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Using in vitro drug sensitivity data coupled with Affymetrix microarray data, we developed gene expression signatures that predict

sensitivity to individual chemotherapeutic drugs. Each signature was validated with response data from an independent set of cell

line studies. We further show that many of these signatures can accurately predict clinical response in individuals treated with

these drugs. Notably, signatures developed to predict response to individual agents, when combined, could also predict response

to multidrug regimens. Finally, we integrated the chemotherapy response signatures with signatures of oncogenic pathway

deregulation to identify new therapeutic strategies that make use of all available drugs. The development of gene expression

profiles that can predict response to commonly used cytotoxic agents provides opportunities to better use these drugs, including

using them in combination with existing targeted therapies.

Numerous advances have been achieved in the development, selection
and application of chemotherapeutic agents, sometimes with remark-
able clinical successes—as in the case of treatment for lymphomas or
platinum-based therapy for testicular cancers1. In addition, in several
instances, combination chemotherapy in the postoperative (adjuvant)
setting has been curative. However, most people with advanced solid
tumors will relapse and die of their disease. Moreover, administration
of ineffective chemotherapy increases the probability of side effects,
particularly those from cytotoxic agents, and of a consequent decrease
in quality of life1,2.

Recent work has demonstrated the value in using biomarkers to
select individuals for various targeted therapeutics, including tamox-
ifen, trastuzumab and imatinib mesylate. In contrast, equivalent tools
to select those most likely to respond to the commonly used
chemotherapeutic drugs are lacking3.

With the goal of developing genomic predictors of chemotherapy
sensitivity that could direct the use of cytotoxic agents to those most
likely to respond, we combined in vitro drug response data, together
with microarray gene expression data, to develop models that could
potentially predict responses to various cytotoxic chemotherapeutic
drugs4. We now show that these signatures can predict clinical or
pathologic response to the corresponding drugs, including combina-
tions of drugs. We further use the ability to predict deregulated
oncogenic signaling pathways in tumors to develop a strategy that
identifies opportunities for combining chemotherapeutic drugs with

targeted therapeutic drugs in a way that best matches the character-
istics of the individual.

RESULTS

A gene expression–based predictor of sensitivity to docetaxel

To develop predictors of cytotoxic chemotherapeutic drug response,
we used an approach similar to previous work analyzing the NCI-60
panel4 from the US National Cancer Institute (NCI). We first
identified cell lines that were most resistant or sensitive to docetaxel
(Fig. 1a,b) and then genes whose expression correlated most highly
with drug sensitivity, and used Bayesian binary regression analysis to
develop a model that differentiates a pattern of docetaxel sensitivity
from that of resistance. A gene expression signature consisting of 50
genes was identified that classified cell lines on the basis of docetaxel
sensitivity (Fig. 1b, right).

In addition to leave-one-out cross-validation, we used an indepen-
dent dataset derived from docetaxel sensitivity assays in a series
of 30 lung and ovarian cancer cell lines for further validation.
The significant correlation (P o 0.01, log-rank test) between the
predicted probability of sensitivity to docetaxel (in both lung and
ovarian cell lines) (Fig. 1c, left) and the respective 50% inhibitory
concentration (IC50) for docetaxel confirmed the capacity of the
docetaxel predictor to predict sensitivity to the drug in cancer cell
lines (Supplementary Fig. 1 online). For each set of cell lines, the
accuracy exceeded 80%. Finally, we made use of a second independent
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dataset that measured docetaxel sensitivity in a series of 29 lung cancer
cell lines (Gene Expression Omnibus (GEO) database (see URLs)
accession number GSE4127). The docetaxel sensitivity model devel-
oped from the NCI-60 panel again predicted sensitivity in this
independent dataset, also with an accuracy exceeding 80%
(P o 0.001, log-rank test; Fig. 1c, right).

The expression signature predicts clinical docetaxel response

We used published studies with clinical and genomic data that linked
gene expression data with clinical response to docetaxel in a breast
cancer neoadjuvant study5 (Fig. 1d) to test the capacity of the in vitro
docetaxel sensitivity predictor to accurately identify those individuals
that responded to docetaxel. Using a 0.45 predicted probability of
response as the cutoff for predicting positive response, as determined
by receiver operator characteristic curve analysis (Supplementary
Fig. 1), the in vitro–generated profile correctly predicted docetaxel
response in 22 of 24 clinical samples, for an overall accuracy of 91.6%
(Fig. 1d). Applying a Mann-Whitney U-test for statistical significance
demonstrated the capacity of the predictor to distinguish resistant
from sensitive individuals (Fig. 1d, right). We extended this further by
predicting the response to docetaxel as salvage therapy for individuals
with ovarian cancer that was refractory to primary therapy (Fig. 1e),

and the prediction achieved an accuracy exceeding 85% (Fig. 1e,
middle). Further, an analysis of statistical significance demonstrated
the capacity of the predictors to distinguish individuals with resistant
versus sensitive disease (Fig. 1e, right).

We also performed a complementary analysis, using the clinical
response data to generate a signature and then predicting sensitivity
of NCI-60 cell lines to docetaxel (Supplementary Fig. 1). Genes
represented in the initial in vitro–generated docetaxel predictor
and the alternative in vivo predictor showed considerable overlap.
Notably, both predictors were linked to expected targets for docetaxel,
including BCL2, WDR7 (also known as TRAG), ERBB2 and tubulin
genes, all previously described to be involved in taxane chemoresis-
tance6–9 (Supplementary Table 1 online). We also noted that the
predictor of docetaxel sensitivity developed from the NCI-60
data, using the approach described here, was more accurate in
predicting response in the ovarian samples than a predictor developed
from the breast neoadjuvant study data (85.7% versus 64.3%;
Supplementary Fig. 1).

A panel of signatures that predict chemotherapeutic sensitivity

Given the development of a docetaxel response predictor, we exam-
ined the NCI-60 dataset for other opportunities to develop predictors
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Figure 1 A gene expression signature that predicts sensitivity to docetaxel. (a) Strategy for generating the chemotherapeutic response predictor. (b) Left,

cell lines from the NCI-60 panel used to develop the in vitro signature of docetaxel sensitivity. There is a statistically significant difference (Mann-Whitney
U-test) in the IC50 and LC50 of the cell lines chosen to represent the sensitive and resistant subsets. Right, expression plots for genes selected for

discriminating the docetaxel-resistant and docetaxel-sensitive NCI-60 cell lines, with blue representing the lowest expression and red the highest. Each

column in the figure represents an individual sample. Each row represents an individual gene, ordered from top to bottom according to regression coefficient.

(c) Left, validation of the docetaxel response prediction model in an independent set of lung and ovarian cancer cell line samples. A collection of lung and

ovarian cell lines were used in a cell proliferation assay to determine the IC50 of docetaxel in the individual cell lines. Right, validation of the docetaxel

response prediction model in another independent set of 29 lung cancer cell line samples. (d) Left, a strategy for assessment of the docetaxel response

predictor as a function of clinical response in the breast neoadjuvant setting. Middle, predicted probability of docetaxel sensitivity in a collection of samples

from a breast cancer single-agent neoadjuvant study. Right, a single-variable scatter plot of a significance test of the predicted probabilities of sensitivity to

docetaxel in the sensitive and resistant tumors (P o 0.001, Mann-Whitney U-test). (e) Left, a strategy for assessment of the docetaxel response predictor as

a function of clinical response in advanced ovarian cancer. Middle, predicted probability of docetaxel sensitivity in a collection of samples from a prospective

single agent salvage therapy study. Right, a single-variable scatter plot showing statistical significance (P o 0.01, Mann-Whitney U-test).
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of chemotherapeutic response. We developed a series of expression
profiles from the NCI-60 dataset (Fig. 2a) that predict response to
topotecan, adriamycin, etoposide, 5-fluorouracil (5-FU), paclitaxel
and cyclophosphamide (Cytoxan). In each case, the leave-one-out
cross-validation analyses demonstrated the capacity of these profiles to
accurately predict the samples used in the development of the
predictor (Supplementary Fig. 2 online). Each profile was then
further validated using in vitro response data from independent
datasets; in each case, the profile developed from the NCI-60 data
was capable of accurately (485%) predicting response in the separate
dataset of approximately 30 cancer cell lines for which the dose-
response information and relevant Affymetrix U133A gene expression
data were publicly available10 (Supplementary Fig. 2 and Supple-
mentary Table 2 online). Once again, applying a Mann-Whitney
U-test for statistical significance demonstrated the capacity of the
predictor to distinguish resistant from sensitive individuals (Fig. 2b).

We then evaluated the extent to which a signature was also specific
for an individual chemotherapeutic agent. Using the validations of
chemosensitivity seen in the independent European cell line data10, it
was clear that each signature is specific for the drug that was used to
develop the predictor (Supplementary Fig. 3 online).

Given the ability of the in vitro–developed gene expression profiles to
predict response to docetaxel in the clinical samples, we extended this
approach to test the ability of additional signatures to predict responses
to commonly used salvage therapies for ovarian cancer and in another,
independent dataset of samples cultured from adriamycin-treated
individuals (GEO accession nos. GSE650 and GSE651). Each
of these predictors was capable of accurately predicting the response
to the drugs in clinical samples, achieving an accuracy in excess
of 81% overall (Fig. 2c). In each case, the positive and negative
predictive values confirmed the validity of the approach (Supplemen-
tary Table 2).

Signatures predict response to multidrug regimens

Many therapeutic regimens make use of combinations of chemother-
apeutic drugs. To evaluate whether individual signatures of response
could predict response to regimens containing combinations of drugs,
we analyzed data from a breast neoadjuvant treatment study that used
a combination of paclitaxel, 5-FU, adriamycin and cyclophosphamide
(TFAC)11,12 (Fig. 3a). The available data from the 51 participants were
used to predict response using each of the single-agent signatures (for
paclitaxel, 5-FU, adriamycin and cyclophosphamide) developed from
the NCI-60 cell line analysis. The predicted response based on each of
the individual chemosensitivity signatures indicated a significant
distinction between the responders (n ¼ 13) and nonresponders
(n ¼ 38), with the exception of the prediction for 5-FU (Fig. 3a,
middle). The sensitivity to the four agents in the TFAC preoperative
(neoadjuvant) regimen was predicted as a combined probability. The
prediction of response based on a combined probability of sensitivity
built from the individual chemosensitivity predictions yielded a
statistically significant (P o 0.0001, Mann-Whitney U-test) distinc-
tion between the responders and nonresponders (Fig. 3a, right).

As a further validation of the capacity to predict response to
combination therapy, we analyzed gene expression data generated
from a collection of breast cancer (n ¼ 45) samples from subjects who
received 5-FU, adriamycin and cyclophosphamide (FAC) as adjuvant
chemotherapy (GEO database accession no. GSE3143). The predicted
response based on the individual signatures indicated a significant
distinction between the responders (n ¼ 34) and nonresponders (n ¼
11; Fig. 3b, left). Furthermore, the combined probability of sensitivity
to the three agents in the FAC regimen yielded a clear and significant
(P o 0.001, Mann-Whitney U-test) distinction between the respon-
ders and nonresponders (accuracy 82.2%, positive predictive value
90.3%, negative predictive value 64.3%; Fig. 3b). Although it is
difficult to interpret the prediction of clinical response in the adjuvant

403020100

Sample numberSample numberSample number

0.00

0.25

P
ro

ba
bi

lit
y 

of
 p

ac
lit

ax
el

se
ns

iti
vi

ty

0.50

0.75

1.00

0.00

0.25

P
ro

ba
bi

lit
y 

of
 a

dr
ia

m
yc

in
se

ns
iti

vi
ty

0.50

0.75

1.00

0.00

0.25

P
ro

ba
bi

lit
y 

of
 to

po
te

ca
n

se
ns

iti
vi

ty

0.50

0.75

1.00

12510075502500 10 20 30 40 50

Accuracy: 40/48 (83.3%)

Topotecan resistant
Topotecan sensitive

Accuracy: 99/122 (81%)

Adriamycin resistant
Adriamycin sensitive

Accuracy: 28/35 (80%)

Paclitaxel resistant
Paclitaxel sensitive

P < 0.001

P < 0.001

P < 0.001P < 0.0001

P < 0.01

P = 0.001

ResistantSensitiveResistantSensitiveResistantSensitiveResistantSensitiveResistantSensitiveResistantSensitive

1.00

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

se
ns

iti
vi

ty
 to

 to
po

te
ca

n

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

se
ns

iti
vi

ty
 to

 a
dr

ia
m

yc
in

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

se
ns

iti
vi

ty
 to

 e
to

po
si

de

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

se
ns

iti
vi

ty
 to

 5
-F

U

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

se
ns

iti
vi

ty
 to

 p
ac

lit
ax

el

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
of

se
ns

iti
vi

ty
 to

cy
cl

op
ho

sp
ha

m
id

e

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

CyclophosphamidePaclitaxel5-FUEtoposideAdriamycinTopotecan

20

40
60
80

100
120

140

10
20
30

40
50

60
70
80

5
10
15
20
25
30
35
40
45
50

5
10
15
20
25
30
35
40
45

5

10
15
20
25
30
35

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.91.00

0.75

0.50

0.25

0.00

a

b

c

Figure 2 Development of a panel of gene expression signatures that predict sensitivity to chemotherapeutic drugs. (a) Gene expression patterns selected for

predicting response to the indicated drugs. (b) Independent validation of the chemotherapy response predictors in an independent set of cancer cell lines

that have dose-response and Affymetrix expression data10. A single-variable scatter plot of a significance test of the predicted probabilities of sensitivity to

any given drug in the sensitive and resistant cell lines (P values, Mann-Whitney U-test). (c) Prediction of single-agent therapy response in clinical samples

using in vitro cell line–based expression signatures of chemosensitivity. Left, the predicted probability of sensitivity to topotecan when compared to actual

clinical response data (n ¼ 48). Middle, the accuracy of the adriamycin predictor in a cohort of 122 samples. Right, predictive accuracy of the cell line–

based paclitaxel predictor when the drug was used as a salvage chemotherapy in advanced ovarian cancer (n ¼ 35).
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setting, as many of these people were probably free of disease after
surgery, the accurate identification of nonresponders is a clear end-
point that does confirm the capacity of the signatures to predict
clinical response. We also examined the prognostic significance of the
prediction of response to FAC: it defined a poor prognosis group
(Fig. 3b, right). Taking these results together, we conclude that the
signatures of chemosensitivity generated from the NCI-60 panel do
indeed have the capacity to predict therapeutic response in individuals
receiving either single agent or combination chemotherapy (Supple-
mentary Tables 2 and 3 online).

An examination of the genes that constituted the paclitaxel pre-
dictor identified microtubule-associated protein tau (MAPT),
described previously as a determinant of paclitaxel sensitivity12. Also
consistent with previous reports5–7, TP53, methylenetetrahydrofolate
reductase (MTHFR) and DNA repair genes constituted the 5-FU
predictor, and excision repair mechanism genes (for example,
ERCC4), retinoblastoma pathway genes and BCL2 constituted the
adriamycin predictor (Supplementary Table 1).

Patterns of predicted chemotherapy response across tumor types

The panel of chemotherapy response predictors described in Figure 3
was used to profile the potential options for use of these drugs, by
predicting the likelihood of sensitivity to the seven agents in a large
collection of breast, lung and ovarian tumor samples. We then
clustered the samples according to patterns of predicted sensitivity
to the various chemotherapeutics and plotted a heatmap. There were

clearly evident patterns of predicted sensitiv-
ity to the various agents (Fig. 4). In many
cases, the predicted sensitivities to the chemo-
therapeutic agents were consistent with the
previously documented efficacy of single-
agent chemotherapies in the individual
tumor types13. For instance, the predicted
response rates for etoposide, adriamycin,
cyclophosphamide and 5-FU approximated
the observed response for these single agents
in individuals with breast cancer (Supple-
mentary Fig. 3). Likewise, the predicted sen-
sitivities to etoposide, docetaxel and paclitaxel
approximated the observed response for these
single agents in individuals with lung cancer
(Supplementary Fig. 3). This analysis also
suggested possibilities for alternate treat-
ments. As an example, it would seem that
individuals with breast cancer who are likely
to respond to 5-FU are resistant to adriamy-
cin and docetaxel (Supplementary Fig. 4
online). Likewise, in lung cancer, docetaxel-
sensitive individuals are likely to be resistant
to etoposide (Supplementary Fig. 4). This is
a potentially useful observation, considering
that both etoposide and docetaxel are viable
front-line options (in conjunction with cis-
platin or carboplatin) for people with lung
cancer1. A similar relationship is seen between
topotecan and adriamycin, both of which are
agents used in salvage chemotherapy for
ovarian cancer (Supplementary Fig. 4).
Thus, by identifying people or cohorts resis-
tant to a certain standard-of-care agent (for
example, topotecan), one could, by choosing

an alternative standard of care agent (for example, adriamycin), avoid
the side effects of the former agent without compromising outcome.

Linking chemotherapy sensitivity to oncogenic pathway status

Most people who are resistant to chemotherapeutic agents are
recruited into a second- or third-line therapy or enrolled in a clinical
trial14,15. Moreover, even those who initially respond to a given agent
are likely to eventually suffer a relapse, and thus, in either case,
additional therapeutic options are needed. As one approach to
identifying such options, we have taken advantage of our recent
work that describes the development of gene expression signatures
that reflect the activation of several oncogenic pathways16 (Supple-
mentary Fig. 5 and Supplementary Table 1 online). To illustrate this
approach, we first stratified the NCI cell lines based on predicted
docetaxel response and then examined the patterns of pathway
deregulation associated with docetaxel sensitivity or resistance (Sup-
plementary Fig. 5). Regression analysis showed a significant relation-
ship between phosphatidylinositol 3-OH (PI3)-kinase pathway
deregulation and docetaxel resistance (Supplementary Fig. 5).

These results indicated an opportunity to use a PI3-kinase inhibitor
in this subgroup, given our recent observations that have demon-
strated a linear positive correlation between the probability of pathway
deregulation and sensitivity to targeted drugs16. To address this
directly, we predicted docetaxel sensitivity and probability of
oncogenic pathway deregulation using DNA microarray data from
17 non–small cell lung cancer cell lines (Fig. 5a, left). Consistent with

Neoadjuvant breast
cancer therapy

Response to treatment

Biopsy
Affymetrix expression data
Treatment with TFAC

Responders RespondersNonresponders

Responders Nonresponders

Nonresponders
1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00
T + 5-FU + A + C T + 5-FU + A + C

P < 0.0001

T F A AC CT 5-FU

5-FU (F)
Adriamycin (A)
Cyclophosphamide (C)

P
ro

ba
bi

lit
y 

of
 s

en
si

tiv
ity

1.00

0.75

0.50

0.25

0.00
A AC C5-FU5-FU

P
ro

ba
bi

lit
y 

of
 s

en
si

tiv
ity

C
om

bi
ne

d 
pr

ob
ab

ili
ty

 o
f

T
FA

C
 s

en
si

tiv
ity

P = 0.002
P = 0.3

P = 0.024
P = 0.003

Paclitaxel (T)

5-FU (F)
Adriamycin (A)
Cyclophosphamide (C)

Accuracy: 42/51 (82.3%)

NPV: 31/33 (94%)
PPV: 11/18 (61.1%)

Responders Nonresponders

1.00

0.75

0.50

0.25

0.00
5-FU + A + C 5-FU + A + C

P < 0.0001

C
om

bi
ne

d 
pr

ob
ab

ili
ty

 o
f

FA
C

 s
en

si
tiv

ity

Accuracy: 37/45 (82.2%)

NPV: 9/14 (64.3%)
PPV: 28/31 (90.3%)

P = 0.003
P = 0.008

P = 0.04

0
0 25 50

Months

P < 0.001

75 100 125 150

25

D
is

ea
se

 fr
ee

 s
ur

vi
va

l (
%

)

50

75

100

a

b

Figure 3 Prediction of response to combination therapy. (a) Left, strategy for assessment of

chemotherapy response predictors in combination therapy as a function of pathologic response. Middle,

prediction of clinical response to neoadjuvant chemotherapy involving paclitaxel, 5-FU, adriamycin and

cyclophosphamide (TFAC) using the single-agent in vitro chemosensitivity signatures developed for each

of these drugs. Right, prediction of response (38 nonresponders, 13 responders) using a combined

probability predictor assessing the probabilities of all four chemosensitivity signatures in 51 people

treated with TFAC chemotherapy (P o 0.0001, Mann-Whitney U-test). Response was defined as a

complete pathologic response after completion of TFAC neoadjuvant therapy. (b) Left, prediction of

clinical response (n ¼ 45) to adjuvant chemotherapy involving 5-FU, adriamycin and cyclophosphamide

(FAC) using the single-agent in vitro chemosensitivity predictors developed for these drugs. Middle,

prediction of response (34 responders, 11 nonresponders) using a combined probability predictor

assessing the probabilities of all four chemosensitivity signatures in 45 people treated with FAC

chemotherapy. Right, Kaplan-Meier survival analysis for individuals predicted to be sensitive (blue

curve) or resistant (red curve) to FAC adjuvant chemotherapy. PPV, positive predictive value; NPV,

negative predictive value.
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the analysis of the NCI-60 cell line panel, the cell lines predicted to be
resistant to docetaxel were also predicted to show PI3-kinase pathway
activation (P ¼ 0.03, log-rank test; Supplementary Fig. 5). In parallel,
the lung cancer cell lines were assayed for sensitivity to a PI3-kinase–
specific inhibitor (LY-294002), using a standard measure of cell
proliferation14–16. The cell lines showing an increased probability of
PI3-kinase pathway activation were also more likely to respond to the
PI3-kinase inhibitor (P ¼ 0.001, log-rank test; Fig. 5b, left). The same
relationship held for prediction of resistance to docetaxel: these cells
were more likely to be sensitive to PI3-kinase inhibition (P o 0.001,
log-rank test; Fig. 5b, left).

An analysis of a panel of ovarian cancer cell lines provided a
second example of an opportunity to link predictions of chemo-
therapy sensitivity to oncogenic pathway deregulation. Ovarian cell
lines that were predicted to be topotecan resistant (Fig. 5a, right) had
a higher likelihood of Src pathway deregulation, and there was a
significant linear relationship (P ¼ 0.001, log-rank test) between the
probability of topotecan resistance and sensitivity to a drug (SU6656)
that inhibits the Src pathway (Fig. 5b, right). The results of these
assays clearly demonstrated an opportunity to mitigate drug resistance
(for example, resistance to docetaxel or topotecan) using a specific
pathway–targeted agent (PI3-kinase or Src inhibitor, respectively).

Taken together, these data demonstrate a rational approach to the
identification of therapeutic options for chemotherapy-resistant indivi-
duals, as well as to the identification of new combinations for chemo-
therapy-sensitive individuals, and thus have the potential to change the
current paradigm of cancer care. Prospective validation studies are,
however, needed to confirm the effectiveness of this approach.

DISCUSSION

The practice of oncology continually faces the challenge of matching
the right therapeutic regimen with the right individual, balancing
relative benefit with risk to achieve the most favorable outcome. This
challenge is often daunting, with marginal success rates in many
advanced disease contexts—probably reflecting the enormous com-
plexity of the disease process coupled with an inability to properly
guide the use of available therapeutics1,2,15. The results we present
here, focusing on the development of signatures that predict sensitivity
to common cytotoxic chemotherapeutic drugs, address this limitation
and have the potential to identify drugs—and combinations of
drugs—that best match the individual. The experimental strategy
for analyses used in this study is similar to that used for the
development of oncogenic pathway signatures16: samples representing
extreme cases are used to train the expression data to develop a
signature that can predict drug sensitivity. Of note, we further
demonstrated that these signatures can predict clinical drug response.

The importance of selecting individuals likely to respond to a given
therapeutic agent is perhaps best illustrated by the example of
trastuzumab. In the absence of selection, the overall response rate in
people with breast cancer is approximately 10%. In contrast, for those
selected on the basis of Her2 amplification, the overall response rate
rises to 35–50%17. We suggest that the gene expression signatures
predicting response to various cytotoxic chemotherapeutic agents may
provide an opportunity to optimize the use of these drugs.

Previous work has described the use of gene expression data,
coupled with in vitro drug sensitivity assays, to develop signatures
that could be used to classify response to therapy18,19. This involved

Breast tumors
(n = 171)

Lung tumors
(n = 91)

Ovarian tumors
(n = 119)

Paclitaxel
Topotecan
5-FU
Docetaxel
Cyclophosphamide
Etoposide
Adriamycin

Etoposide

Paclitaxel

5-FU

Adriamycin

Topotecan

Cyclophosphamide

Docetaxel

Etoposide

Paclitaxel
5-FU

Adriamycin
Topotecan
Cyclophosphamide

Docetaxel

Figure 4 Patterns of predicted sensitivity to common chemotherapeutic drugs in human cancers. Hierarchical clustering of a collection of breast (n ¼ 171),

lung (n ¼ 91) and ovarian cancer (n ¼ 119) samples according to patterns of predicted sensitivity to the various chemotherapeutics. Predictions were

plotted as a heatmap in which high probability of sensitivity, or response, is indicated by red and low probability, or resistance, is indicated by blue.
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the development of signatures that could identify chemoresistance to
the combination of drugs used in the treatment of acute lymphoblastic
leukemia. Our findings that individual signatures can accurately
predict response to drugs in both neoadjuvant and adjuvant che-
motherapy settings, where combinations of cytotoxic drugs are used,
clearly demonstrate the utility of the approach. We also describe a
rational approach to identifying new drug regimens, making use of
previously described signatures of oncogenic pathway deregulation16,
to provide a potential strategy for the development of therapeutic
regimens that would be based on knowledge of the status of an
individual’s tumor.

Finally, we note that the availability of predictors of chemotherapy
response, which have been shown to predict clinical response, provides
an opportunity to apply these predictors in present day practice. There
are several instances in which people are treated with one or more
therapeutic regimens that each have equal efficacy. An ability to select

the most effective therapy from among a panel of standard-of-care
agents is a strategy that can be easily applied20. Indeed, we believe this
represents an opportunity for a clinical trial that would evaluate the
performance of ‘random’ selection of agents (current practice) versus a
genomic signature–based selection as an initial step in the process of
achieving a more individualized treatment strategy (Fig. 6). Notably,
such a study may also identify those individuals likely to be resistant to
the available standard-of-care drugs, opening the way to a second-
generation trial that could evaluate the most effective treatment for
these people. Ultimately, we suggest that future treatment strategies
might be based on an analysis of an individual’s tumor, which would
then allow the development of a profile of likely sensitivity to common
chemotherapeutic drugs as well as to targeted therapies. Based on this
information, each individual might then be assigned to a combination
regimen that best matches the profile from the tumor.

METHODS
NCI-60 data. The complete details of the methods involved in the development

of the individual chemosensitivity predictors are available in Supplementary

Methods online. Briefly, the –log10 values of the 50% growth inhibition doses

(IC50; also known as GI50), total growth inhibition doses and 50% cytotoxic

doses (LC50) data were used to populate a matrix in MATLAB software, along

with the relevant expression data for the individual cell lines. Where multiple

entries for a drug screen existed (by NCS number), the entry with the largest

number of replicates was included. Incomplete data were assigned as ‘not a

number’ for statistical purposes. To develop an in vitro gene expression–based

predictor of sensitivity and resistance from the pharmacologic data used in the

NCI-60 drug screen studies, we chose cell lines within the NCI-60 panel that

would represent the extremes of sensitivity to a given chemotherapeutic agent

(mean IC50 ± 1 s.d.). Relevant expression data (revised data gathered using the

Affymetrix U95A2 GeneChip) for the solid tumor cell lines and the respective

pharmacological data for the chemotherapeutics were downloaded from the

NCI website. The individual drug sensitivity and resistance data from the

selected solid tumor NCI-60 cell lines were then used in a supervised analysis

using binary regression methodologies, as described previously21, to develop

models predictive of chemotherapeutic response.

Human ovarian cancer samples. We measured expression of 22,283 genes in

13 ovarian cancer cell lines and 119 advanced (Federation Internationale de

Gynecologie et d’Obstetrique (FIGO) stage III or IV) serous epithelial ovarian

carcinomas using Affymetrix U133A GeneChips. All ovarian cancers were

obtained at initial cytoreductive surgery. All tissues were collected under the

Clinical presentation of
cancer
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Chemotherapy response
prediction

Optimal single
chemotherapy

Combination
chemotherapy

Oncogenic pathway
prediction

Targeted
agent

Figure 6 Scheme for using chemotherapeutic and oncogenic pathway
predictors to identify individualized therapeutic options.
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Figure 5 Relationship between predicted chemotherapeutic sensitivity and

oncogenic pathway deregulation. (a) Left, probability of oncogenic pathway

deregulation as a function of predicted docetaxel sensitivity in a series of

lung cancer cell lines. Right, probability of oncogenic pathway deregulation

as a function of predicted topotecan sensitivity in a series of ovarian cancer

cell lines (red, sensitive; blue, resistant). (b) Top, lung cancer cell lines

showing an increased probability of PI3-kinase (PI3K) activation were also

more likely to respond to a PI3-kinase inhibitor (P ¼ 0.001, log-rank test),

as measured by sensitivity to the drug in assays of cell proliferation.

Furthermore, those cell lines predicted to be resistant to docetaxel were

more likely to be sensitive to PI3-kinase inhibition (P o 0.001, log-rank

test). Bottom, the relationship between Src pathway deregulation and

topotecan resistance in a set of 13 ovarian cancer cell lines. Ovarian cell

lines that are predicted to be topotecan resistant (a, right) have a higher

likelihood of Src pathway deregulation and there is a significant linear

relationship (P ¼ 0.001, log-rank test) between the probability of topotecan
resistance and sensitivity to a drug that inhibits the Src pathway.
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auspices of respective institutional (Duke University Medical Center and H. Lee

Moffitt Cancer Center) review board–approved protocols involving written

informed consent.

Full details of the methods used for RNA extraction and development of

gene expression signatures representing deregulation of oncogenic pathways in

the tumor samples were recently described16 and are available in Supplemen-

tary Methods. Response to therapy was evaluated using standard criteria for

those with measurable disease, based upon World Health Organization guide-

lines22. Complete details are available in Supplementary Methods.

Validation of in vitro chemotherapy response signatures. Complete details of

the publicly available datasets used for independent validation of the genomic

signatures of chemosensitivity are described in Supplementary Methods.

PI3-kinase signature. A signature representative of PI3-kinase activation was

developed as previously described16. The genes that constitute the PI3-kinase

signature are shown in Supplementary Table 1.

Lung and ovarian cancer cell culture. Total RNA was extracted and oncogenic

pathway predictions were performed similarly to the methods described

previously16. Complete details are available in Supplementary Methods.

Cross-platform Affymetrix Gene Chip comparison. To map the probe sets

across various generations of Affymetrix GeneChip arrays, we used an in-house

program, Chip Comparer (see URLs), as described previously16.

Cell proliferation assays. Methods for drug sensitivity assays are described in

Supplementary Methods.

Statistical analysis methods. Analysis of expression data was performed

as previously described16,21,23,24 and is detailed in Supplementary

Methods. In instances where a combined probability of sensitivity to a

combination chemotherapeutic regimen was required based on the individual

drug sensitivity patterns, we used the probabilities of response to individual

drugs and used the theorem for combined probabilities as described by

William Feller to deduce a probability of response to a combination of the

drugs being studied. The result was then mean-centered to give a probability

between 0 and 1. Hierarchical clustering of tumor predictions was performed

using Gene Cluster 3.0 (ref. 25). Genes and tumors were clustered

using average linkage with the uncentered correlation similarity metric.

Standard linear regression analyses and their significance (log-rank test) were

generated for the drug response data and for correlation between drug

response and probability of chemosensitivity or pathway deregulation using

GraphPad software.

URLs. NCI, http://dtp.nci.nih.gov/docs/cancer/cancer_data.html. GEO data-

base, http://www.ncbi.nlm.nih.gov/geo/. Chip Comparer, http://tenero.duhs.

duke.edu/genearray/perl/chip/chipcomparer.pl.

Note: Supplementary information is available on the Nature Medicine website.
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