑁

𝑃
 and radial clearance ratio 

𝑟

𝑐
 

by the Petroff’s equation: 

 

• Another important parameter is the bearings characteristic number of Sommerfeld number, 𝑆 

 

In terms of the Sommerfeld number, Petroff’s equation becomes: 

 

Stable Lubrication 

 

Figure 12-4 is a plot of experimental coefficient of friction in terms of bearing characteristic. 

Petroff’s equation assumes thick-film lubrication, is presented by the straight line to the right of 

transition point 𝐶. The condition for ensuring thick-film lubrication is 
𝜇𝑁

𝑃
≥ 1.7(10−6) 



“Thin film” includes mixed-film and boundary lubrications. Point 𝐶 represents the transition from metal-

to-metal contact to thick film lubrication. 

Hydrodynamic Lubrication 

• Three aspects or “things” that are required to achieve hydrodynamic lubrication: 

o Relative motion of the surfaces  

o Wedge action 

o A suitable fluid 

• Basic assumptions: 

o The lubricant is a Newtonian fluid 

o Inertia forces of the lubricant are negligible 

o The lubricant is an incompressible fluid 

o The viscosity is constant (true if temperature does not change much) 

o There is zero pressure gradient along the length of the bearing (true for very long bearings) 

o The radius of the journal is large compared to the film thickness 

• Theory: 

(Eq. 12-10) and (Eq. 12-11) are the Reynolds equation for one-dimensional flow, and two-

dimensional flow, respectively. 

 

 

(Eq. 12-12) represents the general form of Sommerfeld solution, which is numerical. 

 

Where ϕ represents a function. S is the Sommerfeld number. Sommerfeld found the solution for half 

and full bearings, under the no side leakage assumption. 

12-8 The Relations of the Variable 

Between 1951 and 1958, Raimondi and Boyd used the iterative technique to numerically solve the 

Reynolds equation. 

The outcome is represented by the Raimondi-Boyd charts, Figures 12-16 through 12-22, which 

nomenclatures shown on Figure 12-15. Note that these charts are for full bearings. 

• Sommerfeld number 𝑆 is the abscissa; 

• Four plots in each chart: 
𝑙

𝑑
=

1

4
,

1

2
, 1, and ∞ 

• For other 
𝑙

𝑑
 ratios, interpolation by (Eq. 12-16) 



𝑦 =
1

𝑟3
[−

1

8
(1 − 𝑟)(1 − 2𝑟)(1 − 4𝑟)𝑦∞ +

1

3
(1 − 2𝑟)(1 − 4𝑟)𝑦1 −

1

4
(1 − 𝑟)(1 − 4𝑟)𝑦1

2

+
1

24
(1 − 𝑟)(1 − 2𝑟)𝑦1

4
] 

Where 𝑟 =
𝑙

𝑑
, and 

1

4
< 𝑟 < ∞. 𝑦 is the desired chart variable, and 𝑦∞, 𝑦1, 𝑦1

2

, 𝑦1

4

 are the y values off the 

corresponding plots. 

Or just use this: 

 

 

 



 

 



 

Example 1 

A journal bearing of 2”-diameter, 2”-length and 0.0015”-radial clearance is to support a steady load of 

1000 lv when the shaft rotates at 3000 rpm. The lubricant is SAE 20 oil, supplied at atmospheric 

pressure. The average temperature of the oil is at 130 °𝐹. (1) Estimate ℎ0, 𝑒, 𝑄, 𝑄𝑠 , 𝑝𝑚𝑎𝑥 , Ф,θpmax  and 

𝜃𝑝0. (2) Estimate the temperature rise ∆𝑇𝐹 . 

Solution: 

Knowns: 

𝑑 = 2", 𝑙 = 2", 𝑐 = 0.0015′, 𝑤 = 1000 𝑙𝑏, 𝑁 =
3000

60
= 50 𝑟𝑝𝑠 

So, the unit load is 𝑃 =
𝑊

𝑙𝑑
= 1000/(2 ∗ 2) = 250 𝑝𝑠𝑖 

Min. friction 

Max load 

Optimum zone 



Figure 12-12: 𝜇 = 3.7 𝜇𝑟𝑒𝑦𝑛 

 

Sommerfeld number (or bearing characteristic number) 

𝑆 = (
𝑟

𝑐
)

2 𝜇𝑁

𝑃
= (

1

0.0015
)

2 (3.7)(10−6)(50)

250
= 0.33   

(1) Estimate the list of variables 

Figure 12-16: minimum film thickness and eccentricity 

ℎ0/𝑐 = 0.65, 𝜀 =
𝑒

𝑐
= 0.35 

So, ℎ0 = (0.65)𝑐 = 0.000975", 𝑒 = (0.35)𝑐 = 0.000525" 

Note: sum of these two ratios is always unity; 

Also, the bearing, as represented by (𝑆, ℎ0/𝑐) is outside of the optimal zone. 



Figure 12-17: position of the minimum film thickness Ф = 70° 

 

Figure 12-18: coefficient of friction 
𝑟

𝑐
𝑓 = 7; 𝑠𝑜 𝑓 = 7 (

0.0015

1
) = 0.0105 

 



Figure 12-19 and 12-20: total flow rate and side flow rate of lubricant. 
𝑄

𝑟𝑐𝑁𝑙
= 3.85, so 𝑄 = (3.85)(1)(0.0015)(50)(2) = 0.5775 𝑖𝑛3/𝑠 

𝑄𝑠

𝑄
= 0.45, so 𝑄𝑠 = (0.45)(0.5775) = 0.2599 𝑖𝑛3/𝑠 

 

 



Figures 12-21 and 12-22: maximum film pressure and its position, and film’s termination position: 
𝑃

𝑝𝑚𝑎𝑥
= 0.5, 𝑠𝑜 𝑝𝑚𝑎𝑥 =

250

0.5
= 500 𝑝𝑠𝑖 

𝜃𝑝𝑚𝑎𝑥 = 15° 

𝜃𝑝0 = 90° 

 

 

 



(2) There are two ways to determine temperature rise. 

9.70∆𝑇𝐹

𝑃𝑝𝑠𝑖
=

1

1 − 0.5 (
𝑄𝑠

𝑄
)

𝑟
𝑐 𝑓

𝑄
𝑟𝑐𝑁𝑙

=
1

1 − (0.5)(0.45)

7

3.85
= 2.3460 

𝑆𝑜, ∆𝑇𝐹 = (2.3460)(250)/(9.70) = 60.5 °𝐹    

Or, Figure 12-24 (noting 𝑆 = 0.33) 
9.70∆𝑇𝐹

𝑃𝑝𝑠𝑖
= 0.349109 + 6.00940𝑆 + 0.047467𝑆2 = 2.3374 

So, ∆𝑇𝐹 = (2.3374)(250)/(9.70) = 60.2 °𝐹 

 

 



Note: Figure 12-24 combines Figures 12-18, 12-19, 12-20, to facilitate the evaluation of ∆𝑇𝐹  or ∆𝑇𝐶 , 

which in turn is to expedite the iterative process of journal bearing design. 

The metric version of the temperature rise formula is: 

0.120∆𝑇𝐶

𝑃𝑀𝑃𝑎
=

1

1 − 0.5 (
𝑄𝑠

𝑄
)

𝑟
𝑐

𝑓

𝑄
𝑟𝑐𝑁𝑙

 

 

12-12 Loads and Materials 

12-13 Bearing Types 

Unit Loads in Typical Applications: Table 12-5. 

 

Bearing Materials 

Table 12-6 lists bearing alloys for applications involving high speed, high temperature, and high varying 

loads: 

• Automotive engines (e.g., connecting rod, crankshaft) 

• Turbo machinery 

Why Alloys? 

Babbitt metals are tin- or lead-based bearing materials, named after Babbitt, who came up with some 

tin-based alloys (~80% tin, ~10% antimony, ~10% copper). 

Lead-based: ~80% lead, ~15% antimony, ~5% tin 

Lead-based Babbittt can compensate for reasonable shaft misalignment and deflections. 



Tin-based and Lead-based Babbitt metals allow foreign particles to become embedded not the bearing 

to prevent scratching of journal and bearing. 

Trimetals typically have layers of materials such as Babbitt, copper or lead, and steel backing. 

Trimetals have high fatigue strength to support compressive cyclic loading. In addition, metals like lead, 

copper and so on, have high thermal conductivity to remove heat rapidly from the bearing. 

Bearing Types: 

See Figures 12-32 to 12-34, from (Very simple) solid bushing to two-piece designs with elaborate groove 

pattern. 

12-7 Design Variables 

• Controlling Variables (variables under the control of the designer) 

Viscosity of the lubricant 𝜇; 

Unit load 𝑃 = 𝑊/(2𝑟𝑙); (𝑊 = 𝑟𝑎𝑑𝑖𝑎𝑙 𝑙𝑜𝑎𝑑, 𝑑 = 2𝑟) 

Speed 𝑁 (rps); 

Bearing dimensions: 𝑟 (journal radius), 𝑐 (radial clearance), and 𝑙 (bearing length). 

• Dependent Variables (variables determined by the charts; they indicate how well the bearing 

performs, hence performance variables) 

The coefficient of friction; 

The temperature rise; 

The maximum film pressure and location; 

The flow rate of lubricant: 

The minimum film thickness and location; and so on 

Recommended Bearing Dimensions 

• 𝑙/(2𝑟) = 0.25 ~1.5 (not to exceed 2.0); 

Shorter bearings place less stringent requirement on shaft deflection and misalignment; longer 

bearings on the other hand have less end leakage. 

• 𝑐/𝑟 = 0.001~0.0015; 

The lower end value 0.001 is for precision bearings; the higher end value 0.0015 is for less precise 

bearings. 

Minimum Film Thickness 

• ℎ𝑚𝑖𝑛 = 0.0002 + 0.000 04𝑑 (British units, 𝑑 and ℎ𝑚𝑖𝑛 in 𝑚𝑚) 

or 

ℎ𝑚𝑖𝑛 = 0.005 + 0.000 04𝑑 (Metric units, 𝑑 and ℎ𝑚𝑖𝑛 in 𝑚𝑚) 

• The first term on the RHS represents the peak-valley roughness of finely ground journal surface. 

Smaller ℎ𝑚𝑖𝑛 would require more expensive manufacturing. 

• The second term on the RHS represents the influence of size (tolerance increases with size) 

What Constitutes a Good Design? 

• Minimum film thickness: ℎ0 ≥ ℎ𝑚𝑖𝑛 

• Friction: as low as possible (𝑓 < 0.01) 

• Maximum temperature: 𝑇𝑚𝑎𝑥 ≤ 250°𝐹 

• In the “optimal zone” (as shown in Figure 12-16) 



• Minimum film thickness is greater than shaft deflection across the length of bearing (to prevent 

binding between shaft and bearing; see diagram below) 

• Using a suitable bearing material (see Sec. 12-12) 

• Able to accommodate changes in clearance, temperature, viscosity, etc. (this will be discussed in 

Sec. 12-10) 

• Allowing lubricant to be distributed over the surface (see Figure 12-34 regarding groove pattern) 

 

 
Procedure 

• There is not a typical procedure. 

• The common theme amongst the procedures: most involve assumptions and iterations, and do not 

guarantee convergence in the end, not to mention a solution/design in the optimal zone and 

meeting other requirements. 

The first part of the process includes, 

1. Choose bearing dimensions 𝑟, 𝑙, and 𝑐, making reference to Table 12-5: unit load for various 

applications. 

2. Determine significant angular speed 𝑁 by (Eq. 12-13); and  

3. Select a lubricant 

 

Where 𝑁𝑗 is the speed of the journal; 𝑁𝑏  is the speed of the bushing and 𝑁𝑓  is the speed of load 𝑊 as a 

vector. And all speeds are in rps. Figure 12-11 shows examples of applying (Eq. 12-13) 



 

The second part involves assumptions, iterations and so on. It ends when a converged solution/design is 

found. For example,  

Assume a temperature rise ∆𝑇; determine the lubricant’s temperature rise ∆𝑇𝐹  (in Fahrenheit) 

or ∆𝑇𝐶  (in Celsius); compare the assumed value with the calculated value; and if necessary, 

assume a new ∆𝑇 or select a different lubricant, iterate until the assumed ∆𝑇 and calculated 

∆𝑇𝐹  or ∆𝑇𝐶 are close; (p. 624 of text, last paragraph) 

For other ways to iterate for a converged solution/design, it’s recommended that you reference other 

sources. 

The last part is to evaluate the performance variables via Figures 12-16 through 12-22, and check against 

design requirements such as, in the optimal zone, 𝑇𝑚𝑎𝑥 ≤ 250°𝐹, and so on. Typically, power loss due 

to friction, or rate of heat loss, is also determined. 

Power loss 𝑯𝒍𝒐𝒔𝒔 

British units: 

𝐻𝑙𝑜𝑠𝑠 =
𝑓𝑊𝑟𝑁

1050
 

Where 𝐻𝑙𝑜𝑠𝑠  is in hp; 𝑊 is in lb; 𝑟 is in inch; and 𝑁 is in rps. 

Metric units: 

𝐻𝑙𝑜𝑠𝑠 =
𝑓𝑊𝑟𝑁

9549
 

Where 𝐻𝑙𝑜𝑠𝑠  is in kW; 𝑊 is in newton; 𝑟 is in m; and 𝑁 is in rpm. 

  



Example 2 

A journal bearing has 𝑑 = 𝑙 = 1.5", 𝑐 = 0.0015", 𝑊 = 500 𝑙𝑏, and 𝑁 = 30 𝑟𝑝𝑠. Lubricant is SAE20 oil 

with an inlet temperature of 100°𝐹. Design and evaluate the bearing. 

Solution: 

The first part of the process is not necessary since 𝑑, 𝑙 , 𝑐, and 𝑁 are given and lubricant is chosen. So, 

𝑃 =
𝑊

𝑙𝑑
=

500

1.5 ∙ 1.5
= 222.2 𝑝𝑠𝑖, 𝑁 = 30 𝑟𝑝𝑠,

𝑙

𝑑
= 1, 𝑎𝑛𝑑

𝑟

𝑐
=

0.75

0.0015
= 500 

Also, 𝑇1 = 100°𝐹 

The second part is completed as follows: 

Select 𝜇 = 4 𝜇𝑟𝑒𝑦𝑛 

Sommerfeld number is: 

𝑆 = (
𝑟

𝑐
)

2 𝜇𝑁

𝑃
= (500)2

(4)(10−6)(30)

222.2
= 0.135 

Temperature rise is, by Figure 12-24 
9.70∆𝑇𝐹

𝑃𝑝𝑠𝑖
= 0.349109 + 6.00940𝑆 + 0.047467𝑆2 = 1.161 

∆𝑇𝐹 =
(1.161)(222.2)

9.70
= 26.6°𝐹 

And the average temperature is 𝑇𝑎𝑣 = 𝑇1 +
∆𝑇𝐹

2
= 113.3°𝐹 

On Figure 12-12, plot (𝑇𝑎𝑣 , 𝜇). It is located below the SAE20 line. 

Select 𝜇 = 7 𝜇𝑟𝑒𝑦𝑛 

Sommerfeld number is: 

𝑆 = (
𝑟

𝑐
)

2 𝜇𝑁

𝑃
= (500)2

(7)(10−6)(30)

222.2
= 0.236 

Temperature rise is, by Figure 12-24 
9.70∆𝑇𝐹

𝑃𝑝𝑠𝑖
= 1.773 

∆𝑇𝐹 =
(1.773)(222.2)

9.70
= 40.6°𝐹 

And the average temperature is 𝑇𝑎𝑣 = 𝑇1 +
∆𝑇𝐹

2
= 120.3°𝐹 

Plot the second point (𝑇𝑎𝑣 , 𝜇), making sure it is above the SAE20 line. Otherwise, assume a different 

viscosity until (𝑇𝑎𝑣,  𝜇 ) is above the line. 

 



Draw a straight line between the two points of (𝑇𝑎𝑣 , 𝜇). The intersecting point with the SAE20 line is 

(117, 5.2). 

So, 𝑇𝑎𝑣 = 117°𝐹 or ∆𝑇𝐹 = 34 °𝐹 and 5.2 𝜇𝑟𝑒𝑦𝑛 

(Keep in mind every time we have a new viscosity, we have to find a new Sommerfeld number) 

The last part is as follows: 

𝑇𝑚𝑎𝑥 = 134°𝐹 < 250°𝐹 

Figure 12-15: 
ℎ0

𝑐
= 0.49 

ℎ0 = (0.49)(0.0015) = 0.000 735" 

ℎ𝑚𝑖𝑛 = 0.000 2 + 0.000 04𝑑 = 0.000 26" 

So, ℎ0 > ℎ𝑚𝑖𝑛 and (𝑆, ℎ0/𝑐) is inside the optimal zone. 

(Where 𝑆 = 0.176 and ℎ0/𝑐 = 0.49) 

Figure 12-17: (𝑟/𝑐)𝑓 = 4.2 

𝑓 =
4.2

500
= 0.0084 < 0.01 

Figure 12-20: 
𝑃

𝑝𝑚𝑎𝑥
= 0.45 

𝑝𝑚𝑎𝑥 =
222.2

0.45
= 494 𝑝𝑠𝑖 

Power loss: 

𝐻𝑙𝑜𝑠𝑠 =
𝑓𝑊𝑟𝑁

1050
=

(0.0084)(500)(0.75)(30)

1050
= 0.0897 ℎ𝑝 

Example 3 

A journal bearing has 𝑟 = 𝑙 = 1.5", 𝑐 = 0.0015", 𝑊 = 1000 𝑙𝑏, and 𝑁 = 30 𝑟𝑝𝑠. Lubricant’s inlet 

temperature is assumed to be 120°𝐹. The bearing is to be designed with high load capacity. Select a 

lubricant, and design and evaluate the bearing. 

Solution: 

The first part of the process is as follows: 

𝑃 =
𝑊

𝑙𝑑
=

1000

1.5∗3
= 222.2 𝑝𝑠𝑖, 𝑁 = 30 𝑟𝑝𝑠, 

𝑙

𝑑
=

1

2
, and 

𝑟

𝑐
=

1.5

0.0015
= 1000 

Also, 𝑇1 = 120°𝐹 

For the second part, 

Figure 12-16: on the plot of 
𝑙

𝑑
= ½, select a point located close to the “Max W” edge, say 𝑆 = 0.3 

𝑆 = 0.3 = (
𝑟

𝑐
)

2 𝜇𝑁

𝑃
= (1000)2

𝜇(30)

222.2
 

So, 𝜇 = 2.22 𝜇𝑟𝑒𝑦𝑛 

Figure 12-24 with 𝑆 = 0.3: 
9.70∆𝑇𝐹

𝑝𝑝𝑠𝑖
= 0.394 552 + 6.392 527𝑆 − 0.036 013𝑆2 = 2.309 

∆𝑇𝐹 = (2.309)(222.2)/(9.70) = 52.9°𝐹 



So, 𝑇𝑎𝑣 = 𝑇1 +
∆𝑇2

2
= 146°𝐹 

Figure 12-12: locate the point (146, 2.22). It is below the SAE20 line. On the line, 𝜇 = 2.5 𝜇𝑟𝑒𝑦𝑛, which 

gives a Sommerfeld number 𝑆 = 0.34. The design remains inside the optimal zone. 

Or, the average temperature needs to be 153°𝐹 for the lubricant to have a viscosity of 2.22 𝜇𝑟𝑒𝑦𝑛. That 

means inlet temperature needs to be at 126.5°𝐹. 

The last part gives the following results: (based on 𝑆 = 0.34) 

ℎ0 = (0.43)𝑐 = 0.000 625" 

ℎ𝑚𝑖𝑛 = 0.000 2 + 0.000 04𝑑 = 0.000 32" < ℎ0 

𝑓 = (8.5)/(𝑟/𝑐) = 0.0085 < 0.01 

𝑄 = (4.8)/(𝑟𝑐𝑁𝑙) = 1394 𝑖𝑛3/𝑠 

𝑄𝑠 = 0.72̇ ∙ 𝑄 = 1004 𝑖𝑛3/𝑠 

𝑝𝑚𝑎𝑥 = 𝑃/0.375 = 593 𝑝𝑠𝑖 

12-10 Clearance 

Why this section? 

• Clearance 𝑐 has a range due to manufacture and assembly 

• It tends to increase due to wear 

How to take into consideration change in clearance? 

A suitable fit is assigned between journal and bushing. For example, H8,f7 (close to running fit) or H9/d9 

(free running); 

Then the range of clearance is determined (see Table 12-3, for example); 

Performance of the bearing (As indicated by ℎ0, 𝑇2 the outlet temperature, 𝑄, and 𝐻 the power loss, for 

example) is calculated and plotted against clearance 𝑐. See Figure 12-25.  

The initial clearance band (i.e., the tolerance specified for manufacturing) should be located to the left 

of the peak of the ℎ0 − 𝑐 plot. 

  



Chapter 13 

Gears - General 
Part 1: Geometry and Tooth System 

13-1 … 13.8: 

Types of Gears, …, The Forming of Gear Teeth 

13-12: Tooth Systems 

Part 2: Kinematics 

13-13: Gear Trains 

Part 3: (to be discussed with Chapters 14 and 15) 

13-19 … 13-11: 

 Bevel Gears, Parallel Helical Gears, Worm Gears 

13-14 … 13-17: 

Force Analysis – Spur, Bevel, Helical and Worm Gears 

13-1 Types of Gears 

Why Gears? 

Of constant-speed mechanical transmission elements, the frequencies of usage are: 

• Gears: 50% 

• Couplings: ~20% 

• Chain Drives: 10−20% 

• Belt Drives: 10-12% 

• Power screws, wire ropes, friction wheels, etc.: 5-10% 

Types of Gears: 

• Spur gears: most common; transmit power between two parallel shafts 

• Helical gears: between two intersecting shafts 

• Bevel gears: between intersecting shafts 

• Worm gear sets: between non-parallel and non-intersecting shafts 

• And many other types 

13-2 Nomenclature 

13-12 Tooth Systems 

Nomenclature: Figure 13-5, for spur gears only. 



 

Tooth System: refers to the standard that specifies the tooth geometry and so on. There are the metric 

system and the US customary system. 

• Pitch circle 

• Circular pitch 𝑝, pitch diameter 𝑑, in 𝑖𝑛 or 𝑚𝑚 

• Number of teeth 𝑁 

• Diametral pitch 𝑃 = 𝑁/𝑑, in teeth/in; or 

• Module 𝑚 = 𝑑/𝑁, in 𝑚𝑚 

• 𝑃 and 𝑚 are standardized, see Table 13-2 

• Metric gears and US customary gears are NOT interchangeable 

Tables 13-1, 13-3, 13-4: formulas for spur gears, 20° straight bevel gears, and helical gears 

Table 13-5: information for worm gearing 

Typical values for face width 

3𝜋

𝑃
≤ 𝐹 ≤

5𝜋

𝑃
 

Or 

3𝜋𝑚 ≤ 𝐹 ≤ 5𝜋𝑚 

13-3 Conjugate Action 

13-4 Involute Properties 

13-5 Fundamentals 

• The fundamental Law of Gearing: 

Angular velocity ratio between the gears of a gearset must remain constant throughout the mesh 

• Involute tooth form meets the fundamental law, and has the advantage that error in center-to-

center distance will not affect the angular velocity ratio. 



 

13-6 Contact Ratio 

 

• Addendum circles 

• Pressure line (passing through pitch circles) 

• A part of gear teeth enters into contact at point 𝑎 and exits from contact at point 𝑏 on the same line 

• The distance between these points in the length of action 𝐿𝑎𝑏  also labelled as 𝑍. 

Gear contact ratio 𝑚𝑐 defines the average number of teeth that are in contact at any time, 

𝑚𝑐 =
𝐿𝑎𝑏

𝑝𝑏
=

𝐿𝑎𝑏

𝑝𝑐𝑜𝑠𝜙
 

Where 𝑝𝑏 = 𝑝 ∙ 𝑐𝑜𝑠𝜙 is the base pitch and 𝜙 is the pressure angle. 

Significance: 

For a pair of gears the mesh properly, their diametral pitch or module, and pressure angle must be the 

same. In addition, contact ratio must meet certain requirements.  

𝑚𝑐 =
𝐿𝑎𝑏

𝑝𝑐𝑜𝑠𝜙
=

√𝑟𝑎𝑝
2 − 𝑟𝑏𝑝

2 + √𝑟𝑎𝑔
2 − 𝑟𝑏𝑔

2 − 𝑐𝑠𝑖𝑛𝜙

𝑝𝑐𝑜𝑠𝜙
 

Or 

𝑚𝑐 =
𝐿𝑎𝑏

𝜋𝑚𝑐𝑜𝑠𝜙
=

√𝑟𝑎𝑝
2 − 𝑟𝑏𝑝

2 + √𝑟𝑎𝑔2 − 𝑟𝑏𝑔
2 − 𝑐𝑠𝑖𝑛𝜙

𝜋𝑚𝑐𝑜𝑠𝜙
 

Where: 

𝑟𝑎𝑝, 𝑟𝑏𝑝: radii of addendum circle and base circle of the pinion; 

𝑟𝑎𝑔 , 𝑟𝑏𝑔: radii of addendum circle and base circle of the gear; 

𝑐: center-to-center distance; 

The radius of base circle of a gear is 𝑟𝑏 =
𝑑

2
𝑐𝑜𝑠𝜙, with 𝑑 being the pitch diameter. 



 

Example 1 

A gear set has diametral pitch of 𝑃 = 10 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛 and pressure angle of 20°. Teeth numbers are     

𝑁𝑝 = 30 and 𝑁𝑔 = 75. Determine the contact ratio of the set. Assume full depth tooth profile.  

Solution: 

 Pinion Gear 

Pitch radius, 𝒊𝒏 1.5 3.75 

Addendum radius, 𝒊𝒏 1.6 3.85 

Base radius, 𝒊𝒏 1.4095 3.5238 

Center-to-centre distance, 𝒊𝒏 5.25 

𝐿𝑎𝑏 = 0.7572 + 1.5509 − 17956 = 0.5125" 

𝑝 =
𝜋

𝑃
= 0.3142" 

𝑚𝑐 =
0.5125

0.3142 ∙ cos(20°)
= 1.74 

Example 2 

A set of stub-profiled gear has, 𝑁𝑝 = 18 and 𝑁𝑔 = 72. Module is 𝑚 = 5 𝑚𝑚. Determine the set’s 

contact ratio. Pressure angle is 22.5°. 

Solution: 

 Pinion Gear 

Pitch radius, 𝒎𝒎 45 180 

Addendum radius, 𝒎𝒎 49 184 

Base radius, 𝒎𝒎 41.575 166.298 

Center-to-centre distance, 𝒎𝒎 225 

𝐿𝑎𝑏 = 25.933 + 78.746 − 86.104 = 18.575 𝑚𝑚 

𝑚𝑐 =
18.575

𝑛 ∙ 𝜋 ∙ cos(22.5°)
= 1.28 

13-8 The Forming of Gear Teeth 

13-7 Interference 

• Mainly, there are form cutting and generating cutting 

o Form cutting: the cutter is the exact shape of the tooth space; expensive 

o Generating cutting: the cutter has a shape different from the tooth space; more common 

• Of interest to discussing interference is generating cutting which includes, 

o Shaping: pinion cutting (Figure 13-17) and rack cutting (Figure 13-18) 

o Hobbing: using hob, a worm-like cutting tool, to cut a blank (Figure 13-19) 

• Interference refers to contact taking place on the non-involute portion of the tooth profile (inside 

base circle) 

• Undercut refers to the removal of interfering material during generating cutting. 



 
• To avoid interference, the pinion requires a minimum number of teeth ,while the gear has a 

restriction on maximum number of teeth. 

• The text has three equations, (Eq. 13-10), (Eq. 13-11) and (Eq. 13-13) for determining the minimum 

number of teeth to avoid interference. 

• (Eq. 13-11) is for general cases, and recommended. For a pinion-gear set, the minimum number of 

teeth on pinion without interference is, (𝐸𝑞. 13 − 11): 

 
Where: 

𝑚 is the gear ratio 𝑚 = 𝑁𝐺/𝑁𝑝. 𝑚 > 1. 

𝑘 = 1 for full-depth teeth, and 0.8 for stub teeth 

𝜙 is the pressure angle 

• (Eq. 13-10) is for cases of one-to-one gear ratio. 

 

• (Eq. 13-13) is for cases of pinion meshing with a rack. 

 

 
• Maximum number of teeth on a gear mating with a specific pinion is determined by (Eq. 13-12) 

 
 

• A number of examples are shown within the section. 



1st example: a set of gears, shapes by pinion cutter, 20° pressure angle, full-depth teeth; then smallest 

𝑁𝑝 is 1 3and largest 𝑁𝐺  is 16. 

2nd example: a set of gears, 20° pressure angle, full-depth teeth, cut by hobbing; then smallest 𝑁𝑝 is 17 

and largest 𝑁𝐺  is 1309. 

13-13 Gear Trains 

Types of Gear Trains 

• Simple of series trains, See Figure 13-27 

 
• Compound trains 

o Reverted (Figure 13-29) 

 

o Non-reverted (Figure 13-28) 

 
 

 

 

 

 



o Planetary or epicyclic trains (Figure 13-30) 

 

Train Value, Speed Ratio, Gear Ratio, and so on 

• In the text, train value 𝑒 is used. It is defined as 

𝑒 = ±
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑜𝑜𝑡ℎ 𝑛𝑢𝑚𝑏𝑒𝑟𝑠

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑑𝑟𝑖𝑣𝑒𝑛 𝑡𝑜𝑜𝑡ℎ 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
 

𝑒 is positive if the last gear rotates in the same sense as the first, and negative if the last gear rotates 

in the opposite sense.  

𝑒 is also the ratio of 𝑛𝐿, the speed of the last gear, over the speed of the first gear 𝑛𝐹. 

𝑒 =
𝑛𝐿

𝑛𝐹
 

• Speed ratio = velocity ratio = transmission ratio – train value. 

• Gear ratio is commonly used in daily conversions. Gear ratio = 1/𝑒 

 

Problem-Solving 

• Given a train, find velocity ratio; 

• Given required gear ratio, determine the type of train and teeth numbers.  

See Examples 13 − 3 ~ 13 − 5. 

 

Velocity Ratio – Planetary Gear Trains 

• Tabular method see “Dynamics of Machinery”, R. L. Norton. 

o Follow the power flow 

o Velocity difference equation 

𝜔𝑔𝑒𝑎𝑟 = 𝜔𝑎𝑟𝑚 + 𝜔𝑔𝑒𝑎𝑟/𝑎𝑟𝑚  

 (NOTE: The last term represents the velocity of gear relative to the arm.) 

o Relative velocity obeys  

𝑉𝑅 =
[𝜔𝑔𝑒𝑎𝑟/𝑎𝑟𝑚]

𝑑𝑟𝑖𝑣𝑒𝑛

[𝜔𝑔𝑒𝑎𝑟/𝑎𝑟𝑚]
𝑑𝑟𝑖𝑣𝑒𝑟

 = ±
𝑁𝑑𝑟𝑖𝑣𝑒𝑟

𝑁𝑑𝑟𝑖𝑣𝑒𝑛
 

 (NOTE: Where the " + " is used with internal set and " − " is used with external set.) 

 

 



Example 3: 

The schematic of a planetary gear train is shown below, with “1” being the arm. Gears 2 and 6 rotate 

about the same axis as the arm. Input is to Gear 2. 

 
(1) Given 𝑁2 = 30, 𝑁3 = 25, 𝑁4 = 45, 𝑁5 = 30, 𝑁6 = 160, 𝜔2 = 50 𝑟𝑎𝑑/𝑠, 𝜔𝑎𝑟𝑚 = −75 𝑟𝑎𝑑/𝑠  

Find 𝜔6 . 

(2) Given 𝑁2 = 30, 𝑁3 = 25, 𝑁4 = 45, 𝑁5 = 50, 𝑁6 = 200, 𝜔2 = 50 𝑟𝑎𝑑/𝑠, 𝜔6 = 0  

Find 𝜔𝑎𝑟𝑚 , 𝜔3, 𝜔4, 𝜔5 

 

Solution: 

(1): Power flow: 2 → 4 & 3 → 5 → 6 

Gear  𝜔𝑔𝑒𝑎𝑟       =                𝜔𝑎𝑟𝑚           +          𝜔𝑔𝑒𝑎𝑟/𝑎𝑟𝑚  𝑉𝑅 

2 50 −75 125 
−𝑁2/𝑁4 

4 
 −75 (125) (−

𝑁2

𝑁4
) 

3 
−𝑁3/𝑁5 

5  −75 (125) (−
𝑁2

𝑁4
) (−

𝑁3

𝑁5
) 

𝑁5/𝑁6 
6 𝜔6 −75 (125) (−

𝑁2

𝑁4
) (−

𝑁3

𝑁5
) (

𝑁5

𝑁6
) 

∴ 𝜔6 = −61.98 𝑟𝑎𝑑/𝑠 

 

(2): Power flow: 2 → 4 & 3 → 5 → 6 

Gear  𝜔𝑔𝑒𝑎𝑟 =                    𝜔𝑎𝑟𝑚           +          𝜔𝑔𝑒𝑎𝑟/𝑎𝑟𝑚  𝑉𝑅 

2 50 𝑥  
 

4 
 𝑥  

3 
 

5  𝑥  

 
6 0 𝑥  

𝜔𝑎𝑟𝑚 = 𝑥 = −4.545 𝑟𝑎𝑑/𝑠 

𝜔3 = 𝜔4 = −40.91 𝑟𝑎𝑑/𝑠 

𝜔5 = 13.64 𝑟𝑎𝑑/𝑠 

 

 



Spur Gears 

13-14 Force Analysis – Spur Gearing 

 
𝐹23 and 𝐹32 are action and reaction forces; 

Transmitted load: 𝑊𝑡 = 𝐹23𝑐𝑜𝑠𝜙 = 𝐹32𝑐𝑜𝑠𝜙; 

Radial load (separating force): 𝑊𝑟 = 𝐹23𝑠𝑖𝑛𝜙 = 𝐹32𝑠𝑖𝑛𝜙 

Determination of Transmitted Load 

US-customary units 

Pitch line velocity  

 
Where 𝑑 and 𝑛 are pinion pitch diameter (in 𝑖𝑛) and pinion speed (in 𝑟𝑝𝑚), or gear pitch diameter (in 

𝑖𝑛) and gear speed (in 𝑟𝑝𝑚). 𝑉 is pitch line velocity in 𝑓𝑡/𝑚𝑖𝑛. 

Transmitted Load 𝑊𝑡 (or 𝑊𝑡): 

 
Where 𝐻 is power in ℎ𝑝; 𝑉 is pitch-line speed in 𝑓𝑡/𝑚𝑖𝑛; and 𝑊𝑡 is in 𝑙𝑏. 

SI Units 

 
Where 𝐻 is power in 𝑘𝑊; 𝑑 is pitch diameter in 𝑚𝑚 (of pinion or gear); 𝑛 is speed (of pinion or gear) in 

𝑟𝑝𝑚; and 𝑊𝑡 is in 𝑘𝑁. 

𝑊𝑡 

𝑊𝑟 



Gear Materials  

Information from the 6th Ed. 

• Through-hardening: (by annealing, normalizing and annealing, and quench and temper) 

1040, 1060, 1335, 3135, 4037, 4140, 4340, 5150, 8640, and 8740, with 4140 and 4340 being the 

most commonly used. 

• Case hardening  

By carburization (up to 600 HB): 

4118, 4320, 4620, 4720, 4820, 5120, and 8620 

By nitrization: 

4140, 4340 

Information from AGMA 

• AGMA recommends to specify the following for gear materials: 

o Material designator or stress grade 

o Material cleanliness 

o Surface and core hardness 

o AGMA quality level 

• Gear materials are given a stress grade 0~3. 

0: Ordinary quality. No gross defects but no close control of quality; 

1: Good quality. Modest control of most important quality items; used in typical industrial 

applications; 

2: Premium quality. Close control of all critical quality items; improved quality/performance but 

increased material cost; 

3: Superior quality. Absolute control of all critical quality items; ultimate performance but high 

material cost. 

• Material cleanliness 

This is by AMS, Aerospace Material Specification. 

Grade 3 materials: call for AMS 2300 (Premium Aircraft-Quality Steel Cleanliness, Magnetic Particle 

Inspection). 

Grade 2 materials: call for AMS 2301 (Cleanliness, Aircraft Quality Steel Magnetic Particle Inspection 

Procedure). 

Grade 1 materials: not required to adhere to any AMS specification.  

• AGMA quality (or accuracy) level: 

𝑸𝑽 Descriptive Manufacture Applications 
14-15 Highest level Trade secret Highest load & reliability; 

high speed 

12-13 High level Grinding, shaving Aerospace turbo-machinery 

10-11 Relatively high Grinding, shaving Mass production; 
automotive vehicles; 

automotive 

8-9 Good Hobbing, shaping Automotive; electric motor; 
industrial  

6-7 Nominal Hobbing, shaping (by older 
machines) 

Low speed gears 

4-5 Minimal Casting, molding Slow speed gears; toys, 
gadgets 



Chapter 14 
14-1: The Lewis Bending Equation 

14-2: Surface Durability 

Main failure modes of gearing 

• Bending fatigue → Breakage of the tooth 

• Contact fatigue → Pitting and spalling 

• Wear (due to adhesion, abrasion, corrosion, scoring, scuffing …) 

Bending Fatigue is caused by excessive dynamic bending stress at the base of the tooth; 

Surface Fatigue is caused by repeated applications of loads on the surface. 

Figure 14-1 and the Lewis Bending Equation 

 

A tooth is considered a cantilever beam; 

Transmitted and radial loads are labelled 𝑊𝑡 and 𝑊𝑟; 

Span of beams depends on tooth geometry; 

Bending stress at “fixed end”: by (Eq. 14-2) or (Eq. 14-3); 

 

 

 

 

 

 

 



Dynamic effects: (Eq. 14-7) or (Eq. 14-8); 

 

 

Example 14-1: Applying above equations to determine required horsepower; 

Example 14-2: Fatigue due to bending stress for infinite life; 

Drawbacks: compressive stress due to 𝑊𝑟 is not considered. 

Surface Durability 

At the contact point, each tooth is considered part of a cylindrical surface; 

Hertz contact theory: see Sec. 3-19; 

Contract stress: (Eq. 14-14); 

 

Example 14-3: Applying the above equation; 

Drawbacks: fatigue due to contact stress is not considered. 

14-3: AGMA Stress Equations 

Stress Numbers 

• In AGMA terminology, a stress caused by an applied load is a stress number. 

• There are two stress numbers: bending and contact. 

Bending Stress Number (for spur and helical gears) 

  
Contact Stress Number (for spur and helical gears) 

 
 



14-4 AGMA Strength Equations 

Allowable Stress Numbers 

• In AGMA terminology, an allowable stress is an allowable stress number. 

• There are two allowable stress numbers: allowable bending and allowable contact. 

Allowable Bending Stress Number (for spur and helical gears) 

 
(Where 𝑆𝐹  is factor of safety) 

 

Allowable Contact Stress (for spur and helical gears)  

 
(Where 𝑆𝐻  is factor of safety) 

 

14-18 Analysis 

Figures 14-17 and 14-18 

Summary of above formulas (US-customary units only), including where to find the factors. 

 

Overload Factors 𝐾𝑜  

 
 

Examples of power sources and driven machines in each “shock” category (courtesy Mechanical Design 

of Machine Elements and Machines, A Failure Prevention Perspective, J.A. Collins, Wiley & Sons, 2003). 

 

Power sources: 

• Uniform: electric motors, steam turbines, gas turbines; 

• Light shock: multi-cylinder engines; 

• Medium Shock: single-cylinder engines. 



Driven machines: 

• Uniform: generators; uniformly loaded conveyors; 

• Medium Shock: centrifugal pumps, reciprocating pumps and compressors, heavy-duty conveyors, 

main drives of machine tools; 

• Heavy Shock: punch press, crushers, shears, power shovels. 

 

Example 14-4: Spur gears 

Example 14-5: Helical gears 

 

14-19 Design of a Gear Mesh 

Initial Steps 

• Choose a diametral pitch; (𝑃 = 8, 𝑜𝑟 10 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛) 

• Select face width and material; 

• Decide on core and surface hardness for pinion and gear, and other details such as reliability, etc. 

 

With the second and third steps above, iteration back to the first step may be necessary. 

 

Detailed Calculations  

• Referring to page 768; 

• It shows all factors, and four factors of safety. They are, one for pinion bending, one for gear 

bending, one for pinion contact, and one for gear contact. 

 

Example: 

A gearbox contains a set of spur ears. IT is driven by a single cylinder engine, and to drive a reciprocating 

compressor. Output shaft rotates at 1500 rpm, with a maximum torque of 550 lb-in. Gear ratio is 2.5:5 

to 1. Pitch diameter of pinion Is expected to be around 3.25”. Assume: 

 

(1) AGMA grade 1 steel through hardened to 𝐻𝐵 = 350 for pinion and 280 for gear; 

(2) 20° full depth and uncrowned teeth; 

(3) 𝑄𝑉 = 10; 

(4) 10-year life of 8-hour shift continuous operation; 

(5) Gears are located in the mid-span of their respective shafts; 

(6) 99% reliability. 

(7) Oil temperature is less than 250°𝐹 

 



Solution 

1. Choose 𝑃 = 10
𝑡𝑒𝑒𝑡ℎ

𝑖𝑛
  

𝑁𝑃 = 𝑃 ∙ 𝑑𝑝 = (10)(3.25) = 32.5 - Select 𝑁𝑝 = 33 

𝑁𝐺 = (2.5)(33) = 82.5 - Select 𝑁𝐺 = 83. 

So 𝑁𝑃 = 33, 𝑑𝑝 = 3.3, 𝑁𝐺  =83, dG=8.3, 20° full depth and uncrowned teeth. 

Contact ratio is: 

𝑚𝑐 =
0.81145 + 1.6896 − 1.9837

(
𝜋

10
) cos (20°)

= 1.7525 

 

2. Face width 𝐹 = (3~5)𝑝 = 4𝑝 = 1.26"; Choose 𝐹 = 1.25". 

 

3. Transmitted load 

𝑊𝑡 =
𝑇𝑚𝑎𝑥

𝑟𝐺
=

500

(
8.3
2

)
= 132.5 𝑙𝑏 

 

4. AGMA allowable stress numbers 

Tables 14-3 and 14-6 indicate what to use, based on gear materials. 

Pinion: 𝐻𝐵 = 350, 𝑆𝑡 = 39,855 𝑝𝑠𝑖, 𝑆𝑐 = 141,800 𝑝𝑠𝑖 

Gear: 𝐻𝐵 = 280, 𝑆𝑡 = 34,444 𝑝𝑠𝑖, 𝑆𝑐 = 119,260 𝑝𝑠𝑖 

 

5. Geometry factors 

For bending: 𝐽𝑃 = 0.4, 𝐽𝐺 = 0.445 

For contact: use (Eq. 14-23) where 𝑚𝑁 is the load sharing ratio, and 𝑚𝐺  is the speed ratio.  

 

That is, 𝑚𝑁 = 1 (for spur gears), and 𝑚𝐺 =
83

33
= 2.515. 

So, 𝐼 = 0.115 

 

6. Elastic coefficient 

𝐶𝑃 = 2300√𝑝𝑠𝑖 



 

7. Dynamic factor 

𝑄𝑉 = 10; So 𝐵 = 0.39685, 𝐴 = 83.776 

Pitch line velocity 𝑉 = 𝜋𝑑𝐺𝑛𝐺/12 = 3259 𝑓𝑡/𝑚𝑖𝑛 

(Eq. 14-29): max. pitch line velocity 𝑉𝑚𝑎𝑥 = 8240 𝑓𝑡/𝑚𝑖𝑛 

 
(Eq. 14-27): 𝐾𝑉 = 1.229 

 
8. Overload factor  

𝐾𝑜 = 1.75 

9. Surface-condition factor 

𝐶𝑟 = 1 (currently as a place holder) 

10. Size factor 

 
𝐹 = 1.25", 𝑃 = 10 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛, 𝑌 is the Lewis form factor from Table 14-2. By linear interpolation, 

𝑌𝑃 = 0.368, 𝑌𝐺 = 0.439.  

So, 𝐾𝑠𝑃 = 1.038, 𝐾𝑠𝐺 = 1.043 

Note: if calculated value is less than 1, set 𝐾𝑠 = 1. 



  

11. Load distribution factor 

Sec. 14-11 lists conditions under which to use (Eq. 14-30 through (Eq. 14-35). 

 
then 𝐶𝑚𝑐 = 1 

 

 
then 𝐶𝑝𝑓 = 0.01600 

 

 
then 𝐶𝑝𝑚 = 1 

 

 
then 𝐶𝑚𝑎 = 0.1466 (𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙, 𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑑 𝑢𝑛𝑖𝑡𝑠) 

 

 
then 𝐶𝑒 = 1 

 

(Eq. 14-30): 𝐾𝑚 = 1.163 

   
 

12. Hardness-ratio factor 
𝐻𝐵𝑃

𝐻𝐵𝐺
=

350

280
= 1.25 

𝐴′ = 0.002935 

(Eq. 14-36): 𝐶𝐻𝑔 = 1.004; but 𝐶𝐻𝑃 = 1. 

 



13. Stress-cycle factors 

For pinion, 𝑛𝑝 = (
83

33
) ∙ 𝑛𝐺 = 3772.7 𝑟𝑝𝑚 

Pinion’s life 𝑁 = (10)(365)(8)(60)(3772.7) = 6.610(109) revs 

Figure 14-14: 𝑌𝑁𝑃 = 1.6831 ∙ 𝑁−0.0323 = 0.8108 

Figure 14-15: 𝑍𝑁𝑃 = 2.466 ∙ 𝑁−0.056 = 0.6951  

 

 

Gears life 𝑁 = (10)(365)(8)(60)(1500) = 2.628(109) revs 

Figure 14-14: 𝑌𝑁𝐺 = 1.6831 ∙ 𝑁−0.0323 = 0.8353  

Figure 14-15: 𝑍𝑁𝐺 = 2.466 ∙ 𝑁−0.056 = 0.7320 

 

 

 

 

 

 



14. Reliability factor 

Table 14-10 or (Eq. 14-38): 

𝐾𝑅 = 1 

 
 

15. Temperature factor 

Just use 𝐾𝑇 = 1 (Valid for processes up to 250°𝐹) 

 

16. Rim-thickness factor 

(Eq. 14-40): 𝐾𝐵 = 1 (but need to ensure 𝑚𝐵 ≥ 1.2) 

 
 

17. Safety factor 𝑆𝐹  and 𝑆𝐻  

They are to be determined from AGMA equations. 

𝜎𝑃 = 6,880 𝑝𝑠𝑖  

𝜎𝐺 = 6,214 psi 

 

𝜎𝑎𝑙𝑙,𝑃 =
32,314

𝑆𝐹,𝑃
  

𝜎𝑎𝑙𝑙,𝐺 =
28,771

𝑆𝐹,𝐺
 

 

𝑆𝐹,𝑃 = 4.70 

𝑆𝐹,𝐺 = 4.63  

 

Similarly,   

𝑆𝐻,𝑃 = 1.49 

𝑆𝐻,𝐺 = 1.41 



 



 



Assessments 

• Refer to pp. 768-769, and p. 772 

• Ideally, the four factors of safety should be at the same level, between 1 and 3; 

• Factors of safety 𝑆𝐹,𝑃 and 𝑆𝐹,𝐺  are directly proportional to transmitted load 𝑊𝑡; 

• Factors of safety 𝑆𝐻,𝑃 𝑎𝑛𝑑 𝑆𝐻,𝐺  are proportional to the square root or cubic root of the transmitted 

load 𝑊𝑡; 

• So 𝑆𝐹  should be compared with 𝑆𝐻
2 , or 𝑆𝐻

3  if teeth are crowned; 

• For the spur gearset example, calculated factors of safety are: 

 Pinion Gear  Pinion Gear 

𝑆𝐹  4.70 4.63 𝑆𝐻  1.59 1.41 

Comparison should be done as: 

 Pinion Gear  Pinion Gear 
𝑆𝐹  4.70 4.63 𝑆𝐻

2  2.53 1.99 

• For steels with HB < 500, good balance between bending and contact can be achieved by going for 

higher P (or finer pitch); 

• For steels with HB ≥ 500, it is suggested to start with P = 8 (𝑡𝑒𝑒𝑡ℎ/𝑖𝑛) 

• Remember that a broken tooth is more dangerous than a worn tooth; 

13-10: Parallel Helical Gears 

13-12 Tooth Systems 

• Shaping and gobbing are the two commonly used gear manufacturing methods. 

• Depending on the manufacturing method, there are two tooth systems for helical gears. 

• Shaped helical hears follow the transverse tooth system, but hobbed helical gears follow the normal 

tooth system. 

• Figure 13-22: Transverse plane A-A and normal plane B-B 

 



• Transverse tooth system vs. normal tooth system 

They refer to the fact that tooth proportion (addendum and dedendum) is determined in the 

transverse plane for shaped gears, and in the normal plane for hobbed gears. 

• Table 13-4: standard tooth proportions for hobbed US-customary helical gears. 

Helix angle 𝜓, not standardized but < 30°; a value between 15° and 30° is common. 

Standard values are applied to: 

o Normal pitch 𝑃𝑛; and 

o Normal pressure angle 𝜑𝑛 

Transverse circular pitch 𝑝𝑡 ↔ Normal circular pitch 𝑝𝑛: (Eq. 13-16) 

 
Transverse pitch 𝑃𝑡 ↔ Normal pitch 𝑃𝑛: (Eq. 13-18) 

 
Transverse pressure angle 𝜑𝑡 ↔ Normal pressure angle 𝜑𝑛: (Eq. 13-19) 

 
Axial (circular pitch) 𝑝𝑥: (Eq. 13-17) 

 
Face width ≥ 2x axial pitch 

Example 13 − 2 on applying the above. 



 

Example 1: Determine the pitch diameter, radius of addendum circle, radius of base circle, and face 

width of a helical gear (18-teeth, 20°-pressure angle, 22.5°-helical angle, and full-depth tooth profile) 

when It is cut by a hob with 𝑃𝑛 = 8 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛. 

Solution: 

 Transverse Plane Normal Plane 

Addendum, 𝑖𝑛  0.125 

Dedendum, 𝑖𝑛  0.1563 

Transverse pitch, 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛 7.391  

Transverse pressure angle, ° 21.50  

Pitch diameter, 𝑖𝑛 2.435  

Radius of addendum circle, 𝑖𝑛 1.343  

Radius of base circle, 𝑖𝑛 1.133  

Transverse circular pitch, 𝑖𝑛 0.4251  

Transverse base circular pitch, 𝑖𝑛 0.3955  

Axial pitch, 𝑖𝑛 1.026  

Face width, 𝑖𝑛 ≥ 2.052  

 

• Configuration of helical gears 

For a set of helical gears to mesh, they must have the same diametral pitch and pressure angle.  

If the helical gears have helix angle 𝜓1 and 𝜓2, respectively, the angle between the shafts is 
∑ = 𝜓1 + 𝜓2. 

When ∑ ≠ 0 (that is, 𝜓2 ≠ −𝜓1), the helical hears form the so-called cross helical gears. 



Crossed helical gears are in point contact, and may have low efficiency due to sliding motion 

between the teeth in contact. The load carrying capacity is limited to 400 𝑁 or so. 

Parallel helical gears: this is when 𝜓2 = −𝜓1 and ∑ = 0. That is, the gears have the same helical 

angle, but the helices are of opposite hands. 

 
Left-handed, right-handed, standard configuration 

 
Crossed configuration 

• Contact ratios 

A helical gearset has transverse, normal and axial contact ratios. 

Transverse contact ratio, 𝑚𝑃, is determined in the same way as the 𝑚𝑐 for a pair of spur gears. 

Face or axial contact ratio is 𝑚𝐹 = 𝐹/𝑝𝑥. 

Total contact ratio is 𝑚𝑃 + 𝑚𝐹 . 

Example 2: Determine the total contact ratio of a set of hobbed helical gears (𝑃𝑛 = 8 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛, 20° 

pressure angle, 22.5° helical angle, and full-depth tooth profile). Given 𝑁𝑝 = 18, 𝑁𝐺 = 35, and face 

width is 2.5". 

Solution: 

 Pinion Gear 

Addendum, 𝑖𝑛 0.125 

Dedendum, 𝑖𝑛 0.1563 

Transverse pitch, 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛 7.391 

Transverse pressure angle, ° 21.50 



Pitch diameter, 𝑖𝑛 2.435 4.732 

Radius of addendum circle, 𝑖𝑛 1.343 2.491 

Radius of base circle, 𝑖𝑛 1.133 2.201 

Transverse circular pitch, 𝑖𝑛 0.3955 

Transverse base circular pitch, 𝑖𝑛 0.4251 

Axial pitch, 𝑖𝑛 1.026 

Face width, 𝑖𝑛 2.5 

Centre-to-centre distance, 𝑖𝑛 3.584 

 

𝐿𝑎𝑏 = 0.721 + 1.166 − 1.314 = 0.5730" 

𝑚𝑝 =
0.5730

0.3955
= 1.449 

𝑚𝐹 =
2.5

1.026
= 2.437 

Total contact ratio = 3.866 

𝑎𝑏 is the normal plane. 𝑎𝑏 “cuts” 

an ellipse.  

Radius of curvature of the ellipse 

at contact point is 𝑅. 

𝑅 =
𝐷

2 cos2 𝜓
≥

𝐷

2
 

Imagine a pitch cylinder of radius 

𝑅 and placing teeth on it. 

Virtual number of teeth 𝑁′ is the 

number of teeth that can be 

placed on a pitch cylinder of 

radius 𝑅. 

𝑁′ =
𝑁

cos3 𝜓
 

 

𝑁′ is used to determine the Lewis form factor Y. 

And the minimum number of teeth to avoid interference applied to 𝑁′ for helical gears.  

For example, 𝑁𝑚𝑖𝑛 = 17 for hobbed spur gears; for helical gears, with 𝜓 = 30°, 𝑁′ = 17, and  

𝑁 = 𝑁′ cos3 𝜓 = 11.04 

• Advantages/Disadvantages of helical gears over spur gears 

o Smoother and quieter operations (due to large total contact ratio) 

o Higher load-carrying capacity 

o Allowing for higher pitch line velocity 



o Smaller minimum number of actual teeth to avoid interference  

o Presence of axial thrust 

o Double helical cancels out thrust but increases cost 

13-16 Force Analysis – Helical Gearing 

 

Transmitted load 𝑊𝑡: determined from given power or torque in the same way as for spur gears 

Radial load 𝑊𝑟 

Axial load (or separating force) 𝑊𝑎 

 
𝑊𝑡, 𝑊𝑟, 𝑊𝑎 in terms of 𝑊, the total force 

 
𝑊𝑟, 𝑊𝑎  and 𝑊 in terms of 𝑊𝑡 

LH versus RH, and Force Components and Directions 



Example 3 (Figure 13-28 for diagram) 

 

Given: 

𝑁2 = 96 

𝑁3 = 16 

𝑁4 = 80 

𝑁5 = 15 

𝑃𝑛 = 8
𝑡𝑒𝑒𝑡ℎ

𝑖𝑛
 

𝜑 = 20° for all gears 

Helix angle is 25° for 𝑁2 and 𝑁3 

Helix angle is 15° for 𝑁4 and 𝑁5 

Determine, draw and label the 𝑊𝑡 , 𝑊𝑟 and 𝑊𝑎 at each of the contact points, in terms of input torque 

𝑇2. Gear 2 rotates 𝐶𝐶𝑊. The unit of 𝑇2 is in 𝑙𝑏 ∙ 𝑖𝑛. 

Solution: 

(1) Transverse diametral pitch and pitch diameter 

𝑃𝑡2,3 = 7.250 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛 

𝑃𝑡4,5 = 7.727 𝑡𝑒𝑒𝑡ℎ/𝑖𝑛 

𝑑2 = 13.241" 

𝑑3 = 2.207" 

𝑑4 = 10.353" 

𝑑5 = 2.071" 

(2) Transverse pressure angle 

𝜑𝑡2,3 = 21.880° 

𝜑𝑡4,5 = 20.647° 

(3) Forces between Gears 2 and 3, per (Eq. 13-40) 

𝑊2,3
𝑡 = 𝑇2/𝑟2 = 0.1510 𝑇2 

𝑊2,3
𝑟 = 𝑊2,3

𝑡 𝑡𝑎𝑛𝜑𝑡2,3 = 0.06064 𝑇2 

𝑊2,3
𝑎 = 𝑊2,3

𝑡 𝑡𝑎𝑛𝜓2,3 = 0.07041 𝑇2 

(4) Forces between Gears 4 and 5, per (Eq 13-40) 

Torque balance requires 𝑊2,3
𝑡 𝑟3 = 𝑊4,5

𝑡 𝑟4 

 𝑊4,5
𝑡 = 𝑊2,3

𝑡 𝑟3/𝑟4 = 0.03219 𝑇2 

𝑊4,5
𝑟 = 𝑊4,5

𝑡 𝑡𝑎𝑛𝜑𝑡4,5 = 0.01213 𝑇2 

2 

4

 

5 

3 



𝑊4,5
𝑎 = 𝑊2,3

𝑡 𝑡𝑎𝑛𝜓4,5 =  0.008625 𝑇2 

(5) Draw and label the forces 

 

14-18 Analysis 

14-19 Design of a Gear Mesh 

Example 14-5 (helical gears) 

Example 4 

A gearbox contains a set of hobbed helical gears. It is driven by a single cylinder engine, and to drive a 

reciprocating compressor. Output shaft rotates at 1500 𝑟𝑝𝑚, with a maximum torque of 550 𝑙𝑏 − 𝑖𝑛. 

Gear ratio is 2.5 to 1. Pitch diameter of pinion must be 3.25 (± 1%), and 𝑁𝑝 = 31. The seven 

assumptions are the same as the spur gearset example. 

Solution: 

1. Choose 𝑃𝑛 = 10 𝑡𝑒𝑒𝑡ℎ/in. 

𝑑𝑝 =
𝑁𝑝

𝑃𝑡
=

𝑁𝑝

(𝑃𝑛 𝑐𝑜𝑠𝜓)
; 



3.25 =
31

(10 𝑐𝑜𝑠𝜓)
 

Solving for helix angle 𝜓 = 17.475°. 

𝑁𝐺 = (2.5)(31) = 77.5. Select 78. 

So 𝜓 = 17.475°, 𝑁𝑃 = 31, 𝑑𝑃 = 3.250" (within 3.25" ± 0.0325"), 𝑁𝐺 = 78, 𝑑𝐺 = 8.177", and use 

20° full-depth and uncrowned teeth. 

2. Other geometric quantities, including contact ratio 

 Pinion Gear 

Addendum, 𝑖𝑛 0.1 

Dedendum, 𝑖𝑛 0.125 

Pitch diameter, 𝑖𝑛 3.250 8.177 

Radius of addendum circle, 𝑖𝑛 1.725 4.189 

Radius of base circle, 𝑖𝑛 1.519 3.820 

Transverse base circular pitch, 𝑖𝑛 0.3077 

Axial pitch, 𝑖𝑛 1.041 

Face width, 𝑖𝑛 2.1 

Center-to-center distance, 𝑖𝑛 5.7135 

Virtual number of teeth 35.7 89.9 

𝐿𝑎𝑏 = 0.8175 + 1.7191 − 2.0373 = 0.4993" 

𝑚𝑝 = 0.4993/0.3077 = 1.623 

𝑚𝐹 = 2.1/1.041 = 2.017 
Total contact ratio = 3.631  

3. Transmitted load 

𝑊𝑡 =
𝑇𝑚𝑎𝑥

𝑟𝐺
=

550

(
8.177

2
)

= 134.5 𝑙𝑏 

 

5. Geometry factors 

For bending: Figures 14-7 and 14-8 (instead of Figure 14-6) 



 

 

Limitations are, 𝜑𝑛 = 20° and 𝑚𝐹 ≥ 2 

𝐽𝑃 = (0.56)(0.96) = 0.54  
𝐽𝐺 = (0.62)(1.00) = 0.62 

 

 

 



For contact: (Eq 14-21) 

 

(𝑚𝑁 =
𝑝𝑁

0.95 𝐿𝑎𝑏
)                             

Where 𝑝𝑁 is the normal base circular length pitch, 𝑝𝑁 = (𝜋/𝑃𝑛) cos (𝜑𝑛), and 𝑍 = 𝐿𝑎𝑏  is the length of 

action. 𝑝𝑁 and 𝑍 are given by (Eq. 14-24) and (Eq. 14-25) 

 

 

Therefore, 𝑝𝑁 = (
𝜋

10
) cos(20°) = 0.2952", 𝐿𝑎𝑏 = 0.4993", and 𝑚𝑁 = 0.6223. 

Geometry factor I is by (Eq. 14-23) where 𝑚𝑁 = 0.6223, 𝑚𝐺 =
78

31
= 2.516, 𝜑 = 20.89°. So, I = 0.1915 

 

10. Size factor 

𝐾𝑠 = 1.192 (
𝐹√𝑌

𝑃𝑛
)

0.0535

 

𝐹 = 2.1", 𝑃𝑛 = 10 teeth/in, 𝑌 is the Lewis form factor from Table 14-2 where “Number of Teeth” means 

N’. By linear interpolation, 𝑌𝑝 = 0.376, 𝑌𝐺 = 0.442 

So, 𝐾𝑠𝑃 = 1.068, 𝐾𝑠𝐺 = 1.073 

Note: If calculated value is less than 1, set 𝐾𝑠 = 1. 

17. Safety factors 𝑆𝐹  and 𝑆𝐻  

Bending: 𝜎𝑃 = 3.156 𝑝𝑠𝑖; 

𝜎𝐺 = 2,771 𝑝𝑠𝑖; 

𝑆𝐹,𝑃 = 10.2 

𝑆𝐹,𝐺 = 10.4 

Surface Contact: 

𝜎𝐶,𝑃 = 38,120 𝑝𝑠𝑖 

𝜎𝐶,𝐺 = 38,209 𝑝𝑠𝑖 

𝑆𝐻,𝑃 = 2.6 

𝑆𝐻,𝐺 = 2.3 



18. Assessment  

If 𝑇𝑚𝑎𝑥 is increased to, say, 3.5 times of the current level, the resulting factors of safety are, assuming all 

else being the same 

𝑆𝐹,𝑃 = 2.9 

𝑆𝐹,𝐺 = 3.0 

𝑆𝐻,𝑃 = 1.4 

𝑆𝐻,𝐺 = 1.2 

 

 

 



Chapter 15: Bevel and Worm Gears 
15-1 Bevel Gearing – General 

5 Types of Bevel Gearing 

• Straight bevel gears 

• Spiral bevel gears 

• Zerol bevel gears 

• Hypoid gears 

• Spiroid gears 

Straight Bevel Gears 

 
Used to transmit power between two intersecting shafts, at any angle (except 0 and 180 degrees). 

Spiral Bevel Gears 

 
Teeth are curved and oblique; 

Used to transmit power between two intersecting shafts; 

The difference between straight and spiral bevels is similar to the difference between spur and helical 

gears. 

Zerol Gears 

 
Teeth are curved;  

Used to transmit power between two intersecting shafts. 



Hypoid Gears 

 
Teeth are curved and oblique 

Used to transmit power between two offset shafts at any angles; 

Used in automotive differentials. 

Spiroid Gears 

 
Spiroid gears are seen as the combination of spiral bevel and worm gears; 

Used in heavy-duty vehicles. 

13.19: Straight Bevel Gears 

13-12: Tooth Systems 

 

 

 

Pitch angles: 𝛾 and 𝛤 

 

Shaft angle ∑ = 𝛾 + 𝛤 

can be angle, except 0° 

and 180°; 

 

 

 

 

 

If ∑ = 90°, tan 𝛾 = 𝑁𝑃/𝑁𝐺  and tan 𝛤 = 𝑁𝐺/𝑁𝑃 



tan 𝛾 =
sin ∑  

𝑁𝐺

𝑁𝑃
+ cos ∑

  

tan 𝛤 =
sin ∑  

𝑁𝑃
𝑁𝐺

+ cos ∑
  

For any ∑ > 90°: 

tan 𝛾 =
sin(180° − ∑) 

𝑁𝐺

𝑁𝑃
+ cos(180 − ∑)

  

tan 𝛤 =
sin(180° − ∑) 

𝑁𝑃
𝑁𝐺

+ cos(180 − ∑)
  

Small end and large end of tooth; 

Pitch cone and back cone: 

Pitch cone length (distance): 𝐴0, which should be the same for both the pinion and the gear; 

Back cone (large end) radi: 𝑟𝑏𝑃 and 𝑟𝑏𝐺; 

Pitch and pressure angle are defined at the large end; As a result, a bevel gear’s size and shape are 

defined at the large end; 

Face width: 𝐹, which is the lesser of 0.3𝐴0 or 10/𝑃; 

Virtual numbers of teeth: 𝑁𝑃
′ =

2𝜋𝑟𝑏𝑃

𝑝
 and 𝑁𝐺

′ =
2𝜋𝑟𝑏𝐺

𝑝
, where 𝑝 is the circular pitch measured at the 

large end of the teeth. 

Table 13-3: Tooth proportions, 20° straight tooth bevel gears 

Revision is needed for equivalent 90° ratio. 

 

• Velocity ratio: |𝑉𝑅| = 𝑁𝑃/𝑁𝐺 regardless or ∑. The sign, however, is not as simple as “-” for external 

set and “+“ for internal set. 

 

∑ 

∑ 



 

Example 1: Determine the dimensions of the bevel gearset (𝑁𝑃 = 21, 𝑁𝐺 = 35, 𝑃 = 4 teeth/in, 20° 

pressure angle, and straight teeth). Shaft angle is (1) ∑ =  90° and (2) ∑ = 75°. 

Solution: 
(1) ∑ =  90°   

 Pinion Gear 

Pitch angle, ° 30.964 59.036 

Gear ratio, 𝑚𝐺  1.667 

Equivalent 90° ratio, 𝑚90 1.667 

Addendum, 𝑖𝑛 0.1764 

Working depth, 𝑖𝑛 0.5 

Pitch diameter, 𝑖𝑛 5.25 8.75 

Cone distance, 𝑖𝑛 (𝐴0) 5.102 5.102 

Back cone radius, 𝑖𝑛 3.061 8.503 

Virtual number of teeth 24.5 68.0 

Face width, 𝑖𝑛 The lesser of 1.53 or 2.5; so 𝐹 = 1.53 

 

(2) ∑ =  75°   

 Pinion Gear 

Pitch angle, ° 26.641 48.359 

Gear ratio, 𝑚𝐺  1.667 

Equivalent 90° ratio, 𝑚90 1.497 

Addendum, 𝑖𝑛 0.1860 

Working depth, 𝑖𝑛 0.5 

Pitch diameter, 𝑖𝑛 5.25 8.75 

Cone distance, 𝑖𝑛 (𝐴0) 5.854 5.854 

Back cone radius, 𝑖𝑛 2.937 6.584 

Virtual number of teeth 23.5 52.7 

Face width, 𝑖𝑛 The lesser of 1.76 or 2.5; so 𝐹 = 1.76 

 

 

 



Planetary Bevel Gear Train 

The tabular method can be used to analyze planetary gear trains consisting of bevel gears, but with 

modifications. 

Recalling the following for planetary gear trains involving spur gears (and parallel helical gears): 

𝑉𝑅 =
[𝜔𝑔𝑒𝑎𝑟/𝑎𝑟𝑚]

𝑑𝑟𝑖𝑣𝑒𝑛

[𝜔𝑔𝑒𝑎𝑟/𝑎𝑟𝑚]
𝑑𝑟𝑖𝑣𝑒𝑟

 
= ±

𝑁𝑑𝑟𝑖𝑣𝑒𝑟

𝑁𝑑𝑟𝑖𝑣𝑒𝑛
 

Where “+” is used with internal set and “-“ with the external set. 

The reasons behind the convention for the “+” and the “-“ are, 

(1) The angular velocities, as vectors, are parallel to each other; and 

(2) An internal set of gears rotate with the same sense while an external set rotate with opposite 

senses. 

 

When bevel gears are involved in a planetary gear train, angular velocities, as vectors, are not always 

parallel to each other. So the signs must be determined manually, on gear-to-gear basis. 

Example 2: The Humpage gear train. 

The schematic of the Humpage train is given below. Find the train’s velocity ratio. 

 



Solution: 

𝑁2 = 20 

𝑁4 = 56 

𝑁5 = 24 

𝑁6 = 35 

𝑁7 = 76 

Power flows 2 → 4 → 7 and 2 → 4 & 5 → 6 

“3” is the arm 

Assume the input speed is 𝑛2. 

Gear           𝑛𝑔𝑒𝑎𝑟         =             𝑛𝑎𝑟𝑚           +          𝑛𝑔𝑒𝑎𝑟/𝑎𝑟𝑚  |𝑉𝑅| 

2 𝑛2 𝑛3 𝑛2 − 𝑛3 
(

𝑁2

𝑁4
) (

𝑁4

𝑁7
)

= 0.2631 
4 (left blank) 

7  𝑛3 (𝑛2 − 𝑛3)(−0.2631) 

From 𝑛3 + (𝑛2 − 𝑛3)(−0.2631) = 0 → 𝑛3 = 0.2083𝑛2 

Gear           𝑛𝑔𝑒𝑎𝑟         =             𝑛𝑎𝑟𝑚           +          𝑛𝑔𝑒𝑎𝑟/𝑎𝑟𝑚  |𝑉𝑅| 

2 𝑛2 𝑛3 𝑛2 − 𝑛3 
(

𝑁2

𝑁4
) (

𝑁5

𝑁6
)

= 0.2449 
4 (left blank) 

5 (left blank) 

7 𝑛6 𝑛3 (𝑛2 − 𝑛3)(−0.2449) 

From 𝑛6 = 𝑛3 + (𝑛2 − 𝑛3)(−0.2449) = 0.1441𝑛2 

So, 𝑉𝑅 = 0.01441 

Example 3: Given 𝜔2 = 100 𝑟𝑎𝑑/𝑠, 𝑁2 = 40, 𝑁4 = 30, 𝑁5 = 25, 𝑁6 = 120, 𝑁7 = 50, 𝑁8 = 20, 𝑁9 =

70, 𝑁10 = 20. Determine 𝜔10. 

 



5 and 7 are the sun gears; 

Planetary gears are not labeled, and teeth numbers not given; 

6 is the arm. 

Solution: 

(1) From 𝜔2 = 100 𝑟𝑎𝑑/𝑠, 𝜔4 and 𝜔8 can be determined. 

𝜔4 = 𝜔2𝑁2/𝑁4 = 133.3 𝑟𝑎𝑑/𝑠 

𝜔8 = 𝜔2𝑁9/𝑁8 = −350 𝑟𝑎𝑑/𝑠 

(2) The planetary gear train consists of gears 5, the upper planetary gear and 7, with gear 6 being the 

arm. 

Power flows 4 & 5 → 7 & 8. 

Gear           𝜔𝑔𝑒𝑎𝑟         =             𝜔𝑎𝑟𝑚           +           𝜔𝑔𝑒𝑎𝑟/𝑎𝑟𝑚  |𝑉𝑅| 

4 
133.3 𝑥 (133.3 − 𝑥) 

(
𝑁5

𝑁7
) = 0.5 

5 

7 
−350 𝑥 (133.3 − 𝑥)(−0.5) 
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Since −350 = 𝑥 − (133.3 − 𝑥)(0.5), solving leads to 𝑥 = −188.9 𝑟𝑎𝑑/𝑠 

(3) 𝜔6 = 𝑥 = −188.9
𝑟𝑎𝑑

𝑠
 

𝜔10 = −𝜔6𝑁6/𝑁10 = 1133 𝑟𝑎𝑑/𝑠 

 

Example 4: The differential 

 

 

 



13-15 Force Analysis – Bevel Gearing 

 

Point of application of 𝑊: the actual point of application is somewhere between the midpoint and large 

end of a tooth, but it is typically assumed that 𝑊 is applied at the midpoint, with a radius 𝑟𝑎𝑣  

(𝑟𝑎𝑣)𝑃 = 𝑟𝑃 −
𝐹

2
𝑠𝑖𝑛𝛾 

(𝑟𝑎𝑣)𝐺 = 𝑟𝐺 −
𝐹

2
𝑠𝑖𝑛𝛤 

Transmitted load 𝑾𝒕: determined from known power and pitch line velocity, or from known torque, in 

the same way as for spur gears, but replacing 𝑑 (pitch diameter) with 2𝑟𝑎𝑣  average diameter. 

Radial load 𝑾𝒓 

Axial load 𝑾𝒂 

(Eq. 13-37): 𝑊𝑡 from torque 

 

(Eq. 13-38) 𝑊𝑟 and 𝑊𝑎 from 𝑊𝑡 

 



The relation |(𝑊𝑡)𝑃| = |(𝑊𝑡)𝐺| is always true; 

But |(𝑊𝑟)𝑃| = |(𝑊𝑎)𝐺| and |(𝑊𝑎)𝑃| = |(𝑊𝑟)𝐺| are only true when the shaft angle is ∑  is 90°. 

Example 5: Determine the force components acting on the bevel pinion and gear, respectively. Then 

show the components on an isometric drawing of the gears. Given 𝑁𝑃 = 21, 𝑁𝐺 = 35, 𝑃 = 4 teeth/in, 

20° pressure angle, and straight teeth. The bevel gearset is to transmit 25 ℎ𝑝. Pinion speed is 500 𝑟𝑝𝑚. 

Shaft angle is 75°.  

Solution: 

(1) Geometric quantities are, from Example 1 

 Pinion Gear 

Pitch angle,  26.641 48.359 

Pitch diameter, 𝑖𝑛 5.25 8.75 

Face width, 𝑖𝑛 𝐹 = 1.76 

Average radius, 𝑖𝑛 2.230 3.717 

 

(2) Pinion  

𝑉 = 𝜋2(𝑟𝑎𝑣)𝑃𝑛𝑝/12 = 583.8 𝑓𝑡/𝑚𝑖𝑛 

𝑊𝑡 = 33,000 ∙ 𝐻/𝑉 = 1413 𝑙𝑏 

𝑊𝑟 = 𝑊𝑡 tan 𝜙 cos 𝛾 = 459.7 𝑙𝑏 

𝑊𝑎 = 𝑊𝑡 tan 𝜙 sin 𝛾 = 230.6 𝑙𝑏 

𝑊 = 1504 𝑙𝑏 

(3) Gear 

𝑊𝑡 = 1413 𝑙𝑏 

𝑊𝑟 = 𝑊𝑡 tan 𝜙 cos 𝛤 = 341.7 𝑙𝑏 

𝑊𝑎 = 𝑊𝑡 tan 𝜙 sin 𝛤 = 384.3 𝑙𝑏 

𝑊 = 1504 𝑙𝑏 

(4) Draw and label the forces 

NOTE: 

Radial force always points towards central axis 

Axial force always points towards the larger face 

Tangential force is directed to counteract input 

rotation and torque  

 

 

 

 

 



15-2 Bevel Gear Stresses and Strengths 

Contact stress, (Eq. 15-1) 

Allowable contact stress, (Eq. 15-2) 

Bending stress, (Eq. 15-3) 

Allowable bending stress, (Eq. 15-4) 

15-3 AGMA Equation Factors 

15-4 Straight Bevel Gear Analysis 

Example 15-1 

15-5 Design of a Straight-Bevel Gear Mesh 

Decisions made beforehand and during design. 

Example 6: A gearbox contains a set of bevel gears. It is driven by a single cylinder engine, and to drive a 

reciprocating compressor. Output shaft rotates at 1500 rpm, with a maximum torque of 550 lb-in. Teeth 

numbers are 33 and 83, with P = 10 teeth/in, 20° pressure angle, and straight teeth.  

Assumptions (1) through (4), and (6) through (7) are the same as the spur gearset example. Assumption 

(5) becomes that both shafts are straddle mounted. 

Solution  

1. 𝑑𝑝 = 𝑁𝑃/𝑃 = 33/10 3.3, 𝑑𝐺 = 𝑁𝐺/𝑃 = 83/10 = 8.3 

Use 20° full depth, straight teeth 

Bevel gears of straight teeth are typically somewhat crowned during manufacture; but when assessing 

factors of safety, 𝑆𝐹  it is compared with 𝑆𝐻
2 . 

2. Other geometric quantities. (Note that not all listed quantities are needed for applying AGMA 

equations.) 

 Pinion Gear 

Pitch angle, ° 21.682 68.318 
Addendum, 𝑖𝑛 0.06127 
Working depth, 𝑖𝑛 0.2 
Pitch diameter, 𝑖𝑛 3.3 8.3 
Cone distance, 𝑖𝑛 4.466 4.466 
Face width, 𝑖𝑛 The less of 1.34 and 1; 

𝐹 = 1 
Average radius, 𝑖𝑛 1.465 3.685 

 

3. Transmitted load 

𝑊𝑡 = 𝑇𝑚𝑎𝑥/(𝑟𝑎𝑣)𝐺 = 550 / 3.685 = 149.3 𝑙𝑏 

𝑉 = 𝜋𝑑𝐺𝑛𝐺/12 = 3259 𝑓𝑡/𝑚𝑖𝑛 (use pitch diameter here) 

4.-17. Factors 

• Geometry factors are from charts: 𝐼 = 0.1, 𝐽𝑃 = 0.295, 𝐽𝐺 = 0.255 

• Size factor is from a chart as well; 

• Load distribution factor 𝐾𝑚: depends on the mounting of the gears 



Mounting can be any combinations of straddle mounted and overhung. 

 

• Hardness-ratio factor 𝐶𝐻  

• As with spur gearsets, 𝐶𝐻 = 1 for pinion, and 𝐶𝐻  for gear is determined. 

(Eq. 15-16) or Figure 15-10 is for through-hardened steels 

(E1. 15-17) or Figure 15-11 is for surface-hardened steels 

(Eq. 15-16), 𝑁/𝑛 means 𝑁𝐺/𝑁𝑃. 

 Pinion Gear  Pinion Gear 

𝑾𝒕 149.3 𝑾𝒕 149.3 

𝑷𝒅 = 𝑷 10 𝒅𝑷 3.3 
𝑭 1 𝑭 1 

𝑲𝒐 1.75 𝑲𝒐 1.75 
𝑲𝒗 1.229 𝑲𝒗 1.229 
𝑲𝒎 1.0036 𝑲𝒎 1.0036 
𝑲𝒔 0.5082 𝑪𝒔 0.5625 
𝑲𝒙 1 𝑪𝒙𝒄 1.5 

J 0.295 0.255 𝑪𝒑 2290 

   𝑰 0.1 

𝝈 5501 6364 𝝈𝒄 65734 65734 

𝑺𝒂𝒕  17500 14420 𝑺𝒂𝒄 142970 119100 

𝑲𝑳 0.9066 0.9126 𝑪𝑳 0.8927 0.9355 

𝑲𝑻 1 𝑲𝑻 1 

𝑲𝑹 1 𝑲𝑹 1 

   𝑪𝑯 1 1.004 

𝝈𝒂𝒍𝒍 15866/𝑆𝐹  13289/𝑆𝐹  𝝈𝒄,𝒂𝒍𝒍 127629/𝑆𝐻  111864/𝑆𝐻  

𝑺𝑭 2.88 2.09 𝑺𝑯 1.94 1.70 

 

 



Worm Gears 
13-11: Worm Gears 

13-12: Tooth Systems 

• Features of Worm Gearing 

It is used to transmit power between two non-intersecting shafts; 

Power is typically transmitted from worm to worm gear; 

A set of worm and worm gear can be designed to self-lock; that is, the worm gear can’t back-drive the 

worm; 

Being able to have large speed and torque ratios, but low efficiency; the ratios can be as high as 360, but 

are commonly up to about 100; 

Another key feature is the compact design. 

 

• Configurations 

Single enveloping 

Double enveloping 

• Geometry Figures (13-24 and 13-25) 

• Left is not used at all,  

• Middle is single enveloping  

• Right is double enveloping 

 



  

In principle, worm and worm gear work like a pair of helical gears in crossed configuration.  

The worm and worm gear have helices of the same hand.  

The worm has a large helix angle while the worm gear has a small one (e.g., 85° versus 5°). 

Shaft angle ∑  does not have to be 90°, although 90° is typical, and the scope of Chapters 13 and 15. 

Due to the large helix angle of the worm, it can be thought of as a power screw. Terminologies for 

power screws are adopted for the worm. 

Helix angle on worm is 𝜓𝑊. If lead angle on worm is 𝜆, then 𝜆 = 90° − 𝜓𝑊. 

Helix angle on worm gear is 𝜓𝐺. For 90° shaft angle, then 𝜓𝐺 = 𝜆 

Number of teeth of worm, or number of threads (or starts) on worm is, 𝑁𝑊. Typically, 𝑁𝑊 ≤ 4, a 

recommendation found in many references. However, 𝑁𝑊 ≤ 10 is recommended by Norton (Machine 

Design – An Integrated Approach, 3rd Ed., Pearson Hall, 2006). 

In terms of 𝑁𝑊, and 𝑁𝐺  (number of teeth on worm gear), the following is recommended: 

• 𝑁𝑊 = 1 if velocity ratio > 30, 𝑁𝑊 > 1 if velocity ratio ≤ 30; and 𝑁𝐺 ≥ 24 (recommended by many 

references); 

• 𝑁𝐺 + 𝑁𝑊 > 40. (Machine Design – An Integrated Approach, 3rd Ed., R.L. Norton, Pearson Prentice 

Hall, 2006). 



Axial (circular) pitch 𝑝𝑥 for worm; and transverse (circular) pitch for worm gear 𝑝𝑡; Proper meshing 

requires 𝑝𝑥 = 𝑝𝑡  

Pitch diameter of worm gear: 

 

Pitch diameter of worm 𝑑𝑤 is determined by (Eq. 13-25) or (Eq. 15-27) which is recommended by AGMA 

for optimal power transmission capacity.  

 

 

The 𝐶 in (Eq. 13-25) is the center-to-center distance and  

𝐶 =
𝑑𝑊 + 𝑑𝐺

2
 

Velocity ratio  

|
𝜔𝑊

𝜔𝐺
| =

𝑁𝐺

𝑁𝑊
≠

𝑑𝐺

𝑑𝑊
 

Face width of the worm gear is 𝐹𝐺  

Face width of the worm is 𝐹𝑊 

• Tooth Systems 

Worm and worm gear are not as highly standardized as spur/helical/bevel gears. 

Table 13-5: A list of “recommended” normal pressure angle, addendum and dedendum. Addendum and 

dedendum are in terms of 𝑝𝑋. 
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But really, Table 15-5 should be used instead: 

Table 15-5: a list of addendum and dedendum for single-enveloping worm and worm gear. 

 

More dimensions calculations are given within 15-6 AGMA Equations 

The uploaded formulas may help.  



  



Example 1 

A worm and worm gear set is used as a speed reducer to drive a winch lift. Velocity ratio is 75. Center-

to-center distance is to be around 5.5”. Normal pressure angle is 20°. Determine the dimensions of the 

worm and worm gear. 

Solution: 

(1) Choose 𝑁𝑊 = 1 since velocity ratio is greater than 30. Then 𝑁𝐺 = 75. 

(2) Based on (Eq. 13-26) or (Eq. 15-27), 𝑑𝑤 is in the range of 𝐶0.875/3 and 𝐶0.875/1.6, or 1.48" ≤  𝑑𝑤 ≤

2.78" s 

So, choose 𝑑𝑤 = 2". Also 𝑑𝐺 = 2𝐶 − 𝑑𝑤 = 9" 

(3) But 𝑑𝐺 =
𝑁𝐺𝑝𝑡

𝜋
, so 𝑝𝑡 =

𝜋(9)

75
= 0.377”. So choose 𝑝𝑡 = 𝑝𝑥 = 3/8" =  0.375" 

(4) As a result, 𝑑𝐺 = (75)(0.375)/𝜋 = 8.95", and 𝐶 = (2 + 8.95)/2 = 5.475" 

(5) Dimensions are tabulated as follow. 

 Worm Worm-gear 

Number of teeth 1 75 

Pitch diameter, 𝑖𝑛 2 8.95 

Lead, 𝑖𝑛 0.375  

Lead angle, ° 3.416  

Helix angle, ° 86.584 3.416 

Addendum, 𝑖𝑛 0.1194 

Dedendum, 𝑖𝑛 0.1381 

Clearance, 𝑖𝑛 0.0187 0.0187 

Outside diameter, 𝑖𝑛 2.239  

Throat diameter, 𝑖𝑛  9.189 

Root diameter, 𝑖𝑛 1.729 8.674 

Mean diameter, 𝑖𝑛 2 8.95 

Face width, 𝑖𝑛 ≤ 2.924 1.333 

  

  



13-17 Force Analysis – Worm Gearing 

(*) Worm/worm gear is for sure on final exam 

 

There’s friction components now (on the right) 

Friction must be taken into consideration; 

Transmitted load on worm 𝑊𝑤
𝑡: determined based on the torque on the worm, or the horsepower and 

pitch line velocity of the worm. See Example 13-10; 

Efficiency 𝜂: by (Eq. 13-46) where the coefficient of friction 𝑓 is by Figure 13-42 or (Eq. 15-43a) 

 

 



 

Total force 𝑊 is (reworked Eq. 13-43a): 

𝑊 =
𝑊𝑊

𝑡

cos 𝜙𝑛 𝑠𝑖𝑛𝜆 + 𝑓𝑐𝑜𝑠𝜆
 

Transmitted load on worm gear 𝑊𝐺
𝑡 = axial load on worm 𝑊𝑤

𝑎 by (Eq.13-43c) 

 

Radial load on worm 𝑊𝑤
𝑟 = radial load on worm gear 𝑊𝐺

𝑟 by by (Eq.13-43b) 

 

Axial load on worm gear 𝑊𝐺
𝑎 = transmitted load on worm 𝑊𝑤

𝑡 

Friction 𝑊𝑓 = 𝑓 ∙ 𝑊; 

Note: the above discussions deal with the magnitudes only 

Example 2 

The worm in Example 1 is left-hand, and runs at 

1750 rpm (see Figure for Prob. 13-51 as a 

reference). The winch requires a torque of 8000 

𝑙𝑏 − 𝑖𝑛. Determine and visualize the forces acting 

on the worm and worm gear. What is the 

efficiency of the set? What is the efficiency of the 

set? What is the friction? 

 

 

 

Solution: 

From Example 1, 

 Worm Worm-gear 

Number of teeth 1 75 

Pitch diameter, 𝑖𝑛 2 8.95 

Lead angle, ° 3.416  

 



Pitch line velocity of the worm: 

𝑉𝑤 = 𝜋𝑑𝑤𝑛𝑤/12 = 𝜋(2)(1750)/12 = 916.3 𝑓𝑡/𝑚𝑖𝑛 

Sliding velocity, by (Eq. 13-47): 

𝑉𝑠 = 𝑉𝑊/ cos 𝜆 = 916.3/ cos 3.416°  = 917.9 𝑓𝑡/𝑚𝑖𝑛 

𝑓 = 0.0216 (Eq. 15-38) 

𝜂 = 0.721 (Eq. 13-46) 

Torque on the worm: 𝑇𝑊 = 𝑇𝐺 /75/𝜂 = 147.9 𝑙𝑏 − 𝑖𝑛 

𝑊𝑊
𝑡 = 𝑇𝑊/(𝑑𝑤/2) = 147.9 𝑙𝑏; 

𝑊 = 1907 𝑙𝑏 

𝑊𝑓 = 41.19 𝑙𝑏 

𝑊𝑊
𝑟 = 𝑊𝐺

𝑟 = 652.2 𝑙𝑏 

𝑊𝑊
𝑎 = 𝑊𝐺

𝑡 = 1789 𝑙𝑏 

𝑊𝐺
𝑎 = 𝑊𝑊

𝑡 = 147.9 𝑙𝑏 

To verify, torque on the worm gear = (1789)(8.95/2) = 8006 𝑙𝑏 − 𝑖𝑛 (Compared with the given 

torque of 8000 𝑙𝑏 − 𝑖𝑛)  

Visualization: 
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Materials 

Worms: 

Low-carbon steels (1020, 1117, 8620 and 4320), case-hardened to HRC58-62. 

Medium-carbon steels (4140 and 4150), induction or flame hardened to surface hardness of HRC 58-62. 

Grinding or polishing of surfaces may be required. 

Note: the above is taken from Machine Design: An Integrated Approach, 3rd Ed., R.L. Norton. Pearson 

Prentice Hall, 2006. 

Worm gears: 

Bronzes (sand-cast, chill-cast, centrifugal-cast, or forged). 

Sec. 15-8 has details. 

The first two columns in Table 15-11 show some typical combinations of materials for worm and worm 

gear. 

15-6 Worm Gearing AGMA Equations 

15-9 Buckingham Wear Load 

Allowable Transmitted Load, (Eq. 15-28) 

 

Note: if 𝑊𝑊
𝑡  or 𝑊𝐺

𝑡 is less than (𝑊𝑡)𝑎𝑙𝑙, it means that the worm and worm gear under consideration will 

last at least 25,000 hours. 

Temperature rise, (Eq. 15-51) 

 

Where 𝐻𝑙𝑜𝑠𝑠  is the rate of heat dissipation, in 𝑓𝑡 − 𝑙𝑏/𝑚𝑖𝑛. 

𝐻𝑙𝑜𝑠𝑠 = 33,000(1 − 𝜂)𝐻𝑖𝑛  

Note: 𝑡𝑠 and 𝑡𝑎  are the oil sump temperature, and ambient temperature, respectively. It is 

recommended that 𝑡𝑠 < 160 − 200 °𝐹 

Other Calculations include Buckingham’s equation for dynamic (i.e. fatigue) bending stress, see (Eq. 15-

53); and Buckingham’s wear load, see (Eq. 15-64) and Sec. 15-9. 

 



 

Buckingham’s wear load is considered the predecessor to the AGMA equation. 

Only limited data are available for the factor 𝑦 in (Eq. 15-53) 

15-7 Worm Gear Analysis 

15-8 Designing a Worm Gear Mesh 

Worm and worm gear mesh has lower efficiency due to friction. 

Power consumed by friction can be determined by (Eq. 15-63). 

 

Cooling, natural or using cooling fans, may be required. 

Multi-start worms reduce cooling requirement and reduce 𝑑𝑤 as well. 

Self-locking means that the worm gear can’t drive the worm; self-locking is necessary, even critical, for 

some applications. 

To ensure self-locking, it is required 𝑓𝑠𝑡𝑎𝑡𝑖𝑐 > 𝑐𝑜𝑠𝜙𝑛𝑡𝑎𝑛𝜆. 

Example 15-3  

Example 15-4 

Example 3 

Design the set of worm and worm gear of Example 1. The worm is left-hand, and runs at 1750 rpm. It 

will be made of carbon steel, case hardened to HRC 58. The material for the worm gear has been chosen 

to be sand cast bronze. Velocity ratio is 75. Center-to-center distance is to be around 5.5”. The winch 

requires a torque of 8000 lb-in. Self locking is a must-have safety requirement. Temperature rise should 

not exceed 80° 𝐹. Set normal pressure angle to 20°. Assume no cooling fan on the worm shaft. 

Solution: 

(1) Geometry, 

This has been completed in Example 1 

(2) Transmitted loads, sliding velocity, friction, efficiency, etc.  

They were calculated in Example 2. 

(3) Allowable transmitted load is, (Eq. 15-28) 

(𝑊𝑡)𝑎𝑙𝑙 = 𝐶𝑠𝐷𝑚
0.8𝐹𝑒𝐶𝑚𝐶𝑣  

𝐷𝑚 = 8.95", the mean diameter of worm gear 

𝐶𝑠 is the materials factor, obtained by one of (Eq. 15-32) through (Eq. 15-35); 𝐶𝑠 = 736.0 

𝐶𝑚  is the ratio correction factor. (Eq. 15-36) gives 𝐶𝑚 = 1.309 



𝐶𝑣  is the velocity factor. Since 𝑉𝑠 = 917.9 𝑓𝑡/𝑚𝑖𝑛, 𝐶𝑣 = 0.2891, see (Eq. 15-376) 

 

𝐹𝑒 is the effective face width of the worm gear. Actual face width is 𝐹𝐺 = 1.3". Also, 0.67𝑑𝑚 = 1.34". 

So, effective face width is 𝐹𝑒 = 1.3. Also, 0.67𝑑𝑚 = 1.34". So effective face width is 𝐹𝑒 = 1.3. 

Therefore, (𝑊𝑡)𝑎𝑙𝑙 = 2091 𝑙𝑏 

(𝑊𝑡)𝑎𝑙𝑙 is greater than 𝑊𝑊
𝑡 = 147.9 𝑙𝑏, and 𝑊𝐺

𝑡 = 1789 𝑙𝑏. So the worm and worm gear will last at 

least 25,000 hours. 

(4) Powers transmitted by the worm and worm gear, and consumed by friction. 

(Eq. 15-59) and (Eq. 15-60) give powers transmitted by the worm and worm gear respectively, and in hp. 

Results are, 

 

𝐻𝑤 = 4.11 ℎ𝑝 

𝐻𝐺 = 2.96 ℎ𝑝 

(Eq. 15-63) shows power consumed by friction, in hp. The result is, 𝐻𝑓 = 1.15 ℎ𝑝 

 

It is seen that 𝐻𝐺 + 𝐻𝑓 = 𝐻𝑊  

In general, 𝐻𝐺 + 𝐻𝑓 ≈ 𝐻𝑊  due to rounding. 

(5) Temperature rise  

(Eq. 15-49) shows the rate of heat loss, from the casing/housing, in 𝑓𝑡 − 𝑙𝑏/𝑚𝑖𝑛 

 

𝐻𝑖𝑛 is the input power in hp. 𝐻𝑖𝑛 = 𝐻𝑊 . 

So, 𝐻𝑙𝑜𝑠𝑠 = 37841 𝑓𝑡 − 𝑙𝑏/𝑚𝑖𝑛. 



Temperature rise is by (Eq. 15-51) 

 

Where 𝐴 is the lateral area of the casing/housing, and ℎ𝐶𝑅 is the combined convective and radiative 

coefficient of heat transfer. (NOTE: In our notes 𝑒 is written as 𝜂) 

The lateral area of the casing typically includes the external surface area, for example, the 6 rectangular 

areas of a cube that is the casing/housing. 

By (Eq. 15-50), ℎ𝐶𝑅 = 0.3995 𝑓𝑡 − 𝑙𝑏/(𝑚𝑖𝑛 ∙ 𝑖𝑛2 ∙ °𝐹). To limit temperature rise to 80 °𝐹, the required 

lateral area is 𝐴 = 𝐻𝑙𝑜𝑠𝑠/(𝑡𝑆 − 𝑡𝑎)/ℎ𝑐𝑟 = 1184 𝑖𝑛2. 

 

Discussions: (Eq. 15-52) shows the AGMA recommended minimum area  𝐴𝑚𝑖𝑛.  

 

𝐴𝑚𝑖𝑛 = 43.20 𝐶1.7 = (43.20)(5.475)1.7 = 777.6 𝑖𝑛2 

With 𝐴 = 𝐴𝑚𝑖𝑛, 𝑡𝑠 − 𝑡𝑎 =
𝐻𝑙𝑜𝑠𝑠

ℎ𝐶𝑅𝐴
= 121.8 °𝐹, and 𝑡𝑠 ≈ 191.8 °𝐹. 

If it is desired to keep the surface area at 𝐴𝑚𝑖𝑛, while still limit the temperature rise to 80 °𝐹, cooling 

fans may be installed; cooling fins may be incorporated. Finally, an external heat exchanger may be 

considered. 

(6) Self-locking 

Since 𝑐𝑜𝑠𝜙𝑛𝑡𝑎𝑛𝜆 = 0.056, self locking requires 𝑓𝑠𝑡𝑎𝑡𝑖𝑐 > 0.056. 

The static COF between steel and bronze is, from engineersedge.com, 0.16 when lubricated. Static 

friction seems enough. However, a brake, for instance, is advised.  



Ch. 12 - Lubrication and Journal Bearings 
• Charts and their usages 

• Interpolation 

• What constitutes a Good Design? 

o ℎ𝑜 ≥ ℎ𝑚𝑖𝑛, 𝑓 > 0.01, optimal zone, ∆𝑇; 

o Minimum film thickness is greater than shaft deflection across the length of bearing (to 

prevent binding between shaft and bearing); 

o Suitable materials; 

o Etc. 

Ch. 13, 14, 15 – Gearing 
• Types 

o Spur, helical, bevel, worm-worm gear 

▪ Bevel gears: spiral, hypoid, spiroid, etc. 

o Features, from the perspectives of 

▪ Applications 

▪ Geometry 

▪ Analyses 

▪ … 

o Configurations 

▪ Helical: parallel, crossed 

▪ Bevel: shaft angle = 90°, ≠ 90° 

▪ Worm-wormgear: single enveloping, double enveloping 

o Geometry, tooth systems, standard values 

▪ Spur gears: US-customary vs. metric; full-depth vs. stub-profiled; 𝐿𝑎𝑏  

▪ Helical gears: normal plane vs. transverse plane; 𝐿𝑎𝑏; 𝑚𝑝  𝑚𝐹 

▪ Bevel gears: large end, pitch cone, back cone, etc.; 

▪ Do practise problems posted 

o Planetary gear trains 

▪ Spur and helical gears: “+” for internal sets “-“ for external sets 

▪ Bevel gears: how to deal with the signs; 

o Force components and visualization 

o Materials 

o AGMA equations 

Spur gears: the basic, and foundation for helical and bevel gears; 

Helical gears: Geometry factors 𝐼 and 𝐽; 

Bevel gears: 

Comparing 𝑆𝐹  and 𝑆𝐻; 

o Worms-wormgears 

AGMA equation: allowable transmitted load; 

Friction, efficiency, temperature rise, cooling considerations; 

Self-locking; 



Ch. 7 – Shafts and Shaft Components 
• Input(s) and power take-off(s) of individual shafts; 

• Gears’ axial loads → beams FBD; 

• Support reactions, shear force diagrams, bending moment diagrams, combined bending moment 

diagram, torque diagram; 

• Static-failure; 

• Fatigue-failure; 

• Deflection/slope in relation to bearings and gears, and by applying Table A-15; 

• Miscellaneous components (keys, pins, etc.) 

 

 


