\qquad

Unit 8 Similarity and Trigonometry

Target 8.1: Prove and apply properties of similarity in triangles using AA~, SSS~, SAS~ 8.1a - Prove Triangles Similar Iy AA ~, SSS~, SAS~
8.1b- Use Proportionality Theorems

Target 8.2: Solve prohlems using the Pythagorean Theorem

8.2a - Applying the Pythayorean Theorem
8.2b - Gonverse of the Pythagorean Theorem

Target 8.3: Solve problems using similar right triangles
 8.3a- Use Similar Right Triangles
 8.30-Special Right Triangles [45-45-90 \& 30-60-90 Triangles)

Target 8.4: Apply trigonometric ratios to determine unknown sides ann angles
 8.4a - Apply Trigonometric Ratios ISet up only)
 8.4b - Apply Trigonometric Ratios [Find the missing sideJ
 8.4c-Find the Missing Angle and Solve Right Triangle

Date	Target	Assignment	Done!
W 1-13	8.1 a	8.1a Worksheet	
R 1-14	8.1 b	8.1b Worksheet	
F 1-15	8.2	8.2 Worksheet	
M 1-18	Quiz	Quiz 8.1-8.2	
T 1-19	8.3a	8.3a Worksheet	
W 1-20	8.3b	8.3b Worksheet	
R 1-21	8.3 c	8.3c Worksheet	
F 1-22	Quiz	Quiz 8.3	
M 1-25	8.4a	8.4a Worksheet	
T 1-26	8.4b	8.4b Worksheet	
W 1-27	8.4c	8.4c Worksheet	
R 1-28	Quiz	Quiz 8.4	
F 1-29	8.5	8.5 Worksheet	
M 2-1	Quiz	Quiz 8.5	
T 2-2	Review	Unit 8 Test Review	
W 2-3	Test	Unit 8 Test (Day 1)	
R 2-4	Test	Unit 8 Test (Day 2)	

\qquad
8．1a－Prove Triangles Similar by AA～，SSS～，SAS～
Target 1－Prove and apply properties of similarity in triangles using AA～，SSS～，sAS～

Example 1：Use the AA Similarity Postulate
Determine whether the triangles are similar．If they are，write a similarity statement．Explain your reasoning．

ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー
Examble 2；show that iriangles are similar
A）Prove：$\triangle R T V$ and $\triangle R Q S$ are similar

Statiomelits	
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Geo (H): Unit 8 Similarity and Trigonometry 2015-2016 Example 2: Show that triangles are similar
B) Prove: $\triangle L M N$ and $\triangle N O P$ are similar

Reason

Statimelis	APASOM
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

FOU TRY NOWI

Determine whether the triangles are similar. If they are, write a similarity statement.
1)

2)

Side-Side-Side (SSS) Similarity

If the \qquad side lengths of two triangles are \qquad
then the triangles are similar.

(
\qquad

Example 3: Use the SSS Similarity Postulate

Is either $\triangle D E F$ or $\triangle G H J$ similar to $\triangle A B C$?

Examp/e 4: Use the SSS similarity Theorem

Find the value of x that makes $\triangle A B C \sim \triangle D E F$.

Side-Angle-Side (SAS) Similarity

If an angle of one triangle is \qquad to an angle of a second triangle AND the lengths of the sides that include these angles are \qquad , then the triangles are \qquad .

Example 5: Similarity in Overlapning Triangles Show that $\triangle V Y Z \sim \Delta V W X$.

Determine whether the triangles are similar. If they are similar, write a similarity statement. Explain using the similarity statements and theorems
1)

2)

Annotate Here

8.11- Use Proportionality Theorems

Target 1 - Prove and apply properties of similarity in triangles using AA~, SSS~, SAS~

Triangle Proportionality Theorem

\qquad

Example 2: Find the length of a segment

A farmer's land is divided by a newly constructed interstate.
The distance shown is in meters. Find the distance CA between the North Border and the South Border of the farmer's land.

*VOU TRY NOWI

1) Find the length of $\overline{K L}$.

2) Find the length of $\overline{A B}$.

Take a break
\qquad

8.2a - Applying the Pythagorean Theorem Target 2 - Solve problems using the Pythagorean Theorem

Example 1: Apply the Pythayorean Theorem

A right triangle has a hypotenuse of length 10 and one leg

Example 2: Apply the Pythayorean Theorem

A 15 -foot ladder leans against a wall. If the base of the ladder is 8 feet from the wall, how far up the wall is the top of the ladder? State your answer to the nearest tenth of a foot.

Pythagorean Triples

Vocaloulary:

Pythagorean Triple: a set of three integers that satisfy the Pythagorean relationship.

Common Triples

$3,4,5$	$6,8,10$	$9,12,15$
$5,12,13$	$10,24,26$	$15,36,39$
$7,24,25$	$14,48,50$	$21,72,75$
$8,15,17$	$16,30,34$	$24,45,51$

Example 3: Apply the Pythagorean Theorem

A new Pythagorean Theorem triple can be formed from sides lengths 9, 12, and 15. Find two other sets.

1. An isosceles triangle has a base measuring 24 meters, and its two congruent sides each measure 15 meters. Find the area of the triangle, to the nearest square meter.
2. A right triangle has two legs, one with length 5 and the other with length 6 . What is the perimeter of the triangle?
3. Find two other sets of Pythagorean triples using the given sides of a triangle: $16,30,34$.

8.21) - Gonverse of the Pythayorean Theorenl

 Target 2: Find the side lengths of a right triangle using the Pythayorean TheoremIf \qquad , then \qquad
is a \qquad .

Example 1: Verify right triangles

Tell whether the given triangle is a right triangle.

Annotate Here

How is this different than the Pythagorean
Theorem?

What is an...
Acute Angle?

Obtuse Angle?

When you're given the lengths of the sides of a triangle, how do you know if they will form a triangle?

Example 2: Classify triangles

Can segments with lengths of 2.8 feet, 3.2 feet, and 4.2 feet form a triangle? If so, would the triangle be acute, right, or obtuse?

1) With the given side lengths, $15,18,3 \sqrt{61}$, classify the triangle
2. Can segments with lengths 6.1 inches, 9.4 inches, and 11.3 inches form a triangle? If so, would the triangle be acute, right, or obtuse?
3. Show that a triangle with side lengths 50 inches, $\overline{2} \overline{0}$ inches, and 130 inches form perpendicular perpendicular lines.
\qquad

8.3a- Use Similar Right Triangles
 Target 3: Solve problems using similar right triangles

The Attitude of a Right Triangle

If the altitude is drawn to the hypotenuse of a right triangle,
then the two triangles formed are \qquad to the original triangle AND to each other.

Annotate Here

Example 1: Inentify similar triangles
Identify similar triangles in the diagram.

Example $\overline{2}:$ Find the $\overline{\text { Iengith of }} \overline{\text { the }} \overline{\text { 万ypotenuse }}$

A cross section of a group of seats at a stadium shows a drainage pipe $\overline{B D}$ that leads from the seats to the inside of the stadium. What is length of the drainage pipe?

\qquad

Example 3: Use a geometric mean

Find the value of y in the triangle.

	Short Leg	Long Leg	Hypotenuse
Big Triangle			
Small Triangle			
Medium Triangle			

YOU TRY NOWI

1) Find the value of x.

2) To find clearance of an overpass, you need to find the height of the concrete support beam. You use a cardboard square to line up the top and bottom of the beam. Your friend measures the vertical distance from the ground to your eye to be 5 feet, and the distance from you to the beam to be 6.9 feet. Approximate the total height of the beam.

8.31- Suecial Right Triangles [45-45-90 \& 30-60-90 Triangles] Taryet 8.3: Solve prohlems using similar right triangles

Example 1: Using special right triangles

What are the lengths of the legs of this triangle?

Example 2: Using special right triangles
What are the angles of this triangle?

\qquad

Use special right triangles to solve the following problems

1. A triangle has sides that measure $2,2 \sqrt{3}$, and 4 . What would be best description for this triangle?
2. One leg of an isosceles right triangle measures 1 unit. What is the exact length of the hypotenuse?

Annotate Here

3. The leg opposite the 30° angle of a 30-60-90 triangle has a length of 5 . What is the length of the hypotenuse?
\qquad
8.4a - Apply Trigonometric Ratios ISet up only] Target 4: Apply trigonometric ratios to determine unknown sides and angles Vocabulary

Trigonometry: \qquad

Example 1: Finn sine ratios

Find $\sin U$ and $\sin W$. Write each answer as a decimal rounded to the hundredths place.

Example 2: Find cosine ratios

Find $\cos S$ and $\cos R$. Write each answer as a decimal rounded to the hundredths place.

HOW to USE SOH-GAH-TOA

$\sin D$	$\cos D$	$\tan D$
$\sin M$	$\cos M$	$\tan M$

Example 3: Find tangent ratios

Find tans and tanR. Write your answer as a decimal rounded to the hundredths place.

Name: \qquad

Geo (H): Unit 8 Similarity and Trigonometry 2015-2016

* YOU TRY NOWI

1) Find $\sin B, \sin C, \cos B, \cos C$. Write each answer as a decimal rounded to the hundredths place.
$\sin B=$

$$
\sin C=
$$

$\cos C=$
$\cos B=$ cos
2. Find tanB and tanC. Write each answer as a decimal rounded to the hundredths place.

$$
\tan B=
$$

$\tan C=$

8.4if - Apply Trigonometric Ratios [Find the missing side] Target 4: Apply trigonometric ratios to determine unknown sides and angles

Example 1: Find a missing /ength

Find the value of x.

Example 2: Find a missing length

Find the value of a and b.

14

Example 3: Finn a length using an angle of ilepression

Roller Coaster You are at the top of a roller coaster 100 feet above the ground. The angle of depression is 44°. About how far do you ride down the hill?

Annotate Here

When solving these problems, where is the best place to start?

Draw a picture that would have an angle of elevation.
\qquad

1) Find the height h of the lighthouse to the nearest foot.

2) You walk from one corner of a basketball court to the opposite corner. Write and solve a proportion using a trigonometric ratio to approximate the distance of the walk.

3) You are 50 feet from the screen at a drive-in movie. Your eye is on a horizontal line with the bottom of screen and the angle of elevation to the top of the screen is 58°. How tall is the screen?

Annotate Here

When solving these problems, where is the best place to start?
8.4c- Find the Missing Angle and Solve Right Triangles Target 4: Apply trigonometric ratios to determine unknown sides and angles

Inverse Trigonometric Ratios Let $\angle A$ be an acute angle.		
		B
		C

Example 1: Use an inverse function to finn an angle measure
Measure of $\angle A$ to the nearest tenth of a degree

Example 2: Use an inverse sine and an inverse cosine

Let $\angle A$ and $\angle B$ be acute angles in two right triangles. Find the measure of angle A and angle B to the nearest tenth of a degree.
a. $\sin A=\frac{7}{10}$
b. $\cos B=\frac{9}{13}$

Example 3: Solve a right triangle

Solve the right triangle. Round decimal answers to the nearest tenth.

Make sure your calculator is set in degrees!

How is "cosB" said verbally? Translate below.

Label each vertex. How many parts of a triangle are there? Name them all in the right triangle below.

Geo (H): Unit 8 Similarity and Trigonometry 2015-2016
YOU TRY NOWI

1) Approximate angle C to the nearest tenth of a degree.

2) What do we use the "inverse" SIN/COS/TAN function for?
3) You are building a track for a model train. You want the track to incline from the first level to second level, 4 inches higher, in 96 inches. Is the angle of elevation less than 3° ?
4) Solve a right triangle that has a 50° angle and a 15 -inch hypotenuse. (Draw a picture)

