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Abstract

Understanding the generation of neuronal and glial diversity is one of the major goals of developmental neuroscience. The Drosophila CNS
midline cells constitute a simple neurogenomic system to study neurogenesis, cell fate acquisition, and neuronal function. Previously, we
identified and determined the developmental expression profiles of 224 midline-expressed genes. Here, the expression of 59 transcription factors,
signaling proteins, and neural function genes was analyzed using multi-label confocal imaging, and their expression patterns mapped at the single-
cell level at multiple stages of CNS development. These maps uniquely identify individual cells and predict potential regulatory events and
combinatorial protein interactions that may occur in each midline cell type during their development. Analysis of neural function genes, including
those encoding peptide neurotransmitters, neurotransmitter biosynthetic enzymes, transporters, and neurotransmitter receptors, allows functional
characterization of each neuronal cell type. This work is essential for a comprehensive genetic analysis of midline cell development that will likely

have widespread significance given the high degree of evolutionary conservation of the genes analyzed.

© 2006 Elsevier Inc. All rights reserved.
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Introduction

The formation of the mature CNS with its diverse assortment
of neurons and glia is a complex process that requires a large
number of interacting proteins functioning throughout devel-
opment. Studying this process involves examining how cells
acquire their specific fates, divide, migrate, die, extend axons
and dendrites, form synapses, and carry-out specific neuro-
physiological functions. Recent progress on a variety of model
systems has utilized genomic techniques to study neural and
glial development and function (for example: Blackshaw et al.,
2004; Cinar et al., 2005; Freeman et al., 2003; Gray et al., 2004;
Reeves and Posakony, 2005; Wenick and Hobert, 2004).
However, most systems study terminally differentiated neurons
or deal with populations of cells and may miss some of the
underlying complexity in neural development. Particularly
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important is the capability of studying a complex set of neurons
and glia in vivo at the single-cell level throughout the entire
developmental process. This paper demonstrates that the
Drosophila CNS midline cells can be studied in such a fashion,
and a large number of genes can be assigned to specific cell
types at each discrete stage of CNS development.

The mature Drosophila CNS midline cells consist of ~22
cells/segment: ~3 midline glia, 2 midline precursor 1 (MP1)
neurons, 2 MP3 interneurons (H-cell and H-cell sib), 3 ventral
unpaired median interneurons (iVUMSs), 3 ventral unpaired
median motorneurons (mVUMs), and the median neuroblast
(MNB), which generates 7—8 progeny during embryogenesis.
The generation of the mature midline cells arises through a
series of developmental steps: (1) specification of mesectoder-
mal cells, (2) cell division, (3) acquisition of individual midline
cell fates, (4) cell migration, (5) apoptosis, and (6) terminal
differentiation resulting in functional neurons and glia. When
initially specified during the blastoderm stage, ~8 cells are
present in each segment, 4 on either side of the mesoderm, that
come together as gastrulation proceeds. These cells are
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characterized by expression of the single-minded (sim) gene,
which acts as a master regulator that is required for all
subsequent midline transcription and development (Crews,
2003; Nambu et al., 1991). Five of these 8 cells are the midline
precursors (MPs), each will divide only once to generate two
neurons. In contrast, the MNB is a stem cell that divides
multiple times to produce a characteristic clone of midline
neurons (Bossing and Technau, 1994; Schmid et al., 1999),
similar to neuroblasts in the lateral CNS. The glial progenitors
also undergo multiple rounds of cell division to produce ~10
midline glia, although the exact number of glial progenitors is
unknown. During mid-embryogenesis, the midline cells migrate
inward to their final positions, and differentiate into mature
neurons and glia. The ~10 midline glial cells that arise by mid-
embryogenesis are depleted by apoptosis, with 2—3 mature glia
remaining to ensheathe the axon commissures (Bergmann et al.,
2002; Jacobs, 2000). Thus, the midline cells display a diversity
of cell types, modes of cell division, developmental programs,
and functions.

Because of their characteristic midline location, identifying
genes expressed in CNS midline cells is easy. Using this feature,
we employed in situ hybridization to identify and initially
characterize the expression of 224 midline-expressed genes at
each stage of embryonic development (Kearney et al., 2004);
we have subsequently expanded this to include a total of 278
midline-expressed genes (unpublished data). Sixty-four genes
are expressed in mesectodermal cells (stages 5-8; staging
according to Campos-Ortega and Hartenstein, 1997), 162 in
midline primordia (stages 9—12), 65 in mature midline glia, and
131 in mature midline neurons (mature cells span stages 13 to
17). Furthermore, these genes encode 72 transcription factors
and 44 signaling proteins, thus representing a large number of
genes likely to play roles in midline cell development.

Despite these significant advances in midline gene identifi-
cation and developmental biology, progress in understanding
the genetic basis of how midline neurons and glia are generated
has been hindered by the inability to distinguish each midline
cell type during their development. This deficiency makes it
difficult to interpret genetic experiments. In this paper, this
weakness is addressed by combining in situ hybridization,
immunostaining, and confocal microscopy to study midline
gene expression with single-cell resolution. Here, we mapped
59 genes to individual midline cell types at four developmen-
tally important stages (9, 11, 13, and 17). Included in this set of
genes are 27 transcription factors and 9 signaling proteins. We
also mapped the expression patterns in neurons of 11 genes that
encode peptide neurotransmitters, neurotransmitter biosynthetic
enzymes, vesicular and membrane transporters, and neurotrans-
mitter receptors providing insight into their unique neuronal
characteristics. These maps allow the construction of detailed
developmental pathways for each midline cell type that chart the
changes in gene expression that occur during embryogenesis,
and illustrate the relationships between midline cells from
stages 11 to 17. Many of the genes identified are likely to
regulate developmental and transcriptional events that culmi-
nate in the mature set of midline neurons and glia. Using the
information presented in this paper, genetic analysis of these

genes and others have the potential to provide a comprehensive,
genome-wide view of neural and glial development and
function.

Materials and methods
Drosophila strains

CNS midline cells were visualized using a variety of lacZ and Gal4 lines.
These include: 3.7-sim-lacZ (all early midline cells; Nambu et al., 1991), C544-
Gal4 (MP1s; Landgraf et al., 2003), MzVUM-Gal4 (mVUMs; Landgraf et al.,
2003), 807-Gal4 (mVUMs; A. Brand, unpublished), per-Gal4 (H-cell sib and
iVUMs; Plautz et al., 1997), TH-Gal4 (H-cell; Friggi-Grelin et al., 2003), and
sim-Gal4 (all CNS midline cells; Xiao et al., 1996). UAS lines included: UAS-
tau-lacZ (Callahan and Thomas, 1994), UAS-GFP-lacZ.nls (Y. Hiromi and S.
West, unpublished), and UAS-tau-GFP.

Sources of cloned DNA for in situ hybridization

c¢DNA clones from the Open Biosystems BDGP collection (vl and v2)
(Stapleton et al., 2002) were used to prepare in situ hybridization probes for most
of the genes analyzed. Six other genes (CG33528, CG8394, DAT, hh, SoxN, and
Tbh) were PCR-amplified using gene-specific primers from either genomic
DNA or cDNA prepared from Drosophila embryonic or larval RNA.

In situ hybridization and immunostaining

In situ hybridization and immunostaining were performed as previously
described (Kearney et al., 2004). Primary antibodies used were anti-Futsch
(MAb 22C10; Developmental Studies Hybridoma Bank, DSHB), mouse anti-{3-
galactosidase (Promega), rabbit anti-B-galactosidase (Cappel), rabbit anti-
Castor (Kambadur et al., 1998), anti-Engrailed MAb 4D9 (Patel et al., 1989a),
rabbit anti-Even-skipped (East Asian Distribution Center; EADC; Kosman et
al., 1998), rabbit anti-GFP (Abcam), guinea pig anti-Hunchback (EADC), rabbit
anti-Paired (EADC), anti-Prospero MAb (DSHB), guinea pig anti-Runt
(EADC), rat anti-Single minded (Ward et al., 1998), rabbit anti-Sloppy paired
1 (EADC), mouse anti-Tau (Sigma), and rabbit anti-Sanpodo (O’Connor-Giles
and Skeath, 2003).

Results
Experimental approach

From a set of 278 identified CNS midline genes and
markers (Kearney et al., 2004), a group of 59 RNA probes,
antibodies, and /acZ and Gal4 lines was selected to generate
molecular maps at several stages of midline cell development
(maps and images available at http://www.unc.edu/~crews).
These genes were selected because they encode (1) transcrip-
tion factors and signaling proteins likely to play important
roles in midline cell development, and (2) neural function
proteins that mediate the excitable properties of neurons. Four
developmental stages (9, 11, 13, and 17) were chosen as they
represent useful milestones in the development of these cells.
We first identified the gross morphology of the midline cells
at each stage and then overlaid gene expression patterns using
fluorescent in situ hybridization and immunostaining. Midline
cells were identified using a CNS midline-specific driver, sim-
Gal4, which in combination with UAS-tau-lacZ (Callahan and
Thomas, 1994) or UAS-tau-GFP, marks all midline cells at
stages 11-17 (Figs. 2A, 4A, 5A insets). For stage 9, the
midline cells were visualized using an antibody against Sim


http://www.unc.edu/~crews

S.R. Wheeler et al. / Developmental Biology 294 (2006) 509-524 511

(Ward et al., 1998) or anti-p-galactosidase staining of sim-
lacZ embryos (Nambu et al., 1991), both of which mark all
midline cell nuclei (Fig. 6A inset).

Relating midline-expressed genes at stage 17 to mature
cell types involves correlating three sets of information: (1)
Dil-labeled axonal trajectories and cell positions (Bossing
and Technau, 1994; Schmid et al., 1999), (2) Midline
enhancer-Gal4 UAS-tau-lacZ transgenic line axonal trajecto-
ries and positions (Kearney et al., 2004), and (3) in situ
hybridization or immunostaining (Fig. 1). Various Gal4 lines
that are expressed in subsets of midline cells (Midline
enhancer-Gal4) were genetically combined with UAS-tau-
lacZ, and their axonal trajectories compared to those of
previously published Dil-labeled cells (Figs. lA—E) (Kearney
et al., 2004). This established in which midline cell type each
Gal4 line was expressed. Colocalization of midline-expressed
genes, assayed by in situ hybridization, with Midline
enhancer-Gal4 UAS-tau-lacZ expression allows assignments
of gene expression to specific midline cell types (Figs. 1F—
H). Once a gene has been assigned to a specific cell type, it
can, itself, be used in colocalization studies with additional
genes (Figs. 11-K).

Stage 17

Stage 17 midline cells consist of two major cell groups, the
mature midline glia and midline neurons, which reside at
characteristic positions. The midline glia ensheathe the axon
commissures along the dorsal side of the CNS, while the
midline neurons reside ventral to the glia (Fig. 2A).

Midline glia

Most commonly, the 3 midline glia are arranged in a triangle,
in which two are dorsal and one is ventral to the commissures
(Fig. 2A, inset), and each glial cell extends its cytoplasm around
one or both of the commissures. Dil labeling experiments have
provided data arguing that mature midline glia arise from either
one or two precursor cells (Bossing and Brand, 2006; Bossing
and Technau, 1994). Using confocal analysis, we analyzed 9
genes and markers expressed in all mature midline glia
(Supplementary Table 1; only 4 are included in Fig. 2A).
Among these are the transcription factor genes runt, sim, snail
(sna), SoxNeuro (SoxN), and ventral veinless (vvl), and
signaling protein genes argos (Fig. 2B), slit (sli), and wrapper
(Fig. 2C). No genes expressed in subsets of midline glia at stage
17 were observed, suggesting that all mature midline glia are
functionally equivalent.

MP1 neurons

The 2 lineally related MP1 neurons have identical axonal
trajectories and patterns of gene expression suggesting that they
are functionally similar, and possibly, identical. The axonal
morphology and position of the cells labeled by C544-Gal4 are
identical to those of the MP1 neurons indicating that C544-Gal4
is expressed in MP1s (Fig. 1A). Expression of both the odd-
skipped (odd) transcription factor gene and C544-Gal4
colocalize, confirming that odd is also expressed in MPI

MzVUM-Gal4

C544-Gal4

Fig. 1. Gal4 transgenic reporters and midline cell identification. (A—D) Ventral
and (E) sagittal views of stage 15—17 Midline enhancer-Gal4; UAS-tau-lacZ
embryos stained with anti-p-galactosidase. Midline cell bodies (arrows) and
corresponding axons (arrowheads) are shown. Gal4 drivers are indicated at the
bottom of each panel. The midline cells defined by each Gal4 line are: (A)
MPls, (B), H-cell, (C) mVUMs, and (D, E) H-cell sib (open arrow and
arrowheads) and iVUMs (filled arrows and arrowheads). In panel D, only the
axons are shown, the cell bodies are out of the plane of focus, whereas in panel
E, the cell bodies of H-cell sib (open arrow) and the 3 iVUMs (filled arrow) are
shown. (E) Embryo is also stained with anti-Sim (green) showing that H-cell sib
and iVUMs are Sim’. (F-K) Sagittal views of individual multi-labeled
segments; En staining (blue) indicates the position of the iVUMs and MNB
progeny (see Fig. 2). (F-H) odd RNA (green) colocalizes with C544-Gal4 (red)
in the soma (arrow) of the MP1 neurons. (I-K) Colocalization of odd (red) and
HGTX (green) RNA illustrates that HGTX is also expressed in MP1 neurons.
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neurons (Figs. 1F—H; Kearney et al., 2004), as suggested by
others (Spana et al., 1995). Using odd colocalization, we
identified 9 additional genes expressed in MP1 neurons at stage
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17 (Supplementary Table 1). These include the transcription
factor genes forkhead (fkh), hunchback (hb) (Fig. 2E), HGTX
(Fig. 1K) and runt.
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We also identified some of the machinery that confers MP1
neuronal function. The MP1 neurons in segments A7-8 express
Pigment-dispersing factor (Pdf) (Fig. 3B; expression of neural
function genes is summarized in Fig. 3A), which encodes a
neuropeptide that controls adult circadian locomotion (Renn et
al., 1999). Pdf is initially expressed at stage 15 in most MP1
neurons, but by stage 17 is restricted to A7-8. The MP1 neurons
also express the 5-HT1A serotonin receptor gene, indicating
serotonergic input. The MP1 neurons in CNS ganglia S3-A4
undergo programmed cell death at late stage 17 (Miguel-Aliaga
and Thor, 2004). Thus, the anterior MP1 neurons may only play
a role in pioneering axon guidance (Jacobs and Goodman,
1989) and not in neural function. In contrast, the expression of
Pdf and 5-HT1A in stage 17 A7-8 MP1 neurons suggests that
these MP1 neurons function in neurotransmission.

H-cell

Previous work in Drosophila revealed a pair of clonally
derived neurons whose axonal morphology is similar to the
grasshopper H-cell and H-cell sib, and are likely to be
homologous cell types (Bossing and Technau, 1994; Schmid
et al., 1999). In grasshopper, they are the progeny of the MP3
cell (Goodman, 1982), and the Drosophila neurons (also called
unpaired median interneurons (UMIs) (Bossing and Technau,
1994)) are also likely to be progeny of an MP3 cell. Both
Drosophila and Manduca sexta have a single dopaminergic
neuron along the midline that contains tyrosine hydroxylase
(TH) (Budnik and White, 1988; Kearney et al., 2004; Mesce et
al., 2001), a key enzyme in dopamine synthesis. In Drosophila,
TH is encoded by the pale (ple) gene (Neckameyer and White,
1993), and the TH-Gal4 line drives reporter gene expression in a
single midline neuron. This cell shows axonal morphology
characteristic of the H-cell (Fig. 1B), indicating that the H-cell is
dopaminergic.

Using ple colocalization, 8 additional genes were shown to
be expressed in the H-cell (Supplementary Table 1). These
genes encode SoxN and SNF4/AMP-activated protein kinase
gamma subunit (SNF4Av) (Fig. 2G). Multiple neurotransmis-
sion genes are expressed in the H-cell (Fig. 3A). Consistent with
dopamine production, the H-cell expresses the dopamine
transporter (DAT) gene (Fig. 3C) and CG33528, a vesicular
monoamine transporter (VMAT) (Fig. 3D) (Greer et al., 2005).
The H-cell also expresses the neuropeptide F receptor (NPFRI)

gene (Fig. 3E), a serotonin receptor (5-H71A) (Fig. 3F), and the
glutamate receptor (Glu-RI). This indicates that the dopamine-
producing H-cell has serotonergic, peptidergic, and glutama-
tergic synaptic inputs. NPFRI expression is restricted to
thoracic segments, indicating segmental differences in H-cell
function.

H-cell sib

H-cell sib lies adjacent to the H-cell, but little is known
about this cell other than its axonal trajectory. Expression of
period (per)-Gal4 shows that the axonal morphology of one
of the 4 per-Gal4 expressing midline cells is identical to
previous reports describing the axonal trajectories of H-cell
sib (Figs. 1D, E) (Bossing and Technau, 1994; Schmid et al.,
1999). Two transcription factor genes whose expression
colocalizes with per-Gal4 are forkhead (fkh) and sim. These
are particularly noteworthy since neither is expressed in the H-
cell. H-cell sib expresses the CG9887 vesicular glutamate
transporter (VGlut) gene (Daniels et al., 2004), indicating that
H-cell sib is glutamatergic (Fig. 3G). Since H-cell sib appears
to be an interneuron, it presumably releases glutamate onto
excitatory central synapses. In addition, H-cell sib expresses
5-HTI1A (Fig. 3F) and Glu-RI, indicating that, like the H-cell,
this neuron receives input from serotonergic and glutamatergic
neurons.

VUM motorneurons

The mVUMs are distinguished by expression of the
MzVUM-Gal4 enhancer trap line, which shows the character-
istic axonal pattern of mVUMSs when driving expression of
UAS-tau-lacZ (Fig. 1C) (Kearney et al., 2004; Landgraf et al.,
2003). Several genes are expressed in all 3 mVUMs: these
include the Zn finger homeodomain 1 (zfhl) transcription factor
gene (Fig. 2H), SNF4Ay, and futsch, which encodes a
cytoskeletal protein found in axons and dendrites. Previous
dye-labeling studies showed that each mVUM arises from a
separate midline precursor and is lineally related to an iVUM. It
remains unclear if each mVUM is located at the same anterior—
posterior position as its sibling iVUM. These studies further
provided evidence for mVUM diversity: axons from two of the
mVUMs exit the intersegmental nerve and innervate medial and
dorsal muscles, while the other mVUM axon exits the
segmental nerve and innervates ventral muscles (Bossing and

Fig. 2. A molecular map of the midline cells at stage 17. (A) Schematic of stage 17 CNS midline neurons (circles) and glia (ovals) shown in sagittal view. Each cell type
expresses a characteristic set of genes (see key at left). Inset—confocal projection of a single anti-p-galactosidase-stained stage 17 abdominal segment from a sim-
Gal4; UAS-tau-lacZ embryo. Midline glia (asterisks denote nuclei) surround the anterior commissure (ac) and posterior commissure (pc), and are positioned dorsal to
all midline neurons (brackets). (B—M) Single segments stained for the expression of the genes or markers listed in each panel; sagittal views are shown with anterior
left and dorsal up. Columns 1 and 2 show gene or Gal4 expression, column 3 merges these channels, and column 4 shows gene expression compared to all midline cells
that are defined by sim-Gal4; UAS-tau-lacZ (B4, D4—G4, J4—M4) or En (C4, H4, 14) staining. (B) argos expression (red) is restricted to midline glia and is distinct
from midline neurons stained with En (green). (C) wrapper (red) and argos (green) are coexpressed in midline glia. (D) odd expression (red) is restricted to the MP1s
residing just below the midline glia, and do not overlap with En" neurons (green). (E) Hb (red) and odd (green) overlap in the MP1s (arrowhead). MP2 neurons in the
lateral CNS also express Hb and odd (arrow). (F) ple (red) is expressed in the H-cell, which lies below the odd" (green) MP1s. (G) SNF4A~y (red) is expressed in the
mVUMs (arrows), and the ple (green)-expressing H-cell (arrowhead). (H) zfh 1 (red) is expressed in all mVUMs, as shown by overlap with MzVUM-Gal4 (green), and
not in the En" (blue) iVUMs (arrowheads). (I) 807-Gal4 is expressed in the 2 anterior-most mVUMs (arrowheads), and not in the posterior-most zfh 1" mVUM (arrow).
(J) Cas (red) is localized to the 2 anterior-most iVUM:s (arrowheads); the most posterior iVUM (arrow) is En* but not Cas™. (K) CG15236 (red) is expressed in the 2
anterior-most iVUMs (arrowheads) and not in the posterior-most En" (green) iVUM (arrow). (L) En (green) and argos (red) show the relative locations of the MNB
progeny (between the arrowheads) and midline glia. (M) wor (red) is expressed in the En* (green) MNB.
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Technau, 1994; Landgraf et al., 1997; Sink and Whitington,
1991). This diversity is also reflected in gene expression. The
807-Gal4 enhancer trap line (Fig. 21) and Castor (Cas) protein

are localized to the 2 anterior-most mVUMs, while the Tyrosine
kinase-related protein (Tkr) gene, which encodes a putative
transcription factor, is expressed in the most posterior mVUM.
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Since the gene expression profiles of the 2 anterior-most
mVUMs are similar, and distinct from the posterior-most
mVUM, it is reasonable to propose that axons from the 2
anterior-most mVUMs exit the intersegmental nerve, and the
posterior-most mVUM axons exit the segmental nerve, but this
has not been directly demonstrated.

Glutamate is the primary neurotransmitter used by insect
motorneurons, and, not surprisingly, the mVUMs express
VGlut (Fig. 3H). In addition to being glutamatergic, the
mVUMs express Tyramine p-hydroxylase (Tbh), which
encodes the key biosynthetic enzyme for the production of
octopamine, a modulatory monoamine neurotransmitter (Fig.
3I). In addition, the mVUMs express CG33528, a vesicular
monoamine transporter gene (Fig. 3J). These neurons
synapse widely throughout the somatic musculature, consis-
tent with a neuromodulatory role in controlling movement
(Landgraf et al., 1997; Sink and Whitington, 1991). The two
anterior mVUMs express Glu-RI, suggesting that these cells
receive glutamatergic input, and further distinguishes these
cells from the posterior-most mVUM, which does not
express Glu-RI.

VUM interneurons

The 3 iVUMSs are the ventral-most midline neurons, and
engrailed (en) serves as a reliable marker for these cells (Siegler
and Jia, 1999). Using en colocalization and cellular position, we
identified 10 additional markers localized to iVUMs (Supple-
mentary Table 1). The fkh and sim transcription factor genes are
expressed in all iVUMs, along with per-Gal4 (Figs. 1D, E).
Despite having identical initial axonal trajectories (Bossing and
Technau, 1994), iVUMs exhibit differences in gene expression.
Both Cas protein (Fig. 2J) and CG15236 expression (Fig. 2K)
are localized to the 2 anterior-most iVUMs, while Tkr is
expressed in the most posterior iVUM. Expression of neural
function genes in iVUMs provides insight into their physio-
logical roles. All 3 iVUMs are inhibitory GABAergic neurons
as they express Gadl, the gene encoding a key enzyme in
GABA biosynthesis (Fig. 3K), and CG8394, a putative GABA
vesicular transporter gene (VIAAT) (Fig. 3L). While present in
all iVUMs, the levels of Gadl generally appear higher in the
anterior-most and posterior-most cells, and lowest in the middle
cell.

MNB and progeny

The MNB is the one midline neuronal cell that undergoes
multiple rounds of cell division. By stage 17, 7-8 clonally
related MNB progeny reside within a tight cluster of cells in the
posterior of the ganglion. The MNB is likely present at stage 17

because one cell in the MNB cluster expresses worniu (wor)
(Fig. 2M) and asense (ase), two transcription factor genes that
mark the MNB earlier in development (see stage 13). The MNB
and 6-7 of its progeny express en (Fig. 2L), while ~1 progeny
cell in each segment does not. The progeny of the MNB also
display other differences in gene expression. The Prospero
(Pros) transcription factor is localized to nuclei in 2-4 MNB
progeny that are adjacent to the MNB, while Cas protein is
present in two progeny that do not contain Pros. In the lateral
CNS, Pros is observed in ganglion mother cells (GMCs) and
transiently in their neuronal progeny (Spana and Doe, 1995).
Thus, the Pros” MNB progeny are likely recently born neurons,
while the Cas™ Pros™ cells are older MNB progeny. Consistent
with this interpretation, Cas protein localizes to a subset of
Pros " MNB progeny at stage 13. In addition, Tkr is expressed in
a single progeny cell that does not contain either Cas or Pros,
suggesting that there are at least 3 distinct subsets. The
expression of ase, en, fkh, and per-Gal4 in some, but not all,
MNB progeny suggests that there may be further distinctions
among MNB progeny.

Three to five MNB progeny express Gadl (Fig. 3M) and the
CG8394 GABA vesicular transporter gene (Fig. 3L), indicating
that these cells are GABAergic neurons. These neurons are
relatively ventral in the MNB progeny cluster, but their exact
relationship to other MNB progeny markers has not been
determined. We did not detect expression of genes encoding
dopaminergic, glutamatergic, or octopaminergic biosynthetic
enzymes or transporters in the remaining MNB progeny. Either
these cells use a different transmitter or they have not yet fully
differentiated into functional neurons.

Stage 13

The stage 13 CNS represents an intermediate stage of
development in which most midline neurons and glia have
formed and axonal outgrowth has begun. All of the neurons
express embryonic lethal, abnormal vision (elav), a marker for
postmitotic neurons (Robinow and White, 1991). However, the
cells are immature and not fully differentiated. The midline
cells at stage 13 have undergone all of their MP and glial
divisions, but the MNB has only undergone 1-2 divisions, with
2—-3 more remaining during embryogenesis. In general, the
midline neurons at stage 13 have the same position as they do
at stage 17 (Fig. 4A, inset). This conserved arrangement aided
in the identification of distinct neurons and glia. Moreover,
many genes expressed at stage 13 are also expressed at stage 17
(31/39), further facilitating the identification of midline cell

types.

Fig. 3. A map of neural function genes expressed at stage 17. (A) Schematic of stage 17 CNS midline cells summarizing neural function gene expression. (B)
Ventral and (C—M) sagittal views are shown with anterior left and dorsal up. (B) Pdf (red) and Hb (green) colocalize in the MP1s (arrowheads) of segment A7.
(C—F) Colocalization with ple (green) shows that the following genes (red) are expressed in the H-cell: (C) DAT, (D) CG33528, (E) NPFRI, and (F) 5-HT14
(arrowhead). 5-HT1A4 is also expressed in the ple” H-cell sib (arrow). (G) VGlut (red) is expressed in H-cell sib (arrow), but not in the adjacent ple” (green) H-cell
(arrowhead). (H) VGlut (red) is expressed in the zfhI" (green) mVUMs (arrowheads) and the H-cell sib (arrow). (I) Thh (red) is expressed in the zfhl" (green)
mVUMs. (J) CG33528 (red) is expressed in the Thh™ (green) mVUMs. (K) Gadl (red) is expressed in the En" (green) iVUMs (arrowheads). (L) CG8394 (red) is
expressed in En" (green) iVUMs (arrowheads), as well as a subset of En” MNB progeny (arrows). (M) Gad! (red) is expressed in ~3 En" (green) MNB progeny

(arrowheads).
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Midline glia remainder of the AMG and all of the PMG will undergo

Unlike stage 17, at stage 13 there exist two populations of  apoptosis (Bergmann et al., 2002; Dong and Jacobs, 1997).
midline glia, anterior midline glia (AMG) and posterior midline There is currently no data describing the lineal relationships
glia (PMG), which can be identified based on their position, among PMG or between AMG and PMG. Using colocalization
morphology, and marker gene expression. A subset of the AMG with argos and wrapper, which mark all midline glia, we have
will persist to stage 17 to become mature midline glia, while the identified a total of 14 genes expressed in midline glia
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(Supplementary Table 2; Fig. 4A). Ten are expressed in all
midline glia including: (1) Dichaete, sim, sna (Fig. 4B), SoxN,
and vvl, which encode transcription factors, (2) argos and slit,
which encode signaling proteins, (3) wrapper, which encodes
an adhesion protein, and (4) CG31145 and CG32244, two genes
of unknown function. Four genes are expressed in subsets of
stage 13 midline glia. CG8965 and runt (Fig. 4C) are expressed
in AMG, while Cad74A and en (Figs. 4B, C) are expressed in
PMQG, indicating that the two populations of midline glia are
molecularly distinct. However, the genes we examined did not
distinguish subpopulations of either AMG or PMG.

MP1 and MP3 neurons

The 2 MP1 neurons are positioned just posterior and ventral
to the AMG, and the 2 MP3 progeny reside ventral to the MP1
neurons and just anterior to the VUM neurons (Fig. 4A). By
stage 13, the MP1 and MP3 progeny express elav and are
extending axons, indicating that they are in the process of neural
differentiation. The stage 13 MP1 neurons have a similar
expression profile to those at stage 17, and they express 9 of the
11 genes found at stage 17 (Supplementary Tables 1 and 2),
including odd and hb (Figs. 4D, E). Furthermore, the two stage
13 MP1 neurons show an identical profile of gene expression to
one another, as also observed at stage 17. The MP3 progeny, H-
cell and H-cell sib, can be distinguished at stage 13 by
differences in gene expression, indicating they have acquired
their respective cell fates by this time of development: 4 genes
are expressed only in the H-cell, 2 genes are expressed only in
H-cell sib, and 4 genes are expressed in both cells (Supple-
mentary Table 2). The immature nature of the MP1 and MP3
neurons is reflected in the observation that only 2 neural
function genes expressed in these cells at stage 17 are expressed
at stage 13: ple (Fig. 4G) and CG33528. One of the major
differences between stages 13 and 17 involves the transcription
factor-encoding genes nubbin (nub) (Figs. 4D, F) and POU
domain protein 2 (pdm?2) (Fig. 4E) that are expressed in both
MP1 and MP3 neurons at stage 13 but are absent at stage 17.

VUM neurons

Like the MP1 and MP3 neurons, the expression profiles of
the stage 13 VUMs indicate that they are immature neurons.
The VUMs are elav’ and can be distinguished as mVUM or
iVUM based on position and gene expression, but they do not
yet express most of the neural function genes observed at stage

17. The stage 13 mVUMs share the expression of most genes (8/
9) with their stage 17 counterparts, with forkhead domain 594
(fd59A4) as an exception, whereas all of the stage 13 iVUM
genes examined are also expressed at stage 17. At stage 13,
differences among the mVUMs can be recognized: only the
posterior-most mVUM expresses Tkr (Fig. 41), and only the two
anterior-most mVUMSs contain Cas protein. The iVUMs differ
in exactly the same way (Fig. 4J), indicating that at stage 13, just
like stage 17, the anterior-most 4 VUMs differ from the
posterior-most 2 VUMs.

MNB and progeny

By stage 13, the MNB has generated about half of its
progeny. The MNB can be recognized due to its asymmetric
cortical localization of Pros (Fig. 4L), a characteristic of actively
dividing neuroblasts (Spana and Doe, 1995). At stage 13, there
are 2—4 MNB progeny in each segment, indicating that at least
two additional MNB stem cell divisions must follow to generate
the 7-8 MNB progeny observed at stage 17. The MNB
expresses 5 transcription factors genes, ase (Fig. 4L), en (Fig.
4K), pros (Figs. 4L, M), sim, and wor (Fig. 4K), in addition to
sanpodo (spdo) (Fig. 4M), which functions in Notch signaling
(O’Connor-Giles and Skeath, 2003). Unlike the MNB, the
MNB progeny possess nuclear Pros (Fig. 4L) and a subset is
elav”. Similar to stage 17, two MNB progeny are Cas " and one
expresses Tkr (Fig. 41). While both en™ and en” MNB progeny
are found at stage 17, all of the MNB progeny observed at stage
13 express en indicating that either en is extinguished in some of
the stage 13 progeny, as observed in grasshopper (Jia and
Siegler, 2002), or that some progeny generated after stage 13 do
not express en.

Stage 11

Stage 11 (Fig. 5A) represents a critical stage of development,
of which little is known. Most midline glial division has
occurred by mid-stage 11, but the MNB has yet to divide.
Patterns of gene expression are complex indicating that cells are
acquiring specific fates, and considerable cell movement is
occurring. Consequently, we have mapped the expression of
genes encoding transcription factors and signaling proteins that
likely mediate the development of the midline cells at this stage.
Midline cells at stage 11 can be grouped into three broad
categories: (1) glial cells, which express argos and wrapper, (2)

Fig. 4. A molecular map of the midline cells at stage 13. (A) Schematic of midline cells at stage 13. Inset—confocal projection of a single anti-3-galactosidase-stained
stage 13 abdominal segment from a sim-Gal4; UAS-tau-lacZ embryo. Midline neurons (brackets) reside between the 2 populations of midline glia, AMG (arrows) and
PMG (arrowheads). ac—anterior commissure, pc—posterior commissure. (B) sna (red) is expressed in both AMG (white arrowheads and arrow) and the En* PMG
(yellow arrowheads and arrow). In this segment, some AMG (white arrow) and PMG (yellow arrow) have not yet migrated to their final dorsal position. (C) Runt (red)
is localized to the AMG (white arrowheads) and MP1 neurons (arrows), and does not overlap with the En" (green) PMG (yellow arrowheads). (D) nub (red) and odd
(green) are coexpressed in the MP1 neurons (arrowhead). (E) The MP1 neurons (arrowhead) express both pdm2 (red) and Hb (green). Both pdm2 and Hb are also
expressed in the lateral CNS (arrows). (F) nub (red) is expressed in the H-cell (arrowhead) and H-cell sib (arrow) that lie just dorsal to the En* iVUMs (*). (G) The H-
cell (arrow) expresses both ple (red) and SNF4Avy (green). SNF4Awy is also expressed in mVUMs (arrowheads). (H) zfi/ (red) and MzVUM-Gal4 (green) expression
colocalize in mVUMs (arrowheads). (I) All of the mVUMs (arrowheads) express fd594 (green), while only the posterior-most mVUM (yellow arrowhead) expresses
Tkr (red). fd59A4 and Tkr are coexpressed in one progeny of the MNB (arrow). (J) All 3 iVUMs (arrowheads) express En (green), while the most posterior iVUM
(yellow arrowhead) and 1 MNB progeny coexpress Tkr (red) and En. (K) wor (red) is expressed in the En” (green) MNB (arrowhead), and is often observed in MNB
progeny (arrow). (L) The MNB (arrowhead) expresses ase (red) and shows cortical localization of Pros protein (green). MNB progeny (arrows) show nuclear Pros
localization and are occasionally observed with ase expression. (M) Spdo is expressed in the MNB (arrowhead) and the nuclear Pros” (green) MNB progeny (arrows).
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neurons, which possess nuclear Pros, and (3) the MNB, which is
a large cell containing cortical Pros. The midline neurons and
MNB lie between 2 populations of glial cells along the A—P axis
(Fig. 5B). Note that stage 11 is a dynamic stage with respect to
gene expression, cell division, and cell movement; the
description below and the stage 11 molecular map (Fig. 5A)

refer to mid-stage 11, while Supplementary Table 3 also
describes transient expression at early and late stage 11.

Midline glia
The stage 11 glia can be identified based on their oval
morphology and expression of genes that are characteristic of

A Stage 11

Bl agos [ Pros-nuc

[] Runt [ En
sna Bl ase
[ wrapper [l Cas
[] odd [s Pros-cort
Hb B Tk
[ nub [ wor

Fig. 5. A molecular map of the midline cells at stage 11. (A) Schematic of stage 11 midline cells. Inset—confocal projection of an anti-3-galactosidase-stained stage 11
abdominal segment from a sim-Gal4; UAS-tau-lacZ embryo. The wedge-shaped MP1s (arrow) can be identified by their morphology, and the MNB (arrowhead) can
be identified by its large size and uniform Tau-lacZ staining. (B) The wrapper” (red) AMG and PMG (arrowheads) flank the MNB and Pros” (green; arrow) neurons.
(C) The wrapper" (red) PMG (arrowhead) are also En" (green). En* Pros” neurons that do not express wrapper (arrow) are likely to be the VUMSs and MNB. (D) argos
(red) is expressed in the En~ AMG (arrowhead) and En" PMG (yellow arrowhead) but not the cluster of MNB and En" wrapper  neurons (green; arrow). (E) wor (red)
is expressed in the MNB (arrowhead), a large cell with cortical Pros (green). Two wor ™ neurons (arrow), likely VUMs, with nuclear Pros reside just anterior to the
MNB. (F) ase (red) and wor (green) are coexpressed in the MNB (arrowhead) while ase marks additional midline neurons (arrow). (G) The 6 posterior nuclear Pros*
(red) VUM neurons (arrowheads) express en (green). (H) nub (red) is expressed in 4 anterior En~ (green) VUM neurons (arrowheads). (I) Hb protein (red) is expressed
in the 2 anterior-most nuclear Pros" (green) neurons (arrowheads), which are MP1s. (J) Tkr (red) is expressed in the 4 posterior-most Pros” (green) VUM neurons
(arrowheads). (K) Cas protein (red) is localized to the 4 anterior-most VUM neurons, which are nuclear Pros” and En". The two most anterior Cas" neurons do not
express Thr (white arrowheads), while the 2 posterior Cas” neurons (arrows) do express Tkr (green). Cas and Tkr are also coexpressed in the MNB (yellow arrowhead)
and PMG.
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stages 13 and 17 midline glia, including wrapper (Figs. 5B, C),
argos (Fig. 5D), CG32244, sna, and vvl. There are ~4 glia
located in the posterior of the segment that contain Cas and
express Tkr and en (Fig. 5D): we conclude that they are PMG
based on location and expression of en, which is a marker
characteristic of PMG at stage 13. The AMG consist of ~6 cells
that reside in the anterior part of the segment, and express runt,
but not en. Thus, even at stage 11, the two populations of
midline glia are distinct.

Midline neurons

The 10 midline neurons found at mid-stage 11 are likely to
be the immature MP1, MP3, and VUM neurons. These cells are
characterized by elav expression, indicating that they are
neurons (Robinow and White, 1991), and by nuclear Pros,
indicating that they have not matured (Spana and Doe, 1995).
However, they can be divided into subgroups based on
differential gene expression. One observation is that patterns
of gene expression generally come in pairs: this suggests that at
mid-stage 11, the 2 neurons derived from each MP are not yet
distinct. Thus, expression of these different fates occurs
between mid-stage 11 and stage 13. The 6 posterior nuclear
Pros” neurons express en (Fig. 5G), while the 4 anterior-most
Pros” neurons express nub (Fig. SH). The nub" cells can be
further subdivided into 2 anterior, wedge-shaped cells (Fig. 5A,
inset) that express hb (Fig. 51), odd, and runt, whereas the
adjacent, more posterior 2 cells do not express any of these
genes. The anterior cells are likely MP1 neurons, since the only

Stage 9
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neurons at stages 13 and 17 that express b, odd, and runt are
the MP1 neurons. Similarly, the 2 posterior nub " cells are likely
to be the MP3 progeny, since they also express pdm2, and at
stage 13, only H-cell and H-cell sib express nub and pdm2,
besides the MP1 neurons.

The 6 En" nuclear Pros neurons that lie between the MNB
and the MP3 neurons are likely to be VUM cells. Consistent
with this interpretation, these cells express Tkr (Figs. 5J, K) and
contain Cas Protein (Fig. 5K), markers which also label subsets
of mature VUM neurons at stage 13. Specifically, Cas protein is
localized in the 4 anterior-most VUM neurons (Fig. 5K) at both
stages 11 and 13. Tkr is expressed in the 4 posterior-most En"
VUM neurons (Fig. 5J) at stage 11, and the 2 posterior-most
VUM neurons at stage 13. By the end of stage 11, en is
expressed in only 3 of the 6 VUMS; these become the iVUMs.
Similar results regarding en expression have been shown for the
grasshopper MP4—6 progeny, which are likely VUM equiva-
lents (Jia and Siegler, 2002).

Median neuroblast

The MNB is readily distinguished because it is larger than
other midline cells (Figs. 5A, inset, E, F). In sim-Gal4 UAS-tau-
lacZ-stained embryos, the Tau-LacZ protein is often not
cortical, but uniformly present throughout the cytoplasm, likely
reflecting the redistribution of microtubules just prior to cell
division (Fig. 5A, inset). Consistent with this interpretation,
mid-stage 11 MNBs that have uniform Tau-LacZ distribution
also exhibit asymmetric, cortical localization of Pros protein
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Fig. 6. A molecular map of the midline cells at stage 9. (A) Schematic of a ventral view of stage 9 midline cells illustrating 8 rows (A—H) of 2 cells each. Inset—
confocal projection of an anti-3-galactosidase-stained stage 9 abdominal segment from a sim-lacZ embryo. (B—F) Ventral views, anterior left, blue staining (anti-Sim)
shows all midline cells. (B) Comparison of odd expression (red; rows A and B) and s/p2 expression (green; rows D—F) reveals an unlabeled single pair of cells in row C
(arrowheads). (C) pxb (red) is expressed in 8 cells. The most anterior pair of pxb" cells is in row C (white arrowheads), and does not express sip2 (green), while the
remaining 6 cells (rows D—F, yellow arrowheads) are s/p2". (D) Runt protein (red) is localized to 6 cells. Two Runt" cells (row C; white arrowheads) do not express
slp2 (green), and 4 Runt" cells (rows D and E; yellow arrowheads) are coexpressed with sip2. (E) wg (red) is expressed in 4 cells (rows E and F; white arrowheads) that
are also sIp2”. The anterior-most sip2™" cells (row D; yellow arrowhead) do not express wg. (F) Ak (red) is expressed in the 2 posterior-most rows (rows G and H, white
arrowheads), since the 6 slp2" cells (green) in rows D—F (yellow arrowheads) do not overlap with /h.
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(Fig. 5E), which is a hallmark of asymmetrically dividing lateral
CNS neuroblasts (Spana and Doe, 1995). Cortical localization
of Pros is transient, as it is not observed in all stage 11 MNBs
examined. The expression of 8 additional transcription factor
genes was localized in the MNB, including ase (Fig. 5F), cas,
en, lethal of scute (I(1)sc), pros, Tkr, wor (Fig. 5SE), and zfhl.
Several of these genes are not specific for the MNB, but their
combination distinguishes the MNB from other midline cells.

Stage 9

The stage 9 midline cells represent an early stage of
development in which the midline cells do not show obvious
signs of neural or glial differentiation, yet it is possible that
important cell fate decisions are occurring at this time. At stage
9, the midline cells have recently divided and are loosely
arranged in two columns of ~8 cells each (Fig. 6A). There is
variability in the number of cells (~16 cells, varying from 14—
20, using En staining as a segmental marker) and relative
position of specific midline cells within each segment. To
simplify the schematic of the molecular map at this stage (Fig.
6A), we illustrate the stage 9 midline cells as two perfectly
spaced columns of 8 cells each and depict gene expression
patterns in paired cells. However, variability causes gene
expression in individual segments to commonly differ from this
idealized view.

We examined the expression of 17 genes (Supplementary
Table 4), most of which are expressed in patterns that are
orthogonal to the A—P axis. These genes were selected based on
their well-established roles in intrasegmental patterning of the
epidermis (Nusslein-Volhard and Wieschaus, 1980), as well as
other roles in segmentation and neurogenesis. The I(1)sc, odd,
runt, sloppy paired 1 (slpl), sloppy paired 2 (slp2), paired (prd),
even skipped (eve), and en genes encode transcription factors,
and pxb, wingless (wg), and hedgehog (hh) encode signaling
proteins. The two anterior-most pairs of cells (rows A and B)
express [(1)sc and odd (Fig. 6B), while the third pair (row C)
expresses both pxb (Fig. 6C) and runt (Fig. 6D). The next three
pairs of cells (rows D, E, and F) all express slp2 (Figs. 6B—F)
and pxb (Fig. 6C), and can be subdivided into three distinct
types. The most anterior of these rows (row D) also expresses
runt (Fig. 6D), whereas row E expresses /(1)sc, prd, runt, and
wg (Fig. 6E), and row F expresses /(1)sc, prd, and wg, but not
runt. The posterior-most 2 pairs of cells (rows G and H) express
both en and &k (Fig. 6F), and row G also expresses eve in
alternating segments. Together, the expression patterns of these
genes define 7 molecularly distinct types of midline cells
arrayed along the A—P axis. Because of the dynamic nature of
gene expression at stage 9 and the lack of genes that are
expressed consistently from stage 9 onward, the relationships
between these cells and their stage 11, 13, and 17 counterparts
are unclear.

Discussion

The major goal of this paper is to provide a series of gene
expression maps, derived from a large gene set, that describe the

development of the Drosophila CNS midline cells in molecular
terms. While previous research identified the various midline
cell types, relatively little is known regarding the molecular
mechanisms that govern midline cell development. Our study
followed gene expression throughout development, and inspec-
tion of the data suggests relationships between midline cells and
potential molecular pathways of development. Many of the
genes analyzed are well-known transcription factors and
signaling proteins that are likely to play important develop-
mental roles. Furthermore, the mapping of genes encoding
peptide neurotransmitters, neurotransmitter biosynthetic
enzymes, neurotransmitter receptors, and transporters will be
useful for understanding CNS midline neural function and its
regulation. This work will be invaluable for continuing genome-
wide assignment of gene expression to individual midline cell
types, for genetic analysis, and for study of transcriptional
control during development. Because many of these genes are
conserved across species, these data will provide important
insight for understanding neural development in metazoans.

CNS midline cell relationships and transcriptional cascades

Analysis of gene expression in midline cells reveals how the
stage 11 primordial cells develop into mature neurons and glia.
Thus, AMG, PMG, MNB, and immature MP1s, MP3s, and
VUM s can all be identified at stage 11 based on their similarities
in gene expression to stages 13 and 17. While not proof of cell
relationships, examination of gene expression for multiple
genes expressed in each cell type provides a consistent view. In
contrast, the relationship between specific midline cells at stage
9 and earlier to mature midline cell types is unclear, although
recent work has provided some insight (Bossing and Brand,
2006). An early model proposed a detailed scheme of midline
cell development, and indicated that midline cell types acquire
their individual identities prior to the division from 8 to 16 cells
(embryonic stage 8) (Kldmbt et al., 1991). However, critical
experimental support was lacking. In contrast, Bossing and
Brand (2006) proposed a model in which the identities of some
midline cell types are specified by a combination of
transcription factors and signaling pathways after the 16 cell
stage. In this model, wg and A/ signaling define a group of cells
in the anterior of the segment that initiate en expression during
stage 10 and are integrated into the next anterior segment. It is
suggested that this group of cells gives rise to the en " MNB and
VUM neurons. However, Bossing and Brand (2006) do not
account for the PMG, the en” group of 3—4 midline glia that are
present at the posterior of each segment beginning at stage 11
(Figs. 4, 5; Dong and Jacobs, 1997; Kearney et al., 2004). Thus,
the exact identities of the cells that arise from this cluster are
uncertain. Our gene expression analysis indicates at least 7
different pairs of midline cells at stage 9. However, expression
of most of these genes does not persist past stage 10, and those
that do (en, I(1)sc, odd, and runt) are dynamically expressed
and, therefore, are unreliable lineage markers. Thus, our data do
not provide insight into lineage relationships between stages 9
and 11, but provides molecular markers with which models can
be tested.
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The maps detailed in this work allow the identification of
individual midline neuronal and glial lineages across embryonic
development. This ability reveals potential genetic and physical
interactions, as well as regulatory relationships. Coexpressed
genes can be assayed for common DNA binding sites and
transcription factors can be assessed for combinatorial con-
tributions to gene regulation. This is illustrated in timelines of
expression for the MP1 and MP3 neurons (Fig. 7).

MP1 neurons

At stage 11, the MP1 neurons express elav and contain
nuclear Pros, which together characterize immature post-mitotic
neurons in the lateral CNS. At this time, the MP1 neurons are
characterized by expression of 8 additional transcription factor
genes: Dichaete, hb, HGTX, nub, odd, pdm2, runt, and sim. By
stage 13, an additional transcription factor, fkh, is expressed. By
stage 17, genes, such as Pdf and 5-HT1A4, whose expression is
characteristic of terminally differentiated neurons, are expressed
in the MP1 neurons. Expression of many of the transcription
factor genes observed at stages 11 and 13 is still present at stage
17, although Dichaete, nub, pdm2, and sim expression are
extinguished. These data suggest that the maintenance of some
transcription factors and the downregulation of others may be
key events in terminal differentiation and expression of neural
function genes.

MP3 neurons

The MP3 lineage differs from the MP1 lineage in that
immature MP3s give rise to two different neurons, H-cell and
H-cell sib. Similar to the MP1s, the MP3 neurons at stage 11 are
elav’ and have nuclear Pros, indicative of immature post-
mitotic neurons. The 2 MP3s have nearly identical patterns of
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gene expression at mid-stage 11, indicating that they acquire
their distinct fates afterwards. The first indication that individual
cell fates have been acquired is revealed by expression of SoxN
in only one of the two MP3 neurons (most likely the H-cell), at
late stage 11. The differences are clearly apparent by stage 13, in
which the MP3 cells also begin to express neural function
genes, such as the H-cell-expressed ple gene, which encodes
tyrosine hydroxylase, a dopamine biosynthetic enzyme. Both
the nub and pdm?2 transcription factor genes are expressed in the
immature MP3 neurons, and their expression levels decline as
these neurons begin terminal differentiation. It will be
interesting to see whether reduction in their expression in
both MP1s and MP3s is required for terminal differentiation to
occur. Similarly, it will be useful to investigate whether the
SoxN, fkh, and sim transcription factor genes regulate
differences between H-cell and H-cell sib, since each is
expressed in only one of the two cells.

Comparison of gene function between the CNS midline cells
and the lateral CNS

Many genes that function during development of the lateral
CNS are also expressed in the CNS midline cells. One of the key
early differences between the midline cells and lateral CNS is
that expression of sim imparts a midline identity to the
mesectodermal cells (Crews, 2003), whereas a similar function
is carried out in the lateral CNS by genes, such as ventral nerve
cord defective (vnd), intermediate nerve cord defective (ind),
and muscle segment homeodomain (msh) (Skeath and Thor,
2003). At the same time, the expression patterns of the
transcription factors and signaling proteins encoded by
segmentation genes subdivide both the midline and lateral
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Fig. 7. Timelines of developmental gene expression. Schematic progression of gene expression in the: (A) MP1 neurons and (B) MP3 neurons from stages 9 to 17.
Gene expression is depicted as horizontal bars representing transcription factor genes (blue), neural function genes (red), or other genes (black). For simplicity, genes
that initiate expression at any point during a particular stage are shown as expressed throughout the stage. Light blue bars indicate expression prior to the ability to
identify MP1 or MP3 neurons (A), or to distinguish between the H-cell and H-cell sib neurons (B). The MP3 expressed genes include those expressed in both cells
(common), only H-cell, and only H-cell sib. The “axon outgrowth” bar indicates the period of CNS axonogenesis.
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CNS cells along the anterior—posterior axis. In the lateral CNS,
genetic studies have demonstrated that these segmentation
genes impart distinct identities on different rows of neural
precursors (Bhat, 1999; Chu-LaGraff and Doe, 1993; Skeath et
al., 1995). In the midline cells, genetic and transplantation
studies have suggested roles for wg and Ak signaling in the
control of midline cell development (Bossing and Brand, 2006;
Hummel et al., 1999; Patel et al., 1989b). In the stage 9 midline
molecular map (Fig. 6A), the combinatorial expression pattern
of the 17 genes examined subdivides the 8 rows of midline cells
into 7 different types of cells. These transcription factors and
signaling proteins, while not all segmentation genes, may act in
addition to or in combination with 44 and wg to impart different
fates and functions on different midline cells.

The snail family of zinc finger proteins, which includes sna,
esg, and wor, is expressed in lateral CNS neuroblasts (Cai et al.,
2001). sna and wor, and to a lesser extent esg, work together to
control neuroblast asymmetry (including Pros localization) and
neuroblast cell division (Ashraf and Ip, 2001; Cai et al., 2001).
sna and wor are expressed in a large number of neuroblasts, but
not ganglion mother cells (GMCs); esg neuroblast expression is
considerably more limited. In the midline, wor and esg are
expressed in the MNB and other neurons, resembling their
expression in the lateral CNS. However, sna is not expressed in
midline neurons or the MNB, but only in glial cells from stages
11 to17, indicating a significant difference between the midline
and lateral CNS.

In the lateral CNS, neuroblasts divide as stem cells giving
rise to a succession of GMCs that each divide once to generate
two neuronal progeny (Skeath and Thor, 2003). The identity of
GMCs and their progeny within a single neuroblast lineage is
largely imparted by differences in a temporal cascade of
transcription factors following the order: hb — kr — nub — cas
(Kambadur et al., 1998; Pearson and Doe, 2004). We have
examined expression of these genes during midline develop-
ment, and the MNB is clearly distinct from this pathway.
Neither hb, kr, nor nub is expressed in the MNB, although they
are expressed in other midline cell types. However, cas is
prominently expressed in the MNB, although it is also
expressed in additional midline neurons and glia. Since there
exist 4 (of 30) neuroblasts in the lateral CNS that also differ
from the canonical /b cascade (Isshiki et al., 2001), and begin
cell division with a cast GMC, the MNB and these small
number of neuroblasts may represent a similar mode of
development.

The Pros protein is asymmetrically localized to the basal
side of neuroblasts in the lateral CNS, where it translocates to
the nuclei of GMCs and their daughter cells, and regulates
gene expression (Spana and Doe, 1995). In the midline, the
MNB expresses pros, and Pros protein is found as a cortical
crescent. Moreover, the MNB progeny also show nuclear Pros
localization at stages 13 and 17. Thus, with respect to Pros
localization, the MNB lineage is similar to lateral neuroblast
lineages. Like lateral CNS GMCs and the non-midline MP2
neural precursor, the MP1, MP3, and VUM precursors divide
only once to generate 2 neurons. Additionally, there is
evidence that midline precursors and lateral CNS GMCs use

similar mechanisms to generate asymmetric neuronal cell fates
(Lundell et al., 2003, SRW unpublished data). Based on these
similarities, one might expect Pros to be localized to midline
precursors and transiently in their neuronal progeny. However,
pros is not expressed in midline precursors but is detected only
in their progeny. Thus, while Pros may play a similar role in
lateral CNS and midline neuronal development, it is
exclusively functioning post-mitotically in MP1, MP3, and
VUM lineages.

In summary, many of the genes involved in development of
the neuroblasts, GMCs, and neurons of the lateral CNS are also
expressed in the midline cells. However, their expression
suggests similarities in function in some cases, and differences
in others. Not surprisingly, genes expressed in the MNB and
progeny, such as pros, sna, wor, and cas have the highest
likelihood of conserved function, since the development of
these midline cells closely resembles that of some lateral CNS
lineages. In contrast, the midline glia are a cell type whose
development (to the extent known) is unique.
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