Geodetic Networks And Survey Control For Large Projects

Maryland Society of Surveyors Spring Technical Conference

By: Alan R. Dragoo Maser Consulting P.A.

March 2, 2015
Maritime Institute of Technology
Training and Conference Center
Linthicum Heights, Maryland

Survey Control For Large Projects

Alan R. Dragoo PLS Maser Consulting Sterling, Virginia Maryland Society of Surveyors

2015 Spring Technical Conference March 2, 2015 Maritime Institute of Technology Linthicum Heights, Maryland

Agenda

- Accuracies
- Advantages, Disadvantages and best practices for the following
 - GPS Static
 - OPUS Static
 - OPUS Rapid Static
 - Conventional Traverse
 - Conventional Leveling

How are your accuracies going to be evaluated

- Absolute
- Relative
- Point to Point

How much confidence do you need

Name of error	Value	% Certainty
Probable	0.6745 σ	50%
Standard Deviation	1 σ	68.3%
Two sigma or 95% error	2 σ	95%

What Accuracy Do You Need

- Horizontal
 - 3 Feet

- 0.03 Feet

- Vertical
 - 6 Feet

- 0.01 Feet

If Someone Else Is Going To Evaluate Your Data.....

• You better develop a way to test it before they do.

What Standards and Specifications are Available

- Standards and Specifications for Geodetic Control Networks
- Geometric Geodetic Accuracy Standards and Specifications for Using GPS Relative Positioning Techniques
- Guidelines for Establishing GPS Derived Ellipsoid Heights (NOS NGS 58)

What Standards and Specifications are Available

- Guidelines for Establishing GPS Orthometric Heights (NOS NGS 59)
- National Geodetic Survey User Guidelines for Single Base Real Time GNSS Positions
- National Geodetic Survey Guidelines for Real Time GNSS Networks
- Minimum Standard Detail Requirements For ALTA/ACSM Land Title Survey 2011

Standards and Specifications

 Is there a project requirement that the survey conform to a specific set of published "Standards and Specifications".

Planning The Survey So You Can Price The Survey

- Investigate what existing NGS control is available.
- Recover existing NGS control.
- If necessary develop a plan to densify the primary control so that error propagation will not exceed your specifications.
- Plan your project survey control.

Errors								
Horz Angle	$\theta =$	180	Deg					
Back Dist	$D_{1} =$	600	Ft					
Fwd Dist	$D_{2} =$	600	Ft	σ_{θ_t}		2.4	п	
Target Centering Error	$\sigma_{t=}$	0.005	Ft	σ_{θ_c}		3.4	11	
Inst Centering Error	$\sigma_{c} =$	0.005	FT					
	Trav Dist	5280		$\sigma_{\scriptscriptstyle T}$		4.2	11	
		206265						
		$\sigma_{\scriptscriptstyle T}$	=	1	/	48,990	=Pr	ecision
		Trav Dist						

What Accuracies Can Be Expected

GPS Static Relative Accuracies

Horizontal 0.02 to 0.03 feetVertical 0.03 to 0.04 feet

WITH PROOF THAT IT'S RIGHT

What to Look For In a Quality OPUS – Static Solution

- Orbit used = precise or rapid
- > 90% observations used
- > 50% ambiguities fixed
- Correct antenna and antenna height
- Static: overall RMS < 3 cm,
- Peak to peak errors < 5 cm.

OPUS – Static Quality Indicators

```
SOFTWARE: page5 1209.04 master50.pl 022814
                                                    START: 2015/01/30 16:53:00
 OVERALL RMS: 0.021(m)
ARP HEIGHT: 2.050
 REF FRAME: NAD_83(2011)(EPOCH:2010.0000)
                                                           IGS08 (EPOCH:2015.0815)
                 1198861.688(m) 0.008(m)
                                                         1198860.867(m) 0.008(m)
               -4950737.662(m) 0.046(m) 3825507.263(m) 0.017(m)
                                                        -4950736.186(m) 0.046(m)
                                                         3825507.182(m) 0.017(m)
     LAT: 37 5 30.58862 0.014(m)
E LON: 283 36 45.34783 0.014(m)
W LON: 76 23 14.65217 0.014(m)
                                                     37 5 30.61837
                                                                            0.014(m)
                     14.65217 0.014(m) 76 23 14.67041 0.014(m)

-33.184(m) 0.046(m) -34.531(m) 0.046(m)

3.278(m) 0.081(m) [NAVD88 (Computed using GEOID12A)]
                                                   76 23 14.67041 0.014(m)
-34.531(m) 0.046(m)
    W LON: 76 23 14.65217
EL HGT: -33.184(
 ORTHO HGT:
                         UTM COORDINATES STATE PLANE COORDINATES
                           UTM (Zone 18)
                                                   SPC (4502 VA S)
                           4105959.896
Northing (Y) [meters]
                                                   1086274.954
Easting (X) [meters]
Convergence [degrees]
                             376699.600
                                                   3687795.606
Point Scale
                             0.99978728
                                                    0.99995691
```


How Can The OPUS – Static Positional Error Be Calculated to a 95% Confidence

 $HzAccuracy = \sqrt[2]{(latitude peak to peak)^2 + (longitude peak to peak)^2}$

VertAccuracy = height peak to peak value

OPUS – Rapid Static How Accurate Is It?

http://www.ngs.noaa.gov/OPUSI/Plots/Gmap/OPUSRS_sigmap.shtml Absolute Accuracy With Good Conditions and No Proof

What to Look For In a Quality OPUS – Rapid Static Solution

- Orbit used = precise or rapid
- Correct antenna and antenna height
- Observations Used > 60%
- Quality Indicator > 3 for both the "Network mode adjustment" and the "Rover mode adjustment"
- Normalized RMS < 1
- Accuracies should be < 0.050

OPUS – Rapid Static Quality Indicators

```
SOFTWARE: rsgps 1.37 RS93.prl 1.99.2
EPHEMERIS: igul8194.eph [ultra-rapid]
NAV FILE: brdc3240.14n
ANT NAME: TRMR10 NONE
ARP HEIGHT: 2.000 NO
                                                       START: 2014/11/20 21:07:00

STOP: 2014/11/20 22:04:30

OBS USED: 3915 / 4518 : 87$

QUALITY IND. 3.12/ 23.79

NORMALIZED RMS: 0.455
  REF FRAME: NAD_83(2011)(EPOCH:2010.0000)
                                                                           IGS08 (EPOCH:2014.88740)
                     1300499.484(m) 0.007(m)
-4685942.957(m) 0.024(m)
4113049.625(m) 0.021(m)
                                                                        1300498.646(m)
                                                                                                0.007(m)
                                                              1300498.646(m) 0.00/(m,
-4685941.516(m) 0.024(m)
4113049.577(m) 0.021(m)
     0.006(m)
                               UTM COORDINATES STATE PLANE COORDINATES
SPC (2900 NJ
175427.540
150937.028
0.00715788
 Point Scale
                                     0.99962314
                                                                  0.99990001
 Combined Factor
```


Accuracy for OPUS – Rapid Static Related Information

- Positions are reported at a 95% level of confidence.
- Accuracies are reported at a 1 sigma level

Network RTK

- Network Accuracies
- Typical
 - Horizontal 2-3 cm (0.06-0.10 feet)
 - Vertical 3-5 cm (0.10-0.16 feet)

With Good Conditions

• Observation Time 3 minutes

Conventional Traverse

Your Accuracy and Confidence Will Depend On Many Things:

- Density and accuracy of existing control
- Accuracy of angles and distances measured
- Quality of measurements
- Quality of setups
- Equipment properly adjusted
- Properly set stations for distance and visibility
- Type of adjustment performed

Avoiding Problems With Refraction

- Sighting over or next to object that are warmer than the surrounding air. Especially those that are closer to the instrument.
- Sighting over areas that have vertical air flow close to the instrument.

What Do The Specifications Say? Table 2.1 - Distance accuracy standards Classification Minimum distance accuracy First-order 1:100,000 Second-order, class I 1:50,000 Second-order, class II 1: 20,000 1:10,000 Third-order, class I Third-order, class II 1: 5,000 Directions 8 or 12[†] 6 or 8 * 2.0" Standard deviation of mean not to exceed 0.4" 0.5" 0.8" 5" Rejection limit from the mean. † 8 if 0.2", 12 if 1.0" resolution. * 6 if 0.2", 8 if 1.0" resolution.

So How Many Angles Should You Turn

- 1 Angle (4 pointings) "NO CHECK"
- 2 Angles (8 pointings) There is a check but if something is wrong you don't know what.
- 3 Angles (12 points) Now you have something that you can throw out if something is bad
- For large projects you should probable turn 6 angles 24 pointing. "THINGS DO GO WRONG"

Traverse Station Locations

- When setting stations for large projects set the stations as far apart as possible and still have good visibility and quality angles.
- Don't worry about whether you can see the things you need to locate. You can set supplemental control to do this later.

Field Procedures

- Leap frog traverse (Right Way)
 - Move ahead
 - Relevel
 - Check centering
 - If acceptable continue traverse
 - If unacceptable return previous angle
- Traverse through and over stations with existing horizontal or vertical values.
- Do not take side shots to existing stations.

Use The Proper Adjustment Technique

- Compass Rule Adjustments introduce distortion errors into your traverse.
- Understand how and use a true Least Squares Adjustment. This will give you a best fit to everything you hold

Conventional Leveling

- Your Accuracy and Confidence Will Depend On
 - Density and accuracy of existing control
 - Quality of equipment used
 - Tolerances for quality of measurements
 - Field procedures used
 - Equipment properly adjusted
- It's the little things that count

Quality of Level and Accessories

- 1st Order Trimble DiNi 0.3
 2nd Order Trimble DiNi 0.7
- 1st Order Invar Rods
- Less than 3rd Order Folding Rods or Fiberglass Rods

Leveling Field Procedures

• Use Leveling Pins

Leveling Without a Pin

 When leveling and the surface is not precisely flat, if the rod is not held at exactly the same location a systematic error will occur.

 Remember you are measuring to 0.3 mm

Leveling Field Procedures

• Keep Sights Balanced

Figure 3-4.—Consistent collimation error cancels in a balanced setup since $s_B = s_F$

• Requirements for

lines of Sight and balance.

Lines of sight

Maximum sighting distance

Maximum imbalance

Per Setup

Per Section

Class 1 Class II Class I Class II Third Order 160 Ft 195 Ft 195 Ft ±33Ft ±15Ft \pm 6Ft \pm 15Ft ±33Ft $\pm\,$ 13Ft \pm 33Ft \pm 33Ft \pm 33Ft \pm 33Ft

Leveling Field Procedures

• Heat Shimmer Usually Cancels in a Balanced Setup.

• Refraction does not Cancel even with Balanced Setups. "No readings less Than 1.5 ft"

Refraction error, r, does not cancel terrain since $r_B \neq r_F$, even if $s_B = s_F$.

Leveling Field Procedures

Using a Plug "Errors Cancel"

When using spacers the height, e, of each spacer cancels when the elevation difference, Δh , is computed: $\Delta h = (B+e)-(F+e)=B-F$.

Leveling Field Procedures

- When using two rods label them "Rod 1" and "Rod 2"
- Come of your known bench mark with "Rod 1" and go into your known bench mark with "Rod 1"
- Leap frog your rods

Leveling Field Procedures

- Level through and over all existing bench marks.
- Do not take side shots to existing bench marks.

Trigonometric Leveling

- Leveling Accuracy for 10 mile project
 - Normal Trig Leveling 0.15 Ft to 0.20 Ft
 - High precision Trig Leveling 0.08 Ft to 0.10 Ft
 - Careful Conventional Leveling 0.04 Ft to 0.06 Ft
 - Instrument used 1.0" Robot

High Precision Trig Leveling

- Measure Hi's in meters, centimeter and millimeters.
- Measure all setups independently
- Do not carry forward measurements

