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Abstract

The quality of a composite material produced using a textile reinforcement depends

largely on the way the textile deforms during processing. To ensure the production of

high quality parts and minimise costs in designing such parts it is necessary to develop

methods to predict the deformations of textiles.

This thesis employs a multi scale modelling approach in predicting mechanical prop-

erties of textile fabrics. The three scales involved are the microscopic, mesoscopic and

macroscopic. This thesis concentrates on the micro and mesoscopic scales leading to

results applicable to the macroscopic scale.

At the microscopic scale fibres are modelled as individual entities and the interactions

between these entities are modelled. In compaction of yarns, the contact between fi-

bres and bending resulting from these contacts governs the force response. A numer-

ical model is developed to simulate this behaviour and results are validated against

experimental studies found in the literature. The numerical model is extended to the

mesoscopic scale where the shear of a plain woven fabric consisting of low filament

count yarns is modelled.

At the mesoscopic scale a large part of the work consists of characterising the geom-

etry of textile fabrics. New and existing algorithms are combined together to form

a consistent modelling approach. This work was performed in conjunction with the

development of a software package named TexGen where these algorithms are imple-

mented. The geometric models created by TexGen are then used to predict mechanical

properties of textile unit cells using a finite element method which takes yarn prop-

erties as an input. Validation is performed for a series of woven fabrics subjected to

compression and in-plane shear.
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Glossary

Anisotropic Exhibiting different properties in response to stresses applied

along different axes.

Areal density The weight of fibre per unit area of fabric.

Biaxial load A loading condition in which a tensile load is applied to a

fabric in two different directions.

Binder A thermoplastic agent applied to yarns to bond the fibres to-

gether in a reinforcement.

CAD Computer-aided design.

Composite Material composed of two or more constituent materials that

remain separate and distinct on a microscopic level while

forming a single component.

Crimp The waviness of a fibre or yarn.

E Glass A borosilicate glass; the type most commonly used in glass

fibre composites.

Elastic deformation A deformation which is recovered upon removal of load.

Fabric A material constructed of interlaced yarns, usually planar.

FE Finite element: A numerical method of solving differential

equations.

Fibre A class of material whose length is far greater than its effec-

tive diameter.

Glass fibre A fibre composed of glass created by drawing glass to a small

diameter and extreme length.

KES-f Kawabata Evaluation System for fabrics.

Matrix A material used to hold the reinforcement in place forming a

composite part.

Plastic deformation A deformation which remains after removal of load.

Poisson’s ratio A measure of the ratio of change in cross-sectional area to

change in length when a material is stretched.
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GLOSSARY

Preform A preshaped fibrous reinforcement formed to the desired

shape before processing.

Prepreg A ready-to-mould material in a rolled-sheet form impreg-

nated with resin.

Reinforcement A material forming part of a composite which improves the

overall strength and stiffness.

Resin A viscous liquid capable of hardening used as the matrix ma-

terial in a composite.

Tow A large untwisted bundle of continuous filaments.

Transversely isotropic An anisotropic material which has a plane of symmetry

where the stress response is isotropic in that plane.

Unidirectional Refers to fibres that are oriented in the same direction.

Warp The yarns running lengthwise in a woven fabric.

Weft The transverse yarns in a woven fabric.

Yarn An assembly of continuous fibres, natural or manufactured.
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Nomenclature

Roman letters

~a Acceleration mm/s2

A Area mm2

a Position of force application mm

A.F. Area of fibre mm2

A.Y. Area of yarn mm2

A f Area fraction

B Bezier curve

C Cross-section

C Continuity

c Damping coefficient

cc Critical damping coefficient

D Pressure MPa

d Distance mm

E Young’s modulus MPa

F Deformation gradient

~F (Frictional) force N

F Force N

G Shear modulus MPa
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NOMENCLATURE

h Yarn height (thickness) mm

I Second moment of area mm4

K Contact coefficient

k Biaxial tension ration

L Length mm

M Moment N.mm

m Mass g

~N Normal (force) N

nd Number of fibre length divisions

ni Number of strain convergence iterations

ns Number of steps

o Offset mm

P Point

P(u, v) Parametric surface

P Resultant force N

p Particle

~Q Degree of compaction

~R Repeat vector mm

r Radius mm

R2 Coefficient of correlation

S Spline

s Yarn spacing (between centre-lines) mm

T Fabric thickness mm

td Intersection convergence tolerance

tU Strain convergence tolerance

xii



NOMENCLATURE

U Strain energy mJ

~V Velocity mm/s

V Volume mm3

v Deflection mm

V.F. Volume of fibre mm3

V.Y. Volume of yarn mm3

Vf y Fibre to yarn volume fraction

W Work done mJ

w Yarn width mm

x Distance along beam mm

z Distance between yarn centrelines at crossovers mm

Greek letters

β Ratio of arc length to height

γ Engineering shear strain

κ Curvature m−1

µ Coefficient of friction

ρ Density g/cm3

ρA Areal density g/m2

σ Stress MPa

θ Angle degrees

ε Strain

Kawabata Evaluation System parameters

2HG Hysteresis of shear force at 0.5◦ of shear angle gf/cm

2HG5 Hysteresis of shear force at 5◦ of shear angle gf/cm

G Shear stiffness gf/cm.degree
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NOMENCLATURE

MIU Coefficient of friction

MMD Mean deviation of MIU

T0 Thickness at 0.5 gf/cm2 mm

Tm Thickness at 50 gf/cm2 mm

WC Compressional energy gf.cm/cm2

Subscripts

c Centre or Cell

e Estimated

f Fibre

L Longitudinal

N Normalised

rms Root mean square

T Transverse

t Total

x X axis (warp)

y Y axis (weft) or Yarn

z Z axis (through thickness)

Convention

~A Vector

A Point or Tensor

~Ai Component of a vector

Ai Component of a point

Aij Component of a tensor

A a scalar
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CHAPTER 1

Introduction

1.1 Textile reinforced composites

Composite materials (or composites for short) are engineering materials made from

two or more constituent materials that remain separate and distinct on a microscopic

level while forming a single component. There are two categories of constituent ma-

terials: matrix and reinforcement. The matrix material surrounds and supports the

reinforcement materials by maintaining their relative positions. Reinforcements im-

part their special mechanical and physical properties to enhance the matrix properties.

A synergy produces material properties unavailable from the individual constituent

materials.

Textile reinforced composites are a subclass of composites where the reinforcement is a

textile material comprised of a network of natural or artificial fibres, typically arranged

as tows or yarns. They are widely used in the aerospace industry due to their high

stiffness and strength to weight ratio. Reducing weight while meeting the structural

requirements is of paramount importance in order to minimise fuel consumption in

aircraft. The need to minimise fuel consumption is twofold: it reduces operating costs

and environmental impact. This is merely one example of the use of textile reinforced

composites in industry albeit, arguably the most important. Although textile compos-

ites do not exhibit as high strengths as their unidirectional prepreg counterpart they

are cheaper to produce and less susceptible to growth of damage.

The work presented in this thesis stems from interest in textile reinforced composites;

however, the results are applicable to other areas of research involving textiles such

as clothing, geotextiles, body armour, thermal protection, chemical protection, smart

textiles, etc.

1



CHAPTER 1: INTRODUCTION

1.2 Types of textile architecture

The main categories of textile architecture relevant to composite materials are woven,

braided, weft-knit and non-crimp (Figure 1.1).

2D Weave 3D Weave

Triaxial braid Weft-knit

Non-crimp fabric

Figure 1.1: Images of textile architectures (generated by TexGen; see Chapter 2)

Woven fabrics consist of usually two orthogonal series of yarns, referred to as warp and

weft yarns, interlaced to form a self-supporting textile structure. There are a number

of possible interlacing patterns, the simplest of which is the plain weave where each

warp yarn interlaces with each weft yarn. More complex interlacing patterns can be

categorised as twill, satin, crowfoot, rib, basket, herringbone, crepe, etc. Multilayer

2



CHAPTER 1: INTRODUCTION

woven fabrics, also known as 3D weaves, are composed of several layers of warp and

weft yarns woven together. The number of possible interlacing patterns is virtually

infinite, however they are broadly categorised as orthogonal, through-thickness angle

interlock and angle interlock (also known as layer-to-layer).

Braided fabrics are created by interweaving three or more yarns in a diagonally over-

lapping pattern. Two types of braided fabrics are widely available, biaxial braids and

triaxial braids. The former contains two sets of aligned yarns whereas the latter con-

tains three sets of aligned yarns. Similarly to woven fabrics, multilayered braided fab-

rics are also possible and are referred to as 3D braided fabrics.

Weft-knitted fabrics consist of only one set of weft yarns. Here the yarns are interlaced

with adjacent yarns to construct a self-supporting structure. The different interlacing

patterns can be categorised as jersey, rib, interlock, lacoste, pique, etc.

Non-crimp fabrics (NCF) consist of several layers of unidirectional straight yarns that

are held together by stitching or knitting of a lightweight thread. Chemical agents may

also be used to bond the yarns together. The term warp-knitted refers to the method of

stitching the reinforcement yarns together, and resulting reinforcements are often also

referred to as ‘multiaxial warp-knits’.

Modelling the geometry of textiles is important because a geometric model is necessary

as an input to many computational models:

• Modelling the mechanical properties of fabrics for determining forming behaviour,

clothing comfort, etc.

• Predicting the permeability of fabrics for processing of composites.

• Modelling the mechanical properties of composite parts and their damage be-

haviour for use in engineering applications.

In this thesis a generic geometrical modelling approach is presented which encapsu-

lates all of the above mentioned fabrics. Attempts at developing generic methods

to predict mechanical properties applicable to all these fabrics have also been made.

However, validating the methods for all types of fabrics would be too time consuming,

hence validation is limited to a series of 2D woven fabrics.

1.3 Thesis overview

Chapter 2 describes the algorithms developed to model the geometry of textile struc-

tures which form the basis of the TexGen software. The models represent the smallest

3



CHAPTER 1: INTRODUCTION

repeatable unit cell of fabric at the mesoscopic scale. Yarns are represented as solid

volumes encompassing the fibres from which they are composed. There are many ap-

plications for these types of models, one of which is explored in Chapter 5.

Chapter 3 presents a series of four geometrical models created using TexGen. Two of

these are textile composite reinforcement fabrics provided by Chomarat and the other

two are clothing fabrics provided by Unilever. The geometries of the fabrics are char-

acterised using various experimental methods including optical microscopy, scanning

electron microscopy, microtomography and Kawabata Evaluation System for fabrics

(KES-f). These models form the basis of the work set out in Chapter 5.

Chapter 4 discusses a novel numerical approach for predicting the compaction be-

haviour of tows and the shear behaviour low filament count woven fabrics. The ap-

proach consists of modelling the bending of individual fibres within a tow following

the Euler-Bernoulli beam equations. The results for compaction are validated against

experimental compaction tests from the literature on E-glass tows. The results for shear

of the polyester fabric are validated against KES-f data obtained from the University of

Manchester.

Chapter 5 contains a study on the use of finite element analysis to predict mechanical

properties of dry textiles. This is accomplished using the geometrical models presented

in Chapter 3 with the tow mechanical properties discussed in Chapter 4, simulated by

an explicit FE code developed by the author. The results are validated for shear, axial

loading and compaction, against KES-f results and other experimental data obtained at

larger deformations.

Chapter 6 contains the overall discussion and conclusions of the work and recommen-

dations for further work.
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CHAPTER 2

Geometric modelling of textiles

2.1 Introduction

TexGen is a software package written by the author for the purpose of modelling the 3D

geometry of textiles at the level of the unit cell [119]. TexGen is designed to be flexible

and multi-functional aiming to be able to accurately model as many types of textiles as

possible (e.g. woven, knitted, knotted, non-woven, etc...) with as many techniques as

possible (e.g. finite element method, finite difference method, finite volume method,

multigrid method, visualisation) for applications such as solid mechanics, fluid dy-

namics, thermodynamics and electromagnetism. The functionality within TexGen goes

far beyond its usage in this thesis. In this chapter the modelling strategy will be devel-

oped with little reference to specific fabrics. In Chapter 3 TexGen will be used to model

specific fabrics.

Textiles are built up from a number of yarns brought together to form a self supporting

structure. The textile unit cell modelled by TexGen is described as being the smallest

unit of textile that, when tiled, will recreate the full scale textile. The width of a unit cell

will typically range from several millimetres to several centimetres. The fibres within a

yarn are not modelled individually, instead yarns are represented as solid volumes rep-

resenting the approximate bounds of the fibres contained within them. There are sev-

eral reasons for this, first of all it is much easier to represent the yarn as a solid volume

and secondly this kind of representation is much more useful for computational anal-

ysis of textile properties (primarily due to processor speed and memory limitations).

Cybulska et al. [27] have accurately modelled yarns including their fibres, however

the model was used for visualisation only. TexGen models the textile in its final state

whilst the manufacturing process to obtain this final state is not modelled. Using this

methodology two things are needed to model a yarn: the first is the path of the yarn
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through the textile and the second is the cross-section shape, which is not necessarily

constant.

2.2 Literature survey

2.2.1 Yarn path and cross-section models

Peirce [95] made an early attempt at describing the yarn path of a plain woven fabric

by a combination of straight lines and circular arcs. The yarn cross-section is assumed

to be circular and the yarn path followed a circular arc at crossovers where the radius

of curvature is equal to the diameter of the yarn. Thus the yarns are perfectly in con-

tact at crossovers and the yarn path in between crossovers is described by a straight

line. A limitation of this model is that the bending rigidity of the yarn is completely

ignored. Peirce later considered a model where the yarn is modelled as an elastica and

point contact occurs at the crossover between yarns. He also considered using an el-

liptical yarn cross-section to more accurately represent yarn flattening induced during

the weaving process which improved the accuracy of the geometrical model.

Kemp [60] proposed a racetrack section as an alternative to the elliptical section to

represent yarn flattening. This section consists of a rectangle with two circular arcs

attached on either side. The advantage of this section over the elliptical section is that

it is easier to calculate the yarn path such that contact is maintained at crossovers.

However this geometry does not represent the true flattened yarn shape very well in

most cases.

Hearle and Shanahan [50] proposed a lenticular cross-sectional geometry which rep-

resents the geometry of a yarn more accurately. This is represented as the intersection

of two circles of equal radii offset by a given distance. Note that a circular geometry

is a special case of the lenticular geometry where the offset between the two circles is

zero. For many woven fabrics this geometry provides a very good fit to the true yarn

geometry.

Searles et al. [115] proposed a more general approach by defining the yarn cross-section

shape using splines. Micrographs of an 8 harness woven fabric were obtained and af-

ter image processing splines were fit to the yarns. More specifically two natural cubic

splines were used to represent the upper and lower halves of the yarn. Two splines

were used instead of one supposedly to break first order continuity at the edges of the

yarns, which was found to provide a better fit. Although this approach is more general

than the idealised shapes and capable of representing real yarn geometry more accu-
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rately it also requires a much larger number of parameters to define it only obtainable

by image analysis.

Adanur and Liao [1] define a fabric geometrical model using the so-called CAGD (com-

puter aided geometric design) technique. The technique is similar to that described in

this chapter. A series of different geometric fabric models were created including wo-

ven, braided and knitted fabrics. However all of the geometric models contained a

constant elliptical cross-sectional shape. These restrictions are removed in the current

work.

Hofstee and van Keulen [54] describe a yarn cross-sectional geometry which varies

along the length of the yarn. The cross-section is defined by yarn width and height,

in addition to the midplane height and yarn height which are given as a function of

position across the width of the yarn. Thus the upper and lower cross-sectional edges

of the yarn are essentially each defined by an equation of the form y(x) where y is the

through-thickness axis and x is the axis perpendicular to both y and the yarn direc-

tion. This method of defining the yarn cross-section is not suitable for cases where the

yarn direction deviates significantly from the fabric midplane. The position of indi-

vidual fibres within a yarn is related to the yarn cross-section definition. Geometrical

models were created for a plain woven fabric in different states including undeformed,

stretched and sheared.

Wang and Sun [138] have developed a novel numerical method to predict fabric geom-

etry using so-called digital elements. The technique essentially consists of representing

yarns as a series of truss or rod elements along the centreline of the yarn. In order

to create a very fast method to predict geometry a large number of simplifications are

made. Bending rigidity of the yarns is neglected and as such the model only works

well when tension is applied to the yarns. To prevent intersections between the yarns

a minimum distance between their nodes is enforced. For this contact algorithm to be

valid the length of the truss elements must be much smaller than the radius of the yarn.

Using such a simple contact algorithm implies that the yarn cross-section is circular. In

order to address this issue Zhou et al. [143] extended the method by representing each

yarn by multiple chains of truss elements. In theory each chain represents an individual

fibre, however in practise the number of fibres in a yarn is too great to simulate using

this technique. Sihn et al. [122] developed algorithms to create a bounding volume

encompassing the chains in order to represent the yarns as solid continuum elements

for use in finite element analysis. The merits of this technique are that it is completely

general and could be used to represent any type of fabric. However the accuracy of the

model has not been verified and it is questionable as to whether 19-50 chains is suffi-
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cient to represent a yarn with several hundreds or thousands of fibres as claimed by

the authors. If the model is found to be inaccurate there is little flexibility in adjusting

parameters to provide a closer fit to experimental results.

2.2.2 Textile geometrical modelling software

In this section a brief review of the software packages used to model the geometry of

textile fabrics is described.

TexGen

TexGen originates from the work of Robitaille et al. [104, 105, 106, 107]. The authors

identified a need for generating unit cell geometric models to be used for prediction

of fabric permeability and composite mechanical properties. The requirements were to

represent all types of textile reinforcements in the same way without imposing limita-

tions on the methods used for subsequent property prediction. In this way, the predic-

tion of properties should be entirely distinct from the geometric modelling. This was

achieved by specifying yarn paths with a series of vectors representing the centrelines

of the yarns. Vectors provide a relatively easy way to describe arbitrary yarn paths ca-

pable of representing any interlacing pattern. The actual yarn centreline was smoothed

to provide a curve with first order continuity, accomplished by joining the vector end

points with circular arcs. The surface of the yarn was then defined by sweeping a sim-

ple two dimensional shape such as an ellipse or lenticular cross-section along the length

of the yarn. The implementation of these concepts was performed by Souter [104] and

resulted in TexGen version 1.

The present author re-implemented these concepts starting in 2003 as a learning ex-

ercise which resulted in TexGen version 2 [117, 119]. After considerable development

and feature additions, the geometrical models produced by this software were used as

the basis for numerous publications [8, 24, 56, 81, 82, 108, 114, 120, 140].

Although TexGen version 2 is feature rich and bug free to the extent that it has been

tested, the code became difficult to maintain due to a lack of a clear design. Hence

the code was re-written resulting in TexGen version 3 [118]. In this new version the

concept of vectors defining the yarn path has been revised. To avoid retention of re-

dundant information, the yarn path is defined by a series of control points (see Section

2.3). The smoothing of the yarn path by circular arcs has been removed due to inability

to satisfactorily deal with arbitrary control points and instead has been replaced with

Bezier and Cubic interpolations. TexGen v3 is a direct implementation of the geomet-

8
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rical modelling concepts described in this chapter.

WiseTex

Lomov and Verpoest [75–79, 137] have developed a software package named Wise-

Tex capable of modelling the geometry of 2D and 3D woven fabrics, UD preforms, 2D

braids with and without inlays and multi-axial multi-ply warp-knit stitched preforms.

The geometry is calculated based on various analytical models incorporating physical

properties of the yarns. Fibre, yarn and fabric properties can all be defined in WiseTex

including fibre diameter, density, coefficient of friction, Young’s modulus, Poisson’s ra-

tio, yarn width, yarn height, yarn shape, yarn spacing, fabric thickness, etc. In addition

to geometry calculation, various analytical models involving these physical properties

have been implemented to calculate tensile, shear and compressional behaviour of the

fabrics.

Several software packages that interact with WiseTex have also been developed. Lam-

Tex is used for modelling laminated textile composites. FETex is used to export geom-

etry from WiseTex to ANSYS in the form of a script file. The model can then be used

to perform any type finite element analysis. MeshTex is used for creating meshes from

WiseTex geometrical models and analysed with SACOM FE package [142]. TexComp

is used to predict stiffness properties of a textile composite using analytical methods.

FlowTex and Celper are used for textile permeability calculations and VRTex is used

for visualising WiseTex geometry in VRML format.

The main advantages of TexGen over WiseTex are:

• Less restrictions are placed on the geometry of the fabrics that can be modelled.

Yarn paths can be created arbitrarily and variable cross-sections can be assigned

to the yarn in a number of different ways.

• The software is free and open source licensed under the GNU General Public

License (GPL).

• The software is cross platform, tested on Windows and Linux.

• A powerful Python scripting interface has been implemented.

• It is possible to export geometry directly to IGES and STEP file formats.

Conversely the main advantages of WiseTex over TexGen are:

• Geometry calculation is based on physical properties of fabrics using analytical

models.

9
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• Graphical user interface for creating a wider range of different fabric types.

• Built-in analytical models for fabric mechanics predictions.

• Built-in analytical models for composite material stiffness predictions.

• Ability to model gaps created through tows during stitching.

TechText CAD

TexEng Software Ltd have developed two products named TechText CAD and Weave

Engineer [48, 49]. TechText CAD is software aimed at transferring academic work on

the structural mechanics of textiles into a CAD package that is easy to use and di-

rected at industrial needs. It is able to model geometry of fabrics similarly to TexGen

and WiseTex, however it is limited to 2D woven fabrics and weft knitted fabrics at the

time of writing. Similarly to WiseTex the yarn paths are calculated based on analyti-

cal models, and the software has the ability to predict fabric mechanical properties for

woven fabrics based on an energy method using yarn mechanical properties [110, 111].

TechText CAD also contains many basic features such as conversion tool for convert-

ing between units and databases for storing fibre, yarn and fabric data. However the

software appears to be at an earlier stage of development compared to TexGen and

WiseTex.

The Weave Engineer software is dedicated to the design and manufacture of advanced

textile structures. It does not contain any features for predicting mechanical properties

of fabrics, however it can be used to design 3D woven textile structures, with both solid

and hollow architectures and non-crimp composite reinforcement.

ScotWeave

ScotCad Textiles Ltd have been providing CAD software for weaving since 1982 aimed

primarily at industrial users. Most of the products work together to model woven

fabrics at the macroscopic scale where yarns can be given various colours to create so-

phisticated visual effects for use in furniture, car interiors, etc. These products contain

a number of features valuable to weave designers but of limited use to researchers:

yarn costing data, scanning feature, image edit tools, library of over 700 weaves, float

checking, auto-drape, fabric finishing, import/export weave data, output instructions

directly to the looms, etc.

A relatively new product named the ScotWeave Technical Weaver is aimed specifically

at modelling technical textiles at the mesoscopic scale and bears more similarity with
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the other software packages presented above than ScotCad’s other products. Yarn

cross-sectional shape and weave pattern can be specified to create a 3D geometrical

model. As of the time of writing it does not contain any algorithms for calculating

mechanical properties and is limited to modelling orthogonal woven fabrics.

2.3 Yarn path representation

The path of a yarn can be considered as a one dimensional line representing the yarn’s

centreline in three dimensional space. Thus the yarn path can be defined as position

in 3D space as a function of distance along the yarn. Since TexGen aims at modelling

the geometry at the level of the unit cell, the yarn is assumed to be repeatable and only

modelled at its smallest repeatable length. The same approach is taken in WiseTex and

TechText CAD. The most flexible and generic way to describe such a yarn path is to

specify a number of discrete positions along the yarn length, known as master nodes,

and interpolate [62, 113] between these points. Generally, to obtain an accurate yarn

path for woven fabrics it is sufficient to specify one or two master nodes per crossover

(see Chapter 3) as long as the interpolation function is suitable.

The interpolation function must have at least continuity C1, that is to say that there are

no gaps in the yarn path and the yarn path’s tangent varies smoothly. A common solu-

tion to this problem is the use of splines [2, 6]. A spline is a function defined piecewise

by polynomials. In interpolation problems, spline interpolation is often preferred to

polynomial interpolation because it yields similar results, even when using low degree

polynomials, while avoiding Runge’s phenomenon [113] for higher degrees.

In its most general form a polynomial spline S : [a, b] → R consists of polynomial

pieces Si : [ti, ti+1] → R, where

a = t0 < t1 < · · · < tk−2 < tk−1 = b (2.1)

That is,

S(t) =



S0(t) if t0 ≤ t < t1

S1(t) if t1 ≤ t < t2
...

Sk−2(t) if tk−2 ≤ t ≤ tk−1

(2.2)

The given k values ti are called knots. Several types of splines have been explored:

cubic Bézier splines, natural cubic splines and periodic cubic splines. As their names

suggest they are all polynomials of degree 3; the latter two have continuity C2 while
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the first generally does not. In Chapter 3 the most appropriate type of spline will be

explored for a variety of textiles.

2.3.1 Cubic Bézier splines

In this case, a spline is formed from cubic Bézier curves which are themselves defined

by four points P1, P2, P3 and P4 in 3D space. The curve starts at P1 going toward P2

and arrives at P4 coming from the direction of P3. The tangent of the curve at P1 is

parallel to the vector from P1 to P2, similarly the tangent of the curve at P4 is parallel

to the vector from P3 to P4. The distance between P1 and P2 determines how far the

curve moves into direction P3 before turning toward P4. The parametric equation for a

single Bézier curve B is defined as:

B(t) = P1(1− t)3 + 3P2t(1− t)2 + 3P3t2(1− t) + P4t3 0 ≤ t ≤ 1 (2.3)

A typical Bézier curve is shown in Figure 2.1.

0

0.2 0.4

0.6

0.8
1

tt

P1

P2

P3

P4

Figure 2.1: Cubic Bézier curve

In order to preserve continuity C0, points P1i and P4i are defined for spline piece Si as

follows:

P1i = Si(ti) 0 ≤ i ≤ k − 2 (2.4)

P4i = Si(ti+1) 0 ≤ i ≤ k − 2 (2.5)

There is some flexibility on how points P2i and P3i are chosen. In order to preserve

continuity C1 one must ensure that the tangents between spline pieces match up. That

is:

S′i(ti+1) = S′i+1(ti+1) 0 ≤ i ≤ k − 3 (2.6)
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What this means in practice is that the points P3i, P4i, P1i+1 and P2i+1 must be collinear

(Note: P4i = P1i+1). However, the distance between the points and their orientation is

not prescribed. This means that the cubic Bézier spline is not fully defined simply by

its knots, and in order to fill in the missing parameters the following assumptions are

made:
S′(ti)
‖S′(ti)‖

=
S(ti+1)− S(ti−1)
‖S(ti+1)− S(ti−1)‖

1 ≤ i ≤ k − 2 (2.7)

‖P2i − P1i‖ = ‖P4i − P3i‖ =
‖P4i − P1i‖

3
(2.8)

The tangents at t = a and t = b are still not defined. There are two possibilities here. If

the yarn is periodic, which it will be in most cases, the additional assumptions can be

made:
S′(a)
‖S′(a)‖ =

S′(b)
‖S′(b)‖ =

S(t1)− S(t0) + S(tk−1)− S(tk−2)
‖S(t1)− S(t0) + S(tk−1)− S(tk−2)‖

(2.9)

otherwise if the yarn is not periodic the following assumptions are made:

S′(a)
‖S′(a)‖ =

S(t1)− S(t0)
‖S(t1)− S(t0)‖

(2.10)

S′(b)
‖S′(b)‖ =

S(tk−1)− S(tk−2)
‖S(tk−1)− S(tk−2)‖

(2.11)

These assumptions provide a curve of smooth appearance which will be adequate

in most cases. However for cases where it is not adequate these parameters may be

changed to suit the particular needs of the yarn being modelled. For example it may

be desirable to specify a certain tangent at a given knot.

2.3.2 Natural cubic splines

In this case no extra points need to be defined in order to specify the yarn path. The

same continuity conditions C0 and C1 apply as for the Bézier curves:

Si(ti+1) = Si+1(ti+1) 0 ≤ i ≤ k − 3 (2.12)

S′i(ti+1) = S′i+1(ti+1) 0 ≤ i ≤ k − 3 (2.13)

In addition, a further continuity condition C2 applies

S′′i (ti+1) = S′′i+1(ti+1) 0 ≤ i ≤ k − 3 (2.14)

The boundary conditions at t = a and t = b are as follows:

S′′(a) = S′′(b) = 0 (2.15)
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The derivatives of the spline at the knots can be calculated by solving the following

tridiagonal system of equations:

2 1

1 4 1

1 4 1
. . . . . . . . .

1 4 1

1 4 1

1 2





S′(t0)

S′(t1)

S′(t2)
...

S′(tk−3)

S′(tk−2)

S′(tk−1)


=



3(S(t1)− S(t0))

3(S(t2)− S(t0))

3(S(t3)− S(t1))
...

3(S(tk−2)− S(tk−4))

3(S(tk−1)− S(tk−3))

3(S(tk−1)− S(tk−2))


(2.16)

Once the derivatives are known, the coefficients of the spline pieces can easily be deter-

mined. For each cubic spline piece there are 4 equations with 4 unknown coefficients

ai, bi, ci and di:

Si(ti) = ai + biti + cit2
i + dit3

i (2.17)

Si(ti+1) = ai + biti+1 + cit2
i+1 + dit3

i+1 (2.18)

S′i(ti) = bi + 2citi + 3dit2
i (2.19)

S′i(ti+1) = bi + 2citi+1 + 3dit2
i+1 (2.20)

The natural cubic spline has a very important variational interpretation as it is the func-

tion that minimizes the following function:

J(S) =
∫ b

a
‖S′′(t)‖2dt (2.21)

The function J contains an approximation of the total curvature of S(t). The natural cu-

bic spline is thus an approximation of the spline with minimal curvature. Since the total

energy of an elastic strip is proportional to the curvature, the spline is the approximate

configuration of minimal energy of an elastic strip constrained to k points.

2.3.3 Periodic cubic splines

This type of spline is similar to the natural cubic spline but with different boundary

conditions. Equation 2.15 is replaced by the following periodic boundary conditions:

S′(a) = S′(b) (2.22)

S′′(a) = S′′(b) (2.23)
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The system of Equations 2.16 becomes:

4 1 1

1 4 1

1 4 1
. . . . . . . . .

1 4 1

1 1 4





S′(t0)

S′(t1)

S′(t2)
...

S′(tk−3)

S′(tk−2)


=



3(S(t1)− S(t0) + S(tk−1)− S(tk−2))

3(S(t2)− S(t0))

3(S(t3)− S(t1))
...

3(S(tk−2)− S(tk−4))

3(S(tk−1)− S(tk−3))


(2.24)

Note that the number of equations in this system is one less than for the natural cubic

spline, as here S′(tk−1) is equal to S′(t0). This type of spline is very useful for modelling

yarn paths of a unit cell. Since the path is only a small section of the full yarn, it needs

to be periodic. This type of spline ensures continuity C2 across repeated unit cells (see

Section 2.6).

Natural

Periodic

Figure 2.2: Natural and periodic cubic splines

A comparison between a natural cubic spline and a periodic cubic spline with the same

knots is shown in Figure 2.2.
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2.4 Yarn cross-section

The cross-section is defined as the 2D shape of the yarn when cut by a plane perpendic-

ular to the yarn path tangent. Since yarns are treated as solid volumes the cross-section

is approximated to be the smallest region that encompasses all of the fibres within the

yarn (it will generally be convex). The outline of the cross-sections can be defined using

parametric equations in 2 dimensions. Various shapes have been explored including

the ellipse proposed by Peirce [95], power ellipse [140] and a modified lenticular shape

proposed by Hearle and Shanahan [50]. The accuracy of these cross-sections for real

textiles will be explored in Chapter 3.

2.4.1 Ellipse

The elliptical cross-section is one of the simplest approximations, with given width w

and height h the equation is defined as follows:

C(t)x =
w
2

cos (2πt) 0 ≤ t ≤ 1 (2.25)

C(t)y =
h
2

sin (2πt) 0 ≤ t ≤ 1 (2.26)

2.4.2 Power ellipse

The power ellipse is a slight modification to the elliptical cross-section where the y

coordinate is assigned a power n to make the section resemble a rectangle with rounded

edges when n < 1 or a shape similar to a lenticular cross-section when n > 1 [140].

However, it is in fact a specialisation of the Superellipse discovered by Gabriel Lamé

[38]. It is defined as follows:

C(t)x =
w
2

cos(2πt) 0 ≤ t ≤ 1 (2.27)

C(t)y =

{
h
2 (sin(2πt))n if 0 ≤ t ≤ 0.5

− h
2 (−sin(2πt))n if 0.5 ≤ t ≤ 1

(2.28)

Two typical power elliptical cross-section are shown in Figure 2.3.

2.4.3 Lenticular

The lenticular cross-section is the intersection of two circles of radii r1 and r2 each offset

vertically by distances o1 and o2 respectively. The parameters r1, r2, o1 and o2 can be
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Figure 2.3: Power elliptical cross-sections

calculated from the desired width w, height h and distortion distance d of the lenticular

section:

r1 =
w2 + (h − 2d)2

4(h − 2d)
(2.29)

r2 =
w2 + (h + 2d)2

4(h + 2d)
(2.30)

o1 = −r1 +
h
2

(2.31)

o2 = r2 −
h
2

(2.32)

The section is defined as follows:

C(t)x =

{
r1 sin θ if 0 ≤ t ≤ 0.5

r2 sin θ if 0.5 ≤ t ≤ 1
(2.33)

C(t)y =

{
r1 cos θ + o1 if 0 ≤ t ≤ 0.5

−r2 cos θ + o2 if 0.5 ≤ t ≤ 1
(2.34)

where:

θ =

 (1− 4t) sin−1
(

w
2r1

)
if 0 ≤ t ≤ 0.5

(−3 + 4t) sin−1
(

w
2r2

)
if 0.5 ≤ t ≤ 1

(2.35)

Two typical lenticular cross-sections are shown in Figure 2.4. Note that if the distortion

parameter is zero, the radii of the two circles are the same and the offsets are equal and

opposite.
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Figure 2.4: Lenticular cross-sections

2.5 Yarn surface

Having defined the yarn path and cross-section, the two need to be brought together.

In general the cross-section may vary along the length of the yarn because the yarn is

easily deformed even under very low loads. In a weaving process for example, the

yarns will be compacted at crossover points. Thus the cross-section should be defined

as a function of distance along the yarn. The boundaries of the yarn can be defined as

a parametric surface P(u, v) from yarn path S and cross-section C:

P(u, v) = S(u) + (C(u, v)x~X′(u) + C(u, v)y~Y′(u)) a ≤ u ≤ b 0 ≤ v ≤ 1 (2.36)

where ~X′ and ~Y′ are the local coordinate axes of the yarn path defined as follows:

~X′(u) =
S′(u)× ~U
‖S′(u)× ~U‖

(2.37)

~Y′(u) =
~X′(u)× S′(u)
‖~X′(u)× S′(u)‖

(2.38)

where ~U is the so-called up vector which will be defined as (0, 0, 1) assuming the textile

lies in the X/Y plane. This up vector is necessary to orient the cross-section in the plane

perpendicular to the yarn path’s tangent. The local ~Y′ is obtained by projecting ~U to the

plane defined by the normal S′ (Figure 2.5). Unfortunately this method of defining a

constant up vector is flawed. When S′ is parallel to ~U, the term ‖S′(u)×~U‖ in Equation

2.37 becomes zero, i.e. where the tangent of the yarn path is vertical the parametric

surface cannot be evaluated. Whilst for most textiles this will not be an issue, some

3D woven fabrics may contain vertical yarns. The solution is to specify an alternate ~U

vector for the offending yarns either as a constant vector or one which varies along the

length of the yarn, ensuring ~U is never parallel with S′.

In Equation 2.36 the cross-section C is defined as a function of two variables u and v

where u relates to the distance along the yarn and v relates to the position around the
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Figure 2.5: Illustration of how X′ and Y′ are calculated

cross-section. Several options have been considered for variation of the cross-section

as a function of distance along the yarn. The most accurate and convenient methods

for specific fabrics will be discussed in Chapter 3.

2.5.1 Constant cross-section

Here the cross-section is assumed constant along the length of the yarn. Models can

be created very quickly with this method. In some cases this assumption may hold

true, with the changes in shape so small that they are insignificant. These issues will be

discussed in Chapter 3.

2.5.2 Interpolated cross-sections

In this case, cross-sections are specified at discrete positions along the length of the

yarn. Cross-sections are then interpolated between these specified points. Suppose two

cross-sections A(t) and B(t) are defined which are to be interpolated. The interpolated

cross-section C(t) is defined as:

C(t, µ) = A(t) + (B(t)− A(t))µ 0 ≤ t ≤ 1 0 ≤ µ ≤ 1 (2.39)

where µ varies from 0 to 1 linearly with distance between cross-sections A(t) and B(t).

This linear interpolation is the simplest approach to allow a smooth transition with

continuity C0 between two different cross-sectional shapes. Note that it is necessary

for the cross-sections A(t) and B(t) to be defined in a similar manner, i.e. points A(t)

and B(t) should describe similar positions on the cross-section for all values of t. All

the parametric equations described in Section 2.4 begin on the positive x axis at t = 0

going counter-clockwise as t increases. Figure 2.6 displays the interpolation between
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an elliptical cross-section shown in blue (width w and height he) and a lenticular cross-

section shown in red (width w and height hl). The heights of the two sections are

different to better illustrate the interpolation.
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Figure 2.6: Interpolation between elliptical and lenticular cross-sections

The linear interpolation approach can be modified slightly in order to provide inter-

polation with continuity C1. Instead of varying the interpolation parameter µ linearly

with distance x, it can be ramped with a cubic equation such that at x = 0:

µ = 0 (2.40)
dµ

dx
= 0 (2.41)

and at x = d, where d is the distance between the nodes:

µ = 1 (2.42)
dµ

dx
= 0 (2.43)

Which results in the following equation:

µ =
3x2

d2 − 2x3

d3 (2.44)

Figure 2.7: Cross-section interpolation

Figure 2.7 illustrates an imaginary straight yarn with a number of cross-sections as-

signed along the length to illustrate the interpolation.
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2.6 Yarn repeats

Normally only the smallest repeatable section of a yarn is specified in TexGen in order

to avoid duplication of data. It is thus necessary to specify how the yarn repeats itself

and this is done with vectors. Generally each yarn section in a textile will have 2 repeat

vectors but this is not always the case. The smallest repeatable length of a yarn P is

defined in Equation 2.36. The yarn for the entire textile can be described as follows

given n repeat vectors ~Ri:

P + C0~R0 + C1~R1 + · · ·+ Cn−1~Rn−1 − ∞ ≤ Ci ≤ ∞ (2.45)

where the coefficients Ci → Z are integers. Figure 2.8 illustrates this with two repeat

vectors. Note that the repeats apply to the yarns themselves rather than the unit cell.

However, in most cases the repeat vectors for all the yarns will be identical.

C0 = 0

C1 = 0

P
C0 = 1

C1 = 0

C0 = 1

C1 = 1

C0 = 0

C1 = 1

C0 = −1

C1 = 0

C0 = −1

C1 = 1

~R1

~R0

Figure 2.8: Yarn repeated with two repeat vectors

2.7 Domain

In TexGen only the smallest repeatable section of yarns is described, but combined

with the repeat vectors the size of the textile is infinite. Thus for most applications

it is necessary to restrict the model to a finite region of space called the domain. In

most cases the domain will correspond to the unit cell of the textile but the distinction

between the two is made for added flexibility. For example, it may be desirable to create

a domain that encompasses two unit cells and compare FE results against a single unit

cell to verify that periodic boundary conditions have been implemented correctly.

The domain is specified by planes where the space on the negative side of the plane is

considered to be outside of the domain. Each plane is defined as:

Ax + By + Cz + D = 0 (2.46)
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The vector (A, B, C) represents the unit normal to the plane, and D represents the dis-

tance from the plane to the origin. In order to specify an axis aligned bounding box

with minimum of (x1, y1, z1) and maximum of (x2, y2, z2), six planes P need to be de-

fined as shown in Table 2.1. Using this definition of planes, it is clear that a simple axis

aligned bounding box is easily represented while leaving the flexibility to approximate

any convex shape.

Table 2.1: Planes defining axis aligned bounding box domain

A B C D

P0 1 0 0 x1

P1 -1 0 0 −x2

P2 0 1 0 y1

P3 0 -1 0 −y2

P4 0 0 1 z1

P5 0 0 -1 −z2

2.8 Surface mesh

The easiest and most efficient way to render a three dimensional body is to represent its

surface with polygons and then render the polygons. The work of actually rendering

polygons to a two dimensional screen can be achieved using mature hardware acceler-

ated graphics libraries such as OpenGL [9] or Direct3D [131]. Thus the only concern for

rendering is to obtain a polygonal representation of the surface which will be referred

to as a surface mesh. Aside from being used to render yarns, the surface mesh can be

used for other numerical purposes such as calculating the volume (Appendix B), or for

boundary element analysis.

In order to create a surface mesh, the parametric surface of the yarn defined in Equation

2.36 must be sampled (Figure 2.9). For convenience the limits a and b are defined as 0

and 1 respectively. Taking k and n samples at regular intervals of 1
k−1 and 1

n respectively

such that:

ui =
i

k − 1
0 ≤ i ≤ k − 1 (2.47)

vj =
j
n

0 ≤ j ≤ n − 1 (2.48)

Since the point at v = 1 is always the same as the point at v = 0 it is not necessary to

sample at v = 1. This is the reason the denominator of Equation 2.48 is n rather than

n − 1.
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Figure 2.9: Sampled parametric surface

Quadrilateral elements with four corners Qi representing the surface can be created as

follows:

Q1 = P(ui, vj) (2.49)

Q2 = P(ui+1, vj) (2.50)

Q3 = P(ui+1, vj+1) (2.51)

Q4 = P(ui, vj+1) (2.52)

The density of the mesh is controlled by the number of sample points k and n. Gen-

erally it is desirable for elements to have all edges of similar length. Thus it is only

really necessary to have one parameter which controls the density of the mesh rather

than two. The parameter k can be determined from n such that the elements are of high

quality. In order to do this, the average element edge length L̄ is calculated from n with

the following equation:

L̄ =
1
n

∫ 1

0

n−1

∑
j=0

‖P(u, vj+1)− P(u, vj)‖du (2.53)

The value of k can then be calculated from:

k =
[

1
L̄

∫ 1

0
‖S′(t)‖dt

]
+ 1 (2.54)

where the square brackets [ ] represent the nearest integer function [39].
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2.9 Volume mesh

For finite element analysis, a surface mesh defining the boundaries of the volume is

not sufficient. A volume mesh constructed from 3D continuum elements is necessary.

Many volume meshing algorithms exist for completely arbitrary geometries as well as

semi-arbitrary geometries. In the case of a yarn, the volume is relatively easy to mesh.

The meshing can be separated into two steps. The first is to mesh the cross-sections

in two dimensions ensuring that the cross-section meshes are compatible. It is then

simply necessary to link adjacent cross-section meshes together to form 3D elements.

2.9.1 Cross-section meshing

A simple rectangular mesh generator has been implemented to create cross-section

meshes in a regular grid. Figure 2.10 shows an elliptical cross-section meshed using

this technique. Note that the four corners of the grid contain triangular elements rather

than quadrilateral elements. This is to avoid having highly distorted elements which

are undesirable in numerical simulations.

1 2 3 4 5 6 7

1

2

3

0

8

4

Figure 2.10: Cross-section meshed with rectangular mesh generating technique

Given n equi-spaced points on the boundary of the cross-section a rectangular grid is fit

to the geometry. The elements are split into c columns and r rows. The nodes defining

the corners of the elements can also be split into c + 1 columns and r + 1 rows. n, c and

r are related by the following equation:

n = 2(c + r)− 4 (2.55)

In order for this meshing technique to succeed n must be an even number and the

number of rows r should also be even. The second condition is not strictly necessary,

however since TexGen always defines cross-sections starting by a point lying on the

positive x axis, ignoring this condition would result in an asymmetric mesh about the

x and y axes.
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Node positions Pij are arranged in a grid where subscript i refers to nodes in the ith

row and subscript j refers to nodes in the jth column. The positions of the nodes on

the boundary are known whereas positions for the interior nodes must be calculated.

In order to do this, two new sets of points are defined, Aij and Bij. Points Aij are the

linear interpolation of points on the left of the grid Pi0 and points on the right of the

grid Pic. Similarly points Bij are the linear interpolation of points on the top of the grid

P0j and points on the bottom of the grid Pic. They are defined as:

Aij = Pi0 +
j
c
(Pic − Pi0) (2.56)

Bij = P0j +
i
r
(Prj − P0j) (2.57)

The internal node positions Pij are then calculated as the weighted average of these two

sets of points. The weights wAij and wBij are calculated as a function of distance dAij

and dBij. Here dAij represents the shortest of distances from point Aij to Pi0 and Aij to

Pic, and dBij represents the shortest of distances from point Bij to P0j and Bij to Prj:

dAij = ‖Pi0 − Pic‖
(

1
2
−
∣∣∣∣ i
r
− 1

2

∣∣∣∣) (2.58)

dBij = ‖P0j − Prj‖
(

1
2
−
∣∣∣∣ j
c
− 1

2

∣∣∣∣) (2.59)

wAij =
dBij

dAij + dBij
(2.60)

wBij =
dAij

dAij + dBij
(2.61)

Pij = wAijAij + wBijBij (2.62)

Figure 2.11 shows this meshing technique applied to an elliptical cross-section with

different values of n, r and c. It can be seen from the figure that the quality of the mesh

depends on these parameters. In order to avoid distorted elements, the ratio of number

of columns r to rows c should be similar to the ratio of cross-section width w to height

h:
c
r
≈ w

h
(2.63)

It is not possible for the ratios to be exactly equal in all cases because r and c are integers

whereas w and h need not be. The value of c can be calculated using the nearest integer

function:

c =
[ rw

h

]
(2.64)

With Equations 2.55 and 2.64, the values of r and c can be determined from n alone.

The number of cross-section points n then controls the density of the mesh.
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n = 20, r = 2, c = 10 n = 20, r = 4, c = 8

n = 20, r = 6, c = 6 n = 20, r = 8, c = 4

n = 40, r = 6, c = 16 n = 40, r = 8, c = 14

Figure 2.11: Cross-section meshed varying n, r and c

2.9.2 Linking

A number of equi-spaced meshed cross-sections are created along the length of the yarn

path. Consecutive cross-sections are linked together to form 3D volume elements. In

order to link two cross-sections together, the meshes must be compatible, i.e. each ele-

ment from one cross-section must map to an element on the other cross-section. In this

way, pairs of triangles can be linked together to form 6 noded wedge elements and pairs

of quadrilaterals can be linked together to form 8 noded hexahedral elements. If con-

stant cross-sections are used compatibility is not an issue, however if the cross-section

varies along the length of the yarn it can be difficult to obtain compatible meshes for

the whole length of the yarn. Meshes generated by conventional meshing techniques

are generally not compatible. The rectangular mesh generator was designed to gener-

ate compatible meshes regardless of the geometry given as long as parameters r, c and

n are the same for each cross-section along the length of the yarn.

2.10 Fibre volume fraction

As an approximation the yarn has been modelled as a solid volume, however this vol-

ume is of course not entirely occupied by fibres. The proportion of fibres is defined as

the fibre volume fraction of the yarn.

In order to calculate the fibre volume fraction the yarn boundaries must first be de-
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fined so that a volume for the yarns can be calculated (see Appendix B). However

these boundaries are somewhat arbitrary; in Section 2.4 they have been described as

the smallest region encompassing all the fibres. How they are defined for specific yarns

is open to interpretation, cotton yarns for example have many stray fibres that can gen-

erally be ignored. Fibre volume fraction should therefore be associated with a specific

approximated yarn geometry.

The total volume of fibres within a yarn or textile, V.F., can be calculated by experi-

mentally measuring the weight of the yarn or fabric m. Assuming the fibres all have

the same density ρ the volume is:

V.F. =
m
ρ

(2.65)

A measure of fibre volume fraction Vf y can then be calculated:

Vf y =
V.F.
V.Y.

(2.66)

AyAf

Figure 2.12: Schematic of fibres contained in a yarn with different degree of

compaction

This gives a constant fibre volume fraction for an entire yarn or fabric. This is suitable

for cases where the cross-sectional area along the length of a yarn does not vary sig-

nificantly. However for cases with varying cross-sectional area a more useful quantity

would be the ratio of fibre area A.F. to yarn area A.Y. in a cross-section. Assuming that

individual fibres are incompressible as a yarn is compressed (Figure 2.12), the area of

fibres at any cross-section along the length of a yarn will remain constant. See Chapter

4 for a discussion on the assumptions made here. The fibre area fraction A f can be

calculated with the following equation:

A f =
A.F.
A.Y.

(2.67)

Given the linear density ζ of a yarn and the density of its constituent fibres ρ the area

of fibres A.F. is calculated as:

A.F =
ζ

ρ
(2.68)
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And hence the fibre area fraction A f can be expressed as:

A f =
ζ

A.Y.ρ
(2.69)

Note that the yarn cross-sectional area A.Y. may vary along the length of a yarn. Ap-

pendix A contains a derivation of yarn cross-sectional area A.Y..

Alternatively A.F. can be related to the total volume of fibre in a yarn V.F. and its

length L with the following equation:

A.F. =
V.F.

L
(2.70)

2.11 Intersections

2.11.1 Point inside yarn

There are various occasions when it is useful to obtain information about a certain point

contained within the unit cell. For example in finite element analysis, once a mesh has

been created it is often necessary to assign material properties to elements, which are

anisotropic for textiles or textiles composites. Material properties often also depend on

the fibre volume fraction within the yarn which may vary from position to position.

In order to obtain this information it is first necessary to find out if and where the

point intersects the yarn. An algorithm to accomplish this has been developed and is

described in this section.

The intersection of a point P and a yarn is evaluated in two stages. The first stage is to

find a plane which contains the point P and a point S(t) on the centreline of the yarn

and whose normal is parallel to S′(t) (S(t) is defined in Equation 2.2). In mathematical

terms this means solving the following equation for t:

S′(t) · (P − S(t)) = 0 (2.71)

There may be an infinite number of solutions to this equation. It is not possible to

solve this equation analytically for cases where the yarn path S(t) is a complicated

function. Instead a numerical technique is adopted to search for the solution in an

iterative manner. The minimum signed distance d(t) from the plane defined at t to the

point P can be calculated as:

d(t) =
S′(t)
‖S′(t)‖ · (P − S(t)) (2.72)

If two values of t denoted by ta and tb are chosen, it is possible to estimate if a solution

lies between those two points. At least one solution exists between ta and tb if d(ta) is
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positive and d(tb) is negative. The opposite is not necessarily true, as solutions may

exist where the distance between the point P and the yarn centreline S(t) exceeds the

radius of curvature 1
κ(t) (where κ(t) is the curvature at t). However these solutions

are not important because if the cross-section exceeds this radius of curvature the yarn

will be self intersecting and hence invalid. Further solutions may exist in extreme cases

where the tangent S′(t) varies significantly between ta and tb. In practise this is unlikely

to occur if ta and tb are chosen between adjacent master nodes as is the case in the

TexGen implementation.

Once a solution is known to lie between ta and tb, an initial guess t0 at the solution ts

can be obtained with the following equation:

t0 = ta + (tb − ta)
d(ta)

d(ta)− d(tb)
(2.73)

At each following iteration a closer estimate at the solution can be obtained with the

following equation:

ti+1 = S′(ti) · (P − S(ti)) (2.74)

The process continues until d(ti) becomes less than a certain tolerance. Typically a

converged solution can be found in 6 or 7 iterations to within a tolerance of 10−6. Figure

2.13 illustrates the search for a point P.

d(ta)
−d(tb)

S′(ta)
S ′(ts)

S ′(tb)
P

Figure 2.13: Point inside yarn

Once a solution ts is found, the coordinates of P are transformed to the 2D cross-section

coordinate system. The local coordinates x′ and y′ of P are calculated as follows:

x′ = (P − S(ts)) · ~X′(ts) (2.75)

y′ = (P − S(ts)) · ~Y′(ts) (2.76)

Vectors ~X′(ts) and ~Y′(ts) are defined in Equations 2.37 and 2.38. The second stage

consists of checking that x′ and y′ lie within the cross-section C defined at ts. This step

can easily be accomplished analytically for certain types of sections. For a more general
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approach, the section can be approximated by a closed polygon. Various standard

numerical techniques exist for determining if a point lies within a 2D polygon [126]. If

the point lies within the cross-section then the search ends and various information can

be extracted from the procedure. It is known that the point lies within the yarn and the

tangent of the yarn at that point is known, defined by S′(ts), and the local cross-section

coordinates x′ and y′ of the point are also known.

In order to also include repeated yarns in the search (see Section 2.6), the procedure

could be carried out on yarns translated by the vectors ~Vj:

~Vj = C0~R0 + C1~R1 + · · ·+ Cn−1~Rn−1 − ∞ ≤ Ci ≤ ∞ (2.77)

where the coefficients Ci → Z are integers and ~Ri are repeat vectors. However a more

efficient method is to simply translate the point P by the vectors −~Vj. Since the limits

for Ci are infinite, the number of vectors ~Vj is also infinite. It is necessary to reduce

the number of vectors ~Vj to a finite number before the procedure can be carried out

numerically. This done by calculating limits for the coefficients Ci:

ai ≤ Ci ≤ bi (2.78)

where ai and bi are referred to as the repeat limits. The values of ai and bi are calculated

such that if Ci is outside this range point P is guaranteed not to intersect with the yarn.

This is described in Appendix C.

2.11.2 Yarn intersections

It is useful to have a method to determine if two yarns intersect. These situations

should be avoided as they are not physically possible and also cause problems with

meshing. At the time of writing TexGen implements this by determining a list of sam-

pled surface points Pi for each yarn (Section 2.8) and checking if any of the points lie

within any of the other yarns (Section 2.11.1). If they do then the yarns intersect, how-

ever if the number of sampled points is not large enough then the method may fail

to find all intersections. A more robust method is to find intersections between the

surfaces meshes [90]. If any of the surface elements intersect with each other then the

yarns intersect. This method will only fail if a yarn is completely contained within an-

other. However this method also relies on the accuracy of the surface mesh which is

only an approximation of the surface, and, if too coarse, could also lead to missing yarn

intersections.
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2.12 Implementation

TexGen has been implemented in C++ in an object-oriented manner with a cross plat-

form design (currently tested on Windows and Linux). The code has been split into

several modules which will be detailed in the following section.

2.12.1 Modules

• Core

• Renderer

• Export

• Python interface

• GUI

The core module contains everything that has been discussed in this chapter and con-

stitutes the largest part of the software. The core module depends on three third party

libraries. The first is Triangle [121] which is used for meshing 2D cross-sections. The

second is HXA7241 Octree Component C++ [3] which is used for optimising various

operations. The third is TinyXML [130] which is used for reading and writing XML

files. All three libraries are small and free to use without restriction. Additionally Tex-

Gen relies heavily on the C++ Standard library.

The renderer module contains the code necessary to visualise the textile models in 3D.

This module depends on the third party library VTK [86] (Visualisation Toolkit). VTK

is an open source, cross-platform, freely available software system for 3D computer

graphics, image processing and visualization. The TexGen Core module is able to func-

tion without the use of this library.

The export module contains code to export geometric models to file formats widely

used by other computer-aided design (CAD) systems. These formats include IGES and

STEP. IGES stands for Initial Graphics Exchange Specification and defines a neutral

data format that allows the digital exchange of information among CAD systems. STEP

stands for Standard for the Exchange of Product model data and was intended to be a

replacement for IGES. TexGen relies on the third party library OpenCASCADE [112]

for writing the IGES and STEP files.

The Python interface actually consists of two wrapper modules, each module pro-

viding a Python interface to the corresponding core and renderer modules described
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above. Python [135] is a dynamic object-oriented programming language that offers

strong support for integration with other languages. The two modules are compiled as

dynamically linked libraries which can be imported from Python scripts at run time.

The Python scripts can be used to create, visualise and export TexGen textile models.

Python scripting is a viable interfacing method for the developer and advanced user.

The Python interface modules are generated automatically by SWIG [7] (Simplified

Wrapper and Interface Generator). Essentially SWIG parses the C++ header files and

generators a Python module that wraps all the specified classes and functions. Ap-

pendix D contains a sample Python script making use of the TexGen Python interface.

The GUI module contains the code for the graphical user interface. This essentially

allows the user to interact with TexGen in a user friendly graphical environment. This

module depends on the third party library wxWidgets [123]. wxWidgets (formerly

known as wxWindows) is an open source, cross-platform widget toolkit; that is, a li-

brary of basic elements for building a graphical user interface. This module also de-

pends on the three TexGen modules: Core, Renderer and Python interface. Strictly

speaking the GUI does not need to depend on the Python interface. However, impor-

tant GUI commands are sent through the Python interface rather than directly to the

core and renderer module. This enables the commands to be recorded in the form of a

Python script for later modification and/or playback. The GUI module also includes

some Python interfacing code in order for the scripts to perform GUI specific opera-

tions such as creating and deleting render windows. Appendix E contains screenshots

of the graphical user interface.

TexGen

RendererCore

VTKHXA7241 OctreeTriangle TinyXML

Export

OpenCASCADE

GUI

Python Interface

Core Export Renderer
Python

wxWidgets

Figure 2.14: TexGen modules
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Figure 2.14 illustrates the dependencies of the various internal and external modules.

The advantage of separating code into different modules is that only the required mod-

ules need be compiled. For example, a user may want to create a batch of different

textile models and output them to a certain file format for stochastic analysis. In this

case the GUI and Renderer modules are not necessary, also removing the need for the

external wxWidgets and VTK libraries. Downloading, configuring and installing exter-

nal modules ensuring that compatible versions are used can be very time consuming,

especially considering that these external libraries often also depend on further third

party libraries. For windows users this is less of a concern since only the developers

will need to compile the code; end users will simply use the binary files. However on

Unix based systems users are accustomed to compiling all applications from source.

Compilation issues are not the only reason for using such a modular design. If one

of the third party libraries becomes obsolete or unusable due to licensing restrictions,

only the module that depends on it needs to be re-written. It also makes the code easier

to maintain and debug.

2.12.2 Core

The details of how the GUI, Renderer and Python interface work will not be discussed

in this chapter. However it is worth providing slightly more detail about the Core

module. Figure 2.15 illustrates the main classes that constitute the Core module in

the form of a UML (Unified Modelling Language) Class Diagram. The methods and

attributes are omitted due to space restrictions.

The singleton class CTexGen contains a database of textiles and domains created as

well as an instance of CLogger. The virtual base class CLogger receives all the log,

warning and error messages that may be issued by any of the other classes. The CLog-

gerScreen implementation simply displays the messages on screen via standard out-

put. The CLoggerGUI implementation displays the messages to the log window in

the GUI. This class is in fact part of the GUI module but is shown in the diagram to

illustrate at least two different implementations.

CDomain and more specifically CDomainPlanes is an implementation of a domain

bounded by planes as described in Section 2.7. CTextile is an assembly of yarns which

is further specialised by CTextileWeave, CTextileWeave2D and CTextileWeave3D. The

specialised classes allow for automated creation of textile geometries with less input

variables. More specialisations are likely to be included in the future (e.g. for weft

knits, warp knits, braids, etc).
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Figure 2.15: UML Class Diagram for the Core module
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CYarn represents a yarn which is composed of a number of master nodes, an inter-

polation function (CInterpolation), and a section definition (CYarnSection). The mas-

ter nodes correspond to the control points for the interpolation algorithm. The slave

nodes are created by the interpolation function depending on the position of the master

nodes. The slave nodes are then assigned sections by CYarnSection.

The virtual base class CInterpolation represents a general interpolation function. Two

implementations of it are CInterpolationCubic and CInterpolationBezier as described

in Section 2.3.

The virtual base class CYarnSection represents a general yarn section definition. The

simplest implementation of this is CYarnSectionConstant which contains a single CSec-

tion applied along the yarn length. A further virtual base class CYarnSectionInterp

represents a section that is interpolated either between nodes (CYarnSectionInterpNode)

or at some arbitrary position (CYarnSectionInterpPosition). These classes are the im-

plementation of algorithms discussed in Section 2.5.

The virtual base class CSection represents a general section. Several implementations

of it exist as described in Section 2.4.

The procedure for creating a textile mesh as discussed in Section 2.8 is demonstrated in

pseudo code:�
for each Yarn in T e x t i l e

get SlaveNodes from C I n t e r p o la t i o n given MasterNodes

for each SlaveNode

get S e c t io n from CYarnSection given SlaveNode

assign S e c t io n to SlaveNode

c r e a t e YarnMesh from SlaveNodes

add YarnMesh to Texti leMesh
� �
2.13 Conclusions

In this chapter the geometric modelling methodology and implementation have been

discussed. These are the foundations necessary for creating geometric models of tex-

tile structures. In the following chapter real examples will be used to demonstrate the

validity of these concepts, with the aim of developing a general methodology for gen-

erating accurate textile models.
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Textile geometry model case

validations

3.1 Introduction

In this chapter, geometric models for various 2D woven fabrics will be created with

TexGen. From a geometric perspective some aspects of the models can be generalised

to all 2D woven fabrics whilst other aspects are specific to the fabric being modelled. A

moderately realistic model can be created with only a few input parameters, however

accuracy can be improved with additional input. Ideally it should be possible to predict

the geometry of any fabric without knowing the yarn path and cross-sectional shape

given information about the yarn mechanics and the manufacturing process. However,

this goes beyond the intended scope of this chapter. The objective of this chapter is to

set out a modelling methodology able to create models quickly based on geometry

alone with sufficient accuracy to be used in predicting various fabric properties. In

this thesis the focus is on fabric mechanics (see Chapter 5), however the models are

also suitable for fluid dynamics [140], thermodynamics [52, 53], etc. A list of all the

fabrics modelled in this section are shown in Table 3.1 along with the minimum input

parameters. The method with which these parameters are obtained is detailed further

in this chapter.
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Table 3.1: Summary of fabric measurements

sx sy T wx wy ρA Ac V.Y. ρ f

150TB 1.666 2 0.3 0.83 0.83 150 13.3 1.38 2.62

800S4-F1 3.16 3.16 1.0 3.16 3.16 780 159 116 2.62

Polyester 0.23 0.19 0.1 0.19 0.17 69 0.175 0.0108 1.39

Cotton 0.36 0.33 0.3 0.3 0.26 160 0.475 0.0855 1.54

mm mm mm mm mm g/m2 mm2 mm3 g/cm3

3.2 Literature survey

In this section the previous work reported on measuring fabric geometric parameters

is discussed. Various techniques have been used including optical scanning, optical

microscopy, confocal microscopy, optical coherence tomography and x-ray microto-

mography.

Dunkers et al. [34, 35] compared three imaging techniques including optical coherence

tomography, confocal microscopy and x-ray microtomography (µCT) for characteris-

ing impact damage on glass reinforced composite structures. It was found that optical

coherence tomography exhibited more detail and a higher depth of penetration than

confocal microscopy. But x-ray microtomography performed the best at clearly imag-

ing the reinforcement microstructure of the entire sample and was not limited in depth.

Although µCT was not able to satisfactorily characterise the damage, this is of no con-

cern in the context of this chapter.

Chang et al. [17] characterized the effect forming on the geometry of fabrics. Micro-

graphs were obtained for undeformed fabrics and fabrics undergoing various defor-

mations induced by picture frame, bias extension and biaxial tests. In a subsequent

paper Chang et al. [18] obtained micrographs of fabric draped over a helmet compo-

nent and then vacuum consolidated. The outline of yarn cross-sections were identified

by eye and defined by picking points using image processing software. An ellipse was

then fitted to the outline to identify the centre of the yarn. Various parameters were

extracted from the micrographs including yarn thickness, yarn spacing, yarn width,

crimp amplitude, crimp angle and unit cell length. These parameters were then com-

pared between undeformed and deformed cases. It was found that the deformed ge-

ometry depends on the test method applied.

Desplentere et al. [29, 30] characterised the geometry of 4 fabrics using a combination

of optical microscopy and microtomography. The yarn spacing and yarn width were

measured from images of the fabric obtained from an optical scanner. Cross-section
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images of the fabric were obtained by casting the fabric in epoxy resin in its relaxed

state and cutting samples to be viewed under an optical microscope. A different set of

measurements including yarn spacing, yarn width and fabric thickness were obtained

from the cross-sectional images. A third set of measurements were obtained by scan-

ning the fabric cast in epoxy resin with a microtomography machine. For each of these

sets of measurements the variability of each parameter was observed. Using the aver-

age of these data sets models were generated using the WiseTex software. However no

attempt was made to compare the geometry generated by WiseTex with the microscopy

or microtomography data.

Potluri et al. [99] used optical microscopy to measure geometric parameters from a

series of glass woven composite preforms. A series of high resolution images were

stitched together to provide easier measurement of geometric parameters. Yarn spac-

ing, tow widths, crimp values and tow thicknesses were measured for all fabrics. The

maximum angle between the yarn direction and the horizontal plane was measured

for the plain woven fabric. These parameters were used as input to their energy based

fabric mechanical model [110, 111].

3.3 Experimental techniques

This section describes the methods used to obtain and compare fabric geometric data.

3.3.1 Fabric thickness

Fabric thickness measurement can be problematic due to the high level of fabric com-

pressibility. The thickness obtained is highly sensitive to the amount of pressure ap-

plied during measurement. This chapter aims to model dry, undeformed fabrics hence

the undeformed fabric thickness is required. This is defined as the distance between the

closest two planes which encompass the fabric without intersecting with it. However

some fabrics may contain stray fibres which artificially increase this thickness. Some

common sense is needed for determining which fibres to ignore. In practical terms it

is necessary to place the fabric between two flat plates and apply a small pressure to

ensure the plates are touching the surface of the fabric.

For the Chomarat fabrics, the manufacturers provide a fabric thickness measurement

obtained as described in British Standard Method (BS ISO 4603:1993). The method

consists of placing the fabric between two plates of 20 mm diameter and applying a

force between 3 and 8 N. This is equivalent to a pressure of between 10 and 25 kPa (100
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and 260 gf/cm2). This is a substantial force capable of compressing the material to a

large degree. In order to obtain the undeformed thickness a much smaller force should

be applied.

The Kawabata evaluation system for fabrics (KES-f) [59] is a very sensitive system able

to precisely measure the thickness of fabrics as a function of pressure. This system also

operates on the principle of applying a small force to a fabric between two plates. Two

thickness values are specified by the KES-f system, T0 and Tm which represent the fabric

thickness at minimum pressure (0.5 gf/cm2 or 0.05 kPa) and maximum pressure (50

gf/cm2 or 5 kPa) respectively. This is a very useful system but is also very expensive

and not widely available. However some KES-f compaction tests were performed at

Heriot Watt University for the present study.

An alternative is to obtain cross-sectional images of the fabric and measure the thick-

ness of the fabric from these. This has the advantage that no force needs to be applied

to the fabric during measurement. However it is possible that the sample may be dis-

turbed during the mounting and/or casting process.

3.3.2 Microscopy

Microscopy is used to obtain cross-sectional images of a fabric cut along a particular

plane. In order to restrict the movement of the fibres during the cutting phase the fabric

is first cast in Reichhold Polylite 32032-00 resin. After allowing the resin to cure the

composite structure can be cut along a desired plane. The surface is then polished on

a Struers Dap-7, Pedemin-S polishing machine to obtain a smooth flat surface. A Zeiss

Axiolab microscope is used to take highly magnified images of the structure. In order

to obtain an image covering a large area it is necessary to take a large number of small

images and assemble them together. This is accomplished automatically with a mobile

stage controlled by an ITK Multicontrol 2000. The images are assembled together by a

Python script making use of the Python Imaging Library [85].

The images of the cotton and polyester fabrics were provided by Unilever [74]. The

fabrics were cast in resin and sectioned in a similar manner as described above. Images

of the cotton and polyester sections were obtained with a scanning electron microscope

(SEM). Additional images were taken of polyester fabric sections through an optical

microscope.
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3.3.3 Microtomography

This is the most advanced form of validation used in the present study. While mi-

croscopy is used to obtain 2D images, microtomography is used to obtain 3D volumet-

ric data of a fabric. Microtomography, also known as MicroCT or µCT, is a microscopic

form of X-ray computed tomography and uses x-rays to create cross-sections of a 3D

object that can later be used to recreate a virtual model without destroying or disrupt-

ing the original object. In microtomography the pixel sizes of the cross-sections are in

the micrometer range. It is important to note that the virtual model in this context is

only suitable for viewing purposes and image analysis. It is the 3D analogue of a 2D

image, with the virtual model made up of a 3D array of voxels (3D pixels). The geo-

metric models created by TexGen have more detailed information such as the yarn path

and cross-sectional shapes. The data obtained from µCT is an aid to creating accurate

geometric models rather than a replacement for such models.

The machine used was a SCANCO Medical µCT 40. The fabric samples where placed

in a 2 cm diameter tube held in place by a foam structure invisible to x-rays. Due to

the small size of the samples, tape was placed at the cut edges to keep the fabric from

falling apart. The tape is also fairly transparent to x-rays.

The polygonisation of voxel data from the µCT machine is obtained using an imple-

mentation of the marching cubes algorithm [83] programmed by the present author.

The images are not perfect, due to a certain amount of noise present during the scan-

ning process and also limitations on resolution (18 µm in this case). Although visu-

ally impressive, it is difficult to use reconstructed 3D images directly for validation

purposes. However 2D slices of the µCT data can be extracted along any plane as a

post-processing step.

3.3.4 Measuring parameters

Yarn spacing, width, height and fabric thickness are measured from cross-sectional im-

ages of the fabric obtained from both microscopy and µCT using GIMP [61] (GNU

Image Manipulation Program). Yarn spacing was measured as the distance from the

edge of one yarn to the corresponding edge of an adjacent yarn. Yarn width and height

were measured as the maximum distance between yarn edges along the major and mi-

nor axes respectively. Fabric thickness was measured as the maximum through fabric

distance between the opposite edges of two crossing yarns. The height of the yarn was

assumed to be equal to half the fabric thickness and only one of these two measure-

ments was taken. In the case of the µCT images where the resolution is lower and the
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boundary between two crossing yarns is difficult to identify, the fabric thickness mea-

surement was taken. In the case of the microscopy images where the image resolution

is higher and the yarn boundaries are clearly identifiable the yarn thickness measure-

ment was taken.

Direct spacing measurements of the fabric were also performed with a ruler. In order

to minimise the effect of fabric variability and measurement inaccuracies, the number

of yarns was counted over a length of approximately 5 cm. The spacing measurement

was then calculated as measurement length divided by number of yarns.

3.3.5 Image analysis

Cross-sectional images of the fabric obtained from microscopy were compared against

cross-sections of the TexGen model to validate yarn path and cross-sectional shape. An

image analysis technique with some manual intervention was used to identify various

coordinates. Two steps were performed, determining the path of the transverse yarn

and location of the longitudinal yarns.

The first step in the image analysis is to determine the path of the transverse yarn,

which is done by manually selecting pixel coordinates that lie on the centre of the yarn

at the crossovers and either edge of the image. The transverse yarn is given a height

measured in pixels. Then using either a bezier or periodic cubic interpolation function,

the path of the yarn with given height is drawn.

The second step is to determine the position and rotation of the longitudinal yarns.

This is accomplished using an algorithm which overlays predefined cross-sections over

the image at all possible locations. At each location the average intensity of the pixels

located within the cross-section is computed and used as a measure of fit. The process is

shown graphically in Figure 3.1. The image resolution has been reduced for illustration

purposes. The red outline is the closest approximation of an elliptical cross-section fit

to the boundaries of the pixels. The numbers represent the intensity of each pixel and

the number at the centre of the cross-section represents the average intensity of all

the pixels contained within the cross-section (i.e. fit factor). A tolerance is applied

to the fit factor to discard locations which clearly do not correspond to longitudinal

yarns. Then remaining cross-sections which overlap are compared together, removing

the one with the lowest fit factor. Figure 3.2 displays two overlapping cross-sections

offset horizontally by 1 pixel from each other. Cross-section B has a lower fit factor

(46.8) than cross-section A (47.6), hence cross-section B is discarded. After repeating

this process for all overlapping cross-sections only the best fit cross-section remains.
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Figure 3.1: Pixel intensities averaged over predefined cross-section

Figure 3.3 illustrates the result of a high resolution cross-section image analysed with

this technique. Note that this method is only applicable to images where the pixel

intensity of yarns is significantly greater than that of the regions around it (i.e. µCT

images and not microscopy images).

In order to create the predefined cross-section an assumption about its shape, size and

rotation must be made. The width and height of the sections are measured from the

image beforehand and an assumed shape is used. Generally an elliptical cross-section

shape is adequate for the purpose of determining the centre and rotation of the yarn.

A range of rotations at given intervals are tried by the algorithm to obtain the rotation

which best fits the section image. This algorithm is not suitable for comparisons be-

tween cross-sections with different areas because the fit factor is biased towards lower

area.

Path comparison

A method to quantify how closely two yarn paths match up is presented in this section.

Given two yarn centrelines Sa and Sb, it is useful to be able to quantify how closely

these two paths agree. The root mean square drms of the distance d between the two

paths is a good measure of fit and is calculated as follows.

A series of n equi-spaced point samples Pai are created along the length of the yarn
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Figure 3.2: Comparison of pixel intensities averaged over two predefined

cross-section

Figure 3.3: Image analysis example
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centreline Sa. A second series of n points Pbi are calculated such that all points lie on

the yarn centreline Sb and the distances di between each pair of points Pai and Pbi are

minimised. The algorithm to find the closest point on a yarn centreline to an arbritrary

point is described in Section 2.11.1. If the two paths do not deviate significantly then

Sa and Sb can be interchanged without affecting the values of di.

The distance di between each pair of points is defined as:

di = ‖Pai − Pbi‖ (3.1)

The root mean square drms can be expressed as:

drms =

√
1
n

n

∑
i=1

d2
i (3.2)

The same approach can be taken to compare experimental data with an analytical yarn

path. The only difference is the way in which the points Pai are obtained. The points

can be identified by manually selecting equi-spaced pixel coordinates lying on the cen-

treline of a yarn from cross-section images. Before calculating the distances di the coor-

dinates of Pai and Pbi must be in the same coordinate space. This is achieved either by

transforming the pixel coordinate system to the yarn centreline Sb coordinate system

or vice versa. An alternative approach is to construct the yarn centreline Sa directly in

pixel coordinate space (this is the approach taken for convenience). When calculating

the root mean square value in pixel coordinate space, it is given in pixels and thus must

converted back to the appropriate units (i.e. metres or millimetres).

Fibre volume fraction measurement

A simple method to determine the fibre volume fraction within a fabric from cross-

sectional images is presented in this section. Given a grayscale cross-sectional image

of a fabric an estimate of the fibre volume fraction can be obtained. The fibres in the

image will generally have a higher brightness than the matrix region. Thus the ratio

of pixels with a brightness greater than a threshold value to the total number of pixels

gives an estimate of fibre volume fraction. In order for this technique to be reliable the

contrast between the fibres and resin must be good. Without good contrast the choice

of a suitable threshold is subjective.

3.4 Case study: Chomarat 150TB

Chomarat 150TB is a glass fibre plain woven fabric (Figure 3.4). This open plain weave

fabric proves to be a good initial study, posing relatively little challenge in terms of
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Figure 3.4: Chomarat 150 TB

geometric modelling.

Figure 3.5: Illustration of discrete points for defining the yarn paths

To start with, the paths of the yarns are described by specifying discrete points along it

and interpolating as described in Section 2.3. The simplest way to do this is by specify-

ing points at the crossovers only as shown in Figure 3.5. Two measurements from the

fabric are needed for this step, the yarn spacing s and vertical distance z between yarn

centrelines at crossovers. In this case the yarn spacing between warp and weft yarns

are different and are denoted as sx and sy respectively. The height of a yarn h, thick-

ness of a fabric T and vertical distance z are all assumed to be related in the following

manner:

z = h =
T
2

(3.3)

From cross-sectional images all three of these quantities are measurable, however when

using a mechanical measuring device such as the KES-f only the value T is measurable.

For comparison purposes the value measured will be converted to fabric thickness T
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henceforth. The thickness measurements1 using the techniques available are shown in

Table 3.2 and the yarn spacing measurements2 are shown in Table 3.3.

Table 3.2: Chomarat 150TB thickness measurements

Method Mean (mm) Pressure (gf/cm2) STD (mm) Samples

KES-f 0.301 0.5 0.00404 3

µCT 0.297 0 0.0127 10

Microscopy 0.248 0 0.0171 10

KES-f 0.205 50 0.00361 3

Manufacturer 0.18 100 - 260 N/A 10

Table 3.3: Chomarat 150TB yarn spacing measurements

Method Mean sx (mm) Mean sy (mm) STD (mm) Samples

Ruler 1.666 2 0 3

µCT 1.686 1.97 0.087 10

Microscope 1.602 1.93 0.074 10

The thickness measurements tend to vary significantly depending on the method used.

This is thought to be due to the high sensitivity to pressure. Sensitivity of mechanical

properties to fabric thickness will be explored in Chapter 5. The spacing measurements

are more consistent between the different methods used.

Secondly the yarn cross-sections must be defined. The cross-section will be defined

initially as constant throughout the whole unit cell. The measurements for the width3

w of the yarn are shown in Table 3.4. An elliptical cross-section is assumed at this stage

(validated later).

Table 3.4: Chomarat 150TB yarn width measurements

Method Mean (mm) STD (mm) Samples

µCT 0.819 0.064 10

Microscope 0.841 0.063 10

Finally the interpolation function must be specified. Two options are considered, pe-

riodic cubic interpolation and Bézier interpolation. Two models have been created to

compare the two different interpolations as shown in Figure 3.6. Upon visual inspec-

tion the models generated by using the two different interpolation functions appear to

1The average of the KES-f and µCT values rounded to 2 decimal places is used to generate the model
2The values measured by ruler are used to generate the model
3The average of the µCT and Microscope values rounded to 2 decimal places is used to generate the

model
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be identical. The root mean square drms of the distances between the two curves is in-

significant at 4.683×10−6mm with 100 sample points. Hence the choice of interpolation

function between the two proposed is not important for this fabric (Bézier interpolation

is used for convenience).

Figure 3.6: Chomarat 150TB with Bézier interpolation (top) and with periodic cubic

interpolation (bottom)

Due to the variable nature of the fabrics it is necessary to create a series of geometric

models incorporating the variability to accurately represent the fabric. Rather than

displaying images and calculations for each possible model, a base model is created

with rounded values for convenience (see Table 3.1). In Chapter 5 variations on the base

model will be analysed to assess the effect of these parameters on fabric mechanical

properties.

Having created a base geometric model of the textile, it is necessary to validate the

assumptions made such as yarn path and cross-sectional shape.

3.4.1 Validation

µCT analysis

Using µCT, a reconstructed image of the Chomarat 150 TB fabric was created (Figure

3.7).

Figure 3.8 shows a single slice of the µCT data before and after image analysis. The

analysis (as described in Section 3.3.5) was done with an assumed elliptical shape, with
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Figure 3.7: Chomarat 150TB µCT reconstruction

rotations ranging from -0.1 to 0.1 radians in 20 intervals.

Figure 3.8: Chomarat 150TB µCT slice, original (top) analysed (bottom)

From image analysis the yarn path fits the interpolated path constrained at the cross-

overs alone very well. The root mean square drms of the distances between points cho-

sen along the yarn centreline and the analytical spline is 6.20×10−3mm (Note the value

is the same for both Bézier and Natural cubic spline).

The high resolution images of the fabric cross-sections obtained from microscopy are

ideal for determining yarn cross-section shape. Unfortunately the cross-section fitting

algorithm described in Section 3.3 is not suitable for microscopy images, thus the fit

must be done manually. One such image is shown in Figure 3.9 with a lenticular section

fitted to it. As can be seen by the image, the lenticular section is more suitable than an

elliptical section. Although the cross-section fit may be improved by using a polygon

or a spline, both require many more parameters. The lenticular section described in

Section 2.4.3 only requires 3 parameters to define it: width, height and distortion. Due

to the variable nature of the cross-sectional shape, it is necessary to take measurements

from several sections and average the parameters. This task is simplified by choosing

a simple shape such as the lenticular cross-section.

The lenticular shape parameters can be obtained by measuring 4 points P1, P2, P3 and

P4 on the yarn cross-section as shown in Figure 3.9. A fifth point P5 is defined as the

intersection between the line segments created between points P1-P2 and P3-P4. The

48



CHAPTER 3: TEXTILE GEOMETRY MODEL CASE VALIDATIONS

P1 P2

P3

P4

P5

Figure 3.9: Chomarat 150TB yarn cross-section shape at crossover

width w, height h and distortion d can then be calculated as follows:

w = ‖P2 − P1‖ (3.4)

h = ‖P4 − P3‖ (3.5)

d = ‖P5 − P3‖ −
h
2

(3.6)

However, only the width and height of the section are strictly necessary. The distortion

parameter d can be calculated such that points P1 and P2 are in contact with the crossing

yarn (this is the approach used). Since the section is not symmetric about the x axis it

is necessary to invert it from one crossover to the next along the length of the yarn.

This is done as described in Section 2.5.2. Figure 3.10 illustrates the comparison of a

TexGen generated cross-section and a micrograph cross-section half way between two

crossovers. The full TexGen model is shown in Figure 3.11.

Figure 3.10: Chomarat 150TB yarn cross-section shape between crossovers

Figure 3.11: Chomarat 150TB refined model
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Table 3.5: Chomarat 150TB distortion measurements

Method Mean (mm) STD (mm) Samples

Microscope 0.0284 0.00528 5

For completeness Table 3.5 shows the average distortion parameter obtained from a

series of cross-section measurements.

Volume fraction

It is necessary to ensure that the yarn volumes in the geometric model do not intersect.

This validation can be done without any further knowledge of the textile (see Section

2.11.2). In the model created above, there are no intersections between the yarn vol-

umes. This is due in part to the fact that the ratio of yarn width to yarn spacing is

large.

It is possible to perform some consistency checks between the mass m and volume Vy

of yarns in a unit cell (see Section 2.10). The areal density ρA of the fabric was obtained

from the manufacturer’s data sheet, the density ρ of E-glass fibres was obtained from

Reinhard et al. [101] and the yarn volumes and unit cell area are calculated from the

geometric model.

Table 3.6: Chomarat 150TB properties

Fabric properties

Total areal density ρA 150 g/m2

Warp areal density 82 g/m2

Weft areal density 68 g/m2

Fibre density ρ f 2.62 g/cm3

Geometric model properties

Unit cell area A 13.333 mm2

Total yarn volume V.Y. 1.384 mm3

Warp yarn volume 0.755 mm3

Weft yarn volume 0.630 mm3

Volume fraction calculations

Volume of fibres V.F. 0.763 mm3

Volume fraction Vf y 0.552

The total volume of the fibres V.F. within a unit cell of fabric is calculated with the
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following equation:

V.F. =
m
ρ f

=
ρA A
ρ f

(3.7)

The ratio of fibre volume to yarn volume Vf y is then calculated with:

Vf y =
V.F.
V.Y.

(3.8)

The results are shown in Table 3.6.

The absolute maximum acceptable volume fraction for circular fibres would be 0.907,

assuming the fibres are arranged in a hexagonal array and all fibres are just touching

each other. This is a rather idealised case; in actual yarns the fibres are not organised

in a regular array. In order to verify the calculation a threshold is applied to a cross-

sectional image obtained by optical microscopy such that 55% of the brightest pixels are

highlighted (Figure 3.12). The boundaries of the fibres are not clearly visible indicating

that the threshold may be too high. The threshold was then manually adjusted until

the boundaries of the fibres were clearly visible without losing pixels corresponding

to fibres. The best fit was found at approximately 41%. This indicates that there may

have been some innacuracies in the volume fraction calculation. A possible cause for

the innacuracies may be that the volume of the yarns V.Y. in the model is smaller than

in reality. However since the contrast between the fibres and matrix in the micrograph

was not sufficient to clearly distinguish between the two, this method should not be

considered reliable.

As a further consistency check the ratio of warp/weft yarn masses (1.206) obtained

from the manufacturers data should be approximately equal to the ratio of warp/weft

yarn volumes (1.198) calculated from the geometric model. There is less than a 0.7%

difference between these two ratios.
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Original grayscale image

55% white pixels

41% white pixels

Figure 3.12: Threshold applied to Chomarat 150TB micrograph
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3.5 Case study: Chomarat 800S4-F1

Figure 3.13: Chomarat 800S4-F1

Chomarat 800S4-F1 is glass fibre 4 harness satin woven fabric (Figure 3.13).. This fabric

is more challenging to model due to its higher tightness.

Fabric thickness measurements4 are shown in Table 3.7 using the various methods

available. Yarn spacing5 and width6 measurements are shown in Table 3.8 and Table

3.9 respectively. In this case the spacings between warp and weft yarns are the same,

thus only one spacing measurement appears in the table. With these measurements

and visual observation of the fabric weave pattern, the yarn path is described by spec-

ifying points at crossovers alone. The cross-section is defined as an ellipse all along the

yarn as with the initial Chomarat 150TB model and the yarn path is interpolated with

a Bézier spline.

Figure 3.14 shows the TexGen model created. Although the model looks similar to

the real fabric, after analysis it is clear that there are intersections between the yarn

volumes. The measurements taken above cannot be modified since they have been

measured from the real fabric. The only parameters which can be changed are the

assumed yarn path and section shape.

4The average of the KES-f and µCT values rounded to 1 decimal place is used to generate the model
5The values measured by ruler rounded to 2 decimal places are used to generate the model
6The width of the yarn in the model is the maximum allowable by the interference correction algorithm
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Table 3.7: Chomarat 800S4-F1 thickness measurements

Method Mean (mm) Pressure (gf/cm2) STD (mm) Samples

KES-f 1.146 0.5 0.210 3

KES-f 0.978 50 0.0762 3

µCT 0.904 0 0.0334 10

Microscopy 0.828 0 0.0551 6

Manufacturer 0.75 100 - 260 N/A 10

Table 3.8: Chomarat 800S4-F1 yarn spacing measurements

Method Mean (mm) STD (mm) Samples

Ruler 3.158 0.0382 3

µCT 3.322 0.354 10

Microscope 3.167 0.245 5

Table 3.9: Chomarat 800S4-F1 yarn width measurements

Method Mean (mm) STD (mm) Samples

µCT 3.314 0.182 10

Microscope 2.920 0.0857 6

Figure 3.14: Basic Chomarat 800S4-F1 TexGen model

54



CHAPTER 3: TEXTILE GEOMETRY MODEL CASE VALIDATIONS

First the yarn cross-section shapes will be refined at the crossovers in an attempt to

remove intersections. By displaying a cross-section through the textile at the crossovers

the intersections are clearer. From Figure 3.15 three types of crossovers can be identified

labelled 1, 2 and 3. The first is when the crossing yarn changes position on both sides,

the second is when the crossing yarn changes position on only one side and the third

case is when the crossing yarn does not change position on either side. Cases 1 and 2

intersect with the crossing yarn, while case 3 does not.

1 2 3 2

Figure 3.15: Cross-section of basic Chomarat 800S4-F1 TexGen model

For case 1, the half of the yarn cross-section that is in contact with the crossing yarn (the

lower half in this case) will be modified to follow the yarn path. This is done numeri-

cally by obtained a number of points Pi lying on the edge of the yarn cross-section. If

the line segment from the centre of the yarn Pc to point Pi intersects with the transverse

yarn then the point is moved. The new position of the point is the intersection of the

line with the transverse yarn surface.

For case 2, the section is rotated before the point positions are adjusted in order to

minimise cross-section deformation (these rotations can be observed in micrographs

and µCT images, as presented in Section 3.5.1). The angle of rotation θ is calculated as:

θ = tan−1
(

h
2s

)
(3.9)

The resulting cross-section of the textile is shown in Figure 3.16.

θ

2s

h

Figure 3.16: Cross-section of refined Chomarat 800S4-F1 TexGen model

The full refined TexGen model can be seen in Figure 3.17. The number of intersections

has been reduced, but they have not been completely eliminated. The model is trans-

parent such that the intersections can be seen, illustrated as small white spheres. The

intersections can be seen more clearly by taking a cross-section diagonally across the

fabric where the intersections occur (Figure 3.18).

The remaining intersections occur between crossovers rather than at the crossovers

themselves. With some further refinement of the yarn cross-section, these intersections

can be removed. First of all it is necessary to ensure that the centreline of the yarn
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Figure 3.17: Refined Chomarat 800S4-F1 TexGen model with intersections shown

Figure 3.18: Diagonal cut of refined Chomarat 800S4-F1 TexGen model

half way between crossovers lies exactly on the mid-plane of the fabric. This can be

achieved by adding an additional node at this position, however a more convenient

alternative is to create a spline that passes through this point without specifying addi-

tional nodes. This is done by using a Bézier spline and specifying that the tangents at

all the nodes lie in the horizontal plane. It is not possible to specify the tangents for the

cubic periodic spline. Secondly the section shape half way between crossovers must

be specified such that it does not intersect with crossing yarns. The section shape is

created as the intersection of the two unrotated sections at the master nodes between

which it lies (Figure 3.19).

Master node

Master node

Mid-node section

Figure 3.19: Section specified between crossovers

With these refinements, an intersection free model can be created and is shown in Fig-

ure 3.20.
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Figure 3.20: Final Chomarat 800S4-F1 TexGen model

3.5.1 Validation

µCT analysis

Figure 3.21: Chomarat 800S4-F1 µCT reconstruction

Figure 3.21 shows the reconstructed fabric from the µCT data. Firstly, a comparison

of the differences between Bézier and periodic cubic splines is shown in Figure 3.22.

The figure shows a section taken from the µCT data, with points on the crossing yarn

identified manually and interpolated by a Bézier spline and a periodic cubic spline re-

spectively. The root mean square drms value between the Bézier spline and the periodic

cubic spline is 11.96×10−3 mm which is far greater than for the Chomarat 150TB plain

weave. This is due to the fact that this fabric is not a plain weave and the tangents at

the nodes will be different between the two splines as a result. The root mean square

drms fit for the Bézier spline is 9.59×10−3 mm, whereas the periodic cubic spline has

a drms of 17.4×10−3 mm. Both paths provide a good fit; in this case the Bézier spline

is preferred because it gives control over the node tangents which are used to prevent

interference in the model.

With image analysis the positions and rotations of the longitudinal yarns were deter-

mined for several cross-sections along the centre of the transverse yarns. Three such

cross-sections are shown in Figure 3.23. An assumed elliptical shape was used for the

algorithm, with rotations ranging from ±10◦ at 20 intervals.

The rotations of the sections are of special interest since in the TexGen model, rotations
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Figure 3.22: Yarn path comparison for 800S4-F1

Figure 3.23: Yarn path and cross-section fits for 800S4-F1
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have been applied at certain positions. It is possible to verify that this use of rotations

is correct by comparing with the µCT cross-section images. The average rotation over

10 cross-sections of type 2 (see Figure 3.15) is 3.87 degrees with a standard deviation

of 0.54 degrees. The assumed rotation was 3.04 from Equation 3.9. Agreement is close

enough to suggest that the revised model is accurate.

Cross-sections taken between longitudinal yarns (where the longitudinal yarns cannot

be seen) are also extracted from the µCT data. Three such cross-sections are shown in

Figure 3.24. To compare against the TexGen model, a cross-section is also taken be-

tween yarns and shown side by side with a representative µCT cross-section in Figure

3.25. Similarities between the two can be seen, with the rotations of the sections in

the same directions. The two lower left cross-sections form a sharp edge where they

meet which is not present in the two upper right cross-sections. Again variability ex-

ists within the real fabric that is not captured within the TexGen model, but overall the

shape agreement is good.

Figure 3.24: Cross-section fits for 800S4-F1

Figure 3.25: Cross-section comparison for 800S4-F1

In conclusion, a method to create a geometric model of an interference free tightly

packed 2D weave has been generated that is applicable to any 2D weave. The revised

algorithms to define yarn rotations and to modify cross-sections (avoiding interference)

have been implemented as advanced options in TexGen.

The geometry created for the Chomarat 800S4-F1 has been verified against µCT mea-

surements, showing good agreement.
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Table 3.10: Chomarat 800S4-F1 properties

Fabric properties

Total areal density 780 g/m2

Fibre density 2.62 g/cm3

Geometric model properties

Unit cell area 159.7 mm2

Total yarn volume 115.6 mm3

Volume fraction calculations

Volume of fibres Vf 47.54 mm3

Volume fraction VF 0.411

Volume fraction

From the fabric properties and the geometric model properties the volume fraction of

the yarns is calculated and shown in Table 3.10. As an additional validation a threshold

is applied to a cross-sectional image obtained by optical microscope such that 41% of

the brightest pixels are highlighted (Figure 3.26). Individual fibres are clearly visible,

providing confidence in the accuracy of the volume fraction calculation.

Original grayscale image

41% white pixels

Figure 3.26: Threshold applied to Chomarat 800S4-F1 micrograph

3.6 Case study: Unilever woven polyester standard

The polyester fabric, like the Chomarat 150TB, is a plain woven fabric with untwisted

yarns (Figure 3.27). The input dimensions which were measured from SEM images

of the fabric provided by Unilever are shown in Table 3.11. The model was created

using Bézier interpolation and cross-section interference correction as described for the
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Figure 3.27: Polyester fabric

Chomarat 800S4-F1 fabric. The generated model is shown in Figure 3.28.

Table 3.11: Polyester yarn measurements

Value Mean (mm) STD (mm) Samples

sx 0.226 0.00474 10

sy 0.190 0.00423 10

T 0.0970 0.00645 4

wx 0.192 0.00398 8

wy 0.170 0.00724 8

Figure 3.28: Polyester TexGen model
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A visual comparison between the TexGen model cross-section and the real fabric cross-

section is shown in Figure 3.29. The drms value between the Bézier and periodic cubic

spline is an insignificant 8.862×10−5mm. Hence the type of spline used for this fabric

is not important. The drms value between points selected on the image and the spline is

1.86×10−3mm which is small in comparison with the fabric thickness of 0.1 mm. The

fit between the spline and the real fabric path is good.

Figure 3.29: Polyester section comparison

As can be seen from the cross-section image, the number of fibres contained with a yarn

is 24 which is very small compared to the previous examples. It is debatable whether it

is reasonable to model the yarns of such a fabric with solid volumes. This may depend

on the calculation to be undertaken, hence this discussion will be saved for Chapter

5. In Chapter 4 the fabric will be modelled with each fibre as a separate entity hence

the radius of the fibres is important. Table 3.12 shows the fibre radius measurements

obtained from the cross-sectional images of the fabric.

Table 3.12: Polyester fibre radius measurements

Value Mean (mm) STD (mm) Samples

r 0.0183 0.000687 10

3.6.1 Validation

From the fabric properties and geometric model properties the volume fraction of the

yarns is calculated and shown in Table 3.13. The volume fraction is higher than all the

previous fabrics. It can be seen from the cross-sectional Figure 3.29 that the fibres are

tightly packed together. This is verified with image analysis (Figure 3.30). In this case

the image obtained from the thresholding technique was manually edited with GNU

Image Manipulation Program (GIMP [61]) to improve the determination of fibre and

resin areas. Since the fibres are so large in comparison with the tow it is difficult to

identify a representative area over which to determine the threshold but the technique

gives an estimate (84%).
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Table 3.13: Polyester properties

Fabric properties

Areal density 69 g/m2

Fibre density 1.39 g/cm3

Geometric model properties

Unit cell area 0.1748 mm2

Yarn volume 0.0108 mm3

Volume fraction calculations

Volume of fibres V.F. 0.008677 mm3

Volume fraction Vf y 0.80

Original image

84% black pixels

Figure 3.30: Threshold with manual intervention applied to polyester micrograph
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3.7 Case study: Unilever standard cotton sheeting

Figure 3.31: Cotton fabric

The cotton fabric is also a plain weave (Figure 3.31). Unlike all the other fabrics pre-

sented in this chapter the yarns are twisted. However since the yarns are modelled

as solid volumes, this has little impact on the geometrical model. The input dimen-

sions are shown in Table 3.14 and the generated model is shown in Figure 3.32. Bézier

splines are used for the yarn paths and cross-sections are generated as with the Cho-

marat 800S4-F1. The measurements where obtained from scanning electron microscope

cross-section images of the fabric.

Table 3.14: Cotton yarn measurements

Value Mean (mm) STD (mm) Samples

sx 0.359 0.0285 8

sy 0.327 0.0155 8

T 0.287 0.0166 10

wx 0.295 0.0521 8

wy 0.255 0.0169 8

Figure 3.33 shows a comparison of the TexGen model with the cross-section images

of the fabric. Unlike all the previous examples, this fabric has twisted yarns which

is the reason for the poorly defined cross-sections. This does not affect the TexGen
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Figure 3.32: Cotton TexGen model

model since the yarns are modelled as solid volumes, however it will influence the

mechanical properties of the yarns as discussed in Chapter 5. The drms value between

the Bézier and periodic cubic spline is 0.854×10−3mm which is larger than for the other

plain weaves analysed earlier. This is due to the amount of crimp present in the fabric.

The differences between the two splines start to become apparent as the amplitude

increases. The drms value between points selected on the image and the periodic cubic

spline is 7.914×10−3mm. The drms value between points selected on the image and the

Bézier spline is 6.967×10−3mm. The results are not conclusive but the Bézier spline

seems to provide a slightly better fit.

Figure 3.33: Cotton section comparison
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Table 3.15: Cotton properties

Fabric properties

Areal density 160 g/m2

Fibre density 1.54 g/cm3

Geometric model properties

Unit cell area 0.4752 mm2

Yarn volume 0.0855 mm3

Volume fraction calculations

Volume of fibres V.F. 0.0493 mm3

Volume fraction Vf y 0.577

3.7.1 Validation

From the fabric properties and geometric model properties the volume fraction of the

yarns is calculated and shown in Table 3.15. Validation of the volume fraction with

thresholding was not performed as it was difficult to distinguish between the fibres

and matrix from the images (see Figure 3.34).

Figure 3.34: Close up of cotton micrograph

3.8 Conclusions

The geometrical modelling of a range of 2D woven textiles has been presented in this

section including two fabrics typically used as textile composite reinforcements (Cho-

marat 150TB and 800S4-F1) and two fabrics typically used as clothing fabrics (Unilever

polyester and cotton). Cross-sectional images of all the fabrics were obtained using op-

tical microscopy and SEM. 3D data of the Chomarat fabrics were obtained via microto-
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mography. Using this data, measurements of yarn width, spacing and fabric thickness

were obtained. Fabric thickness was also obtained from KES-f measurements. Using

this input, geometrical models of the fabrics were created using the TexGen software

described in Chapter 2.

Intersection between yarns was found to be a problem for the Chomarat 800S4-F1,

cotton and polyester models. A generic method applicable to 2D woven fabrics was

devised to modify the models such to remove these intersections without requiring

additional input parameters or modifying the original input parameters.

The resulting models were validated against the microscopy, SEM and µCT data. Vali-

dation included a visual comparison between yarn path and cross-sectional shape and

numerical calculation of the root mean square difference of the generated and mea-

sured yarn path. The yarn path fit was found to be better for fabrics with lower crimp.

For the Chomarat 800S4-F1 fabric, yarn rotations were obtained from image analysis

and compared against the modelled rotations. Fibre volume fractions within yarns

were calculated for all the fabrics and found to lie within acceptable limits. The final

geometric models are considered to be highly accurate, however the accuracy of the

dimensions of the models depends entirely on the input parameters. A high degree

of variability was found between the different measurement techniques, especially for

the fabric thickness. This is thought to be due to the susceptibility of fabrics to defor-

mations during manufacture and handling.

The two Chomarat geometric models will be used in Chapter 5 for finite element anal-

ysis of their mechanical properties. The dimensions measured for the polyester fabric

will be used in Chapter 4 for modelling its shear behaviour using a novel numerical

technique. The cotton fabric geometric model has been created to demonstrate the

ability to model a wider range of fabrics, and is not carried further in the present study.
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Mechanical modelling of tows

4.1 Introduction

In this chapter the mechanical behaviour of yarns and more specifically tows is anal-

ysed. This is a challenging task considering that each fibre within a yarn is a sepa-

rate body. There are various types of yarn. Some yarns have sizing applied to them

which keep the fibres bonded together and promote fibre-resin bonding. Some yarns

are twisted in order to keep the fibres together. Tows are a subclass of yarns where

the fibres are all aligned parallel to the yarn axis (i.e. untwisted yarns). Each type

of yarn requires a very different modelling approach. The focus of this chapter is on

non-impregnated tows. The literature survey (Section 4.2) shows that the interactions

between fibres within a yarn plays a significant role in its mechanical properties.

In Section 4.3 details of a numerical model designed to model these interactions are

presented. Fibres are modelled as cylinders which are able to bend according to Euler-

Bernoulli beam equations. A small section of tow is modelled containing a number

of these fibres all approximately parallel to each other. The fibres are distributed ran-

domly following a pre-defined distribution. Contact forces between the fibres are re-

solved in an iterative manner to obtain a converged steady state. In Section 4.4 the

model is used to simulate the compaction of a tow. Boundary conditions are applied

to the tow section calculating deformation energy in the fibres over a series of steps.

Hundreds of these small sections of tow are modelled and results are averaged to ap-

proximate the behaviour of an entire tow. These results are compared to experimental

data from various sources.

In Section 4.5 the model is extended to represent several tows interacting with each

other in a simple plain weave arrangement. Due to limitations in CPU power, the

number of fibres within a tow must be relatively small. However this model is suitable
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for modelling the behaviour of the polyester plain weave presented in Chapter 3. The

initial geometry of the plain weave can be predicted with this model and is compared

against the TexGen model previously created. The model is also able to predict the

friction energy dissipated during shearing of the fabric.

4.2 Literature survey

In this section, a survey of the existing publications relevant to modelling of mechanical

properties of tows is described. Characterising the mechanical properties of tows is an

important step in modelling of textile unit cells. One of the most important properties

to obtain is the transverse compaction of tows. As will be shown in Chapter 5, the

compaction properties of tows not only affect the compaction properties of textile unit

cells but also their tensile and shear properties.

4.2.1 Compression of random fibre assemblies

Several studies have developed analytical models for the compaction of fibre assem-

blies. One of the earliest dates back to 1946 and was by van Wyk [136]. He proposed an

analytical model for the compression of randomly oriented wool fibres which in con-

trast to tows have no preferential fibre direction. More specifically, he determined the

pressure applied to an assembly of fibres as a function of their bounding volume. van

Wyk simplified the problem by assuming that the only force resisting compression is

due to bending of fibres caused by fibre to fibre point contacts. The average distance

λ between contact points along the length of a fibre is calculated by taking the total

length of fibre L within the bounding volume v and dividing by twice the total number

of contacts n within that volume. Two different methods are described for calculating

the number of contacts within the volume based on mathematical probabilities of fibres

intersecting, each of which provide virtually identical results.

With the average distance between contacts known and assuming that the fibres bend

following the Euler-Bernoulli beam equation for a point load applied at the centre of a

beam with built-in ends, an equation relating the pressure necessary to compress the fi-

bre assembly is obtained. Integrating gives the total pressure P for a given compaction:

P =
KEm3

ρ3

(
I

v3 −
I

v3
0

)
(4.1)

where K is a constant to be determined experimentally, and used to fit experimental

data. The mass m represents the total mass of the fibre assembly with fibre density ρ,
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the volume v represents the bounding volume of the fibre assembly. v0 is the initial

bounding volume when P = 0, although in practice this should be chosen as the value

that gives the best fit to the experimental results rather than the actual measured initial

bounding volume. E and I are the Young’s modulus and second moment of area of the

fibre.

Experimental results for the compression of wool taken from three to four year-old

African merino sheep where obtained. The comparisons between the equation and

experimental results are good except for low degrees of compression. However this

equation applies only to fibres that are oriented completely randomly in 3D space, and

is therefore not directly applicable to yarns.

4.2.2 Compression of orientated fibre assemblies

To address the above limitation Komori and Makishima [65] expanded van Wyk’s work

by deriving an equation to calculate the number of contacts within an assembly of fibres

of non-uniform random orientation. A density function is introduced which defines

how the fibres are orientated in 3D space by assigning a certain probability to each

possible direction. The number of fibre to fibre contacts can then be calculated using

this density function. The number of contacts in a fibre assembly is one of the most

important factors when trying to derive mechanical properties for it since it is at these

contacts that the forces are transmitted through the structure.

The density function is based on polar coordinates, defining fibre orientations as two

independent angles. The angle θ is defined as the angle between the z axis and the axis

of the fibre. The angle ϕ is defined as the angle between the x axis and the projection

of the axis of the fibre on to the x-y plane (see Figure 4.1).

Figure 4.1: Diagram showing definitions of angles θ and ϕ

Both angles are confined between the limits of 0 and π, giving the range shown in

Figure 4.2. Note that the orientation of a fibre defined by a vector ~V is identical to the

orientation of a fibre defined by the vector −~V. Thus the range does not need to span
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a full sphere, a hemisphere is sufficient.

Figure 4.2: Diagram showing range of angles θ and ϕ when integrating from 0 to π

The density function is defined as follows. The probability of finding the orientation

of fibre in the infinitesimal range of angles θ to θ + dθ and ϕ to ϕ + dϕ is defined as

Ω(θ, ϕ) sin θ dϕ dθ. The sin θ component is to account for the fact that if a number of

random values where generated for θ and ϕ, a higher distribution of fibres would be

found to be oriented towards the z axis. This definition ensures that a constant value

for the density function Ω(θ, ϕ) will give a uniform distribution of fibres. To ensure that

the probability of finding a fibre of orientation in the range 0 to π for both angles (i.e.

all possible orientations) is 1, the density function must satisfy the following equation:∫ π

0

∫ π

0
Ω(θ, ϕ) sin θ dϕ dθ = 1 (4.2)

Given two short fibre segments of fixed orientations (θ, ϕ) and (θ′, ϕ′) respectively, it is

possible to calculate the volume of the region which the centre of the second fibre must

enter in order to intersect with the first fibre. The volume of this region depends on

the angle between the two fibre axes. The volume is at a maximum when the two axes

are perpendicular, and at a minimum when the two axes are parallel. The probability

p that these two short fibre segments of length λ and diameter D come into contact is

the volume of this region divided by the total bounding volume of the fibre assembly

v:

p =
2Dλ2

v
sin χ (4.3)

where the angle χ is defined by the following formula:

cos χ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ − ϕ′) (4.4)

The total number of contacts n within the fibre assembly is defined by the following

equation:

n =
DL2

V

∫ π

0

∫ π

0

(∫ π

0

∫ π

0
Ω(θ′, ϕ′) sin χ(θ, ϕ, θ′, ϕ′) sin θ′ dϕ′ dθ′

)
Ω(θ, ϕ) sin θ dϕ dθ

(4.5)
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where V represents the fibre volume fraction of the fibre assembly. The number of

contacts obtained using a uniform density function (i.e. where fibres are randomly ori-

ented) is in agreement with that derived by van Wyk. Using a density function which

corresponds to a 2D network of fibres, it has been shown that the results correspond to

those derived by Kallmes and Corte [57].

These equations can be applied directly to tows if a suitable density function can be

obtained by characterising the orientations of fibres within a tow. It may be feasible to

derive a density function by analysing data of a yarn obtained via microtomography.

Using the results derived by Komori and Makishima, Lee and Lee [70, 71] studied the

compression of fibre assemblies with orientations defined by the density function. The

method described can be used to predict the effective Young’s modulus and Poisson’s

ratio of the fibre assembly given the fibre diameter, fibre volume fraction, Young’s mod-

ulus of the fibres and the density function.

The deflection of a fibre of a specific orientation is calculated using the Euler-Bernoulli

Beam Equation for a point load applied at the centre of a beam with pin-jointed ends

(note: van Wyk used built-in ends). The force used to calculate this deflection is equal

to the average contact force projected to the plane perpendicular to the fibre axis. The

average contact force C applied on each contact in a fibre assembly is determined by

dividing the total applied force by the number of contacts in the assembly. Note that

the deflection of the fibre will not be in the same direction as the force applied unless

the force is perpendicular to the fibre axis.

The deflection of individual fibres is thus given as a function of orientation. The aver-

age deflection for all three axes can be determined by integrating the deflection over

all fibre orientations multiplied by the density function. However for a fibre assembly

which has a symmetric density about the x-y and y-z planes, deflections perpendicular

to the compression direction will cancel out leaving an average deflection of 0. There-

fore to obtain a measure of Poisson’s ratio the absolute average deflection is needed. To

obtain this the integration is performed between the limits of 0 and π
2 instead of 0 to π

(see Figure 4.3). Thus only positive values for deflection in the x, y and z axes are taken

into account. The result is then multiplied by 4 to account for the change in limits. This

simplification only works when the density function is symmetric about the x-y and

y-z planes which in most cases will be the case.

Values for the effective Young’s Modulus (Ex, Ey, Ez) and Poisson’s Ratio (νxy, νxz, νyx,

νyz, νzx, νzy) can be extracted from the average deflection and total force applied. There

are however a large number of assumptions made that affect the validity of the model:
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Figure 4.3: Diagram showing range of angles θ and ϕ when integrating from 0 to π
2

• The contact force between fibres is assumed to be identical for all contacts and

in the same direction as the force applied to the fibre assembly. In fact there is

likely to be a large variation in contact forces between fibres both in magnitude

and direction. Whether this has a significant effect on the results remains to be

shown.

• The contacts between fibres are assumed to be uniformly spaced with fixed dis-

tance between them. In reality there is likely to be a large variation in distances

between contacts. This has been shown to have an insignificant effect on the re-

sults by Pan and Carnaby [92].

• The contact force is assumed to be applied half way between adjacent contacts

and in the opposite direction of adjacent contacts. In reality contacts could occur

anywhere along the length of a fibre and in any direction.

• Deflection of the fibre is calculated such that the fibre is assumed to be straight

before loading. This assumption is reasonable, as there should be little fibre de-

flection before loading especially for tows.

• Fibres in contact are assumed to be rigidly fixed to each other, not allowing any

slippage or separation. In reality fibres will slip along each other when the tan-

gential force exceeds the static friction force. Carnaby and Pan [15, 93] have ex-

tended the model to include fibre slippage which will be discussed further in

Section 4.2.3.

• The fibre density function is assumed to remain constant during the compression

stage. In reality fibres will tend to align themselves with the plane perpendicular

to the direction of compression. Hence the model is only valid for the initial

compression stage.

Experimental results were obtained for uniaxial twisted fibre assemblies and uniform
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random fibre assemblies. Although there are large differences between the experimen-

tal values of the initial compressive Young’s modulus and theoretical values, the plot

of experimental values against the cube of fibre volume fraction is linear in agreement

with the theory.

Pan and Carnaby [92] extended Lee and Lee’s work to include shear moduli predictions

using the same assumptions. They determined the average absolute deflection of a

contact point caused by a set of shear forces. The shear strains were then obtained by

relating the average deflection with the relevant dimensions of the bounding volume

of the fibre assembly. Hence shear moduli values could be calculated. The equation

was verified by obtaining a value of shear modulus for the uniform random case. This

case should be isotropic hence the shear modulus G should be related to the Young’s

modulus E and Poisson’s ratio ν by the following equation:

G =
E

2(1 + ν)
(4.6)

This was shown to be the case by using the results obtained by Lee and Lee [70, 71]. A

similar verification was performed for uniaxially oriented fibres with helical crimp.

The question was raised as to whether the fibres should be modelled as beams with

built-in ends or pin-jointed ends. van Wyk originally used built-in ends, while Lee and

Lee opted for the pin-jointed ends. Pan and Carnaby decided to revert to built-in ends

as they believed this to be more suitable. The argument in favour of built-in ends is that

continuity of curvature is ensured at the supported ends, although when compared

against experimental results pin-jointed ends give closer agreement. The difference in

solution between the two models is that built-in ends increase the stiffness by a factor

of 4. The different formulations do not affect the shape of the curve, only the scale

and since these models require a fitting parameter to be compared to experiments the

different formulations only affect the fitting parameter. Therefore it is the opinion of the

present author that the choice of formulation is not important until predictive results

can be achieved.

4.2.3 Effect of inter-fibre slipping

Carnaby and Pan [15] also considered the effect of fibre slippage in a separate study.

The general procedure consists of classifying contacts as slipping or non-slipping. Con-

sidering two fibres in contact it is possible to split the contact force into two compo-

nents, a component normal to the contact surface and a component tangential to the

contact surface. If tangential force exceeds the multiplication of the normal force and

the coefficient of friction µ then slipping will occur.
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Grosberg [40], Grosberg and Smith [41] showed that even without external loading, sig-

nificant contact forces already exist within a fibre assembly. These forces are assumed to

act in the direction normal to the contact surface with no tangential component. Hence

the frictional force that must be overcome for the fibres to slip relative to each other

is increased by this phenomenon. This force is quantified by the withdrawal force per

unit length necessary to remove a fibre from the assembly (WF0).

The magnitudes of the tangential and normal components of the contact force ~C are a

function of the angle between the compression direction of the fibre assembly and the

normal to the contact surface. If this angle exceeds a certain critical angle, the contact

is classified as slipping. Equation 4.7 was derived classifying fibres that are likely to

slip based on their orientations θ and ϕ and the compression forces applied to the fibre

assembly. The equation is general enough to take into account external loading from

several directions but unfortunately an analytical solution for the equation could not

be found.

~Cx sin θ cos ϕ + ~Cy sin θ cos ϕ + ~Cz cos θ ≥

µ(~Cx

√
1− sin2 θ cos2 ϕ + ~Cy

√
1− sin2 θ sin2 ϕ + ~Cz sin θ) + WF0λ (4.7)

However for the case of compression along the z axis alone, the slip limit is indepen-

dent of the angle ϕ and depends only on the angle θ. For compression along the x and y

axes, the slip limit is more complicated and depends on both angles θ and ϕ. However

this is only a consequence of the orientation definitions. By transforming the coordi-

nate system, simple slip limits depending on only one angle for compression along the

x and y axes can be obtained.

In order to obtain a compression modulus taking into account fibre slippage, the pro-

portion of slipping contacts and non-slipping contacts must be known. The total num-

ber of contacts can already be determined as demonstrated by Komori and Makishima

[65]. Dividing the number of slipping contacts by the total number of contacts gives

the required proportion. The number of slipping contacts is determined in the same

manner as the total contacts except that the integration limits are chosen to include

only slipping contacts.

Slip is incorporated into the results by assuming that only the non-slipping contacts

cause deflections in the fibres. It is also this deflection which accounts for the change

in volume of the fibre assembly. The element length is the total fibre length divided

by the number of non-slipping contacts. Part of the force used to compress the fibre

assembly causes the contacts to slip over each other. Young’s modulus and Poisson’s

75



CHAPTER 4: MECHANICAL MODELLING OF TOWS

ratio are derived in the same manner as by Lee and Lee [70, 71].

The inclusion of the fibre slipping has made it possible to model the hysteresis effect of

the fibre assembly. After an external load applied to a fibre assembly is removed, the

assembly does not return to its original state. A great deal of irrecoverable energy is

lost due to inter-fibre friction. An incremental approach is used to predict the compres-

sion and recovery curves. At each successive increment the load applied to the fibre

assembly is increased by a small amount until the full forces is reached. Then for the

recovery stage, the load is slowly decreased until all load has been removed.

The model has been compared against theoretical and experimental results obtained by

Lee and Lee [70, 71] for uniform random fibre assemblies. The effect of including fibre

slippage greatly reduces the initial Young’s modulus bringing it closer to the experi-

mental results. Unfortunately no comparison was made against experimental results

for non-uniform random fibre assemblies.

4.2.4 Compression modelling of oriented fibre assemblies via energy method

Komori and Itoh [55, 63, 64] proposed a new theory for the compression of fibre as-

semblies. The theory differs from the previous theories in three ways: the length of the

bending element depends on the orientation of the fibre, the law to describe the change

in the direction distribution induced by the compression is given in a differential form,

and the mechanical relation is derived using an energy method.

Fibre elements are assumed to bend to a circular arc rather than under three point bend-

ing. In this study, rather than trying to calculate the deflection due to a certain force

acting between fibre contacts a different approach is taken: the deflection of the fibre

elements is assumed to be proportional to the compression of the total fibre assembly.

The energy required to cause this deflection is calculated such that the change in total

energy stored within the fibre assembly can be calculated. The change in energy can be

related to the change in stress acting on the fibre assembly, and hence Young’s modu-

lus can be determined. Poisson’s ratio can equally be determined due to the assumed

proportional deflection of fibre elements.

Using the assumption that the deflection of the fibres is proportional to the compaction

of the fibre assembly, an equation for the change in density function can be derived

with respect to compaction. Updating the density function as the fibre assembly is

compacted should improve accuracy.

The results of this model have been compared against the equations from van Wyk

[136] for uniformly randomly distributed fibres under hydrostatic compression. There
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is agreement between the two methods except for the numerical constants which are

different due to the assumed bending shape. Results from this model using other load-

ing conditions and fibre distributions have been derived, however no comparisons to

experimental results were performed.

Lee and Carnaby [69, 73] conducted a similar study on uniform random assemblies of

fibres using an energy method, however this method was not applied to unidirectional

fibre assemblies.

4.2.5 Deformation behaviour of wavy aligned fibres

Gutowski and Cai developed a theory for the deformation behaviour of aligned fibres

suitable for production of composite materials [14, 42, 43]. The path of each individual

fibre is assumed to follow a sine wave defined by Equation 4.8 with arc length l and

height a as parameters to be determined.

y =
a
2

(
1− cos

2πx
l

)
(4.8)

Although this fibre path is arbitrary it was found that results for other reasonable paths

follow the same trends but on a different scale. In this case the scale is not important

because the model is not able to predict properties without fitting parameters. Hence

using different fibre paths will merely change the fitting parameters. However, no

justification was given for assuming that fibres do indeed have a periodic waviness

that repeats itself at regular intervals. In reality one might expect fibres to deviate from

their direction axis in a more random way.

An attempt was made at determining the parameters of arc length and height experi-

mentally for graphite fibres by taking a section of fibres cast in epoxy resin in a plane

parallel to the fibre direction and observing them under a microscope. The ratio β of

arc length divided by height was found to be of the order of 102 [43].

In contrast with the previous papers reviewed, the number of contacts between fibres is

inferred from the waviness of the fibres rather than calculating it from the distribution

of fibre orientations. It is assumed that there is one contact per half arc length of fibre.

The approach taken by Komori and Makishima [65] is perhaps more rigorous since

they attempted to predict the number of contacts statistically rather than assuming a

certain number of contacts.

The arc length is assumed to be proportional to the height, hence as the fibre segment is

transversely compressed the arc length decreases which not only increases the stiffness

of the fibre segment but also increases the number of assumed contacts. There is no
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physical basis for this dubious assumption and the shape given to the compression

versus fibre volume fraction curve is largely governed by this assumption.

Nevertheless, in order to obtain a stress-strain relationship for transverse compression

of the fibre assembly a single fibre is enclosed within a bounding box. The compressive

modulus of the fibre assembly is assumed to be the same as the compressive modulus

of the bounding box containing this single fibre (Figure 4.4). The compression direction

is always assumed to be in the same plane as the tow waviness with no twisting of the

fibre permitted.

Figure 4.4: Compression of a single fibre within a bounding box

Similarly the stress-strain relationship for axial extension of the fibre assembly is ob-

tained from the extension of a single fibre enclosed within a bounding box (Figure 4.5).

There is a slight non-linear effect due to the straightening of the fibre.

Figure 4.5: Axial extension of a single fibre within a bounding box

The deflections of the fibre in the axial and transverse directions due to the forces ap-

plied are obtained by using the unit load energy technique [132]. The equation relating

transverse compression stresses σx and σy with fibre volume fraction is given in Equa-

tion 4.9, where z is parallel to the fibre axis.

σx = σy =
3πE

(
1−

√
Vf
V0

)
β4
(√

Va
Vf
− 1
)4 (4.9)

Gutowski and Cai assumed the shear modulus in the plane transverse to the fibres to

be zero and they did not derive the shear moduli in the other directions. In contrast

78



CHAPTER 4: MECHANICAL MODELLING OF TOWS

McBride [88] assumed the shear modulus in the plane transverse to the fibres to be

defined by Equation 4.6. This equation may be used due to the transverse isotropy.

The transverse Poisson’s ratio is assumed to be constant and should be determined ex-

perimentally. Furthermore he assumed that the longitudinal shear modulus is propor-

tional to the transverse shear modulus by a constant of proportionality set to a value

of around 2 with no further explanation. Direct measurement of this constant was

deemed to be impracticable.

Gutowski and Cai’s comparisons against experimental results for compression of car-

bon fibre tows provide very good agreement when the parameters β and V0 are ad-

justed to fit the data, despite the simplicity of the model. It was found that a different

set of parameters were needed to fit the model to experimental data obtained for seem-

ingly similar yarns. This could be attributed to the variability within the fibre assembly.

McBride’s comparisons against experimental results for compression of Kevlar and E-

Glass fibres also gave very good agreement for plain strain compression once the model

had been fitted to the results. The values of initial volume fraction V0 were fairly low

at 0.24 and 0.35 for the Kevlar and E-Glass yarns respectively and the values of β were

of the order of 102 as observed experimentally by Gutowski et al. [43]. However there

are some discrepancies between the model and the experimental results for uniaxial

compression which are thought to be partly due to the model and partly due to the

experimental technique used.

4.2.6 Deformation of unidirectional helically crimped fibre assemblies

A number of studies have been made on compression of fibre assemblies assuming an

initially curved fibre as a bending element rather than a straight fibre [16, 32, 66, 72, 87].

The fibres are assumed to be helical in shape which is a valid assumption for wool

fibres. However the main interest of this chapter is in tows where fibres tend to be

straight with negligible crimp for which these models are unsuitable.

4.2.7 Application to finite element analysis software

Curiskis and Carnaby [26] performed a study on the extent to which continuum me-

chanics may be used to model the mechanical properties of assemblies of unidirectional

fibres. Assemblies of unidirectional fibres may be regarded as transversely isotropic,

which means that the mechanical properties are isotropic in the plane perpendicular to

the direction of the assembly of fibres. They concluded that for small strain and linear

elastic behaviour the assembly of fibres might best be characterised mechanically as a
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degenerate square-symmetric homogeneous continuum. However it is only reasonable

to treat it as such if the number of fibres is large enough that the influence of individual

fibres on the overall assembly is small.

Djaja et al. [31] have derived a tangent stiffness formulation from previous microme-

chanical models suitable for use by finite element packages. The models used are the

ones derived by Lee and Lee [70] for Young’s modulus and Poisson’s ratio and Pan and

Carnaby [92] for shear modulus. These models do not include fibre slipping, however

the method of obtaining the tangent stiffness matrix can be used in conjunction with

other models. The values of Young’s modulus, shear modulus and Poisson’s ratio are

combined into a six by six tangent compliance matrix. Most finite element analysis

packages required a tangent stiffness matrix rather than a tangent compliance matrix.

In order to convert between the two, the matrix needs to be inverted.

Due to the non-linearity of the mechanical properties of fibre assemblies, the tangent

stiffness matrix must be updated as the continuum deforms. This can generally be

performed with a user-defined subroutine for most commercial finite element analysis

packages at each increment of the analysis.

4.2.8 Computer simulation

All of the previous models reviewed are analytical models. More recently Roberts and

Beil [102] developed a computer model based on the theory of elastic rods [84]. Their

model consists of randomly placing helix shaped fibres in three-dimensional space

which have realistic mechanical properties that are easily measured. The computer

simulation then tracks the motions and interactions between fibres including slipping

of fibres with frictional contacts as the fibre assembly is compressed. The problem is

tackled as a dynamic analysis where conservation of momentum in the model is de-

rived from a force balance on a small segment of fibre. The initial fibre volume frac-

tion in the case shown was 0.8%, which is extremely low compared to the case of a

textile tow. The results of the computer simulation show good correlation for the pres-

sure versus compaction when compared against van Wyk’s analytical model [136], also

showing a reasonable ability to predict the undetermined constant K in his model. If

this model was to be applied to uni-directional assemblies of fibres there may be is-

sues with the large number of contacts due to the much higher fibre volume fractions

exhibited.
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4.2.9 Conclusions

A great deal of research has been performed on analysis the mechanical properties of

assemblies of fibres. However, an accurate predictive model for the compaction of

unidirectional fibre assemblies suitable for use in modelling mechanical properties of

textile preforms remains to be found.

With the continuing advance in computing speeds, such a model may be possible in

the form of computer simulation building on existing concepts.

4.3 Model theory

The structure of the numerical model proposed in this section is illustrated in the flow

chart shown in Figure 4.6. This model has been implemented in C++ which provides

good performance for the CPU intensive task. The details are explained in the follow-

ing subsections.

Figure 4.6: Tow model program flowchart
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4.3.1 Beam theory

The mechanical behaviour of the fibres is modelled using Euler-Bernoulli beam bend-

ing theory [139] as used in many of the papers reviewed in Section 4.2. There are a

number of assumptions which must be satisfied in order for the theory to be applied.

First, the beam must be long and slender, that is to say the length of the beam must be

much larger than its cross-sectional diameter. (clearly the case with fibres). Secondly

the deformations must remain small (buckling and plasticity are not accounted for);

this restricts the applicability of the model for large deformations. The fibre material

is assumed to be isotropic, hence non-isotropic fibres such as carbon fibres cannot be

modelled directly with this theory. Finally a number of other requirements that are

satisfied are:

• The beam cross-section is constant along its axis.

• The beam is loaded in its plane of symmetry.

• Plane sections of the beam remain plane.

The key beam bending equations will be presented here. A more detailed derivation

is shown in Appendix F. The moment M and deflection v as a function of distance x

along the length of a beam, simply supported at both ends, are obtained by substituting

Equations F.21 and F.22 into Equations F.1, F.2, F.9 and F.10:

M1(x) = Px
(

1− a
L

)
(4.10)

M2(x) = Pa
(

1− x
L

)
(4.11)

v1(x) = Px
(L − a)(−a2 + 2La − x2)

6EIL
(4.12)

v2(x) = Pa
(L − x)(−a2 + 2Lx − x2)

6EIL
(4.13)

where P is the force applied at distance a along a beam of length L. E and I are the

Young’s modulus and second moment of area of the beam respectively. The equations

with subscript 1 are valid for the range 0 ≤ x ≤ a while equations with subscript 2 are

valid for the range a ≤ x ≤ l.

The above equations can only be used directly for a single force acting at a given po-

sition on the fibre. However in reality there will be a number of forces acting on each

fibre. Fortunately the equations derived above are valid for multiple forces acting on

the fibre by using the method of superposition. This is possible due to the linearity
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of the beam bending equations. For fibres subjected to several loads of different types

the resulting bending moment, slope and deflection can be found at any location by

summing the effects due to each load acting separately. This is illustrated in Figure 4.7.

Figure 4.7: Beam superposition

In order to deal with the 3D nature of the problem, it can be split into two 2D problems.

Two orthogonal planes are constructed perpendicular to the tow axis, and all forces are

resolved in these two planes. The problem is solved in each plane separately with the

results combined to obtain 3D deflections, slopes and moments.

4.3.2 Contact forces

The behaviour of fibres under given loads has been defined, and it is now necessary

to determine the position, direction and magnitude of the forces acting on the fibres.

This is addressed numerically and is accomplished through an iterative geometric al-

gorithm. Suppose two fibres A and B in space intersect as shown in Figure 4.8. Two

points Ac and Bc are defined as the closest two points lying on the centrelines of the

fibres A and B respectively. The intersection distance d is defined as:

d = ‖Bc − Ac‖ − (rA + rB) (4.14)

where rA and rB are the radii of the fibres A and B respectively.

Two equal and opposite forces ~PA and ~PB are applied to each fibre at points Ac and Bc

respectively. The direction ~PA is in line with the vector Ac − Bc, similarly the direction

of ~PB is in line with the vector Bc − Ac. The magnitude of the forces P required to

remove the intersection is estimated as a function of d (typically P = cd is a suitable
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A

B

Bc

Ac

Figure 4.8: Fibres intersecting

function to use, where c is an arbitrary constant). These two forces will deflect the fibres

all along their length (as described in Section 4.3.1). Points Ac and Bc will be deflected

to two new positions denoted by A′
c and B′

c. The new intersection distance d′ can be

calculated as:

d′ = ‖Bc
′ − Ac

′‖ − (rA + rB) (4.15)

If P is too large, the fibres will be pushed too far apart leaving a gap between the fibres

in which case d′ < 0. If P is too small, the fibres will not be pushed far apart enough

and 0 < d′ < d. In the unlikely event that P is exactly right the fibres will be just

touching and d′ = 0. The rate at which the simulation converges to the stable state

solution depends on the function used to calculate P. Given function P = cd, a small

value of c will result in a slow convergence rate, higher values of c will generally result

in faster convergence. However if the value of c is too large the system will become

unstable. If the system is stable then |d′| < |d|.

For the next iteration, two new forces ~P′A and ~P′B need to be estimated in an attempt to

reduce the intersection d′ further. As before, the direction of the forces are parallel to

the vector B′
c − A′

c. The magnitude P′ is estimated as a function of d′ and P (typically

P′ = P + cd′ works well, where c is an arbitrary constant). The fibres will now have a

new deflected shape determined by the forces ~P′A and ~P′B.

The process is repeated until the simulation is deemed to have converged to a stable

state. The criterion used to determine what is a stable state will be discussed in Section

4.3.6.

In this simple case with only two fibres present the magnitude of forces ~PA and ~PB re-

quired to reach a stable state can be calculated directly from the equations described in

Section 4.3.1 without need for iterations. However in the complicated case where there

are multiple fibres in contact at multiple points, the number of simultaneous equation

to solve would be very large. It would be possible to solve the equations, indeed this

is how implicit finite element analysis [145] works. However there is a further compli-

cation: once the equations have been solved the fibres will have new deflected shapes.
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The new state will inevitably contain intersections that were not present initially and

also contain contacts that should no longer be present. Equations could be added and

removed as necessary and solved again. However this process is unlikely to result in a

converged state.

4.3.3 Contact locations

In Section 4.3.2 the method to calculate the forces based on given contacts was dis-

cussed. In this section, the numerical method used to determine the position of the

contacts is discussed. Two types of contacts are considered, first of all point contact

and secondly linear contact and its approximation to a series of point contacts.

Point contacts

If there are two fibres A and B in contact as described previously, the objective is to

obtain the closest two points Ac and Bc that lie on the centrelines of two fibres. If the

fibres A and B are straight as in Figure 4.9, the solution is straightforward [36]. The end

points of fibre A are A1 and A2 respectively, similarly the end points of fibre B are B1

and B2 respectively. The equations that constrain points Ac and Bc on the centrelines

of the fibres are:

Ac = A1 + µA(A2 − A1) (4.16)

Bc = B1 + µB(B2 − B1) (4.17)

where µA and µB are parameters to be determined.

A

B

Bc

Ac

B1
B2

A1

A2

Figure 4.9: Intersection between two lines in 3D

There are two ways to proceed from here, either the distance ‖Bc − Ac‖ can be min-

imised, or alternatively the fact that Ac and Bc will be closest when the vector Bc − Ac
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is perpendicular to both A and B can be exploited:

(Bc − Ac) · (A2 − A1) = 0 (4.18)

(Bc − Ac) · (B2 − B1) = 0 (4.19)

Substituting Equations 4.16 and 4.17 into 4.18 and 4.19 leads to:

(A1 − B1) · (A2 − A1) + µA‖A2 − A1‖2 − µB(B2 − B1) · (A2 − A1) = 0 (4.20)

(A1 − B1) · (B2 − B1) + µA(B2 − B1) · (A2 − A1)− µB‖B2 − B1‖2 = 0 (4.21)

Solving the set of simultaneous equations results in:

µA =
[(A1 − B1) · (B2 − B1)] [(B2 − B1) · (A2 − A1)]

‖A2 − A1‖2‖B2 − B1‖2 − [(B2 − B1) · (A2 − A1)]
2

− [(A1 − B1) · (A2 − A1)] [(B2 − B1) · (B2 − B1)]
‖A2 − A1‖2‖B2 − B1‖2 − [(B2 − B1) · (A2 − A1)]

2 (4.22)

µB =
(A1 − B1) · (B2 − B1) + µA(B2 − B1) · (A2 − A1)

‖B2 − B1‖2 (4.23)

Solutions for µA and µB can be substituted into 4.16 and 4.17 to obtain the positions of

Ac and Bc.

However, fibres are rarely straight which means that this method cannot be used di-

rectly. If the method were to be extended to detect the closest two points between

curved fibres following beam bending theory (Section 4.3.1) then Equations 4.18 and

4.19 would need to be replaced by cubic equations. Substituting the cubic equations

into the equation for the distance between two points would lead to a sixth order equa-

tion. Minimising this means finding the roots of a quintic equation, for which there is

no analytical formula [127].

Instead, the shape of the fibre can be approximated by a sequence of straight line seg-

ments. Using the equations for finding the closest point between two lines, each line

segment of fibre A can be compared against each line segment of fibre B. The minimum

distance between all the line segments represents the closest distance between the two

fibres. The accuracy of such a method depends on the number of segments used to ap-

proximate the fibre. However using a very large number of segments will considerably

increase the computation time.

Line contacts

So far it has been assumed that contacts between two fibres occur at a single point.

However if two fibres are parallel to each other, when they come into contact there are
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an infinite number of pairs of points Ac and Bc that are all equi-distant. This results in

a contact all along the length of the fibres. In fact it can be shown that the denominator

of Equation 4.22 is equal to 0 when the fibres are parallel:

‖A2 − A1‖2‖B2 − B1‖2 − ((B2 − B1) · (A2 − A1))2 = 0 (4.24)

‖A2 − A1‖2‖B2 − B1‖2 − (‖B2 − B1‖‖A2 − A1‖ cos θ)2 = 0 (4.25)

Hence Equations 4.22 and 4.23 cannot be solved. A more common occurrence would

be when two fibres partially wrap around each other which would also result in a line

contact. An exaggerated case where the fibres are wrapped around each other several

times is shown in Figure 4.10.

Figure 4.10: Fibres wrapping around each other

In a tow all the fibres tend towards being parallel to each other. Thus it is not reasonable

to assume that all contacts will be single points when modelling this type of yarn. Con-

tacts between fibres within a tow need to be handled differently from contacts between

fibres of crossing yarns.

A new method is proposed to detect contacts between fibres within a tow handling

both point and line contacts. For simplicity, the 3D problem can be split up into a large

number of 2D problems. Cross-sections along the length of the tow axis are taken at

regular intervals as shown in Figure 4.11. At each cross-section the distance between

fibre centrelines is calculated using Pythagoras’ theorem. If intersection occurs the dis-

tance is used to apply forces as described in Section 4.3.2. In this way, a line contact

is approximated by a series of individual point contacts as seen in Figure 4.12. As the

number of cross-sections n approaches infinity, line contact is accurately simulated. In

practise it is not necessary for n to be very large to obtain accurate results (see Section

4.5.5).

It should be noted that the magnitude of the individual point forces ~Pi will depend on
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Figure 4.11: (top) Solid fibres (bottom) Cross-sections along fibre length
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Figure 4.12: Two fibres forming a line contact with forces illustrated in yellow
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n. For a line contact, the total force ~Pt between two fibres should not depend on n. ~Pt

can be expressed in terms of ~Pi:

~Pt =
n

∑
i=1

~Pi (4.26)

The average of the individual point forces P̄ is:

~̄P = ∑n
i=1

~Pi

n
(4.27)

hence
~̄P =

~Pt

n
(4.28)

It can be seen that if n decreases and ~Pt remains constant, the average ~̄P must increase.

This needs to be taken into account when choosing a function to estimate the force as a

function of intersection distance as described in Section 4.3.2.

4.3.4 Friction

Friction between fibres within a yarn is thought to have a significant effect on its me-

chanical properties. Therefore an attempt has been made to incorporate it into the

model. This is made difficult by the nature of friction which opposes the relative mo-

tion or tendency of such motion of two surfaces in contact [133]. Unfortunately the

relative motion of the fibres is unknown at the time the forces are calculated. Only af-

ter the forces are applied can the relative motion of the fibres be known. It would be

possible to step back and calculate frictional forces but these changes in forces would in

turn affect the relative motion. An iterative process might result in a converged state,

however this would be prohibitive in computation time.

Instead the frictional forces are approximated to minimise relative motion as much as

possible without stepping back to a previous iteration. This process is illustrated in

Figure 4.13 where the cross-sections of two fibres A and B running almost parallel to

each other are taken at the contact point. Suppose fibres A and B are in contact with

equal and opposite normal forces ~NA and ~NB acting on them. There is no frictional

force between them so the resultant force ~PA is equal to ~NA, similarly ~PB is equal to
~NB. Now suppose fibres A and B have moved relative to each other due to some other

forces acting somewhere along the fibre after an iteration. The normal forces must

always be perpendicular to the contact surface, hence the new normal forces ~N′
A and

~N′
B are calculated as the projection of forces ~NA and ~NB to the surface normal. The

frictional forces ~F′A and ~F′B are added such that the resultant forces ~P between the two
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~NA

Fibre A Fibre B

~NB

~N′

A

~N′

B

~F′

B

~F′

A

~NB

~NA
~F′

B

~F′

A

~N′

B

~N′

A

Figure 4.13: Frictional force approximation

fibres remain the same before and after the iteration:

~P′A = ~N′
A + ~F′A = ~NA = ~PA (4.29)

~P′B = ~N′
B + ~F′B = ~NB = ~PB (4.30)

This additional frictional force does not prevent or revert any sliding that has already

occurred but will help prevent further sliding and maintain stability. There is of course

a limit on the magnitude of the frictional force defined by the classical Coulomb friction

equation:

F = µN (4.31)

where µ is the coefficient of friction. Thus the following equations must be satisfied:

‖ ~F′A‖ ≤ µ‖ ~N′
A‖ (4.32)

‖ ~F′B‖ ≤ µ‖ ~N′
B‖ (4.33)

Figure 4.14 shows the forces between fibres in a cross-section of a tow containing ten

fibres for a converged state. The yellow lines represent the normal forces acting on the

fibres, the red lines represent the frictional forces acting on the fibres. The colour of

the outer rim of the fibre itself represents the magnitude of the moment in the fibre at
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Figure 4.14: Forces in a cross-sectional slice

this cross-section. As can be seen from the figure, the fibres are just touching while the

contact forces between them vary.

It should be noted that frictional forces are likely to give rise to twisting of fibres, how-

ever this effect has been neglected to avoid over complicating the model.

4.3.5 Strain Energy

With such a complicated structure as a yarn where the number of forces and possible

deformations are large it is convenient to work in terms of energy [19, 68, 141]. Strain

energy can be used to determine the deformation of a yarn as a single scalar value.

The strain energy Ui of an individual fibre of length L can be calculated with the fol-

lowing equation:

Ui =
∫ L

0

M2

2EI
dx (4.34)

The values of M, E and I are defined in Section 4.3.1. The integration can be done

numerically using the Trapezium rule [13] at intervals equal to the cross-section inter-

vals (see Section 4.3.3). The total strain energy U within a yarn composed of n fibres is

simply calculated by summing the individual fibre strain energies:

U =
n

∑
i=1

Ui (4.35)
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4.3.6 Convergence

In order for the iteration process to complete, a convergence criterion must be defined.

An equation must be derived that determines if the simulation is in a stable state. A

stable state can be defined as when all the contacting fibres are just touching (i.e. d = 0

for all contacts). In practice this will never happen due rounding errors, so a tolerance

td must be used (i.e. |d| < td for all contacts).

Another definition of convergence could be when the total strain energy in the system

no longer changes. The system can be considered to have converged when the strain

energies of the last ni iterations are all within an absolute tolerance tU of the current

strain energy. If the strain energy remains constant over a number of iterations, it is

likely that the solution has converged. There is a possibility that the strain energy in

the individual fibres changes while their sum remains constant. However if the value

ni is high enough the chances of this are remote.

In practice both methods of convergence are implemented with the simulation being

terminated when one of the convergence criteria is satisfied.

4.4 Compaction of a single tow

Using the model described in this chapter it is possible to estimate the force required to

cause compaction of a single tow, however tows can consist of several thousand fibres

and the implementation of this model is not able to deal with such a large number of

fibres within a reasonable time frame. Instead hundreds of small parts of the tow can

be analysed and results averaged to obtain results for an entire yarn. In order to do this

periodic boundary conditions are necessary.

4.4.1 Periodic boundary conditions

A boundary is defined as an axis aligned box where one of the axes runs parallel to

the tow centreline. Suppose the x and y axes are in the plane perpendicular to the tow

centreline and z is parallel to it. The box has width w, height h and depth L parallel to

axes x, y and z. Periodic boundary conditions are the boundary conditions that would

give the same result as modelling an infinite space where for any particle p of material

within the domain there are an infinite number of corresponding particles p′ijk defined
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as:

p′ijkx
= px + iw (4.36)

p′ijky
= py + jh (4.37)

p′ijkz
= pz + kL (4.38)

where i, j and k are integers ranging from −∞ to ∞.

Transverse contact periodicity

Assuming fibres are not perfectly aligned with the tow centreline, it is likely that fibres

will cross the planes of the box defined by normals x and y. Periodicity implies that

if any fibre crosses one of these planes an equivalent fibre should cross the opposite

plane at the same position and angle as shown in Figure 4.15.

Figure 4.15: Fibre crossing boundary

Fibre A
Fibre B

w

h

~V

Fibre A
Fibre B′

w

h

~V′

Ac

Ac

Bc

B
′

c

Figure 4.16: Contacts across bounds

Although conceptually this seems difficult to implement, in practice it is straightfor-

ward. In Figure 4.16 a cross-section of two fibres crossing the boundary on opposite
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sides is shown. The length of the vector ~V from Ac to Bc represents the distance be-

tween the two fibres.
~V = Bc − Ac (4.39)

The two fibres are clearly not intersecting in their original configuration. However

since fibre B crosses the boundary, another fibre B′ should exist on the opposite bound-

ary. The length of the vector ~V′ represents the distance between the centres of fibres A

and B′. It can be seen that fibres A and B′ are intersecting, because the length ‖~V′‖ is

less than the sum of the radii rA and rB. In this case ~V′ is related to ~V by the following

equations:

~V′
x = ~Vx − w (4.40)

~V′
y = ~Vy (4.41)

More generally, the vector ~V′ is defined as the shortest vector from Ac to any B′
cij (see

Equations 4.36 to 4.38)

~V′
x = Bcx + iw − Acx = ~Vx + iw (4.42)

~V′
y = Bcy + jh − Acy = ~Vy + jh (4.43)

The values of the integers i and j can be calculated as follows:

i =

[
−

~Vx

w

]
(4.44)

j =

[
−

~Vy

h

]
(4.45)

where the square brackets [ ] represent the nearest integer function. It is worth noting

that ~V′ is always contained within the range:

− w
2
≤ ~V′

x ≤
w
2

(4.46)

−h
2
≤ ~V′

y ≤
h
2

(4.47)

Contacts are always calculated using the vector ~V′ rather than ~V since ~V′ represents

the closest distance between two fibres with periodic boundary conditions. Forces are

applied between fibres A and B′. However, any forces applied to B′ are also applied to

B due to the periodicity.

Longitudinal periodicity

It is fairly straightforward to apply periodicity along the length of the fibres. The pe-

riodic boundary conditions for the fibre modelled as a beam are described in Section
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4.3.1. However if these equations are used then all the fibres will be perfectly straight

and parallel to each other. If this is the case then no bending will occur and since the

model is based on bending of fibres alone no compaction resistance will be predicted.

In order to create some contacts the origin and end of the fibre can be offset by an

arbitrary distance and either pinned or clamped boundary conditions applied. Both

pinning and clamping the ends violate the periodicity of the model. However clamping

the ends such that the tangents of the fibre are normal to the boundary at the ends

simulates a fibre mirrored at the boundary. This setup is equally as valid as periodic

boundary conditions. However this requires the fibres to be initially curved resulting

in strain energies being contained within the fibres. The equations set out in Section

4.3.1 may be modified to allow for initially unstrained wavy fibres as future work.

4.4.2 Modelling compaction

The simplest way to model compaction would be to place a plane below and above

the specimen and reduce the distance between the two planes until the specimen had

been compressed by the desired amount. However since only a small part of a tow is

being modelled this method would not be suitable. The compaction can be simulated

by applying a linear transformation to the tow. By applying a linear transformation to

a particle of material p the transformed particle p′ can be obtained from the following

equation:

p′x = ~Qxpx (4.48)

p′y = ~Qypy (4.49)

p′z = ~Qzpz (4.50)

where ~Q represents the degree of compaction. For example to compact the tow to

50% of its original size along the y axis, ~Q would be defined as (1, 0.5, 1). The linear

transformation is applied to the fixed ends alone, with the shape of the fibres between

the ends calculated from the forces acting upon them.

4.4.3 Forces from energy

Mechanical work is defined mathematically as the line integral of a scalar product of

force and displacement vectors [116, 134]. In this case the displacement vector is par-

allel to the force vector hence the equation can be simplified to scalar values. It can

be used to calculate the force F needed to compress the small section of tow contained

within the boundary in terms of energy. The work done W on the small section of tow
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by compressing it by a distance ds can be expressed as:

W =
∫

F ds (4.51)

In this model it is assumed that all the work goes into bending the fibres, and any

frictional energy dissipated through fibre sliding is neglected. Thus the strain energy

U equals W:

U =
∫

F ds (4.52)

The strain energy U is known (see Section 4.3.5), therefore the force F can be calculated

in terms of U:

F =
dU
ds

(4.53)

The force is distributed over an area A, hence the pressure D is:

D =
1
A

dU
ds

(4.54)

The differentiation in Equation 4.54 can be approximated numerically. The pressure D

and strain energy U are both functions of s, written as D(s) and U(s). Pressure D(s)

can be expressed as:

D(s) =
1
A

lim
ds→0

U(s + ds)−U(s)
ds

(4.55)

In order to obtain a graph of pressure versus compaction, the compaction must be

applied in a number of steps. The simulation begins with s = 0 and at each following

step, s is increased by ds. At each step the strain energy is calculated, and for each pair

of steps D is calculated using Equation 4.55.

The values A and s can be related to the boundary in the following way: suppose the

section of tow contained within a box of width w, height h and depth L parallel to axes

x, y and z respectively is compressed along the y axis. The area A is:

A = wL (4.56)

and s can be expressed as:

s = h(1− ~Qy) (4.57)

where the value ~Q is described in Section 4.4.2. Here it is assumed that the compression

occurs only along the y axis (i.e. ~Qx = ~Qz = 1).

4.4.4 Compaction test case

In order to check the model has been derived and implemented correctly, it is important

to run a simulation where the result is known. A tow where the fibres are arranged as
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shown in Figure 4.17 was constructed. This is not a realistic tow, but is one where an

analytical solution is easily obtained and which is sufficiently complicated to test the

computational model.

L

w

h

L

6

L

2

Figure 4.17: Two orthogonal views of the fibre compaction test case

Analytical solution

Due to symmetry it can be seen that the four slanted fibres do not bend at all. The 24

straight fibres each bend due to a force applied to each one at a single point. This point

is at L
2 for 8 of the fibres. For the other 16 fibres the point is at L

6 . These assumptions

are only valid for small deflections; once the fibres start to bend the contact points

and direction of the forces will change. The ends of the fibres are pinned, so that no

deformation or strain energy is present before compaction. From Equation 4.12 or 4.13,

the displacement v at point a of a fibre pinned at either end caused by a force P acting

at point a is:

v(a) =
P (L − a) a3

6EIL
−

Pa
(
2L2 − 3La + a2)

6EIL
a (4.58)

which can be simplified and re-arranged to give P in terms of v:

P(a) = − 3EILv
a2(a − L)2 (4.59)
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An arbitrary set of dimensions and properties have been chosen as shown in Table 4.1.

Note that a consistent set of units has been chosen to avoid having to convert to SI

units.

Table 4.1: Fibre compaction test case dimensions

Fibre radius r 0.01 mm

Domain width w 0.16 mm

Domain height h 0.16 mm

Domain length L 1 mm

Young’s modulus E 80× 103 MPa

Second moment of area I 7.85× 10−9 mm4

For the fibres which have the force applied at their centre (i.e. a = L
2 ), the force is:

P = 30.1× 10−3 v (4.60)

For the fibres which have the force applied at a = L
6 ), the force is:

P = 97.7× 10−3 v (4.61)

Figure 4.18 illustrates eight layers in which contacts between fibres occur. Compaction

Contact layers

Figure 4.18: Fibre contact layers

forces applied to the top surface of the tow are propagated through the tow by these

contact layers. In each of these layers there is one fibre with force applied at the ax-

ial centre and two fibres with force applied at axial position L
6 . This test case has

been designed to contain easily identifiable contact layers, however in a randomly dis-

tributed tow these layers do not exist, hence demonstrating the need for an energy

based method.

The total force F acting on one layer would be:

F =
[(

30.1× 10−3)+ 2
(
97.7× 10−3)] v = 225.5× 10−3 v (4.62)

The strain energy within the fibres will also be obtained analytically for comparison

with the model. In order to do this the moment M from Equations 4.10 and 4.11 is

99



CHAPTER 4: MECHANICAL MODELLING OF TOWS

substituted into Equation 4.34 to obtain the strain energy U:

Ui =
1

2EI

(∫ a

0

(
P (L − a) x

L

)2

dx +
∫ L

a

(
Pa
(

1− x
L

))2
dx

)
(4.63)

Ui =
1

2EI

((
P (L − a)

L

)2 [ x3

3

]a

0
+ (Pa)2

[
x − x2

L
+

x3

3L

]L

a

)
(4.64)

Ui =
P2a2 (L4 − 2L2a + La2 + (1− L) a3)

6EIL2 (4.65)

For the fibres which have the force applied at the centre of the fibre (i.e. a = L
2 ), the

strain energy is:

Ui = 15.0× 10−3 v2 (4.66)

For the fibres which have the force applied one sixth of the way along the length (i.e.

a = L
6 ), the force is:

Ui = 48.9× 10−3 v2 (4.67)

The total strain energy in the system is thus:

U =
[
8
(
15.0× 10−3)+ 16

(
48.9× 10−3)] v2 = 902× 10−3 v2 (4.68)

In Section 4.4.3 it was shown that the force F could be related to the strain energy with

Equation 4.53. Thus F can be expressed in terms of U as:

F =
d
ds

(902× 10−3 v2) (4.69)

Before it can be evaluated s needs to be related to v. Initially when the fibres are just

touching the distance between the centrelines is 2r where r is the radius of the fibres.

As the yarn is compacted by compaction Q, the distance between the centrelines will

reduce to 2rQy. Rather than the fibres being compressed, one is deflected by distance v

while the other remains undisplaced. The distance v can be expressed as:

v = 2r − 2rQy (4.70)

It can be seen from Figure 4.17 that the height h is equal to 16r, hence:

v =
h(1− Qy)

8
(4.71)

From Equation 4.57 it can be shown that:

s = 8v (4.72)

which can then be used to evaluate F:

F =
d

dv
(902× 10−3 v2)

8
= 225.5× 10−3 v (4.73)

which agrees exactly with Equation 4.62 thus proving that the energy method is valid.
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Computation model solution

A computational model of the same tow has been built and can be seen in Figure

4.19. As well as the dimensions specified in Table 4.1, some additional parameters

are needed for the computational model and are specified in Table 4.2.

Figure 4.19: Computation test case model

Table 4.2: Parameters for fibre compaction test case

Coefficient of friction µ 0.3

Final compaction ~Q (1, 0.75, 1)

Number of steps ns 50

Number of fibre length divisions nd 200

Intersection convergence tolerance td 10−6

Strain convergence tolerance tU 0.001

Strain convergence iterations ni 50

Contact coefficient K 10

The contact coefficient K shown in the table is used to control how much force is applied

to the fibres when they intersect by a distance d. In Section 4.3.2, it is suggested that a

suitable equation to calculate the magnitude of force between two fibres is:

‖~P′‖ = ‖~P‖+ cd′ (4.74)

The value of c affects the rate of convergence and should be chosen such that the con-

vergence rate is maximised without causing model instabilities. The optimum value of

c depends on the fibre properties such as modulus, radius and length. It is convenient

to define c in terms of a new constant K that is independant of the dimensions and
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properties of the fibres. The magnitude of the force between two fibres becomes:

‖~P′‖ = ‖~P‖+ ~PeK
L
nd

(4.75)

where ~Pe is the estimated force necessary to displace two fibres so that they are just

touching assuming they are the only two fibres in contact:

‖~Pe‖ = − 3EILd′

2a2(a − L)2 (4.76)

This is the same as Equation 4.59 except that v has been replaced by d′
2 , since the de-

flection of each fibre will be half the total intersection distance. The term L
nd

, which

is length of the fibres divided by the number of fibre length divisions, represents the

distance between two consecutive cross-sections. It is included since shorter distances

between cross-sections will result in more contact points, thus the force on each contact

force must be less.

After about 20 minutes, 9443 iterations and 50 steps, the simulation successfully com-

pleted. Figure 4.20 shows the simulation at step number 25 with forces illustrated in

yellow and moments in green. The plot of strain energy U versus distance s for the ana-

lytical and computation model are shown in Figure 4.21. Similarly the plot of F versus s

is shown in Figure 4.22. The computational model follows the analytical solution very

closely for small compactions. However as the compaction increases, the analytical

model becomes invalid. The contact forces no longer remain vertical as the fibres begin

to bend, as can be seen in Figure 4.20. As expected, the more accurate computational

model shows higher values of U and F for higher degrees of compaction.

The curve of the computational solution in Figure 4.22 is slightly jagged. This is due to

the approximation created by the fibre length divisions. If a curve of strain energy U

were plotted against contact force location a (see Section 4.3.1), the curve should have

continuity C1. However in the computational model the strain energy varies linearly

between fibre length divisions hence resulting in a curve with continuity C0 only. Since

the force F is proportional to U′, a curve of F plotted against a does not have continuity

C0. The jaggedness of the curve in Figure 4.22 is a result of one or more contact force

locations a crossing a fibre length division. The problem is exacerbated in this case

due to the symmetry of the model, as all of the contact force locations move in unison.

Appendix G contains graphs showing the effect of varying the number of divisions nd.

Nevertheless, the high level of agreement for low compaction levels is very encourag-

ing. It shows that the computational model has been correctly implemented and that

the iterative technique to obtain a converged solution is valid.
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Figure 4.20: Computational test case model at step 25
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Figure 4.21: U versus s for compaction test case
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Figure 4.22: F versus s for compaction test case

4.4.5 Glass fibre tow

In this section an attempt is made to simulate the compaction of a real glass fibre tow. In

order to do this a fibre arrangement must be chosen along with boundary conditions for

the fibres, specifically a small section of tow contained within a domain small enough

to be modelled without excessive computation and large enough to give meaningful

results. Fibres are added one at a time by selecting random positions on one face of

the box for the origin of the fibre. The end of the fibre lies on the opposite face of the

box such that the angle between the fibre centreline and the face normal is chosen by

a standard normal random variable [28] with given standard deviation σ and mean

0. If the fibre is found to intersect with any of the other fibres already present it is

discarded. This process continues until the desired fibre volume fraction is reached.

If the specified volume fraction is too high this process may never complete in which

case the simulation cannot be carried out.

The longitudinal boundary conditions are a problem as discussed in Section 4.4.1. Re-

sults for various boundary conditions are compared, none of which are fully satisfac-

tory. Ideally the length of the tow section should not affect the results, however here

this is not the case. A base model is created that attempts to represent a glass fibre tow

with parameters shown in Table 4.3. Starting from the base case the effect of each pa-

rameter on pressure versus fibre volume fraction is determined. First of all a sensitivity

study is performed on the model parameters which should not affect the results. For
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each set of parameters 800 simulations are run and the average is shown. For the base

case, each simulation takes up to 5 minutes to run, taking several days to run 800 sim-

ulations on a single computer. To speed the process up the simulations are spread over

several processors reducing the run time down significantly depending on the number

of processors available.

Table 4.3: Parameters for glass fibre compaction (base case)

Fibre radius r 0.01mm

Young’s modulus E 65000 MPa

Coefficient of friction µ 0.3

Angle standard deviation 0.02 rad

Domain size (w x h x L) 0.16 x 0.16 x 1 mm

Final compaction ~Q (1, 0.75, 1)

Number of steps ns 10

Number of fibre length divisions nd 100

Interesection convergence tolerance td 10−6

Strain convergence tolerance tU 0.001

Strain convergence iterations ni 50

Contact coefficient K 1

A selection of steps from a single simulation is shown in Figure 4.23 with parameters

shown in Table 4.3. The yellow lines represent the normal contact forces between fibres,

the red lines represent the frictional forces and the green lines represent the moment of

the fibres. This illustrates the complexity of the model. As the simulation gets to the

last steps the number of contact forces becomes very large which can cause instabilities.

All of the following graphs show pressure versus fibre volume fraction varying one of

the parameters shown in Table 4.3.

First of all the reason for averaging results of several simulations is illustrated in Fig-

ure 4.24. Each line represents the average of a certain number of simulations. As the

number of simulations increases it can be seen that the lines tend to converge. The indi-

vidual simulations do not give the same results each time but by averaging the results

over a representative number of simulations they become repeatable. The error bars

represent the standard deviation of 600 simulations. The error bars are very large due

to the small scale on which the simulations are run.

Experimental data is available for compaction of fabrics and groups of tows but not

for small sections of tow as simulated in the numerical method. Thus the variability

found in the simulations is much larger than one would expect from experiments, as
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Step 0 Step 5

Step 7 Step 8

Step 9 Step 10

Figure 4.23: Visualisation of the simulation of compaction for a portion of glass fibre

tow
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Figure 4.24: Pressure versus fibre volume fraction varying number of simulations

the variations will average out at a larger scale.

Appendix H contains graphs showing that the optimum number of fibre length divi-

sions is 100 and that the model is not sensitive to domain height or number of steps.
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Figure 4.25: Pressure versus fibre volume fraction varying fibre radius

Figure 4.25 shows the effect of the fibre radius on pressure. The pressure increases

with radius, as is expected since the bending stiffness of each fibre will increase with
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radius. Unfortunately by increasing the fibre radius to 0.2mm the initial fibre volume

fraction has increased, causing the curve to be shifted to the right making it appear that

the radius does not affect pressure between radius 0.1mm and 0.2mm. The increased

volume fraction is due to the way the fibres are placed inside the domain. Fibres are

added one by one until the volume fraction is greater than or equal to the desired initial

fibre volume fraction. As the volume of each individual fibre is large in comparison

with the domain size, the initial fibre volume fraction is overshot by a large amount.
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Figure 4.26: Pressure versus fibre volume fraction varying fibre angle

Next the effect of varying the angle standard deviation between fibres in a tow is inves-

tigated in Figure 4.26. It can be seen that increasing the angle between fibres increases

the amount of compression pressure. This is to be expected since the number of con-

tacts between fibres increases as angle increases, leading to an increase in the average

bending energy stored in the fibres and thus an increase in pressure.

The effect of friction is shown in Figure 4.27. An increase in friction coefficient shows

a slight increase in pressure, most prominently at low values. Note that the frictional

energy dissipated during fibre sliding is not taken into account when calculating the

pressure due to limitations in the modelling approach. If this were to be taken into

account a more significant difference may be observed.

The effect of domain length is shown in Figure 4.28. As can be seen from the graph,

the length has a large effect on the pressure. Decreasing the length of the domain

causes an increase in pressure. At very small lengths it also affects the shape of the
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Figure 4.27: Pressure versus fibre volume fraction varying fibre friction
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Figure 4.28: Pressure versus fibre volume fraction varying domain length
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curve making it more shallow. However the smallest length plotted of 0.1mm is not

considered reasonable as it is approaching the radius of the fibres. Ideally the pressure

should not vary with the length of domain analysed. Unfortunately this is not the

case due to the difficulties in choosing appropriate longitudinal boundary conditions.

The boundary conditions chosen were pinned at each end. Decreasing the domain

length has the effect of increasing the bending stiffness between the pinned ends thus

increasing the compaction pressure.
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Figure 4.29: Pressure versus fibre volume fraction varying initial fibre volume

fraction

The effect of initial fibre volume fraction is shown in Figure 4.29. This represents the

fibre volume fraction where no pressure has been applied to the tow and no internal en-

ergy exists. By increasing the initial fibre volume fraction, the volume fraction at which

a certain pressure is attained is delayed. The overall shape of the curve is not modified,

it is simply shifted and scaled. The reason for this is that the initial distribution of fi-

bres is always created in such a manner that no intersections are present. Therefore the

compaction pressure at the start of the simulation is always zero no matter what the

initial fibre volume fraction is.

From the sensitivity study it can be seen that the shape of the curve remains the same

(except for the case of very small domain lengths). It has been shown in the literature

that the compaction curve of pressure versus fibre volume fraction can be approxi-

mated by a power law requiring only 2 fitting parameters. Alternatively experimental

data can also be fitted to the Gutowski model [43] requiring 3 fitting parameters V0,
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Figure 4.30: Pressure versus fibre volume fraction base case fit against analytical

curves

Va and β (Equation 4.9). McBride [88] found that using a maximum volume fraction

Va of 0.85 gave good fit to the experimental results for both E-Glass and Kevlar tows.

This value falls between that of square packed and hexagonally packed arrays. Hence

Va = 0.85 is used here and the fitting parameters are reduced to V0 and β. The base

simulation case fitted to both types of curves is shown in Figure 4.30 using the least

squares method. The fit is almost perfect, demonstrating that the simulation produces

curves similar to those obtained from experimental testing. Note also that the value

of V0 obtained from the fit is very close to the actual initial fibre volume fraction mod-

elled. The coefficient of correlation R2 is 0.994 for the Gutowski model and 0.997 for

the power law.

McBride [88] performed compaction experiments on a series of aligned yarns. Two

methods were explored, the first where yarns were simply placed between two plates

and compressed with free edges referred to as transverse uniaxial compression. The

second method involved placing plates on the sides of the yarns to prevent them from

expanding horizontally, referred to as transverse plane strain compression. Since the

model presented in this chapter corresponds better to the plane strain method, results

will be compared against this method.

Figure 4.31 shows a comparison of pressure versus volume fraction to McBride’s data.

Unfortunately the pressure values for the computational simulations are much lower
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Figure 4.31: Pressure versus fibre volume fraction base case comparison showing

base case against experimental data

than experimental data, by a factor of about 300. Therefore to be able to make a mean-

ingful comparison the pressures from the computational data has been scaled accord-

ingly. It should be noted that currently no model is able to predict the magnitude of

compaction pressure without using a fitting parameter of some form. Unfortunately

the model presented here also falls into that category.

The reason for the failure to accurately predict the scale of the pressure is thought to

be due to the existence of non-physical parameters which have a significant effect on

the results. These include the length of the domain and the unsatisfactory longitudi-

nal boundary conditions. The neglect of frictional energy dissipated in calculating the

compaction pressure may also contribute to the under-prediction. Future work on this

model should revise the boundary conditions. One solution may be to assume that the

fibre path is wavy in its unstrained state. This would enable the use of longitudinal pe-

riodic boundary conditions while still enabling contacts within the system. The length

of the domain should then be a multiple of the fibre path wavelength to ensure period-

icity. With a wavy fibre path the number of contacts is likely to be increased resulting

in a larger compaction pressure approaching experimental results. The inclusion of

frictional energy should also be considered. However the model does provide insights

into how certain physical parameters will affect the compaction behaviour, such as fi-

bre radius, fibre angle and initial fibre volume fraction.
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4.4.6 Conclusions from compaction examples

An original computational model able to predict the behaviour of a tow under com-

pression has been developed. The model was implemented in C++ and verified for

a simple test case where an analytical solution is known. The model has shown its

ability to simulate accurately the test case. The model was then used to predict the

compaction pressure of a random distribution of fibres in a small domain similar to

that found in a real tow. The results from these simulations show curves identical in

shape to those found in experimental testing. By varying parameters in the model,

change in compaction behaviour can be predicted. However the model is still unable

to predict accurately the scale of the pressure applied without fitting to experimental

data.

4.5 Shearing of polyester plain weave

Collaborating with Unilever and the University of Manchester, an attempt at char-

acterising the effect of fabric conditioner on the mechanical properties of cotton and

polyester fabrics was made. It is thought that the application of fabric conditioner af-

fects the coefficient of friction between yarns and fibres, however it is not clear whether

the fabric conditioner is able to penetrate the yarns or if it only affects the surface of the

yarns. To account for this the fabric behaviour is modelled with two coefficients of

friction; a coefficient of friction between yarns µy and a coefficient of friction between

fibres µ f . In the case where the fabric conditioner penetrates the yarns, the coefficients

of friction µy and µ f will be equal.

The polyester plain weave presented in Chapter 3 contains only 24 fibres per tow. For

such a tow it is reasonable to perform a micro scale unit cell analysis using the model

presented in this chapter. In order to simulate a unit cell with this model, several tows

must be constructed with interactions between them. The interactions between fibres of

different tows are implemented as described in Section 4.3.3 by splitting the fibres into

small straight line segments. Due to the symmetry of the plain weave, only a quarter

of the unit cell needs to be modelled. In this case the shearing behaviour of the fabric

is of interest.

In this model fabric shear is represented by a linear shear transformation of the fibre

centrelines. The fibres themselves however do not shear, it is assumed that the fibre

cross-sections remain perpendicular to the fibre centrelines. For convenience in dealing

with contacts, the fibre length divisions follow the linear shear transformation. Hence
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Figure 4.32: cross-section after shearing

after shear, the fibre length divisions are no longer perpendicular to the fibre direction

and thus the cross-sectional shape of fibres across each division is no longer circular.

The change in shape is illustrated in Figure 4.32. The height of the fibre cross-section

remains the same, but the width increases as the shear increases. The resulting shape

is an ellipse of width w and height h defined by the following equation:

w = 2r
√

1 + ε2
xy (4.77)

h = 2r (4.78)

where r is the radius of the fibre and εxy is the in plane shear strain of the tow.

The detection of intersections between fibres within a tow is now performed over el-

lipses rather than circles. However, since the ratio of major axis to minor axis is the

same for all ellipses and the major axes of all the ellipses have the same orientation,

all the ellipses can be linearly transformed back to circles. The intersection detection

can then be performed over the circles yielding the same results as if it were done over

ellipses.

Figure 4.33: Shearing modes

Considering the case where there are two tows crossing over each other as illustrated

in Figure 4.33, there are two extreme modes of shear. The first case is where the fibres

within a tow are adhered together and do not slide past each other, however sliding

does occur between the yarns (inter-yarn slip). The second case is where no sliding

between the yarns occurs but there is sliding between fibres (inter-fibre slip). The mode
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that occurs depends on the relative contact forces between the fibres and the relevant

coefficients of friction. Note that the only difference between the inter-yarn slip and

inter-fibre slip cases is a translation of the fibres along their axis. Hence the problem

can be simplified to the case where each fibre only has one degree of freedom.

An energy minimisation principle is used to determine where inter-yarn slip occurs

and where inter-fibre slip occurs. The work done W when two fibres slide can be ex-

pressed as the frictional force µF multiplied by sliding distance ds:

W =
∫

µF ds (4.79)

The work done is equivalent to frictional energy dissipated. The total dissipated energy

can be calculated by summing each of these individual energy contributions. The ob-

jective then becomes minimisation of the total dissipated energy for all possible sliding

configurations.

4.5.1 Frictional energy minimisation

Figure 4.34: Fibre degrees of freedom illustrated

In order to minimise the amount of frictional energy dissipated due to fibre sliding,

an equation for frictional energy based on sliding must be derived. Each fibre has

one degree of freedom allowing it to slide along its axis by a distance denoted by x0,

x1. . . xn−1, where n is the number of fibres. The in-plane distance of each fibre from the

central tow axis is denoted by y0, y1. . . yn−1 (Figure 4.34). The shear strain is denoted

by:

εxy =
dx
dy

(4.80)

The contact force between fibre i and the crossing yarn is Fi. Similarly the contact force

between fibre i and fibre j is defined as Fij. The dissipated frictional energy due to
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crossing yarn contact is:

Wi = Fiµy|xi − εxyyi| (4.81)

where µy represents the coefficient of friction between yarns. The dissipated frictional

energy due to fibre-fibre contact within the same yarn is expressed as:

Wij = Fijµ f |xi − xj| (4.82)

where µ f represents the coefficient of friction between fibres within the same yarn. The

total frictional energy dissipated is denoted by W and is simply the sum of the frictional

energies dissipated by each fibre:

W =
n

∑
i=1

Wi +
n

∑
i=1

n

∑
j=i+1

Wij (4.83)

=
n

∑
i=1

Fiµy|xi − εxyyi|+
n

∑
i=1

n

∑
j=i+1

Fijµ f |xi − xj| (4.84)

The only unknown variables in Equation 4.84 are x0, x1. . . xn−1, therefore the number of

degrees of freedom is equal to the number of fibres. The coefficients of friction are input

values that can be varied to establish their effects on total frictional energy dissipated.

The forces are obtained from the fibre model, and all forces are summed along the

length of the fibre to obtain a single value for each fibre-fibre or fibre-yarn interaction.

4.5.2 Incremental loading

The dissipated frictional energy calculation assumes that the forces between the fibres

remain constant during shearing. This is of course not true, as when shearing occurs

the fibres tend to become compacted together increasing the contact forces between

them and changing the geometric configuration. However over small increments of

shear, these changes will be small and therefore if the shearing is simulated over a

number of steps a reasonable approximation can be reached. In between the shearing

steps, the fibre geometry and forces are recalculated. Since the geometry is not affected

by sliding of the fibres, the energy minimisation for a whole set of different coefficients

of friction can be performed in the same simulation.

4.5.3 Boundary conditions

Symmetry is used to analyse just a quarter of a unit cell with appropriate boundary

conditions. The fibre ends do not have any moment acting on them similarly to the

pinned case. However the fibres are permitted to move with some restrictions. The
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fibres are initially arranged in a hexagonal pattern with 3 layers, with the middle layer

containing 7 fibres while the upper and lower layers contain 6 fibres as shown in Figure

4.35. Note that the exact number of fibres is slightly less than the real case in order to

reduce the computational time necessary to run the simulations.

The fibres on the middle layer can move horizontally but cannot move vertically. The

fibres on the top and lower layers are paired together and must move in unison mir-

rored about the central horizontal axis. That is to say that the distance a between a fibre

and the central horizontal axis must be equal to the distance a of the fibre it is paired

to. The horizontal displacements of the two fibres must also be the same.

a

a

Figure 4.35: Fibre arrangement

4.5.4 Forces from energy

Mechanical work is defined mathematically as the line integral of a scalar product of

force and displacement vectors [116, 134]. It can be used to calculate the force~F needed

to shear the fabric in terms of energy. Figure 4.36 illustrates the boundaries of the fabric

with shear force~F acting on the sides.

~F

~F

P1

P2

P3

P4

L

Figure 4.36: Shear force diagram

The work done W on the fabric by a shear force~F can be expressed as:

W =
∫

~F · d~s (4.85)

where ~s represents the position vector of the point of application of force ~F. From

Figure 4.36 it can be seen that there are two equal shear forces acting on the fabric, one
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on side P2-P3 and the other on side P3-P4. Assuming the force is uniformly distributed

over the side, the position vector~s for the right side can be expressed as:

~s =
∫ 1

0
P2 + u(P3 − P2) du (4.86)

=
P2 + P3

2
(4.87)

The points P1, P2, P3 and P4 can be expressed in terms of shear strain εxy:

P1x = P1y = 0 (4.88)

P2x = P4y = L
1√

1 + ε2
xy

(4.89)

P2y = P4x = L
εxy√

1 + ε2
xy

(4.90)

P3x = P3y = L
1 + εxy√

1 + ε2
xy

(4.91)

And~s becomes:

~sx = L
2 + εxy

2
√

1 + ε2
xy

(4.92)

~sy = L
1 + 2εxy

2
√

1 + ε2
xy

(4.93)

It is now possible to differentiate~s in terms of shear strain εxy:

d~sx

dεxy x
= L

1− 2εxy

2(1 + ε2
xy)

3
2

(4.94)

d~sy

dεxy y
= L

2− εxy

2(1 + ε2
xy)

3
2

(4.95)

The direction ~T of the force vector~F is known, but the magnitude F is not. Splitting the

magnitude and direction,~F can be expressed as:

~F = F~T (4.96)

The direction ~T can be expressed in terms of shear strain εxy:

~Tx =
εxy√

1 + ε2
xy

(4.97)

~Ty =
1√

1 + ε2
xy

(4.98)
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Equation 4.85 can now be expressed as:

W =
∫

F
(
~T · d~s

dεxy

)
dεxy (4.99)

which becomes:

W =
∫

F

(
L

1− ε2
xy

(1 + ε2
xy)2

)
dεxy (4.100)

Note this expression accounts only for the work done by the shear force on side P2, P3.

The same expression can be derived for the shear force on side P3, P4 due to symmetry.

Equation 4.100 can be re-arranged to give the magnitude of the shear force F in terms

of W:

F =
dW
dεxy

(1 + ε2
xy)2

L(1− ε2
xy)

(4.101)

Assuming the work done by both shear forces is the same, the work done W on the

fabric by a single shear force can be equated to the change in energy in the system

before and after shearing divided by 2:

W =
(U −U0) + G

2
(4.102)

where U is the strain energy within the fibres, U0 is the strain energy within the fibres

before shearing and G is the frictional energy dissipated during fibre sliding.

The differentiation in Equation 4.101 can be approximated numerically. The force F

and work done W are both functions of εxy, written as F(εxy) and W(εxy). Force F(εxy)

can be expressed as:

F(εxy) = lim
dεxy→0

W(εxy + dεxy)−W(εxy)
dεxy

(1 + ε2
xy)2

L(1− ε2
xy)

(4.103)

4.5.5 Results

The properties used for the model are shown in Table 4.4. The tow is modelled as 3

layers of fibres arranged in a hexagonal pattern as shown in Figure 4.37. In the initial

state all the fibres are perfectly straight with clear intersections between the two tows.

A number of iterations are computed before the shear deformation begins in order to

resolve the fibre intersections, this corresponds to the non-sheared configuration in the

figure. The sheared configuration is after a number of shear steps have been performed.

The colour represents the moment of the fibre.

A number of cases were run varying the number of fibre length divisions to find the

optimal number of divisions (see Section 4.3.3). A graph of strain energy within the
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Table 4.4: Parameters for polyester fabric shear

Fibre radius r 0.009 mm

Number of fibres 19

Young’s modulus E 13200 MPa

Domain size 0.44 mm x 0.44 mm

Shear strain increment 0.01

Number of steps ns 21

Number of fibre length divisions nd 20

Intersection convergence tolerance td 10−6

Strain convergence tolerance tU 10−5

Strain convergence iterations ni 50

Contact coefficient K 1

Initial Non-sheared Sheared

Figure 4.37: Fabric shear model including individual fibres

system versus shear strain is shown in Figure 4.38. The strain energy is larger for lower

numbers of divisions which is to be expected due to the nature of the inter-yarn contact

algorithm. It was concluded that 20 divisions is sufficient for accurate results in this

case.

The effect of changing the coefficient of friction between yarns µy and coefficient of

friction between fibres µ f was simulated. Figure 4.39 shows µy and µ f plotted along

the x and y axes, and frictional energy dissipated is plotted along the z axis for a shear

strain of 0.2. It can be seen that when the ratio of µy to µ f is below a certain value, µ f

does not affect the frictional energy dissipated because all of the sliding occurs between

the yarns. Likewise when the ratio of µy to µ f is above a certain value, µy does not affect

the frictional energy dissipated because all of the sliding occurs between the fibres

within a tow. From the graph it can be seen that the critical ratio is approximately

0.3.

Figures 4.40 and 4.41 show the effect of varying µy, µ f and shear strain on the frictional

energy dissipated. It can be seen that increases in shear strain always increase frictional

energy dissipated. Increasing coefficient of friction µy increases frictional energy dissi-

pated until the critical ratio is reached at which point further increases no longer have

120



CHAPTER 4: MECHANICAL MODELLING OF TOWS

0.0024

0.0026

0.0028

0.003

0.0032

0.0034

S
h
e
a
r

E
n
e
rg

y
(m

J
)

S
h
e
a
r

E
n
e
rg

y
(m

J
)

0 0.05 0.1 0.15 0.2 0.25 0.3

Shear StrainShear Strain

5 Divisions
10 Divisions
20 Divisions
50 Divisions

Figure 4.38: Strain Energy vs. Shear Strain for various number of divisions
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Figure 4.39: Effect of µ f & µy on frictional energy dissipated at shear strain of 0.2
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any effect.

Shear Strain

0.00
0.05

0.10
0.15

0.20
0.25

F
ib

re
 F

ri
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

F
ri

c
ti

o
n

a
l 

E
n

e
rg

y
 D

is
s
ip

a
te

d
 (

m
J)

 x
 1

0
^

-3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 4.40: Effect of µ f and shear strain on frictional energy dissipated at µy = 0.4
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Figure 4.41: Effect of µy and shear strain on frictional energy dissipated at µ f = 1

In order to compare against experimental results, it is necessary to convert the energies

into forces as described in Section 4.5.4. Figure 4.42 shows a graph of strain and fric-

tional energy versus shear strain for fixed coefficients of friction. Both the loading and
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unloading curves are plotted and for the strain energy these curves overlap. In contrast

the frictional energy dissipated always increases. The total energy represents the total

work done on the fabric during shearing.
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Figure 4.42: Energy vs. Shear Strain, arrows indicating loading and unloading

The energies have been converted to normalised shear forces and are shown in Figure

4.43. Normalised shear force is obtained by dividing the shear force by the width of the

domain. The shear forces due to friction and strain energy have been separated to see

the effect of each. The loading and unloading curves of each are also shown to demon-

strate the effect of hysteresis. Again the forces due to strain energy overlap whereas

the forces due to friction do not. One fact that stands out is that the curve for shear

force due to strain energy is not smooth. This is due to the numerical differentiation

performed on the strain energy curve which tends to amplify very small changes in

the strain energy. These fluctuations have no physical meaning and should be ignored.

Otherwise, the shape of the curve is similar to what one would expect to obtain from

experiments. Figures 4.44 and 4.45 show the effect of varying the coefficient of friction.

µy and µ f are given the same value and varied together since the effect of varying each

one independantly has already been demonstrated. When µy and µ f are equal, sliding

occurs between fibres within a tow and not between crossing tows.

The shear force due to strain energy does not depend on the coefficient of friction

whereas the shear force due to friction is scaled linearly with the coefficient of fric-

tion. It is convenient to separate these two quantities for comparison with experimen-

tal data. The Kawabata Evaluation System for fabrics [58, 59] identifies 3 quantities
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Figure 4.45: Normalised shear force vs. shear strain (µy = µ f = 0.1)

from the curve: Shear stiffness G (cN/cm.degree), hysteresis of shear force at 0.5◦ of

shear angle (2HG) (cN/cm) and hysteresis of shear force at 5◦ of shear angle (2HG5)

(cN/cm). The quantities are illustrated in Figure 4.46. The shear stiffness G relates to

the shear forces due to strain energy and hysteresis values 2HG and 2HG5 relate to the

shear forces due to friction. KES-f data were obtained for the polyester fabric by the

University of Manchester and are shown in Table 4.5.
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Figure 4.46: Kawabata Evaluation System for fabrics shear parameters [59]

The same polyester fabric was tested with different surface treatments to investigate

their effect on mechanical properties. The first set of data is for untreated yarns, the
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Table 4.5: KES-f experimental shear data

Fabric G (cN/cm.degree) 2HG (cN/cm) 2HG5 (cN/cm)

Untreated 3.67 7.11 20.34

Treatment A 2.71 5.26 12.15

Treatment B 0.87 3.26 5.21

two other sets have surface treatments labelled treatment A and B.

In order to compare results from the simulation it is necessary to convert shear strain

to shear angle. The following equation relates shear strain to shear angle:

tan θ = εxy (4.104)

This non-linear relationship makes the conversion troublesome, however for small an-

gles tan θ ≈ θ when θ is given in radians. The error introduced by this assumption is

only 0.25% for the highest angle of interest (5◦). The conversion then becomes a simple

linear scaling of values:

1
N

mm
=

1000π

180
cN

cm.degree
(4.105)

The values for G, 2HG and 2HG5 from the simulation converted to the same units as

the KES-f data are shown in Table 4.6.

Table 4.6: KES-f predicted shear data

Range G (cN/cm.degree) 2HG (cN/cm) 2HG5 (cN/cm)

µ f ≤ 3.33 µy 3.53 60.7 µ f 125 µ f

µ f ≥ 3.33 µy 3.53 202 µy 415 µy
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Figure 4.47: Comparison between model and experimental data for G
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Figure 4.47 illustrates the values of G for the KES-f experimental data and the simula-

tion. The agreement is very good between the untreated experimental case and the fibre

model. Without further knowledge of the type of treatment applied to the fabric, the

treated fabrics cannot be modelled. According to the model, the friction between the

yarns should have a negligible affect on the value of G because the shear force due to

friction is almost constant compared to the shear force due to fibre bending. However,

it is possible that the Young’s modulus of the fibres may have been reduced during the

treatment which would result in a reduction in G.

In order to compare results for 2HG and 2HG5 a coefficient of friction is needed for

the fibres. Using the KES-f system, a coefficient of friction MIU between a flat surface

and the fabric was obtained and is shown in Table 4.7. MMD represents the Mean

Deviation of the coefficient of friction.

Table 4.7: KES-f experimental friction data

Fabric MIU MMD

Untreated 0.124 0.0255

Treatment A 0.131 0.017

Treatment B 0.129 0.0174

The experimental data does not seem consistent since the coefficient of friction of MIU

increases with both surface treatments whereas the hysteresis values 2HG and 2HG5

reduce with both surface treatments. An increase in coefficient of friction MIU is ex-

pected to result in an increase in hysteresis values 2HG and 2HG5. Potluri [100] noted

that in his experience the KES friction tester is not a particularly sensitive instrument.

It should also be noted that the coefficient of friction used within the simulation should

be that between two polyester fibres. This is not necessarily the same as that measured

by the KES-f system.

However, using the value MIU for the untreated fibres in the simulation (with µ f =

µy), values for 2HG and 2HG5 were be obtained and are shown in Figures 4.48 and

4.49. Again very good agreement can be seen between the model and the untreated

fabric experimental data for 2HG. The agreement for 2HG5 is not quite so good but

the value from the simulation lies between the experimental values of the 3 fabrics.

Since the coefficient of friction obtained from the experimental data is not considered

to accurately represent the coefficient of friction between fibres, it makes sense to cal-

culate this value from the simulation using an inverse method (by combining results

from Tables 4.5 and 4.6). The results are shown in Table 4.8 where µ f and µy are again

assumed to be equal. Two calculations are made, the first based on 2HG the second
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µ f = µy = 0.124
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Figure 4.49: Comparison between model and experimental data for 2HG5

µ f = µy = 0.124
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based on 2HG5. The difference and mean of the two predictions is shown. The calcu-

lated coefficients of friction decrease with surface treatments as expected, in contrast to

measurements from the KES-f system.

Table 4.8: Calculated coefficients of friction (µ f = µy)

Fabric From 2HG From 2HG5 Mean Difference

Untreated 0.117 0.162 0.139 32.4%

Treatment A 0.0866 0.0972 0.0919 11.5%

Treatment B 0.0537 0.0417 0.0477 25.2%

4.5.6 Conclusions

The computational model developed has proven to be able to predict accurately the

shear behaviour of the polyester fabric. No fitting parameters have been used to achieve

this prediction. Elastic strain energy stored in the fibres and frictional energy dissipated

during shear were both obtained from the model. These energies were then used to in-

fer shear forces applied to the unit cell. A plot of shear force versus shear strain was

obtained with the components due to fibre bending and fibre sliding separated out.

The values obtained from the graph were compared to KES-f experimental data of the

fabric under three different surface treatment states. Good agreement was shown for

shear stiffness and hysteresis when compared against the untreated fabric. The coef-

ficient of friction between the fibres was calculated for both treated fabrics using an

inverse method.

The model was found to be more suitable for predicting the shear behaviour of a small

unit cell than predicting compaction of a tow. This is believed to be because the bound-

ary conditions were satisfactorily modelled for the shear case but not for the tow com-

paction case. With further work, the boundary conditions for the tow compaction case

could be improved to give better results.
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Mechanical modelling of fabric unit

cells

5.1 Introduction

This chapter is a theoretical study of the mechanical behaviour of textiles using finite

element analysis [124, 145]. The method is designed to be sufficiently general that it can

be applied to any type of fabric. Analytical solutions exist for simple textile structures,

however these analytical methods are always aimed at a particular type of fabric and

a particular mode of deformation. Extensions of these solutions to other fabric types

or deformation modes either require substantial additional work or are not feasible. In

contrast finite element analysis is very general; once the method has been developed

for one fabric structure it can be extended to any type of fabric as long as it has a repeat-

able unit cell. In order to keep a general solution method, fabric symmetry should not

be exploited since not all fabrics contain symmetries and certainly not the same sym-

metries. Instead periodic boundary conditions may be used which will be applicable

to any repeatable unit cell no matter what the fabric type. This generality is obtained at

the sacrifice of solution speed due to the increased mesh size where symmetries do ex-

ist. However with increases in computer processing speeds and the advent of parallel

computing, the sacrifice is becoming less important.
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5.2 Literature survey

5.2.1 Finite element analysis of fabric unit cells

The use of finite element analysis (FEA) in predicting mechanical properties of textile

composites is is well-established [25, 97, 109, 128]. However relatively little work has

been done on predicting the mechanical properties of dry fabrics using FEA.

Tarfaoui and Akesbi [129] modelled the mechanical properties of a mono-filament plain

weave with finite elements. The classic two dimensional geometrical models devel-

oped by Peirce [95] and Kemp [60] were extended to three dimensions. Volume meshes

were then created from these geometries by linking a series of cross-sectional meshes

together. Since the fabric modeled had mono-filament yarns, an isotropic material

model was used avoiding issues such as material anisotropy and non-linearity. No

comparison against experimental results was made and results were supplied in the

form of minimum, maximum, and Tresca stresses for both Peirce’s and Kemp’s geo-

metrical models. Unfortunately results in this form are very difficult to relate to exper-

imental data.

Boisse et al. [10] used finite element analysis to model the behaviour of dry woven

textiles under biaxial loads. The geometrical model consisted of cross-sections built

of two straight vertical edges with a curved upper and lower surface presumably to

provide a geometry easily meshed with high quality elements. The cross-section was

then meshed with two rows of quadrilateral elements. For the biaxial simulations, the

three shear moduli and three Poisson’s ratios were set close to zero (zero values cause

numerical difficulties during computation) and the transverse moduli were small in

comparison with longitudinal modulus. The longitudinal modulus was determined

via a tension test on one tow and an inverse identification was applied to obtain the

non-linear transverse modulus. The finite element analysis gave good agreement with

the experimental results for different ratios of biaxial loads.

Boisse et al. [11] later developed a finite element to model the behaviour of fabrics

during forming. The approach consists of determining the behaviour of a fabric unit

cell under biaxial tension and in-plane shear and using those properties to create a two

dimensional element. Two approaches were explored in obtaining these properties.

The first was to measure them from experiments on the fabrics and the second was

through meso-scale finite element analysis as described in the previous paper. The

finite element analysis of a plain woven fabric was performed using solid continuum

elements. A number of issues were identified as being important to obtain accurate

results:
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• The fibre direction must be accurately represented due to the highly anisotropic

material model involved (see Section 5.5.1). It was noted that commercial codes

such as ABAQUSTM[51] do not correctly track the fibre directions during defor-

mation without the use of custom code. Hagege [44], Hagege et al. [45] wrote a

VUMAT for ABAQUS to deal with this issue.

• The transverse compaction behaviour is important in obtaining accurate results.

The transverse modulus ET was modelled with the following formula:

ET = E0|εT
n|εL

m + Eε (5.1)

where E0, n and m are arbitrary constants to be determined by an inverse method.

The value of Eε is the initial transverse modulus supposedly also chosen arbitrar-

ily.

• The shear modulus was chosen to be nearly equal to zero given the argument

that the fibres can slide relatively easily. In fact the transverse shear behaviour of

a tow is much more complex than this (see Section 5.4.2).

• Boundary conditions were applied by prescribing displacements causing the de-

sired fabric deformation while restricting degrees of freedom to ensure period-

icity. However in the case of the fabric shear, the displacements were over-

constrained due to enforcing the yarn edges to remain in the plane perpendicular

to the yarn normal. By doing so the effect of using a simplified transverse shear

behaviour was reduced.

• A limitation was noted in modelling shear where the simulation was unable to

complete when contact between adjacent yarns occured. This was due to the

limitations in the contact algorithm found in ABAQUS which is unable to deal

with contact between sharp edges. Hence only the initial stages of fabric shear

could be modelled. A further limitation not mentioned is that once the shear

angle becomes large a periodic contact algorithm is necessary (see Section 5.4.6).

5.2.2 Experimental methods

Several experimental methods exist to characterise various mechanical properties of

fabrics.

Kawabata [58], Kawabata and Niwa [59] developed the Kawabata Evaluation System

for fabrics (KES-f) to characterize the mechanical properties of fabrics. The system

is composed of 4 separate components: tensile and shear tester, pure bending tester,

132



CHAPTER 5: MECHANICAL MODELLING OF FABRIC UNIT CELLS

compression tester and the surface tester. The tensile and shear tester is capable of

measuring the tensile strain/force response of a fabric up to 500 gf/cm and measuring

the shear response of a fabric up to 8 degrees of shear. The pure bending tester applies

a constant curvature to the fabric and measures the bending moment up to a curvature

of 3 cm−1. The compression tester applies a through thickness force to the fabric of

up to 50 gf/cm2. The surface tester measures the coefficient of friction between the

fabric and a friction contactor, and measures the surface roughness with the roughness

contacter.

However, the cost of the system is very high and it is only suitable for measuring me-

chanical properties at relatively low loads compared to the loads applied to textile com-

posite preforms.

CSIRO Division of Wool Technology in Australia developed another set of instruments

named Fabric Assurance by Simple Testing (FAST) for measuring mechanical proper-

ties of fabrics [89]. The FAST system is much cheaper and is composed of 3 components:

compression meter, bending meter and the extension meter. The compression meter

measures thickness of the fabric at 2 gf/cm2 and 100 gf/cm2 of pressure. This is done

simply by adding weights to a measuring cup. The bending meter uses the cantilever

bending principle, as described in British Standard Method (BS 3356:1961). However

the bending meter provides a photocell to detect the leading edge of the sample, replac-

ing the need for it to be done by eye. The extension meter operates on a simple lever

principle with weights applied to the fabric to provide three different strain measure-

ments. This system also operates at low loads and does not provide as much detailed

information as the KES-f system.

Other experimental tests which aim to characterise a single mode of deformation are

discussed below.

Tensile tests

Tensile tests on fabrics can be carried out on standard testing equipment such as In-

stron and Hounsfield test frames. These setups are generally more suitable for larger

loads compared to the more sensitive measurement capability provided by the KES-f

system. In order to perform biaxial tensile tests a more sophisticated setup is required.

Buet-Gautier and Boisse [12] describe a device capable of applying two different strains

proportional to each other in two orthogonal directions. The ratio of the two strains is

denoted k. This system is suitable for testing tensile properties of fabrics with high

moduli, typically as found in textile composite preforms.
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Compression tests

Compression tests on fabrics can also be carried out on standard testing equipment

where the fabric is placed between two parallel plates and the force measured with a

load cell [103]. These setups are able to reach loads in the order of 1 MPa compared

to 5 kPa on the KES-f system. However the pressure cannot generally be measured

as accurately at low loads. For these tests to be completed successfully the degree of

misalignment between the plates must be small especially for thin samples.

Shear tests

Two methods of measuring the shear behaviour of fabrics at high shear levels are avail-

able, namely the picture frame test and bias extension test [47, 80, 144]. In the picture

frame test, the fabric is clamped onto the four sides of a square frame. Bearings at the

corners of the frame allow the frame to shear into a rhombus shape. Tensile forces are

applied to two opposite corners of the frame to induce shear while measuring the reac-

tion forces. A limitation of this method is that it is very sensitive to fabric misalignment

and hence repeatability can be an issue.

The bias extension test involves clamping the fabric on only two sides in a similar man-

ner to a simple extension test; however the fabric is placed such that yarns are oriented

at 45◦ to the clamped edges. Tensile forces are then applied to the clamps to induce

a shear deformation in the fabric. In order for this test to be valid, the length of the

sample must be at least twice its width. The bias extension test is less sensitive to mis-

alignment and does not require a picture frame to perform the test. The disadvantages

are that the fabric tends to tear apart at high levels of shear and the results are more

difficult to interpret. However Potluri et al. [98] devised a method to improve accuracy

of the bias extension test up to higher levels of shear by using a wide-strip sample that

is only partly clamped at the edges.

5.3 Experimental techniques

A compression rig was developed to test the fabric under high loads. The rig was

mounted on a Hounsfield series S testing machine capable of measuring force up to an

accuracy of 0.1 N. The fabric is placed on a static bottom plate while the top plate of

diameter 100 mm moves vertically downwards at a rate of 1 mm/s until a force of 20

kN is reached. A compression LVDT with accuracy of 0.001 mm is mounted on the top

plate to measure relative displacement between the two plates. The setup is illustrated
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in Figure 5.1. The degree of parallelism was measured with slip gauges and it was

determined that the angle between the two plates was 0.082◦.

Figure 5.1: Fabric compression rig

The force measured was converted to pressure by dividing by the area of the top plate.

The thickness of the fabric for a given force was calculated as the difference between

the LVDT measurements with and without fabric placed between the plates. In order to

obtain both sets of LVDT measurements the fabric compaction tests were followed by a

compaction test without the fabric. Each test was performed 5 times and the standard

deviation of the thickness values measured for a series of pressures were calculated.

5.4 Finite element method

This section will describe the explicit finite element analysis (FEA) code written by the

author to predict mechanical properties of unit cells. Generally, an implicit FE method

is preferable compared to an explicit method to solve static problems. However due

to the complicated contacts present within dry textile structures the explicit method is

thought to be more suitable.

The method involves treating yarns as regions of a continuum in which a given stress-

strain relationship is assumed. By applying boundary conditions to the yarns, certain

deformations can be imposed to the unit cell which replicate experimental tests and/or

deformations that the fabric may undergo in its given application. The finite element

method then predicts steady state equilibrium of the fabric for the given deformation.

In order to be able to calculate numerically the stresses and strains within a yarn it is
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necessary to discretise the model. An important requirement is that each element has

shared boundaries with its neighbours. The boundaries are composed of faces which

are defined by edges which are in turn defined by points or nodes. Note that the nodes

are shared between multiple elements.

The strain within each element is calculated based on the deformation of the element

and the deformation of the element depends on the position of its nodes. Hence by

imposing displacements to the nodes it is possible to induce strains in the elements.

These strains result in a stress within the element which is calculated based on the

stress-strain relationship (material model or constitutive model). Forces acting on the

nodes can be extrapolated from the stress within the elements. When the model is in a

steady state the total force acting on each node due to its surrounding elements should

be equal to zero except at the nodes where displacements have been prescribed.

The difference between an explicit and implicit method is in how this steady state is

arrived at. The explicit method calculates the state of the system at a later time from

the state of the system at the current time, while the implicit method finds it by solv-

ing an equation involving both the current state of the system and the later one. For

simple linear cases the implicit method can find a solution in a single iteration whereas

the explicit method requires a number of iterations in order to arrive at the solution.

However the computational time required to perform a single implicit iteration is far

greater than that required to perform an explicit iteration.

In order to gain a better understanding of the finite element method and have com-

plete freedom to implement new algorithms, the decision to develop a new finite el-

ement analysis solver was made. The code was inspired by techniques from various

open source finite element packages, notably Impact [37]. Unfortunately Impact was

found to contain a number of bugs and poor programming practises in key areas of

the software which lead the author to write his own code. The implementation was

validated for a series of elements, deformation modes and material properties against

the commercial finite element package ABAQUSTM[51] and was shown to be accurate.

Results are shown in Appendix I.

Figure 5.2 shows the finite element program flowchart. The code was written in C++

in an object oriented manner with no use of external libraries.

5.4.1 Element definition

In order to numerically represent strains in a body it is necessary to split the body into

discrete elements. In this thesis the use of continuum elements is explored where the
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Figure 5.2: Finite element analysis program flowchart
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body is split into a finite number of small volumes of given shape. The most common

shapes used are hexahedron and tetrahedron, less common shapes include wedge and

pyramid.

The element definition is responsible for interpolating values from the element’s nodes

to any position within the element. In the context of this thesis, nodal displacements

are interpolated and integrated to obtain the element strain. A brief overview of the

procedure is described in this section; a more detailed explanation can be found in

standard finite element analysis text books [145]. The element definition is independant

from the type of solver (explicit and implicit), however due to the difference in nature

between the explicit and implicit methods, element definition optimisations are often

targeted at one of the two methods. Therefore it is common to find elements specific to

explicit or implicit solvers in commercial code such as ABAQUSTM[51].

The displacement ~u of any point x within an element is calculated as:

~u(x) = N(x)q (5.2)

where N is 1-by-m matrix called the shape function matrix and q is a m-by-n matrix

containing the nodal displacements. m represents the number of nodes of the element

and n represents the number of dimensions. For example, given a 3-noded triangu-

lar element in two dimensions with nodal displacements ~u1, ~u2 and ~u3, Equation 5.2

becomes: [
~ux ~uy

]
=
[
N1,1 N1,2 N1,3

] 
~u1x ~u1y

~u2x ~u2y

~u3x ~u3y

 (5.3)

The values in the matrix N depend on the position of the nodes and the type of element

[145]. The strain at any point x in the element can then be calculated as a function of

the displacement field ~u. There are two ways in which this can be done, as described

in Section 5.4.2. Note that in linear elements such as the 3 noded triangle and 4 noded

tetrahedron, the strain over the entire element is constant. 4 noded quadrilateral ele-

ments, 6 noded wedge elements and 8 noded hexahedral elements are often referred to

as linear elements although the interpolation function is not linear resulting in a non-

constant strain over the element. Nevertheless the strain must be a continuous function

of position across the element and the mass within an element must stay within the ele-

ment. This causes problems when attempting to model shear of a yarn as a continuum.

Figure 5.3 illustrates an idealised section of tow containing four parallel fibres within a

single quadrilateral element. The undeformed tow is shown (a), as is the tow sheared

as a continuum element (b) and the tow sheared as it would in reality (c). Note that in
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Figure 5.3: Element of a yarn under shear

the last case part of the fibre mass crosses the element boundary. This occurs because

fibres are able to slide past each other without inducing any shear strain in the fibres

themselves.

In essence the shear strain of an element does not accurately represent the strains of

the fibres contained within it. Hence the model will be unable to accurately predict the

behaviour of a fabric where internal fibre strains are important, notably in bending of

a yarn.

(a) Continuum

(b) Individual fibres

Figure 5.4: Tow bending with strains displayed as a colour map (a - shear strain, b -

tensile strain)

This limitation is illustrated in Figure 5.4 where a tow under a bending deformation

treated as a continuum (a) and as individual fibres (b) is shown. The color represents

139



CHAPTER 5: MECHANICAL MODELLING OF FABRIC UNIT CELLS

the magnitude of shear and tensile strain respectively. The tow treated as a continuum

contains no strains half way along the length of the tow and highest shear strains at

the edges. The fibres on the other hand contain no strains about their neutral axis, high

compressive strains towards the bottom and high tensile strains at the top.

This figure illustrates the very different strains that occur within the fibres and the

continuum that is supposed to represent them. The shear strain occuring in the con-

tinuum gives a measure of the amount of sliding occuring between fibres, it does not

however give any measure of strain contained within the fibres. The tendency for the

tow to straighten itself is governed by these fibre strains. Hence the tow modelled as

a continuum is unable to accurately model the straightening behaviour of a tow un-

der bending deformation. The consequences of this will be discussed further in the

relevant sections.

5.4.2 Material model

The material model describes the stress of yarn as a function of its strain and ulti-

mately defines what forces result from given displacements. This presents significant

problems when modelling the mechanical behaviour of dry textiles.

Strain

To begin with, it is necessary to fully understand the meaning of strain before a material

model can be derived. Strain ε represents the deformation of a body, in the simple one

dimensional case it only has one component and perhaps the most familiar definition

of it is known as engineering strain:

ε =
L1 − L0

L0
(5.4)

where L0 is the length of a body before undergoing uniform deformation, and L1 is

the length after deformation. An alternative definition of strain, known as logarithmic

strain is:

ε = ln
(

L1

L0

)
(5.5)

For small strains these two definitions are equivalent. The advantage of logarithmic

strain over engineering strain is that strains can be added. For example, suppose the

body were to undergo a series of two deformations from length L0 to L1 and then

to L1 to L2. The total engineering strain cannot be expressed as the sum of the two
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components of engineering strain:

L2 − L0

L0
6= L1 − L0

L0
+

L2 − L1

L1
(5.6)

But total logarithmic strain can be expressed as the sum of their components:

ln
(

L2

L0

)
= ln

(
L1

L0

)
+ ln

(
L2

L1

)
(5.7)

The use of engineering or logarithmic strain is one of convenience. However it is im-

portant to stay consistent when defining the material model. If logarithmic strain is

used then stress should be defined as a function of logarithmic strain. If engineering

strain is used, then stress should be defined as a function of engineering strain.

If the deformation in the body is not uniform, then the strain will vary throughout the

length of body and this simplified equation does not apply. To derive a new expression

for strain that takes into account non-uniform deformation it is convenient to express

the displacement of a point in the body by a vector ~u as a function of position x. The

engineering strain can then be expressed as:

ε =
d~u
dx

(5.8)

Noting that~u is a function of position x, ε is also a function x. This use of displacement

vector~u the makes it easy to extend into three dimensions. The direct strains εx, εy and

εz can be expressed as:

εx =
∂~ux

∂x
(5.9)

εy =
∂~uy

∂y
(5.10)

εz =
∂~uz

∂z
(5.11)

In three dimensions, shear deformations are possible and they are represented by shear

strains εxy, εyz and εzx. To complicate matters a different definition of shear strain

known as engineering shear strains γxy, γyz and γzx also exists representing the same

thing. They are defined as:

εxy = εyx =
γxy

2
=

γyx

2
=

1
2

(
∂~ux

∂y
+

∂~uy

∂x

)
(5.12)

εyz = εzy =
γyz

2
=

γzy

2
=

1
2

(
∂~uy

∂z
+

∂~uz

∂y

)
(5.13)

εzx = εxz =
γzx

2
=

γxz

2
=

1
2

(
∂~uz

∂x
+

∂~ux

∂z

)
(5.14)
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Again it is a matter of convenience which definition is used as long as consistency is

maintained. The deformation of any point in a body is defined by these 6 unique strain

components εx, εy, εz, εxy, εyz and εzx.

The strain definitions presented above are known as small strain theory because they

are only valid for small deformations. If the body undergoes a rigid body rotation the

above strain definition will result in non-zero strains. Since the stresses are defined as a

function of strain, this will result in non-zero stresses in the body. This is not a realistic

model, since rigid body rotation should not induce stresses into a body.

In some applications with negligible rotation it is acceptable to use these strain def-

initions, but that is not the case for dry textile mechanics since yarns undergo large

rotations during shear. A different definition of strain needs to be derived which is not

affected by rotation using finite deformation tensors.

Suppose the position of a particle in the undeformed state of a body is denoted by X

and its position in the deformed state is denoted by x. If dX is a line segment joining

two nearby particles in the undeformed state and dx is the line segment joining the

same two particles in the deformed state. Line segments dx and dX can be related by a

linear transformation F:

dx = FdX (5.15)

where F is known as the deformation gradient and can be expressed as:

F =
∂x
∂X

(5.16)

Or in index notation:

Fij =
∂xi

∂Xj
(5.17)

The deformation gradient F is a second order tensor and contains information about

both the stretch and rotation of the body. If the stretch can be separated from the ro-

tation, then a definition of strain based on stretch alone can be obtained. This can be

achieved with the polar decomposition theorem [20, 33]. The deformation gradient F

can be expressed as the multiple of a rotation tensor R and a stretch tensor U:

F = RU (5.18)

The stretch tensor U is not affected by any rotations and will remain identity when

a body undergoes rigid body rotation. Strains can be extracted from U but first the

principal stretches and stretch directions must be obtained. This is accomplished by

using the spectral decomposition theorem [5, 46].

U =
3

∑
i=1

λi~Ni ⊗ ~Ni (5.19)
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where λi are eigenvalues representing the principal stretches and ~Ni are eigenvectors

representing the principal stretch directions. The principal logarithmic strains ε i are

defined as:

ε i = ln(λi) (5.20)

The principal strain directions are the same as the principal stretch directions. The

strains can then be expressed in any coordinate system by transforming the principal

strains into that coordinate system with the aid of the principal strain directions.

Both small strain and large strain theories have been implemented in the finite element

code for validation purposes. However for all the simulations, the latter is used and all

references to strain from here on will be to logarithmic strain. In ABAQUSTM[51] small

strain theory is referred to as linear geometry and large strain theory is referred to as

non-linear geometry.

Stress

Stress is the internal distribution of force per unit area that balances and reacts to ex-

ternal loads applied to a body. Stresses are calculated as a function of the strain state

and this relationship is called the material model. If the material modelled is perfectly

elastic then the state of stress within a body depends only on the state of strain at the

current point in time. However, if the material exhibits a plastic behaviour then the

state of stress also depends on the strain history. That is to say all deformations taken

place up to the current moment in time affect the current state of stress.

Yarns are not completely anisotropic, they are termed transversely isotropic. This

means that there exists a plane of symmetry where the stress response is isotropic in

that plane of symmetry. This plane of symmetry is perpendicular to the yarn direction

S′. If the material is assumed to be linear elastic, the stress can be defined as a function

of strain with 5 constants. The constants are longitudinal modulus EL, transverse mod-

ulus ET, transverse Poisson’s ratio νTT, transverse-longitudinal Poisson’s ratio νTL and

transverse-longitudinal shear modulus GTL.

From these 5 constants, the longitudinal-transverse Poisson’s ratio νLT and transverse

shear modulus GTT can be calculated as:

νLT =
νTLEL

ET
(5.21)

GTT =
ET

2(1 + νTT)
(5.22)

Defining the z axis as being parallel to the yarn direction S′ and axes x, y such that

all three axes are all orthogonal to each other, the stress can be related to strain by the
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following stiffness matrix:

σx

σy

σz

σxy

σyz

σzx


=



ET(1−νTLνLT)
∆

ET(νTT+νTLνLT)
∆

EL(νTL+νTTνTL)
∆ 0 0 0

ET(νTT+νTLνLT)
∆

ET(1−νTLνLT)
∆

EL(νTL+νTTνTL)
∆ 0 0 0

ET(νLT+νTTνLT)
∆

ET(νLT+νTTνLT)
∆

EL(1−ν2
TT)

∆ 0 0 0

0 0 0 GTT 0 0

0 0 0 0 GTL 0

0 0 0 0 0 GTL





εx

εy

εz

γxy

γyz

γzx


(5.23)

where ∆ is defined as:

∆ = (1 + νTT)(1− νTT − 2νTLνLT) (5.24)

Note that if all the Poisson’s ratios are set to 0 then the stiffness matrix simply becomes:

σx

σy

σz

σxy

σyz

σzx


=



ET 0 0 0 0 0

0 ET 0 0 0 0

0 0 EL 0 0 0

0 0 0 GTT 0 0

0 0 0 0 GTL 0

0 0 0 0 0 GTL





εx

εy

εz

γxy

γyz

γzx


(5.25)

Defining the moduli as constants restricts the material model to linear elastic materials.

However the mechanical behaviour of a yarn is highly non-linear, hence the moduli

need to vary based on strain.

Longitudinal behaviour The longitudinal modulus EL can be approximated in terms

of fibre volume fraction Vf and fibre modulus E f by the following equation:

EL = E f Vf (5.26)

This is assuming all fibres within a tow are perfectly parallel and hence no stiffening of

the yarn occurs due to fibre straightening at low strains.

The longitidinal modulus EL defined in Equation 5.26 depends on volume fraction Vf

and volume fraction will vary at each point in the yarn during deformation. There-

fore it is necessary to calculate a different value of EL for each element in the model

depending on the element’s volume fraction. The volume fraction of an element can

be calculated as a function of element strains εx and εy. Figure 5.5 illustrates a small

portion of a yarn cross-section of width w and height h under strains εx and εy (Note

this uses the logarithmic definition of strain).
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Figure 5.5: Strained cross-section of yarn

The area of the undeformed section of yarn A0 is defined as:

A0 = wh (5.27)

The deformed area A is defined as:

A = eεx eεy wh (5.28)

At this point it is convenient to define a transverse strain εT which measures the ratio

of change of cross-sectional area defined as:

εT = εx + εy (5.29)

Equation 5.28 then becomes:

A = eεT wh (5.30)

Supposing the area occupied by fibres is A.F. and remains constant during deforma-

tion, the fibre area fraction before deformation A f 0 and area fraction after deformation

A f can be calculated as:

A f 0 =
A.F.
A0

(5.31)

A f =
A.F.

A
(5.32)

Combining the above equations, the area fraction after deformation A f can be ex-

pressed as:

A f =
A f 0
eεT

(5.33)

For a typical yarn, the longitudinal modulus is far greater than the transverse modulus

so it is reasonable to assume that the longitudinal strain εz is negligible compared to the
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transverse strain εT. Given this assumption the volume fraction Vf and area fraction

A f represent the same quantity and so the following equation also holds:

Vf =
Vf 0
eεT

(5.34)

Transverse behaviour In Chapter 4 it was shown that the pressure applied to a tow

during compaction can be characterised as a function of volume fraction Vf by a power

law:

P = aVf
b (5.35)

where P is the transverse pressure applied and a and b are constants used to fit a curve

to experimental data. In order to create a material model based on Equation 5.35 it is

necessary to convert it into the form of a transverse modulus ET as a function of strain.

Substituting Equation 5.34 into Equation 5.35 the following expression can be obtained:

P = a
(Vf 0

eεT

)b

(5.36)

The stress within the tow is equal and opposite to the pressure applied to it, hence P

can be interchanged with negative transverse stress −σT. However it should be noted

that if this equation is used directly the transverse stress σT is not 0 when transverse

strain εT is 0. This is not physically correct and will cause problems in the simulation,

so an additional term is added. Transverse stress is thus defined as:

σT = −a
(Vf 0

eεT

)b

+ a(Vf 0)
b (5.37)

The effect of the additional term a(Vf 0)
b on σT is negligible at high levels of compaction.

The transverse modulus ET can then be defined:

ET(εT) =
σT

εT
=
−a
(

Vf 0
eεT

)b
+ a(Vf 0)

b

εT
(5.38)

Note that when εT is 0, ET is undefined causing numerical errors. So an alternate defi-

nition for ET is needed when εT is close to 0:

ET(0) = lim
εT→0

σT

εT
=

dσT

dεT
= ab

(Vf 0
eεT

)b

(5.39)

Figure 5.6 illustrates how the values of ET, −σT and P vary as a function of Vf and εT

for a typical glass tow. The coefficients a and b are taken from Figure 4.31 in Chapter 4

(a = 1151, b = 12.24). The initial fibre volume fraction of the tow Vf 0 is arbitrarily chosen
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Figure 5.6: Transverse compaction material model

as 0.45 for illustration purposes. Note that −σT is slightly offset vertically from P due

to the adjustment made to ensure σT is zero at εT = 0. As can be seen from the graph

this offset is negligible especially at higher volume fractions.

The reason for deriving an expression for ET in terms of strain rather than setting the

element stress directly from Equation 5.37 is that two different values of stress σx and σy

must be defined for the two orthogonal directions. However, by assuming a transversly

isotropic material model, only a single value of ET is needed:

ET = Ex = Ey (5.40)

The values of σx and σy are then obtained with the following equations (assuming Pois-

son’s ratios are 0):

σx = εxET (5.41)

σy = εyET (5.42)

In the case where εx is 0, the magnitude of σy corresponds to the value of pressure

measured from the uniaxial experimental compression of a tow and conversely for

the case when εy is zero. In the case where neither εx nor εy is 0, the values of σx

and σy are determined by the conditions imposed by assuming a transversly isotropic

material. No experimental data is available on bi-axial compression of a yarn hence

this is considered to be the most suitable assumption.

Figure 5.7 illustrates how the values of transverse modulus ET and transverse stresses

σx and σy vary as a function of transverse strains εx and εy based on the parameters

used to generate Figure 5.6.
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Figure 5.7: Plot of ET , σx and σy as a function of εx and εy
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Transverse longitudinal shear behaviour The transverse-longitudinal shear behaviour

of a tow is governed mainly by the sliding of fibres past each other. As such this cannot

accurately be represented by an elastic modulus GTL alone. Energy dissipated through

frictional sliding of fibres is not recoverable and should thus be modelled as a plas-

tic deformation. However no experimental studies to date have been conducted on

characterising the shear behaviour of individual tows primarily due to the difficul-

ties involved in performing such a task. Due to this lack of experimental data, the

transverse-longitudinal shear behaviour is simply characterised by an elastic modulus

GTL chosen so that simulations remain stable. In many cases this shear behaviour is not

important to overall mechanical properties as will be shown in Sections 5.6 and 5.7.

It is also important to remember that the shear strain of the continuum element does

not accurately represent the shear strains of the fibres within it. Therefore no matter

how accurately the fibre sliding is modelled the internal stresses of the fibres can never

be modelled accurately. Neglecting these internal fibre stresses will result in inaccurate

overall mechanical property predictions when these internal fibre stresses become sig-

nificant (i.e. in bending). It is therefore the opinion of the present author that modelling

the sliding effect of fibres is of limited value in the absence of a model incorporating

the internal fibre stresses.

5.4.3 Time integration and damping

In contrast to the implicit method, the explicit method includes the dynamic response

of a system. Nodes therefore have mass, velocity and acceleration in addition to dis-

placement and force present in the implicit method. The reason for using an explicit

method over an implicit method is not to characterise the dynamic response, it is

merely that the explicit method is better able to deal with the complex system of con-

tacts. Unfortunately by using an explicit method there are various additional compli-

cations that must be addressed which are discussed in this section.

L x

Figure 5.8: Truss element diagram

The explicit method includes an additional dimension over the implicit method, time.
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This is best illustrated with a simple example. Consider a truss element fixed at one end

with one degree of freedom x, initial length L, initial extension x0, cross-sectional area

A, Young’s modulus E and mass m (Figure 5.8). The displacement x can be calculated

as a function of time by solving the following ordinary differential equation [96]:

m
2

d2y
dx2 + c

dy
dx

+
EA
L

x = 0 (5.43)

where c is the damping, the exact solution for a truss with properties shown in Table

5.1 is illustrated in Figure 5.9.

Table 5.1: Truss example parameters

E A L x0 m

72000 MPa 0.1 mm2 10 mm 1 mm 2 kg

−1

0

1

2

D
is

p
la

c
e
m

e
n
t

(m
m

)
D

is
p
la

c
e
m

e
n
t

(m
m

)

0 0.2 0.4 0.6 0.8 1

Time (s)Time (s)

c = 0 (no damping)

c = 10 (under damping)

c = 53.6 (critical damping)

c = 100 (over damping)

Figure 5.9: Graph of truss node displacement as a function of time

This truss element acts exactly like a mass on a spring and without damping it oscillates

indefinitely. As stated previously the dynamic response of the system is of no concern;

however by introducing damping the steady state of static equilibrium can be obtained

after a certain period of time. In this case the steady state solution is trivial (x = 0). The

amount of time to reach the steady state depends on the damping value c as shown in

Figure 5.9. A critical damping value cc is defined by the following equation [94]:

cc = 2

√
EAm

2L
(5.44)
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When c < cc then the system is said to be under damped, when c = cc then it is

critically damped and when c > cc it is over damped. The steady state solution is

obtained after the shortest time period when the system is critically damped thus this

is the most suitable value of damping to use. Note that the value of c is irrelevant to

the final steady state solution.

An implicit method would simply calculate the steady state solution in a single step

without dealing with mass and time. However the explicit method must arrive at the

solution over a series of iterations. The state of the system is approximated at a discrete

series of times ti. The state of the system at any given time is calculated from the state

of the system at the previous time using Euler integration [67]. The acceleration ~a,

velocity ~V and displacement~x of each node is calculated by the following equations:

~a(ti) =
~F(ti)

m
− c~V(ti−1) (5.45)

~V(ti) = ~V(ti−1) +~a(ti)∆ti (5.46)

~x(ti) = ~x(ti−1) + ~V(ti)∆ti (5.47)

where ∆ti is known as the time step and is defined as:

∆ti = ti − ti−1 (5.48)

In this one dimensional example the force is a scalar and is defined as:

F = −EAx
L

(5.49)

The choice of a suitable time step is critical in minimising the CPU time necessary to ob-

tain a solution and maintaining simulation stability. Figure 5.10 illustrates the explicit

approximation of the solution to Equation 5.43 with a damping of 10 and parameters

shown in Table 5.1 compared to the exact solution.

A stability limit ζ can be defined by the Courant-Friedrichs-Levy conditions [21, 22]:

ζ =
Lc

v
(5.50)

where Lc is the characteristic length chosen as the minimum edge length of an element

and v is the speed of sound through the material defined as:

v =

√
E
ρ

(5.51)

This stability limit corresponds to the maximum time step permissible before the sim-

ulation becomes unstable; above this limit the simulation may diverge from the so-

lution and hence become unstable as illustrated in Figure 5.10. In the case where an

anisotropic material model is used as will be discussed in Section 5.4.2, the Young’s

modulus used in Equation 5.51 must be the largest modulus corresponding to the yarn

longitudinal modulus EL.
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Figure 5.10: Graph of truss node displacement as a function of time

5.4.4 Incremental loading

When characterising mechanical properties it is generally desirable to obtain data start-

ing from the undeformed state up until the final deformed state. For example in a com-

paction simulation, the compaction pressure should be obtained as a function of fabric

thickness or volume fraction. In order to obtain this data it is necessary to apply small

deformations over a series of steps until the final deformation is reached. At each step

the boundary conditions remain constant and the explicit calculation is performed un-

til a steady state of equilibrium is reached. The number of steps performed does not

affect the results, it simply determines how many data points are obtained. If only the

final deformed state is of interest the simulation can be completed in a single step.

When passing from one step to the next, a linear transformation representing the change

in deformation is applied to the nodes as an approximation to the steady state solution.

By doing so the system is likely to be in a state closer to the steady state solution which

allows for faster convergence and avoids large deformations of elements at the bound-

ary.

In order to determine when the system reaches a steady state a convergence criterion is

needed. In theory the steady state is only reached when the kinetic energy K.E. in the

system is zero. However due to numerical errors this is unlikely to ever occur. Instead

the convergence criterion is based on the ratio of kinetic energy K.E. to internal element
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strain energy U:
K.E.

U
≤ t (5.52)

where t is a tolerance set to 0.001 in this implementation. In addition to this a minimum

and maximum number of iterations are specified to ensure the simulation does not pass

on to the next step prematurely or run indefinitely. However if the maximum number

of iterations is reached the results may not be accurate.

5.4.5 Contact algorithm

A major difficulty involved with modelling textile structures is modelling the contacts

between yarns. This is a particular issue in the modelling of textiles and is the reason for

the choice of an explicit finite element system over an implicit one. Contact algorithms

in an implicit system are extremely complicated and memory intensive compared to

those of an explicit system. For the complicated contacts involved with textile fabrics,

it is impractical to use implicit contact algorithms as these tend not to behave in a stable

manner. As a further complication, the repeating nature of the problem requires special

contact code to deal with repeated unit cells.

Contact locations

In order to prepare to deal with contacts, the surface of the tows must be defined for

convenience, in the form of triangles. This is because collision detection between trian-

gles is simpler than other alternatives such as a non-planar quadrilateral based surface

definition. This also provides an easy way to render the tows for visualisation. Ini-

tially a completely generic contact algorithm was implemented but this was found to

be problematic when penetration becomes too severe and especially in the case where

parallel yarns with sharp edges come in to contact. So taking advantage of the planar

nature of textiles a new contact algorithm was developed. Unfortunately this algorithm

does somewhat restrict the generality of the method (e.g. it is not be suitable for weft

knits).

In most textiles there are two types of contact that can occur, namely contact between

parallel yarns and contact between crossing yarns. Any two yarns will only come into

contact by one of the two mechanisms defined above, not both. Yarns running parallel

to each other will only have side contacts and will not pass above or below each other,

similarly yarns crossing above or below each other will not come into contact sideways.

Thus a table can be built showing the relationship between yarns in the unit cell model.

Possible relationships are Beside, Above, Below and N/A. The final category relates to the
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relationship between a yarn with itself. This table is generated automatically based

on the geometry given before deformation. Elements are given group numbers which

identify which yarn the element belongs to. The groups are assembled by finding all

elements which are connected to each other through common nodes. This relationship

table will be used by the contact algorithm as will be seen later.

To illustrate this a table is constructed for a simple plain weave and as shown in Fig-

ure 5.11. The yarns in the fabric are numbered from one to four, Table 5.2 shows the

relationship between the yarns. The table should be read as the yarn number in the left

column relative to the yarn number in the top row. For example, yarn 1 is below yarn

3 and yarn 3 is above yarn 1. The table is almost symmetric except that if element ij is

Below then element ji is Above and vice versa.

2

3

4

1

Figure 5.11: Plain woven fabric with yarns numbered 1 to 4

Table 5.2: Contact table

Yarn 1 Yarn 2 Yarn 3 Yarn 4

Yarn 1 N/A Beside Below Above

Yarn 2 Beside N/A Above Below

Yarn 3 Above Below N/A Beside

Yarn 4 Below Above Beside N/A

As described earlier, the finite element model consists of a number of elements ei con-

structed from nodes ni and the surface of the yarns is defined by a number of triangle

surface elements Ti. The contact algorithm attempts to prevent the nodes of a yarn from

penetrating the surface elements of the other yarns. Two algorithms exist, the first to

deal with yarns crossing over each other and the second to deal with yarns side by side.
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Crossing contacts Each node is processed one by one, determining if the node is pen-

etrating another yarn. This process is typically very CPU intensive and needs to be

performed in an efficient way. It is done in a series of stages where the fastest methods

capable of discarding contacts are applied first.

The first stage is to project a line parallel to the z axis that passes through node ni

where the z axis is the through thickness axis. A list of surface triangles that intersect

with this line is obtained. If the surface triangle belongs to the same yarn as the node

then it is discarded, hence self intersections are ignored. For all the fabrics modelled in

Chapter 3 this is a perfectly valid assumption. This stage can be a rather slow process

and Appendix J describes a method to greatly optimise this process making it run at an

acceptable time scale through the use of a quadtree.

The second stage is to determine if the node has penetrated through any of the triangles

listed by observing the position of the node relative to the triangles. This is best illus-

trated with an example, Figure 5.12 shows a yarn with a vertical line projected through

it. Two triangles A and B are drawn with normals ~NA and ~NB respectively. The node

ni may lie anywhere along the length of the line L.

A

B

~NA

~NB

L

Figure 5.12: Yarn with vertical line intersecting two surface triangles

The node position can be categorized into three regions: the region above triangle A,

the region between triangle A and B and finally the region below triangle B. In order to

define these regions mathematically, the signed distance d between a node ni and the

plane described by triangle Ti can be expressed as:

d = ~NTi · (ni − Pi) (5.53)

where Pi is one of the nodes of Ti and ~NTi is the normal of triangle Ti. If d is positive,

ni is said to lie in front of triangle Ti, if d is negative, ni is said to lie behind triangle Ti

and if d is 0 then ni lies on triangle Ti.

So the region above triangle A corresponds to when ni lies in front of triangle A and

behind triangle B. Similarly the region below triangle B corresponds to when ni lies

155



CHAPTER 5: MECHANICAL MODELLING OF FABRIC UNIT CELLS

in front of triangle B and behind triangle A. Finally the region between triangles A

and B corresponds to when ni is behind both triangles A and B. If ni lies behind both

triangles A and B the node has clearly penetrated the surface of the yarn. However

there is another case where the node can penetrate the surface. That is if a node begins

in front of triangle A and during the course of the simulation ends up in front of triangle

B thus completely passing through the yarn.

It is not sufficient to establish whether or not contact has occurred, it is also necessary

to determine which surface the node penetrated first. The standard approach to this

is to find the closest surface triangle Ti to ni. However once ni has penetrated further

than half the tow thickness (i.e. half way between triangles A and B), the closest sur-

face triangle will be the one on the opposite face of the yarn. When contact forces are

applied, they will be in the wrong direction and once this happens there is no chance

of recovery.

In order to solve this problem the table which describes the relationship of each yarn

relative to another is used to remove offending triangles from the list of possible con-

tacts. If ni belongs to a yarn which is Above the yarn owning triangle Ti and the trian-

gle’s normal z component ~NTiz is negative then triangle Ti is discarded from possible

contacts. Conversely if ni belongs to a yarn which is Below the yarn owning triangle Ti

and ~NTiz is positive Ti is discarded. In other words, nodes from a yarn that started out

above another yarn cannot contact with the bottom surface of that yarn and vice versa.

Note that contact between yarns side by side are handled in a different way so yarns

found to be Beside are also discarded.

After removing the offending triangles, there should only be one triangle remaining. If

the node lies behind it then contact occurs, if not then there is no contact. When contact

occurs, forces need to be applied to both ni and Ti.

Side contacts Side contacts are more difficult to deal with than crossing contacts due

to the sharp edges present at the edge of yarns. Contact algorithms are much better

at handling contacts between smooth surfaces. Contacts between a smooth and sharp

surface are also manageable but general contact algorithms perform poorly when faced

with contacts between two sharp surfaces. In order to deal with the problem, a simpli-

fication has to be made.

If it is assumed that yarns that begin side by side never become overlapped during

deformation, then the problem becomes much simpler. This is a valid assumption for

the fabrics and deformation modes observed in this thesis. Using this assumption the

yarns can be projected onto the x-y plane and contacts identified in 2 dimensions.
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Similarly to the 3 dimensional case where a number of triangles Ti represent the yarn

surface, a number of line segments li are identified from Ti’s edges that represent the

edges of the yarns.

Each node is processed one by one, determining if the node is penetrating another yarn

which has the property Beside defined from the relationship table. This is achieved by

finding the closest segment li to the node ni. In this case it is sufficient to obtain the

closest line segments since it is very unlikely that a node will penetrate further than

half the width of a yarn. That is because the yarn width is much greater than the yarn

thickness for the fabrics presented in this thesis. Each segment li has a normal ~Nli that

points towards the exterior of the yarn. The signed distance between ni and li is defined

as:

d = ~Nli · (ni − Pi) (5.54)

where Pi is one of the nodes of the line segment li. If d is positive then no contact oc-

curs, if d is negative then contact occurs. Contact forces must then be applied between

penetrating nodes ni and lines li.

Contact forces

When two bodies come into contact an equal and opposite force results at the contact

surface. In the finite element model, these forces must be applied at the nodes. Several

algorithms exist to avoid penetration. One of the simplest is the penalty method. In

this method a complete penetration is not prevented. Instead a force~F is applied which

has magnitude F defined as a function of the penetration distance d. For example:

F = Kd (5.55)

where K is a constant that represents the contact stiffness. The stiffer the contact the

less penetration will occur however if the contact is too stiff instabilities will occur.

Generally this parameter is chosen such that the contact is as stiff as possible without

causing instabilities. The direction of the force is given by the contact surface normal.

So in the case of contact with a triangle facet Ti, the facet normal ~NTi is used:

~F = F ~NTi (5.56)

Or in the case of contact with a line segment li, the line segment normal ~Nli is used:

~F = F ~Nli (5.57)
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The forces must be applied between a node ni and either a triangle facet Ti or line

segment li depending on whether crossing or side contact has occurred. However,

since in the finite element model forces can only be applied to nodes it is necessary to

transfer forces from Ti or li to its nodes. The way in which this is done is described for

the more complicated triangle facet case. The same method can be applied to the line

segment.

A contact force~F acting at point P on Ti can be split in to three equivalent forces ~F1, ~F2

and ~F3 acting at the triangle’s nodes P1, P2 and P3 respectively. This needs to be done

in such a way that the resultant force of ~F1, ~F2 and ~F3 acting on Ti is equal to the force
~F. Furthermore the moment at point P caused by forces ~F1, ~F2 and ~F3 must be zero.

There are an infinite number of solutions that would satisfy these conditions, but the

one which minimises the sum of the magnitudes of forces ~F1, ~F2 and ~F3 is when ~F1, ~F2

and ~F3 are scalar multiples of~F such that:

~F1 = c1~F (5.58)

~F2 = c2~F (5.59)

~F3 = c3~F (5.60)

Since the sum of ~F1, ~F2 and ~F3 must be equal to~F the following constraint on the coef-

ficients c1, c2 and c3 applies:

c1 + c2 + c3 = 1 (5.61)

The moment ~MP at point P due to forces ~F1, ~F2 and ~F3 can be expressed as

~MP = (P1 − P)× ~F1 + (P2 − P)× ~F2 + (P3 − P)× ~F3 (5.62)

By substituting Equations 5.58 to 5.60 into Equation 5.62:

~MP = c1(P1 − P)×~F + c2(P2 − P)×~F + c3(P3 − P)×~F (5.63)

which can be re-arranged to:

~MP = c1(P1 ×~F) + c2(P2 ×~F) + c3(P3 ×~F)− (c1 + c2 + c3)(P ×~F) (5.64)

The moment ~MP should be 0, and using Equation 5.61 the following expression can be

obtained:

P ×~F = (c1P1 + c2P2 + c3P3)×~F (5.65)

which leads to the following equation:

P = c1P1 + c2P2 + c3P3 (5.66)
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Expanding the equation out into the Cartesian coordinate system the following set of

simultaneous equations are obtained:

Px = c1P1x + c2P2x + c3P3x (5.67)

Py = c1P1y + c2P2y + c3P3y (5.68)

Pz = c1P1z + c2P2z + c3P3z (5.69)

The coefficients c1, c2 and c3 can then be solved using Cramer’s rule [91] given the

positions of points P, P1, P2 and P3 alone. The forces ~F1, ~F2 and ~F3 are then obtained

from Equations 5.58, 5.59 and 5.60. The coefficients c1, c2 and c3 are also known as

barycentric coordinates or area coordinates [23].

Friction So far forces have been applied parallel to the surface normal. This accounts

for direct contact forces, however in order to account for frictional forces between yarns

an additional frictional component must be added. The Coulomb frictional model can

be applied where friction force magnitude F is given by the following equation:

F = µN (5.70)

where N is the magnitude of the normal force. The direction of the frictional force~F is

opposite to that of the relative motion. There is however a limit to the magnitude of

the frictional force that can be applied. Frictional force only applies to prevent relative

motion, it should never be large enough to causes a change in direction of relative

motion.

The simulation is performed over a series of iteration or time steps ∆t, and during those

time steps the forces remain constant. It is feasible that a frictional force ~F that was

preventing relative motion at the start of a time step is in fact aiding relative motion at

the end of the time step because the relative motion has changed during the time step.

At the next time step the frictional force~F will be reversed, however without applying

limits to the magnitude of~F the contacting surface will oscillate and never reach a state

where the relative motion is zero.

In order to avoid this problem, it is necessary to calculate the magnitude of the fric-

tional force Fmax necessary to stop relative motion between the two surfaces at the end

of the time step. The frictional force obtained from Coulomb’s model should then be

limited to Fmax. To accurately perform this calculation it is necessary to take into ac-

count all other forces that may be acting on the contacting nodes. Unfortunately due

to the nature of the explicit method, this information is not available. Instead Fmax is

estimated without taking into account these other forces.
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As explained in Section 5.4.5, nodes come in to contact with either triangle facets or line

elements. The point of contact can be identified and any forces acting on the triangle

facet or line segment are applied to the facet’s or segment’s nodes. Similarly values can

be interpolated from the nodes to obtain properties at any given position on the surface.

As an example, suppose node A contacts with a triangle facet at point B. the velocity

and mass of A are known since they are properties of the node. The velocity and mass

of B are not known directly because B does not correspond to a node, however they

can be interpolated. The velocity VB is interpolated as follows:

~VB = c1 ~V1 + c2 ~V2 + c3 ~V3 (5.71)

where ~V1, ~V2 and ~V3 are the velocities of the nodes of the triangle facet. Mass mB is

interpolated as:

mB = c1m1 + c2m2 + c3m3 (5.72)

where m1, m2 and m3 are the masses of the nodes of the triangle facet. The coefficients

c1, c2 and c3 are the same those derived in Section 5.4.5.

Now the force Fmax necessary to prevent sliding motion between node A and point B

can be derived. Given frictional forces ~FA and ~FB acting on A and B respectively where:

~FA = − ~FB (5.73)

The accelerations ~aA and ~aB of A and B are:

~aA =
~FA

mA
(5.74)

~aB =
~FB

mB
(5.75)

where mA and mB are the masses of A and B. Suppose the velocities ~VAi and ~VBi of A

and B are known at time ti. The velocities ~VAi+1 and ~VBi+1 of A and B at the next time

step ti+1 due to accelerations ~aA and ~aB are:

~VAi+1 = ~VAi + ~aA(ti+1 − ti) (5.76)

~VBi+1 = ~VBi + ~aB(ti+1 − ti) (5.77)

If the relative motion between A and B is to be stopped at time step ti+1 then the fol-

lowing equation applies:
~VAi+1 = ~VBi+1 (5.78)
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By re-arranging and combining the above equations, expressions for the frictional forces
~FA and ~FB necessary to prevent relative motion over one time step are obtained:

~FA =
( ~VBi − ~VAi)mAmB

(ti+1 − ti)(mA + mB)
(5.79)

~FB =
( ~VAi − ~VBi)mAmB

(ti+1 − ti)(mA + mB)
(5.80)

And Fmax is the magnitude of ~FA and ~FB:

Fmax = ‖ ~FA‖ = ‖ ~FB‖ (5.81)

5.4.6 Periodicity

Boundary conditions

For unit cell models to simulate the behaviour of a large fabric many times the size of

a single unit cell, it is necessary to apply periodic boundary conditions. By applying

such boundary conditions the model is equivalent to an infinitely large fabric under-

going uniform deformation. If a large fabric needs to be modelled with non-uniform

deformation as is usually the case, the unit cell model is still useful. But a macroscopic

model is required which takes effective properties from the unit cell models in a multi-

scale modelling approach.

~R
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A1A2A3
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A7
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A9 A10 A11

A12 A13 A14 A15

B0

B1B2B3
B4

B5

B6

B7
B8

B9 B10 B11

B12 B13 B14 B15

Figure 5.13: Periodic boundary constraints

The repeat vectors ~R described in Chapter 2 are used to enforce the periodic bound-

ary conditions. Figure 5.13 illustrates a section of a periodic yarn, where the yarn is

repeatable along the repeat vector ~R. Nodes Ai and Bi lie on opposite sides of the yarn

section. Their positions are initially related by the following equation:

Bi = Ai + ~R (5.82)
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This is a requirement for applying periodic boundary conditions and it is a considera-

tion to be taken into account when the mesh is created for the yarn.

In order for the yarn to remain periodic during the simulation, Equation 5.82 must

remain valid. This is enforced at the end of each iteration. Suppose the position of

nodes Ai and Bi become A′
i and B′

i at the end of an iteration. The error vector ~Ei

between nodes can be expressed as:

~Ei = A′
i + ~R − B′

i (5.83)

where~Ei represents how far the nodes have moved apart thus invalidating the period-

icity condition. If ~Ei is zero then no further action is required. Otherwise the positions

of A′
i and B′

i must be adjusted to restore periodicity. By moving both nodes by the

same distance, the adjusted positions A′′
i and B′′

i are calculated as:

A′′
i = A′

i −
~Ei

2
(5.84)

B′′
i = B′

i +
~Ei

2
(5.85)

This method of applying boundary conditions is very convenient when certain defor-

mations are to be applied. For example, suppose the vector ~R is parallel to the ~X axis,

to apply a longitudinal tensile strain εx the vector ~R can be redefined as ~R′:

~R′ = εx~R (5.86)

Shear can also be modelled using repeat vectors. Given a unit cell with two repeat

vectors ~R1 and ~R2 parallel to axes ~X and ~Y respectively, vectors ~R′
1 and ~R′

2 can be

defined as:

~R′
1 = ~R1 + εxy‖ ~R1‖~Y (5.87)

~R′
2 = ~R2 + εxy‖ ~R2‖~X (5.88)

In some cases it may be desirable to leave a repeat vector unconstrained, for example

to model tension of a unit cell with two repeat vectors ~R1 and ~R2. A tensile strain may

be applied to vector ~R1 leaving vector ~R2 unconstrained allowing the fabric to shrink

along ~R2 as ~R1 grows. This can be accomplished by calculating a new repeat vector ~R′
2

based on the error vectors ~E2i:

~R′
2 = ~R2 +

1
n

n

∑
i=1

~E2i (5.89)

where n is the number constrained node pairs.
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Contacts

The description of the contact algorithm in Section 5.4.5 did not discuss issues that may

occur when dealing with a periodic unit cell. To illustrate the issues that may arise, a

simple hypothetical orthogonal non-crimp fabric unit cell is displayed in Figure 5.14

(stitching is not shown). The contact region is highlighted for different levels of shear

strain εxy.

εxy = 0 εxy = 0.1 εxy = 0.2

Figure 5.14: Shear of an orthogonal non-crimp fabric unit cell

The shape of the contact region starts as a square and as the unit cell is sheared the

contact region should remain as a rhombus. From the figure it is clear that at 0.2 of shear

strain, the contact region is no longer a rhombus. The reason for this is that the contacts

between repeated segments of yarns (not illustrated on the figure) are neglected. This

is an issue that is also apparent in more complex unit cells and this must be addressed

in order to have a robust model.

During deformation nodes may leave the domain as illustrated in the above case. In

order to keep all nodes constrained within the domain without restricting deformation,

it is necessary to re-mesh. This is a very CPU intensive task and would result in loss of

precision due to the need to map interpolated stresses and strains from elements of the

previous mesh to the new mesh. A better solution exists that does not require nodes to

be confined to a set domain. The contact algorithm is modified to deal with this.

Suppose contact between node ni and triangle Ti is to be determined within a unit cell

with repeat vectors ~R1 and ~R2. The absolute relative vector ~Va between the node ni

and the centre of the triangle Tic can be expressed as:

~Va = Tic − ni (5.90)

It is important to remember that each segment of yarn in a domain is periodic and an

infinite number of these segments exist in space outside of the domain offset by integer

multiples of the repeat vectors. Therefore there exist an infinite number of vectors ~V

that represent the position of node ni relative to triangle centre Tic since an infinite

number of both ni and Tic exist in space. The shortest vector ~Vm of all vectors ~V
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represents the shortest distance between node ni and triangle centre Tic. If vector ~Vm

can be calculated then contact between repeated yarns can be accounted for.

In order to determine ~Vm, the vector ~Va must be expressed in terms of repeat vectors
~R1 and ~R2:

~Va = C1 ~R1 + C2 ~R2 + C3~Z (5.91)

where C1, C2 and C3 are scalar coefficients and ~Z is parallel to the z axis (through thick-

ness axis). Expanding this equation into x, y and z components and solving the simul-

taneous equations the values of C1, C2 and C3 can be calculated. A new vector ~W can

be defined which is an integer multiple of the repeat vectors:

~W = [C1] ~R1 + [C2] ~R2 (5.92)

where the square brackets [ ] represent the nearest integer function. Vector ~Vm can then

be expressed as:
~Vm = ~Va − ~W (5.93)

The length of vector ~Vm represents the closest distance between node ni and triangle

centre Tic.

~W ni

~R1

~R2

Figure 5.15: Point outside the domain contacting with the fabric

Contacts can be applied as described in Section 5.4.5 except node ni must be displaced

by vector ~W before applying the contact algorithm. Figure 5.15 illustrates the process

and demonstrates how it can be combined with the quadtree optimisation which is

described in Appendix J. The surface mesh of a plain woven fabric unit cell contained

within a domain is shown. The node ni situated outside the domain is translated by
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vector ~W to check contacts with triangles inside the domain. The triangles found within

the vicinity of the translated node (illustrated in green) are translated by vector ~−W

and shown in yellow for visualisation purposes.

5.5 Fabric meshes

In order to perform the finite element analyses, the geometry of the fabrics must be

meshed. This process is accomplished within TexGen using quadrilateral mesh gen-

eration as described in Section 2.9. Three meshes have been created for each fabric, a

coarse, medium and fine mesh. Table 5.3 shows the number of nodes and elements in

each mesh and Figure 5.16 displays the meshes, where the elements have been shrunk

for visualisation purposes.

Chomarat 150TB Coarse Chomarat 150TB Fine

Chomarat 800S4-F1 Coarse Chomarat 800S4-F1 Fine

Figure 5.16: Fabric meshes

Table 5.3: Fabric mesh statistics

Fabric Mesh density Number of Nodes Number of Elements

Chomarat 150TB

Coarse 814 560

Medium 5220 3520

Fine 7380 5632

Chomarat 800S4-F1

Coarse 1496 1024

Medium 9512 6400

Fine 13448 10240
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5.5.1 Fibre direction

Due to the regular meshing technique used (Section 2.9), the fibre orientation can be ob-

tained from the element itself. Yarn cross-sections meshed with triangular and quadri-

lateral elements are linked together along the fibre direction to create wedge and hex-

ahedral elements. Suppose a triangle formed by 3 nodal coordinates P1, P2 and P3 is

linked to triangle with nodal coordinates P1
′, P2

′ and P3
′ to create a wedge element.

The fibre direction ~V is calculated as:

~V =

∥∥∥∥∥ n

∑
i=1

(Pi
′ − Pi)

∥∥∥∥∥ (5.94)

where n is 3 in this case. The same equation can be applied to hexahedral elements

formed by 2 quadrilateral elements in which case n would be 4.

5.6 Fabric compression

The finite element method described in this chapter was used to predict the mechan-

ical behaviour of a fabric under compression. In order to simulate this deformation

behaviour two planes are created, one above the fabric and the other below. All of

the nodes within the model are restricted to lie between these two planes. The planes

are moved closer together over a number of steps keeping track of the contact forces

between the fabric and the planes.

5.6.1 Chomarat 150TB

Table 5.4 shows the simulation parameters used for the compaction of the Chomarat

150TB fabric. The coefficients a and b for transverse compaction are taken from Figure

4.31 in Chapter 4. The initial fibre volume fraction Vf 0 is taken from Chapter 3.

Appendix K contains graphs justifying the value of the contact stiffness and showing

that the model is not sensitive to GTL, damping, number of steps and coefficient of

friction.

Figure 5.17 shows the results of varying the mesh density. There is a clear difference

between the coarse mesh and the other two, however the medium and fine meshes

show similar results. It can be concluded from this graph that the medium mesh den-

sity is sufficient to provide accurate results hence further simulations are performed

using this mesh density.

Figure 5.18 shows the results of varying the fabric thickness. Note that the original fibre
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Table 5.4: Chomarat simulation parameters

Properties Parameter Value

Transverse
a 1151.09

b 12.2435

Longitudinal E f 73× 103 MPa

Shear GTL GTT (Equation 5.22)

General

νTT 0

νTL 0

Vf 0 0.55

Steps 20

Damping 100 s−1

Contact algorithm Penalty method

Contact stiffness 100000

Coefficient of friction 0.3
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Figure 5.17: Pressure vs. thickness for different mesh densities
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Figure 5.18: Pressure vs. thickness for different fabric thicknesses

volume fraction has been adjusted with thickness such that all three models contain the

same mass of fibre. The values of volume fraction with change in thickness are shown

in Table 5.5. It can be seen that the curves tend to converge at higher pressure levels

showing that the initial thickness measurement of the fabric is not important as long

as the mass of fibre remains the same. This is a positive finding since the initial fabric

thickness is a difficult quantity to measure (see Chapter 3) whereas the mass of fibre is

easy to quantify.

Table 5.5: Thickness and fibre volume fraction

Thickness T 0.275 0.3 0.325 0.35

Original volume fraction Vf 0 0.610 0.559 0.516 0.479

The experimental results obtained from the compaction rig described in Section 5.3

are shown in Figure 5.19. An anomoly is noticable on the graph, probably due to

missalignement of the plates, which is more critical for this fabric due to its low thick-

ness. At higher pressures the plates align themselves and the data is thought to be

accurate as the curve follows the expected power law. Compaction tests on 3 layers of

fabric were also performed, however the pressure needed to compact each fabric layer

to the same thickness is less due to fabric nesting. Since the finite element analysis

simulates a single layer of fabric, the single layer compaction test is more suitable for

comparison.
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Figure 5.19: Compression rig pressure vs. thickness data (error bars represent the

standard deviation of thickness over the 5 tests performed)

It can be seen (Figure 5.20) that the finite element results do not compare well with the

experimental results for this fabric. The main reason for this is thought to be that the

material model was derived from experimental data by McBride [88] where the initial

fibre volume fraction was 0.35, and the maximum volume fraction was 0.6. The initial

tow volume fraction for the Chomarat 150TB fabric is 0.55 and this will increase beyond

0.6 as the fabric compresses. It is unreasonable to assume that the material model will

be accurate in this untested range. It is likely that the tows tested by McBride exhibit

a different compaction response from the tows in this fabric due to the large difference

in initial volume fraction despite the fact that they are both composed of E-glass fibres.

The degree of fibre misalignment may also be different due to differences in the tow

manufacturing process which will affect compaction behaviour (Chapter 4). It should

also be noted that the experiments performed by McBride were on stacks of tows rather

than individual tows. Furthermore the micrographs in Chapter 3 suggested that the

initial fibre volume fraction may be lower than calculated from mass considerations.

Irrespective of the source(s) of the error, the parameter a can be modified to correct for

this.

Figure 5.20 shows four curves:

• Results of the FE model using McBride’s yarn compaction data

• Results of the FE model where the material model parameter a is changed to 1.0
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Figure 5.20: Chomarat 150TB Compression pressure vs. thickness comparison

while everything else is kept the same

• Experimental data obtained from the compression rig

• A power law fit to the experimental data

A virtually perfect fit to the experimental data has been obtain by fitting the single

parameter a.

5.6.2 Chomarat 800S4-F1

The simulation parameters used for the compaction of the Chomarat 800S4-F1 fabric

are the same as those used for the Chomarat 150TB fabric shown in Table 5.4 except Vf 0

is 0.411 (see Chapter 3). The results of the FE compaction test compared against exper-

imental results is shown in Figure 5.21. Considering these results have been obtained

without any parameter fitting the agreement is reasonably good. The initial linear re-

gion in the FE curve is thought to be due to buckling of the yarns during compression.

The continuum model is unable to accurately represent buckling of yarns and stiffness

is most likely over predicted (this source of inaccuracy was negligible in the Chomarat

150TB fabric because of its low crimp). This may have caused the increased compres-

sional resistance found compared to the experimental results. However apart from this

offset the shape of the curve is very similar to the experimental curve.
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Figure 5.21: Chomarat 800S4-F1 compression pressure vs. thickness comparison

(error bars represent the standard deviation of thickness over the 5 tests

performed)

5.7 Fabric tension

The behaviour of fabrics under uniaxial and biaxial loads is analysed in this section.

This is acheived by applying strains to the repeat vectors (Section 5.4.6). A biaxial ratio

k is defined as:

k =
ε2

ε1
(5.95)

where ε1 is the primary fabric strain and ε2 is the seconday fabric strain. The primary

and secondary fabric strains correspond either to the warp or weft fabric strains de-

pending on whether warp or weft force is plotted. For the case of uniaxial tension the

biaxial ratio k is 0.

For comparison purposes a simple linear approximation to the fabric tensile behaviour

can be made based on the assumption that all fibres are perfectly straight. Given the

areal densities of warp and weft yarns ρAx and ρAy and the fibre density ρ f , the volume

of warp and weft fibres V.F.x and V.F.y in a unit area of fabric can be calculated as:

V.F.x =
ρAx
ρ f

(5.96)

V.F.y =
ρAy

ρ f
(5.97)

The warp and weft tensile forces Fx and Fy per unit length of fabric can be calculated
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as a function of warp and weft strains εx and εy given fibre modulus E f :

Fx = E f V.F.xεx (5.98)

Fy = E f V.F.yεy (5.99)

Note that if the fabric is balanced then the areal densities of warp and weft yarns ρAx

and ρAy are equal to half the areal density of the fabric ρA.

5.7.1 Chomarat 150TB
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Figure 5.22: Chomarat 150TB warp tension for different biaxial ratios k

The simulation parameters are kept the same as for the compression tests. These pa-

rameters are shown in Table 5.4 with the revised material parameter a of 1.0. Figures

5.22 and 5.23 display the results of the warp and weft biaxial tension finite element sim-

ulations respectively and Figure 5.24 shows a visual representation of the simulation.

From the graphs it can be seen that there is an initial non-linear region which corre-

sponds to the straightening of the yarns. This region is larger for the weft direction

due to the higher crimp in this direction. The extent of the straightening region also

depends on the biaxial ratio k. Higher values of k limit the amount of uncrimping that

occurs thus limiting the extent of the non-linear region. At higher levels of strain the

curve becomes linear where the gradient is equal to the linear approximation. This is

the region where no further uncrimping occurs. The same trends have been shown by

Boisse et al. [10] with a slightly less general modelling approach.
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Figure 5.23: Chomarat 150TB weft tension for different biaxial ratios k

k = 0 k = 1

Figure 5.24: Chomarat 150TB under uniaxial and biaxial tension (colours represent

von mises stresses)
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5.7.2 Chomarat 800S4-F1
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Figure 5.25: Chomarat 800S4 tension for different biaxial ratios k

k = 0 k = 1

Figure 5.26: Chomarat 800S4-F1 under uniaxial and biaxial tension (colours represent

von mises stresses)

Since the Chomarat 800S4-F1 is a balanced fabric, the graphs for tension along the warp

and weft directions are the same. Figure 5.25 shows the results of the tension for this

fabric using the same parameters as for the compaction simulation. Figure 5.26 shows

a visual representation of the simulation. The curves are similar to those for Chomarat

150TB except that the initial non-linear region is larger. This is expected, due to the

larger amount of crimp present in the fabric.
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~F1

~F2

~R1

~R2

θ

Figure 5.27: Shear force diagram

5.8 Fabric shear

The modelling of fabrics under shear loading is attempted in this section. This is

acheived by reducing the angle between the repeat vectors from 90 degrees. The shear

angle α is measured as the change in angle between the repeat vectors:

α = 90− θ (5.100)

where θ is the angle between the repeat vectors ~R1 and ~R2 as illustrated in Figure 5.27.

The value of θ can be calculated from the repeat vectors ~R1 and ~R2 as:

θ = cos−1
~R1 · ~R2

‖ ~R1‖‖ ~R2‖
(5.101)

The shear force F is calculated as the projection of the reaction forces ~F1 and ~F2 to the

repeat vector directions ~R2 and ~R1 respectively:

F =
~F1 · ~R2

‖ ~R2‖
=

~F2 · ~R1

‖ ~R1‖
(5.102)

where the reaction forces ~F1 and ~F2 are calculated as the sum of the reaction forces of

the nodes on the unit cell boundary.

For comparison purposes a normalised shear force FN is calculated as the division of

the shear force by the edge length of the unit cell:

FN =
F

‖ ~R1‖
=

F
‖ ~R2‖

(5.103)

Picture frame experimental data for the Chomarat fabrics was taken from Souter [125].

5.8.1 Chomarat 150TB

Initially the shear simulation was run with the same material properties as for the ten-

sile simulations. However the simulation became unstable and was unable to complete.
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In order to address the issue, the shear modulus GTL was given a new value calculated

using the following equation:

GTL =
EL

2(1 + νTL)
(5.104)

where the value of Poisson’s ratio νTL is 0. This increase in shear modulus allowed

the simulation to complete. The difference between the two cases can clearly be seen

visually in Figure 5.28. In the first case the yarn shears by the same amount as the fabric

due to its low shear resistance, in the second case the high shear modulus prevents the

yarn from shearing at all and instead it rotates.

GTL = GTT GTL = EL
2

Figure 5.28: Chomarat 150TB under shear with different values of GTL

As discussed in Section 5.4.2, the shear behaviour of a yarn is governed mainly by

sliding of fibres past each other. Thus the concept of a shear modulus is not suitable

and neither of these two shear moduli capture the true behaviour of the yarn. Results

of the latter case compared against experimental results are shown in Figure 5.29.

The finite element model exhibits an increased shear force at higher shear angles when

the locking angle is approached. In the experiment this increase in shear stiffness oc-

curs gradually whereas in the model there is a sharp change. The sharp change is

thought to be due to the incorrect modelling of the axial shear and bending behaviour

of the yarns. Before the locking angle is reached the fit to experimental data is surpris-

ingly good since little yarn bending occurs up to this point.

5.8.2 Chomarat 800S4-F1

Similar problems were encountered when modelling the shear behaviour of the Cho-

marat 800S4-F1 fabric. The simulation was unable to complete given the original shear

modulus. Results of the shear simulation with shear modulus GTL defined by Equa-

tion 5.104 compared against experimental results are shown in Figure 5.30. The fabric
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Figure 5.29: Chomarat 150TB shear

shear force response is clearly too high compared to the experimental data due to the

excessively high bending rigidity of the yarn.
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Figure 5.30: Chomarat 800S4-F1 shear

In order to reduce the bending rigidity the shear modulus GTL was reduced in unison

with the longitudinal modulus EL and results are shown in Figure 5.31. The magnitude

of the fabric shear force is reduced as expected, however the simulation was not able
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converge due to the small magnitude of the forces involved. The simulation became

unstable in all cases before reaching the prescribed maximum shear angle.
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Figure 5.31: Chomarat 800S4-F1 shear varying GTL and EL

5.9 Conclusions

In this chapter the mechanical properties of textile fabrics were analysed using finite

element analysis, modelling the yarns as 3D continuum elements. An explicit method

was used in order to alleviate issues with contacts present in implicit methods. A trans-

versely isotropic material model was used for the yarns. Non-linear moduli were used

for both the transverse and longitudinal directions. Poisson ratios of 0 were assumed

for simplicity and the transverse longitudinal shear modulus GTL was assumed to be

constant. However it was demonstrated that the bending behaviour of yarns cannot

be accurately modelled by representing the yarns as continuum elements alone. This

became apparent when modelling the shear behaviour of fabrics. A satisfactory fit to

experimental shear data could not be achieved using this model for large shear defor-

mations.

Nevertheless the bending of yarns is negligible in compression and tension of fabrics,

thus the model was found to be accurate in these deformation modes. The compres-

sion of two Chomarat fabrics was modelled and compared against experimental data.

Given an accurate fitted transverse yarn material model a close fit to the experimental
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data was achieved. Tensile loading of the same two fabrics was modelled and validated

against a simple linear approximation of the expected fabric tensile modulus. After the

un-crimping process the effective tensile modulus agreed with the linear approxima-

tion. Predictions were made for different bi-axial tensile strain ratios which produced

results in line with published measurements.

Further work in this area should address the issue of the inability to accurately model

the bending behaviour of yarns. One possible avenue of research might include em-

bedding truss elements within the continuum elements which would represent either

individual fibres or small groups of fibres. These truss elements could then represent

the tensile and flexural behaviour of the fibres while the continuum elements would

represent the transverse compaction behaviour and frictional sliding of fibres with an

elastic-plastic model.
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Discussion and conclusions

6.1 Introduction

The aim of this chapter is to discuss the findings of the work presented in this thesis

as a whole, to highlight the significant conclusions and to make recommendations for

future study in the field, based on perceived limitations of the techniques suggested.

6.2 Discussion

The work presented in this thesis is aimed at characterising and modelling the geom-

etry of textile fabrics and developing methods to predict the mechanical properties of

fabrics at the micro and mesoscopic scales.

6.2.1 Geometric modelling

A generic method to define the geometry of all types of fabrics has been developed

where geometry definition is split into two stages. The first stage consists of specifying

the yarn centreline (or the yarn path) defined by a series of nodes on the centreline

which are interpolated with a spline. In this way any desired path can be approximated

and a higher degree of fit to the desired path can be obtained by increasing the number

of points. However for the woven fabrics presented in this thesis it was found that only

one point per cross-over was necessary to obtain a good fit to the real fabric.

The second stage is to define the cross-section of the yarn which can be done indepen-

dently from the yarn path definition. Cross-sections are defined in two dimensions as

parametric equations and a series of cross-sections defined in this way are presented:

ellipse, power ellipse and lenticular. However any cross-section which can be defined

180



CHAPTER 6: DISCUSSION AND CONCLUSIONS

as a parametric equation is suitable. The cross-sections can then be assigned at discrete

points along the length of the yarn and interpolated between these points.

The geometric model defines the yarn surface and volume suitable for use in various

numerical analysis techniques such as finite element analysis, boundary element anal-

ysis, finite difference, etc. The geometric modelling algorithms have been implemented

in the TexGen software package and this is used to create models of four woven fabrics

presented in Chapter 3. Cross-section images of the fabrics were obtained using optical

microscopy and scanning electron microscopy. Full three dimensional volumetric data

of the fabrics were also obtained using microtomography. This data was used as both

input and validation.

Difficulties were encountered in defining the boundary of the yarns in the cotton fabric

due to the large number of stray fibres present. Other than this fundamental issue there

were no limitations in representing the observed yarn shapes with the modelling tech-

niques presented. The accuracy of the model is essentially determined by the accuracy

of the input parameters. Features common to all the observed fabrics were identified

and algorithms developed such that they are applicable to woven fabrics in general.

More specifically an interference correction algorithm applicable to woven fabrics was

developed and the location and magnitude of yarn rotations characterised.

6.2.2 Mechanical modelling

At the microscopic scale, an original numerical technique was developed for predict-

ing the mechanical behaviour of tows. The method involves modelling fibres within

a tow following the Euler-Bernoulli beam equations. The number of fibres that can be

modelled in a yarn is limited by the computational requirements. Compaction of a tow

was simulated by applying a linear transformation to the fibres contained within it. It

was found that averaging results over a large number of small tow sections provides

similar trends to experimental results. It is computationally cheaper to perform a large

number of small scale simulations than a single large scale simulation hence the for-

mer approach was adopted. Results were compared against experimental results and

analytical models found in the literature. The pressure versus volume fraction curves

of the simulation and experimental data were both found to fit closely to a power law

hence showing that the trends are accurately predicted. Unfortunately the scale of the

pressures predicted was found to be several orders of magnitude lower than experi-

mental results. This is thought to be due to the assumption that the fibres are initially

straight and consequently the inability to correctly model the longitudinal boundary

conditions. However to the knowledge of the author there is currently no model able
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to accurately predict the scale of the compaction pressure without fitting parameters.

The model was also used to simulate the shear behaviour of a polyester plain woven

fabric. Results were compared against KES-f measurements of the modelled fabric.

The shear response behaviour was decomposed into two parts, the first part caused by

frictional sliding between fibres and the second part caused by elastic bending of the

fibres. In contrast to the compaction simulation, the model showed very good predic-

tive capabilities for the overall shear behaviour including hysteresis when compared

against KES-f data. This is thought to be due to the accurate modelling of the longi-

tudinal boundary conditions, as here a complete fabric unit cell was modelled with

periodic boundary conditions.

At the mesoscopic scale, an explicit finite element analysis solver was implemented to

predict the mechanical properties of fabrics under compression, tensile and in-plane

shear deformations. The two Chomarat woven fabrics modelled using TexGen were

simulated with the FE solver. It was found that very good agreement between FE

results and experimental data can be obtained for compaction given an accurate trans-

verse material model. Using yarn material properties obtained from McBride [88] a

reasonably close fit to experimental data was found for the Chomarat 800S4-F1 fabric,

however the material properties were found not to be suitable for the Chomarat 150TB

fabric. The biaxial tensile behaviour of fabrics was found to follow trends presented

by Boisse et al. [10]. However, the fabric shear behaviour could not be accurately mod-

elled with the finite element method presented in this chapter due to the inability of

the continuum elements to accurately represent the axial shear behaviour of yarns.

6.3 Conclusions

The conclusions gained from this thesis are summarised below.

• The geometry of any textile fabric can be represented in a generic way by speci-

fying yarn path and yarn cross-sections independently.

• Characterisation of fabric geometry is difficult due to the large variability ob-

served in measurement of fabric parameters. However given accurate input mea-

surements an accurate geometric model of the fabric can be created.

• A number of assumptions about the path and shape of the cross-sections were

made for 2D woven fabrics in general and validated against four different fabrics.

Algorithms were implemented in TexGen to create 2D woven fabric geometric
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models using these assumptions with minimal input data. To avoid penetration

between tows.

• Prediction of tow compaction behaviour involves modelling a complex system of

fibre contacts and fibre bending. The numerical approach presented in this thesis

shows promising trends.

• Fibre sliding is inevitable during shearing of fabrics and two possible distinct

modes of sliding were identified: the sliding between fibres within a tow (intra-

tow) and sliding between fibres between tows (inter-tow). For the polyester fabric

modelled it was shown that only one mode occurs depending on the ratio of intra-

tow coefficient of friction and inter-tow coefficient of friction.

• Prediction of fabric shear properties for low filament count tows where individual

fibres were modelled showed good agreement with experimental results without

any fitting parameters. It was shown that the force response could be separated

into two components, the frictional forces between fibres caused by sliding and

the internal stresses created by elastic deformation of the fibres due to bending.

• A flaw in the use of solid continuum finite elements to model the behaviour of dry

fabrics where bending or axial shear of yarns plays a significant role was identi-

fied. The internal fibre strains are not correctly represented by the continuum

elements.

6.4 Recommendations for further work

In terms of geometrical modelling of unit cells the following areas of further research

may be constructive.

• In this thesis the geometric modelling techniques presented have only been ap-

plied and validated for two dimensional woven fabrics. It would be advanta-

geous to apply the same systematic approach to the full spectrum of textile fab-

rics using the same modelling strategy. The findings should be implemented in

TexGen in order to provide a comprehensive modelling tool capable of creating

textile unit cell models with a minimum of input parameters suitable for both

research and industrial purposes.

• The geometric models created by TexGen are of little utility on their own. In order

to perform numerical analysis with these models it is necessary to export them
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to different software packages which can be troublesome and time consuming

resulting in a considerable reduction in research efficiency. Further work spent

on providing a simple interface between TexGen with commercial and research

tools through the use of standard file formats would alleviate this issue.

• The use of microtomography is potentially very powerful in characterising tex-

tile geometry. The development of algorithms to analyse volumetric data pro-

vided by µCT could result in automatic identification of yarn centrelines and

cross-sectional shapes which could be used to create highly accurate TexGen ge-

ometric models. A series of models could be created in this way and analysed

to characterise fabric variability. Using this data, algorithms could be devised to

create batches of non-idealised geometric models of fabrics without the need for

additional µCT measurements.

Recommendations for future work on modelling the mechanical behaviour of tows is

listed below.

• Preliminary work was performed on the use of microtomography to characterise

the fibre distribution within tows (not presented in this thesis). Revisiting this

work would provide a more accurate initial fibre distribution for use in the tow

compaction model.

• The longitudinal boundary conditions of the tow compaction model should be

improved. Either mirrored or periodic boundary conditions should be used and

consequently a change in the assumption that fibres are initially straight is re-

quired. The initial shape could be modelled as the shape described by a fibre

with a single force applied at a position along the length of the fibre. By describ-

ing initially curved fibres the number of fibre to fibre contacts should increase

thus bringing the predicted compaction pressure closer to the experimental re-

sults.

• The Euler-Bernoulli beam equations may be replaced or extended to model the

tensile and possibly torsional behaviour of the fibres. By doing so the tensile

behaviour of yarns may be modelled and Poisson’s ratio may be characterised.

Future work on finite element modelling of textile fabric unit cells is identified below.

• Although the task of programming a finite element analysis code without the use

of any external libraries is a rewarding learning experience and allows complete
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freedom it almost certainly results in sub-optimal code. Since the performance of

finite element analysis code is critical in obtaining results in a timely manner the

resulting code is of limited use. Therefore it would be beneficial to implement the

algorithms presented in this thesis in existing optimised, validated and robust

finite element software such as ABAQUSTM[51] where possible.

• A fundamental issue with modelling yarns with solid continuum elements for

use in finite element analysis was identified. The internal strains within fibres

are not captured accurately which means the behaviour of the fabric cannot be

predicted when the fabric deforms such that these strains become important. De-

velopment of a finite element which can capture the internal fibre strains either by

replacing the continuum elements or by working in conjunction with them may

solve the issue. This may be acheived by embedding truss elements inside the

continuum elements to represent each individual fibre or a group of fibres. The

truss elements could represent the tensile and flexural modulus of the fibres while

the continuum elements could represent the compressive modulus and frictional

sliding between fibres as a plastic deformation.

• The finite element analysis techniques described in this thesis are applicable to

all fabric types except for the contact algorithm which may need modification for

certain fabric types such as weft knits. Future work may include developing the

analysis technique and validation for different fabric types.
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APPENDIX A

Area calculation

It is often necessary to evaluate the area of a cross-section, for example to calculate the

area fraction of fibre to yarn. In this section the method to calculate this area will be

discussed. The area A of a cross-section can be expressed as:

A =
∫∫
a

1 dy dx (A.1)

Note that A is a scalar value and a refers to a region of space. Taking the cross-section

C(t) defined as a closed counter-clockwise parametric equation between the limits 0 ≤
t ≤ 1, the integral can be expressed using Green’s theorem [4] as:

A =
∫ 1

0
~F × C′(t) dt (A.2)

where~F is defined as being any vector that satisfies the following equation:

∇~F = 1 (A.3)

Possible values of ~F include but are not limited to (x, 0) and (0, y). With ~F = (x, 0)

Equation A.2 becomes:

A =
∫ 1

0
CxC′

y dt (A.4)

Or with~F = (0, y) Equation A.2 becomes:

A = −
∫ 1

0
C′

xCy dt (A.5)

In practice the integral can be approximated using the Trapezium rule [13] where an-

alytical solutions are not available. Given n points Ci sampled along the length of the

parametric curve C(t):

Ci = C
(

i
n − 1

)
(A.6)
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The approximated area is:

A ≈ 1
2

n−1

∑
i=1

(Cix + Ci+1x)(Ci+1y − Ciy) (A.7)

or

A ≈ −1
2

n−1

∑
i=1

(Ci+1x − Cix)(Ciy + Ci+1y) (A.8)
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Volume calculation

The volume of a yarn is a useful quantity to evaluate for example to calculate the vol-

ume fraction of fibre to yarn. The method is an extension of that used to calculate the

cross-sectional area (see Appendix A). The volume V of a yarn can be expressed as:

V =
∫∫∫

v

1 dz dy dx (B.1)

Note that V is a scalar value and v refers to a region of space. Suppose the yarn surface

is defined by the parametric equation P(u, v) with limits 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1,

using the divergence theorem [4] the equation can be expressed as:

V =
∫ 1

0

∫ 1

0
~F ·
(

∂P
∂u

× ∂P
∂v

)
dv du +

∫∫
sa

~F · dsa +
∫∫
sb

~F · dsb (B.2)

where sa and sb are two end cap surfaces which when combined with P(u, v) form

a completely closed boundary of v. dsa and dsb represent the outward pointing unit

surface normals of surfaces sa and sb respectively. ~F is defined as any vector satisfying

the following equation:

∇ ·~F = 1 (B.3)

Possible values of ~F include but are not limited to (x, 0, 0), (0, y, 0) and (0, 0, z). Using
~F = (x, 0, 0), the equation becomes:

V =
∫ 1

0

∫ 1

0
Px

(
∂P
∂u y

∂P
∂v z

− ∂P
∂u z

∂P
∂v y

)
dv du +

∫∫
sa

sax · dsa +
∫∫
sb

sbx · dsb (B.4)

Similar equations can be derived for other values of ~F not shown here. Although too

complicated to solve analytically for general shapes an approximation can be obtained

numerically. In order to do this P(u, v) must be sampled as described in Section 2.8.

From the sampled points a triangular mesh can be created, similarly triangular meshes
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of the two end faces can also be created ensuring the normals point outwards. Given n

triangles the approximated volume is:

V ≈
n

∑
i=1

∫∫
si

~F · dsi (B.5)

where si is the surface of the ith triangle. Given vertices Ai, Bi and Ci for triangle i and

vectors ~Ui and ~Vi defined as:

~Ui = Bi − Ai (B.6)

~Vi = Ci − Ai (B.7)

Any point on the surface of the triangle si can be expressed in parametric form as:

si(u, v) = Ai + u~Ui + v~Vi 0 ≤ u ≤ 1 0 ≤ v ≤ 1− u (B.8)

The outward pointing unit surface normal dsi can then be expressed as:

dsi = ~Ui × ~Vi dv du (B.9)

Using~F = (x, 0, 0) Equation B.5 becomes:

V ≈
n

∑
i=1

∫ 1

0

∫ 1−u

0
(Aix + u~Uix + v~Vix)(~Uiy

~Viz − ~Uiz
~Viy) dv du (B.10)

Which can be written as:

V ≈ 1
6

n

∑
i=1

(Aix + Bix + Cix)((Biy − Aiy)(Ciz − Aiz)− (Biz − Aiz)(Ciy − Aiy)) (B.11)
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Repeat limits

A yarn with n repeat vectors ~Ri covers an infinite region of space if no limits are placed

on the number of times the yarn is repeated. Repeated yarns exists translated by vec-

tors ~Vj defined as:

~Vj = C0~R0 + C1~R1 + · · ·+ Cn−1~Rn−1 − ∞ ≤ Ci ≤ ∞ (C.1)

where the coefficients Ci are integers, and since they range from −∞ to ∞, the number

of vectors ~Vj is infinite. For rendering and intersection purposes it is necessary to limit

the yarn to a domain. The number of vectors ~Vj can be reduced to a finite number by

limiting the coefficients Ci to a finite range:

ai ≤ Ci ≤ bi (C.2)

where ai and bi are refered to as the repeat limits. The repeat limits are calculated such

that yarns repeated by vector ~Vj that intersect with the domain are not removed while

minimising the number of vectors ~Vj. The number m of vectors ~Vj can be calculated

as:

m =
n−1

∏
i=0

(bi − ai + 1) (C.3)

Figure C.1 displays a simple example of a yarn with two repeat vectors ~R0 and ~R1, and

a box shaped domain.

The repeat vectors for this case can be found intuitively, they are:

a0 = 1 b0 = 2 a1 = 0 b1 = 1 (C.4)

The number m of vectors ~Vj is 4 corresponding to 4 repeated yarns. An iterative al-

gorithm is devised to calculate these repeat limits automatically. Note the example

illustrated here is simple considering the repeat vectors ~Ri may not be orthogonal and
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P~R1

~R0

C0 = 0

C1 = 0

C0 = 0

C1 = 1

C0 = 1

C1 = 1

C0 = 1

C1 = 0

C0 = 2

C1 = 0

C0 = 2

C1 = 1

C0 = 3

C1 = 1

C0 = 3

C1 = 0

Figure C.1: Repeat limits example

the domain may not be a box shape nor aligned with the repeat vectors. The domain is

defined by planes and as such can approximate any convex shape.

The algorithm operates as follows:

1. Set all repeat limits ai and bi to 0.

2. Repeat the following loop until all repeat limits ai and bi remain unchanged from

one loop to the next

(a) For each repeat vector ~Ri calculate repeat limits ai and bi as follows:

i. Set current repeat limits ai and bi to 0.

ii. Get a mesh of yarns repeated by vectors ~Vj using repeat limits calcu-

lated so far and calculate the minimum Aa and maximum Ab of Pk ·
~Ri
‖~Ri‖

for each point Pk in the mesh.

iii. Get a mesh of the domain and calculate the minimum Ba and maximum

Bb of Pk ·
~Ri
‖~Ri‖

for each node Pk in the mesh.

iv. Set current repeat limits to ai =
⌈

Ba−Ab
‖~Ri‖

⌉
and bi =

⌊
Bb−Aa

‖~Ri‖

⌋
. (Note: d e

and b c are the ceiling and floor functions respectively [39]).

This algorithm can be slow when the yarn mesh is large hence to increase efficiency the

yarn mesh in step 2-a-ii can be replaced with a mesh of the bounding box encompasing

the yarn. This may result in a wider range for the repeat limits which could cause a

loss in performance in further computations making use of the repeat limits, however

this approach generally results in an overall faster execution time.
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Sample python scripts

The Python scripts used to create the fabrics illustrated in Chapter 1 are shown here:

Listing D.1: 2dweave.py�
from TexGen . Core import ∗

# C r e a t e a 2x2 2D woven f a b r i c wi th yarn s p a c i n g o f 2 and t h i c k n e s s 0 . 3

T e x t i l e = CTextileWeave2D ( 2 , 2 , 2 , 0 . 3 ) ;

# S e t t h e weave p a t t e r n

T e x t i l e . SwapPosition ( 0 , 0 ) ;

T e x t i l e . SwapPosition ( 1 , 1 ) ;

# Adjus t t h e yarn wi d t hs

T e x t i l e . SetYarnWidths ( 1 . 5 ) ;

# C r e a t e t h e domain and a s s i g n i t

Domain = CDomainPlanes (XYZ(−1 , −1, −10) , XYZ( 1 1 , 11 , 10) )

T e x t i l e . AssignDomain ( Domain )

# Add t h e t e x t i l e

AddTextile ( ’ 2DWeave ’ , T e x t i l e )� �

205



APPENDIX D: SAMPLE PYTHON SCRIPTS

Listing D.2: 3dweave.py�
from TexGen . Core import ∗

# C r e a t e a 8x4 3D woven t e x t i l e wi th yarn s p a c i n g o f 5 and t h i c k n e s s o f 7

T e x t i l e = CTextileWeave3D ( 8 , 4 , 5 , 7 ) ;

# Add some warp and w e f t l a y e r s

T e x t i l e . AddYLayers ( 0 , 1 ) ;

T e x t i l e . AddYLayers ( 2 , 1 ) ;

T e x t i l e . AddYLayers ( 4 , 1 ) ;

T e x t i l e . AddYLayers ( 6 , 1 ) ;

T e x t i l e . AddXLayers ( ) ;

T e x t i l e . AddYLayers ( ) ;

T e x t i l e . AddXLayers ( ) ;

T e x t i l e . AddYLayers ( ) ;

T e x t i l e . AddXLayers ( ) ;

T e x t i l e . AddYLayers ( ) ;

# S e t t h e weave p a t t e r n

T e x t i l e . PushUp ( 0 , 0 ) ;

T e x t i l e . PushUp ( 1 , 0 ) ;

T e x t i l e . PushDown ( 4 , 0 ) ;

T e x t i l e . PushUp ( 7 , 0 ) ;

T e x t i l e . PushUp ( 1 , 1 ) ;

T e x t i l e . PushUp ( 2 , 1 ) ;

T e x t i l e . PushUp ( 3 , 1 ) ;

T e x t i l e . PushDown ( 6 , 1 ) ;

T e x t i l e . PushDown ( 0 , 2 ) ;

T e x t i l e . PushUp ( 3 , 2 ) ;

T e x t i l e . PushUp ( 4 , 2 ) ;

T e x t i l e . PushUp ( 5 , 2 ) ;

T e x t i l e . PushDown ( 2 , 3 ) ;

T e x t i l e . PushUp ( 5 , 3 ) ;

T e x t i l e . PushUp ( 6 , 3 ) ;

T e x t i l e . PushUp ( 7 , 3 ) ;

# S e t t h e yarn width and h e i g h t s

T e x t i l e . SetYarnWidths ( 4 ) ;

T e x t i l e . SetYarnHeights ( 1 ) ;

# Ass ign t h e d e f a u l t domain

# T e x t i l e . Ass ignDefaul tDomain ( )

206



APPENDIX D: SAMPLE PYTHON SCRIPTS

# C r e a t e t h e domain and a s s i g n i t

Domain = CDomainPlanes (XYZ( 0 , 0 , −10) , XYZ( 4 0 , 40 , 10) )

T e x t i l e . AssignDomain ( Domain )

# Add t h e t e x t i l e

AddTextile ( ’ 3DWeave ’ , T e x t i l e )� �
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Listing D.3: triaxialbraid.py�
from TexGen . Core import ∗
import math

# C r e a t e a t e x t i l e

T e x t i l e = CText i l e ( )

# C r e a t e a python l i s t c o n t a i n i n g 3 yarns

Yarns = [ CYarn ( ) , CYarn ( ) , CYarn ( ) ]

# Add nodes t o t h e yarns t o d e s c r i b e t h e i r p a t h s

# F i r s t d e f i n e t h e a n g l e d yarns

Yarns [ 0 ] . AddNode(CNode(XYZ( 0 , 0 , 0 ) ) )

Yarns [ 0 ] . AddNode(CNode(XYZ( 0 . 5 , 0 . 2 8 8 7 , 0 . 2 ) ) )

Yarns [ 0 ] . AddNode(CNode(XYZ( 1 , 0 . 5 7 7 4 , 0 . 2 ) ) )

Yarns [ 0 ] . AddNode(CNode(XYZ( 1 . 5 , 0 . 8 6 6 0 , 0 ) ) )

Yarns [ 0 ] . AddNode(CNode(XYZ( 2 , 1 . 1 5 4 7 , 0 ) ) )

Yarns [ 1 ] . AddNode(CNode(XYZ( 0 , 0 , 0 . 2 ) ) )

Yarns [ 1 ] . AddNode(CNode(XYZ( 0 . 5 , −0.2887 , 0 ) ) )

Yarns [ 1 ] . AddNode(CNode(XYZ( 1 , −0.5774 , 0 ) ) )

Yarns [ 1 ] . AddNode(CNode(XYZ( 1 . 5 , −0.8660 , 0 . 2 ) ) )

Yarns [ 1 ] . AddNode(CNode(XYZ( 2 , −1.1547 , 0 . 2 ) ) )

# D e f i n e a s t r a i g h t yarn

Yarns [ 2 ] . AddNode(CNode(XYZ( −0.25 , 0 , 0 . 1 ) ) )

Yarns [ 2 ] . AddNode(CNode(XYZ( −0.25 , 0 . 5 7 7 3 5 , 0 . 1 ) ) )

# C r e a t e a l e n t i c u l a r s e c t i o n f o r t h e +− a n g l e d yarns

AngledSection = CSec t io nLent i cu lar ( 0 . 4 5 , 0 . 1 3 )

# The s e c t i o n w i l l be r o t a t e d a t t h e a p p r o p r i a t e p o i n t s t o a v o i d i n t e r f e r e n c e

# So c r e a t e an i n t e r p o l a t e d yarn s e c t i o n

AngledYarnSection = CYarnSect ionInterpPos i t ion ( True , True )

# Th i s i s t h e r o t a t i o n a n g l e d e f i n e d

RotationAngle = math . radians ( 1 2 )

# Add r o t a t e d s e c t i o n s a t 1 / 8 and 5 / 8 o f t h e way a l o n g t h e yarn

# a t a n g l e s o f +− R o t a t i o n A n g l e

AngledYarnSection . AddSection ( 1 . 0 / 8 . 0 , CSectionRotated ( AngledSection , −
RotationAngle ) )

AngledYarnSection . AddSection ( 5 . 0 / 8 . 0 , CSectionRotated ( AngledSection ,

RotationAngle ) )

# Add u n r o t a t e d s e c t i o n s t o t h e i n t e r p o l a t i o n a t i n t e r v a l s o f 1 / 4
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AngledYarnSection . AddSection ( 0 . 0 / 4 . 0 , AngledSection )

AngledYarnSection . AddSection ( 1 . 0 / 4 . 0 , AngledSection )

AngledYarnSection . AddSection ( 2 . 0 / 4 . 0 , AngledSection )

AngledYarnSection . AddSection ( 3 . 0 / 4 . 0 , AngledSection )

# Ass ign t h e r o t a t i n g c r o s s−s e c t i o n t o t h e a n g l e d yarns

Yarns [ 0 ] . AssignSect ion ( AngledYarnSection )

Yarns [ 1 ] . AssignSect ion ( AngledYarnSection )

# Add r e p e a t s t o t h o s e yarns

Yarns [ 0 ] . AddRepeat (XYZ( 2 , 0 , 0 ) )

Yarns [ 1 ] . AddRepeat (XYZ( 2 , 0 , 0 ) )

# C r e a t e a l e n t i c u l a r s e c t i o n f o r t h e s t r a i g h t yarns and a s s i g n i t

S t r a i g h t S e c t i o n = CSec t ionLent i cu lar ( 0 . 6 , 0 . 1 5 )

Yarns [ 2 ] . AssignSect ion ( CYarnSectionConstant ( S t r a i g h t S e c t i o n ) )

# Add r e p e a t s f o r t h e s t r a i g h t yarn

Yarns [ 2 ] . AddRepeat (XYZ( 1 , 0 , 0 ) )

# Loop o v e r a l l t h e yarns in t h e l i s t

for Yarn in Yarns :

# S e t t h e i n t e r p o l a t i o n f u n c t i o n

Yarn . A s s i g n I n t e r p o l a t i o n ( CInterpolat ionCubic ( ) )

# S e t t h e r e s o l u t i o n o f t h e s u r f a c e mesh c r e a t e d

Yarn . Se tReso lut ion ( 2 0 )

# Add common r e p e a t v e c t o r t o t h e yarn

Yarn . AddRepeat (XYZ( 0 , 0 . 5 7 7 3 5 , 0 ) )

# Add t h e yarn t o our t e x t i l e

T e x t i l e . AddYarn ( Yarn )

# C r e a t e a domain and a s s i g n i t t o t h e t e x t i l e

T e x t i l e . AssignDomain ( CDomainPlanes (XYZ( 0 + 0 . 2 5 , 0 , −1) , XYZ( 4 + 0 . 2 5 , 4 , 1 ) ) )

# Add t h e t e x t i l e

AddTextile ( " t r i a x i a l b r a i d " , T e x t i l e )� �
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Listing D.4: weftknit.py�
from TexGen . Core import ∗
import math

# C r e a t e a t e x t i l e

T e x t i l e = CText i l e ( )

# C r e a t e a yarn

Yarn = CYarn ( )

# D e f i n e some c o n s t a n t s

r = 1

sx = r ∗2 . 5

sy = r ∗10

ly = 0 . 7 5∗ ( sx+r )

# Add nodes t o t h e yarns t o d e s c r i b e t h e yarn pa th

Yarn . AddNode(CNode(XYZ( 0 , 0 , r ) ) )

Yarn . AddNode(CNode(XYZ( sx+r , ly , 0 ) ) )

Yarn . AddNode(CNode(XYZ( sx , ly +0.5∗ sy , −r ) ) )

Yarn . AddNode(CNode(XYZ( sx−r , ly+sy , 0 ) ) )

Yarn . AddNode(CNode(XYZ(2∗ sx , 2∗ ly+sy , r ) ) )

Yarn . AddNode(CNode(XYZ(3∗ sx+r , ly+sy , 0 ) ) )

Yarn . AddNode(CNode(XYZ(3∗ sx , ly +0.5∗ sy , −r ) ) )

Yarn . AddNode(CNode(XYZ(3∗ sx−r , ly , 0 ) ) )

Yarn . AddNode(CNode(XYZ(4∗ sx , 0 , r ) ) )

# Ass ign a c o n s t a n t c i r c u l a r c r o s s−s e c t i o n

S e c t io n = C S e c t i o n E l l i p s e (2∗ r , 2∗ r )

Yarn . AssignSect ion ( CYarnSectionConstant ( S e c t io n ) )

# C r e a t e some r e p e a t s

Yarn . AddRepeat (XYZ(4∗ sx , 0 , 0 ) )

Yarn . AddRepeat (XYZ( 0 , 2∗sy , 0 ) )

# S e t t h e i n t e r p o l a t i o n f u n c t i o n

Yarn . A s s i g n I n t e r p o l a t i o n ( CInterpolat ionCubic ( ) )

# S e t t h e r e s o l u t i o n o f t h e s u r f a c e mesh c r e a t e d

Yarn . Se tReso lut ion ( 2 0 )

# Add t h e yarn t o our t e x t i l e

T e x t i l e . AddYarn ( Yarn )

# T r a n s l a t e t h e yarn and add i t t o t h e t e x t i l e
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# Note t h i s c o u l d be p a r t o f t h e r e p e a t v e c t o r s but i s done

# l i k e t h i s t o g i v e t h e yarns d i f f e r e n t c o l o u r s

Yarn . T r a n s l a t e (XYZ( 0 , sy , 0 ) )

T e x t i l e . AddYarn ( Yarn )

# C r e a t e a domain and a s s i g n i t t o t h e t e x t i l e

T e x t i l e . AssignDomain ( CDomainPlanes (XYZ( 0 , −ly , −2∗r ) , XYZ( 4∗ ( 4∗ sx ) , 4∗sy−ly ,

2∗ r ) ) )

# Add t h e t e x t i l e

AddTextile ( " wef tkni t " , T e x t i l e )� �
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Listing D.5: ncf.py�
from TexGen . Core import ∗

# C r e a t e a t e x t i l e

T e x t i l e = CText i l e ( )

# C r e a t e a python l i s t c o n t a i n i n g 2 i n l a y yarns

Yarns = [ CYarn ( ) , CYarn ( ) ]

# D e f i n e some c o n s t a n t s

w = 0 . 9 5

s = 1

h = 0 . 2

# Add nodes t o t h e yarns t o d e s c r i b e t h e yarn pa th

Yarns [ 0 ] . AddNode(CNode(XYZ( 0 , 0 , 0 ) ) )

Yarns [ 0 ] . AddNode(CNode(XYZ( 0 , s , 0 ) ) )

Yarns [ 1 ] . AddNode(CNode(XYZ( 0 , 0 , h ) ) )

Yarns [ 1 ] . AddNode(CNode(XYZ( s , 0 , h ) ) )

# Loop o v e r a l l t h e yarns in t h e l i s t

for Yarn in Yarns :

# Ass ign a power e l l i p s e t o t h e i n l a y yarns

I n l a y S e c t i o n = CSect ionPowerEl l ipse (w, h , 0 . 5 )

Yarn . AssignSect ion ( CYarnSectionConstant ( I n l a y S e c t i o n ) )

# Add r e p e a t s

Yarn . AddRepeat (XYZ( s , 0 , 0 ) )

Yarn . AddRepeat (XYZ( 0 , s , 0 ) )

# S e t t h e i n t e r p o l a t i o n f u n c t i o n

Yarn . A s s i g n I n t e r p o l a t i o n ( CInterpolat ionCubic ( ) )

# S e t t h e r e s o l u t i o n o f t h e s u r f a c e mesh c r e a t e d

Yarn . Se tReso lut ion ( 4 0 )

# Add t h e yarn t o our t e x t i l e

T e x t i l e . AddYarn ( Yarn )

# D e f i n e some c o n s t a n t s more c o n s t a n t s f o r t h e s t i t c h i n g

a = 0 . 0 5

r = 0 .025

u = 1 . 5∗h+r

d = −0.5∗h−r

# C r e a t e a s t i t c h yarn

St i t chYarn = CYarn ( )
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# C r e a t e s t i t c h yarn path , t h i s pa th i s q u i t e complex and has been

# c r e a t e d with a f a i r amount o f t w e a k i n g . Note t h a t t h e t a n g e n t s

# a t t h e nodes have been s p e c i f i e d f o r f u r t h e r c o n t r o l on t h e pa th .

St i t chYarn . AddNode(CNode(XYZ(2∗a , a , u ) , XYZ( 1 , 1 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( s+a , s−a , u ) , XYZ( 1 , 1 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( s+a , s , d ) , XYZ( 0 , 1 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( s +2∗a , 2∗s−a , d ) , XYZ( 0 , 1 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( s+a , 2∗s , d+a ) , XYZ(−1 , 0 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( s−a , 2∗s , d+a ) , XYZ(−1 , 0 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( s−2∗a , 2∗s−a , d ) , XYZ( 0 , −1, 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( s−a , s , d ) , XYZ( 0 , −1, 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( s−2∗a , s+a , u ) , XYZ(−1 , 1 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ(−a , 2∗s−a , u ) , XYZ(−1 , 1 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ(−a , 2∗s , d ) , XYZ( 0 , 1 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ(−2∗a , 3∗s−a , d ) , XYZ( 0 , 1 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ(−a , 3∗s , d+a ) , XYZ( 1 , 0 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( a , 3∗s , d+a ) , XYZ( 1 , 0 , 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ(2∗a , 3∗s−a , d ) , XYZ( 0 , −1, 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ( a , 2∗s , d ) , XYZ( 0 , −1, 0 ) ) )

S t i t chYarn . AddNode(CNode(XYZ(2∗a , 2∗ s+a , u ) , XYZ( 1 , 1 , 0 ) ) )

# Add t h e r e p e a t v e c t o r s f o r t h e s t i t c h i n g

St i t chYarn . AddRepeat (XYZ( 1 , 0 , 0 ) )

S t i t chYarn . AddRepeat (XYZ( 0 , 2 , 0 ) )

# Ass ign a c i r c u l a r s e c t i o n t o t h e s t i t c h yarns

S t i t c h S e c t i o n = C S e c t i o n E l l i p s e (2∗ r , 2∗ r )

S t i t chYarn . AssignSect ion ( CYarnSectionConstant ( S t i t c h S e c t i o n ) )

# S e t t h e i n t e r p o l a t i o n f u n c t i o n t o B e z i e r so t h a t

# t h e yarn t a n g e n t s s p e c i f i e d a b o v e a r e r e s p e c t e d

St i t chYarn . A s s i g n I n t e r p o l a t i o n ( C I n t e r p o l a t i o n B e z i e r ( ) )

# S e t a l o w e r s u r f a c e mesh r e s o l u t i o n t h a t f o r t h e i n l a y s ,

# t h e s t i t c h i n g i s so t h i n t h a t a h igh r e s o l u t i o n i s not ne ede d

St i t chYarn . Se tReso lut ion ( 8 )

# T r a n s l a t e t h e s t i t c h yarn so t h a t i t f a l l s b e tween t h e i n l a y yarns

St i t chYarn . T r a n s l a t e (XYZ( 0 . 5∗ s , 0 . 5∗ s+r , 0 ) )

# Add t h e yarn t o our t e x t i l e

T e x t i l e . AddYarn ( S t i t chYarn )
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# C r e a t e a domain and a s s i g n i t t o t h e t e x t i l e

T e x t i l e . AssignDomain ( CDomainPlanes (XYZ( 0 , 0 , −1) , XYZ(4∗ s , 4∗s , 1 ) ) )

# Add t h e t e x t i l e

AddTextile ( " ncf " , T e x t i l e )� �
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Listing D.6: createscreens.py�
from TexGen . Core import ∗
from TexGen . Renderer import ∗
import Image

e x e c f i l e ( ’ 2dweave . py ’ )

e x e c f i l e ( ’ 3dweave . py ’ )

e x e c f i l e ( ’ t r i a x i a l b r a i d . py ’ )

e x e c f i l e ( ’ wef tkni t . py ’ )

e x e c f i l e ( ’ ncf . py ’ )

# Loop o v e r a l l t h e t e x t i l e s c r e a t e d a b o v e

for TextileName , T e x t i l e in G e t T e x t i l e s ( ) . i t e r i t e m s ( ) :

# Get an i n s t a n c e o f t h e CTexGenRenderer t o r e n d e r t h e t e x t i l e

Renderer = CTexGenRenderer ( )

# Render our t e x t i l e c l i p p e d t o t h e domain

Renderer . RenderText i le ( T e x t i l e )

# S e t t h e background c o l o r t o w h i t e

Renderer . SetBackgroundColor (COLOR( 1 , 1 , 1 ) )

# S e t t h e camera p o s i t i o n

Renderer . ResetCamera (XYZ( 0 , 1 . 0 , −1) )

# S t a r t r e n d e r i n g in a window 640 x 480

Width = 640

Height = 480

Renderer . S t a r t ( False , Width , Height )

# C r e a t e a s c r e e n s h o t wi th 4 t i m e s m a g n i f i c a t i o n

FileName = TextileName + " . png "

Renderer . TakeScreenShot ( FileName , 4 )

# Open t h e c r e a t e d image with t h e PIL l i b r a r y

im = Image . open ( FileName )

# R e s i z e i t

im . thumbnail ( ( Width , Height ) , Image . ANTIALIAS)

# Save i t b a c k t o d i s k

im . save ( FileName )

# Th i s i s done t o g e t a b e t t e r q u a l i t y Anti−A l i a s e d image� �
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Graphical user interface screenshots

Figures E.1, E.2 and E.3 show different menus in the TexGen GUI running under Win-

dows. Figure E.4 shows the TexGen GUI running under Linux. At the time of writing

the TexGen GUI only contains limited functionality for creating models and processing

them. This aspect is still under development.

Figure E.1: TexGen GUI textiles page (Windows)
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Figure E.2: TexGen GUI domain page (Windows)

Figure E.3: TexGen GUI rendering page (Windows)
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Figure E.4: TexGen GUI python page (Linux)
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APPENDIX F

Beam theory

Suppose a fibre of length L is supported at either end with some type of boundary

condition yet to be decided. A force of magnitude P acts on the fibre at distance a from

the end (Figure F.1).

P

a

xM0 M

R0 RL

L

ML

Figure F.1: Fibre modelled as a beam

If the fibre is in equilibrium then the sum of moments up to point x must be equal and

opposite to the moment acting on the fibre at the point x. The fibre must be split into

two parts with a different sets of equations for each. The first part denoted by subscript

1 applies for the range 0 ≤ x ≤ a, the second part denoted by subscript 2 applies for

the range a ≤ x ≤ l. The moment M is calculated as:

M1(x) = R0x + M0 (F.1)

M2(x) = R0x − P (x − a) + M0 (F.2)

Euler-Bernoulli’s beam bending theory states that:

M
I

=
E
R

(
=

σ

y

)
(F.3)

where I is the second moment of area, E is Youngs’ modulus, R is the radius of curva-

ture of the beam, σ is stress and y is distance from the neutral axis. The term σ
y will not

be used in this derivation, it is simply included for completeness.
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If deflection at any point x along the fibre is defined as v, it can be shown for small

angles that:
1
R
≈ d2v

dx2 (F.4)

Assuming that deflection in the beam is always small:

d2v
dx2 1

(x) =
M1

EI
=

R0x
EI

+
M0

EI
(F.5)

d2v
dx2 2

(x) =
M2

EI
=

R0x
EI

− P (x − a)
EI

+
M0

EI
(F.6)

Integrating once results in the slope of the fibre:

dv
dx 1

(x) =
R0x2

2EI
+

M0x
EI

+ C1 (F.7)

dv
dx 2

(x) =
R0x2

2EI
− P (x − a)2

2EI
+

M0x
EI

+ C3 (F.8)

Integrating again gives the deflection of the fibre:

v1(x) =
R0x3

6EI
+

M0x2

2EI
+ C1x + C2 (F.9)

v2(x) =
R0x3

6EI
− P (x − a)3

6EI
+

M0x2

2EI
+ C3x + C4 (F.10)

As the fibre must exhibit 0th and 1st order continuity, it follows that at x = a:

v1(a) = v2(a) (F.11)
dv
dx 1

(a) =
dv
dx 2

(a) (F.12)

Solving these equations eliminates constants C3 and C4:

C1 = C3 (F.13)

C2 = C4 (F.14)

A physical interpretation of values C1 and C2 can be found by obtaining expressions

for dv
dx and v at x = 0:

dv
dx 1

(0) = C1 (F.15)

v1(0) = C2 (F.16)

So C1 represents the slope of the fibre at the origin while C2 represents the displacement

at the origin of the fibre.

The magnitude of the reaction force R0 can be expressed in terms of moments M0 and

ML through static equilibrium of forces (Equation F.17) and moments (Equation F.18):

P = R0 + RL (F.17)

M0 = ML − Pa + RLL (F.18)
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The result is:

R0 =
P (L − a)− M0 + ML

L
(F.19)

The second moment of area I of the fibre can be expressed in terms of its radius r:

I =
πr4

4
(F.20)

Values C1, C2, M0 and ML are constants that depend on the boundary conditions. If

pinned boundary conditions are to be used the known constants are:

C2 = M0 = ML = 0 (F.21)

The value of C1 can be determined by substituting the above constants into the equation

v2(L) = 0. Solving yields:

C1 = −Pa(2L2 − 3La + a2)
6EIL

(F.22)

For periodic boundary conditions the following equations would be used instead:

v1(0) = C2 = 0 (F.23)

v2(L) = 0 (F.24)
dv
dx 1

(0) =
dv
dx 2

(L) (F.25)

d2v
dx2 1

(0) =
d2v
dx2 2

(L) (F.26)

Solving for constants C1, M0 and ML:

C1 = −Pa(L2 − 3La + 2a2)
12EIL

(F.27)

M0 = −Pa(L − a)
2L

(F.28)

ML =
Pa(a − L)

2L
(F.29)
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Test case tow compaction graphs
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Figure G.1: U versus s for compaction test case varying nd

Figures G.1 and G.2 show the effect of varying the number of fibre length divisions nd

on the compaction test case described in Section 4.4.4. The energy curve U versus s is

virtually identical for all cases, however small changes in energy U can have a fairly

large effect on the gradient thus causing spikes in the force F versus s graph. The spikes

are the largest but least frequent for nd = 50. The magnitude of the spikes for nd = 100

is roughly halved while the frequency is doubled. And so on for larger number of fibre

divisions until nd = 800 where the spikes have almost completely disappeared. These

spikes occur when contact forces are transferred from one fibre length division to the

next, therefore increasing the number of fibre length divisions smooths out the F versus

s curve.
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Figure G.2: F versus s for compaction test case varying nd
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Glass tow compaction graphs
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Figure H.1: Pressure versus fibre volume fraction varying divisions

The effect of the number of fibre length divisions is shown in Figure H.1. This pa-

rameter does not significantly affect the results. Increasing the number of fibre length

divisions should improve accuracy, however it also increases run time significantly. If

the number of divisions is set too low then poor accuracy will result. 100 divisions

provides a good compromise between the two.

Figure H.2 shows the effect of domain height. Again it can be seen that the height

of the domain does not significantly affect the results. The lateral periodic boundary

conditions help to ensure that this is the case. The run-time for running the simulation

with a height of 0.32 mm is approximatively 30 minutes whereas with a height of 0.16

mm the run-time is only a few minutes. It is therefore more efficient to run a large
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Figure H.2: Pressure versus fibre volume fraction varying domain height

number of simulations on a small section of yarn.
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Figure H.3: Pressure versus fibre volume fraction varying number of steps

Figure H.3 shows the effect of the number of steps on the results. This also does not

affect the results. Increasing the number of steps will simply result in more data points

being plotted, creating a smoother curve. However it also increases the run time. 10

steps gives a smooth enough curve and is fast enough to enable thousands of simula-
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tions to be run in a relatively short period of time. If the number of steps is too small

there is a danger that the simulation may become unstable and that fibres may pass

through one another.
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Finite element code validation

A number of simulations were run in ABAQUSTM[51] implicit and explicit to compare

against results from the in-house explicit code developed by the author (referred to as

“FE CODE” in the tables). Single elements tests were performed on triangle, quadrilat-

eral, wedge and hexahedral elements under shear and tensile deformations with dif-

ferent numbers of integration points. A patch test [145] was performed for quadrilat-

eral, wedge and hexahedral elements. Results were compared using both small strain

and large strain definitions referred to as linear and non-linear geometry in the ta-

bles. Isotropic and anisotropic material properties were also tested. Table I.1 contains a

description of the elements tested in ABAQUS and Table I.2 contains a list of abbrevi-

ations used in the tables. The numbers 1, 2 and 3 each refer to one of three orthogonal

axes. Not all combinations of the above were performed due to the very large number

of tests required. The combinations of tests performed are illustrated in Tables I.3, I.4

and I.5.

Table I.1: ABAQUS elements

CPE3 3-node linear

CPE4 4-node bilinear

CPE4R 4-node bilinear, reduced integration with hourglass control

C3D6 6-node quadratic

C3D8 8-node biquadratic

C3D8R 8-node biquadratic, reduced integration
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Table I.2: Table abbreviations

E Strain

S Stress

Max P Maximum principal

Min P Minimum principal

S Mises Von Mises stress

RF Reaction force

U Displacement

Table I.3: ABAQUS Standard

CPE3 CPE4 CPE4R C3D6 C3D8 C3D8R

Linear Shear x x

Linear Tension x x

Linear Patch Test x x

Non Linear Shear x x x x x

Non Linear Tension x x

Non Linear Patch Test x x x x

NL Shear Anisotropic x

Table I.4: ABAQUS Explicit

CPE3 CPE4 CPE4R C3D6 C3D8 C3D8R

Linear Shear x

Linear Tension x

Linear Patch Test x

Non Linear Shear x

Non Linear Tension x

Non Linear Patch Test x

Table I.5: In-house Implementation

Triangle 3 IP Quad 4 IP Quad 1 IP Wedge 2 IP Hex 8 IP Hex 1 IP

Linear Shear x x

Linear Tension x x

Linear Patch Test x x

Non Linear Shear x x x x x

Non Linear Tension x x

Non Linear Patch Test x x x x

NL Shear Anisotropic x
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Table I.6: ABAQUS STANDARD - CPE4 - SHEAR - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

2 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

3 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

4 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

Node RF1 RF2 Magnitude

1 -1071 -1071 1515

2 -1071 1071 1515

3 1071 1071 1515

4 1071 -1071 1515

Internal Energy 107.1

Table I.7: ABAQUS STANDARD - CPE4 - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0.002496 -0.002496 0.09983 0.04998 -0.04998 106 -106 2139 2142 -2142 3710

2 0.002496 -0.002496 0.09983 0.04998 -0.04998 106 -106 2139 2142 -2142 3710

3 0.002496 -0.002496 0.09983 0.04998 -0.04998 106 -106 2139 2142 -2142 3710

4 0.002496 -0.002496 0.09983 0.04998 -0.04998 106 -106 2139 2142 -2142 3710

Node RF1 RF2 Magnitude

1 -1016 -1022 1441

2 -1124 1128 1592

3 1016 1022 1441

4 1124 -1128 1592

Internal Energy 107.1

Table I.8: FE CODE - QUAD 4 INTEGRATION POINTS - SHEAR - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

2 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

3 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

4 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

Node RF1 RF2 Magnitude

1 -1071 -1071 1515

2 -1071 1071 1515

3 1072 1071 1515

4 1072 -1071 1515

Internal Energy 107.1

Table I.9: FE CODE - QUAD 4 INTEGRATION POINTS - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0.002496 -0.002496 0.09983 0.04998 -0.04998 107 -107 2139 2142 -2142 3710

2 0.002496 -0.002496 0.09983 0.04998 -0.04998 107 -107 2139 2142 -2142 3710

3 0.002496 -0.002496 0.09983 0.04998 -0.04998 107 -107 2139 2142 -2142 3710

4 0.002496 -0.002496 0.09983 0.04998 -0.04998 107 -107 2139 2142 -2142 3710

Node RF1 RF2 Magnitude

1 -1016 -1022 1441

2 -1123 1128 1592

3 1016 1022 1441

4 1123 -1128 1592

Internal Energy 107.1
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.10: ABAQUS STANDARD - CPE4R - SHEAR - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

Node RF1 RF2 Magnitude

1 -1071 -1071 1515

2 -1071 1071 1515

3 1071 1071 1515

4 1071 -1071 1515

Internal Energy 107.1

Table I.11: ABAQUS STANDARD - CPE4R - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0.002496 -0.002496 0.09983 0.04998 -0.04998 106 -106 2139 2142 -2142 3710

Node RF1 RF2 Magnitude

1 -1016 -1022 1441

2 -1124 1128 1592

3 1016 1022 1441

4 1124 -1128 1592

Internal Energy 107.1

Table I.12: ABAQUS EXPLICIT - CPE4R - SHEAR - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

Node RF1 RF2 Magnitude

1 -1071 -1071 1515

2 -1071 1071 1515

3 1071 1071 1515

4 1071 -1071 1515

Internal Energy 107.1

Table I.13: ABAQUS EXPLICIT - CPE4R - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0.002496 -0.002496 0.09983 0.04998 -0.04998 106.9 -106.9 2139 2142 -2142 3710

Node RF1 RF2 Magnitude

1 -1016 -1022 1441

2 -1123 1128 1592

3 1016 1022 1441

4 1123 -1128 1592

Internal Energy 107.1

Table I.14: FE CODE - QUAD 1 INTEGRATION POINT - SHEAR - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0 0.1 0.05 -0.05 0 0 2143 2143 -2143 3712

Node RF1 RF2 Magnitude

1 -1071 -1071 1515

2 -1071 1071 1515

3 1072 1071 1515

4 1072 -1071 1515

Internal Energy 107.1
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.15: FE CODE - QUAD 1 INTEGRATION POINT - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0.002496 -0.002496 0.09983 -0.04998 0.04998 107 -107 2139 -2142 2142 3710

Node RF1 RF2 Magnitude

1 -1016 -1022 1441

2 -1123 1128 1592

3 1016 1022 1441

4 1123 -1128 1592

Internal Energy 107.1
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.16: ABAQUS STANDARD - CPE4 - TENSION - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 4286

2 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 4286

3 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 4286

4 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 4286

Node RF1 RF2 Magnitude

1 -4286 -6429 7726

2 4286 -6429 7726

3 4286 6429 7726

4 -4286 6429 7726

Internal Energy 642.9

Table I.17: ABAQUS STANDARD - CPE4 - TENSION - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 4085

2 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 4085

3 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 4085

4 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 4085

Node RF1 RF2 Magnitude

1 -4493 -6127 7598

2 4493 -6127 7598

3 4493 6127 7598

4 -4493 6127 7598

Internal Energy 642.4

Table I.18: FE CODE - QUAD 4 INTEGRATION POINTS - TENSION - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 1.134e+004

2 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 1.134e+004

3 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 1.134e+004

4 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 1.134e+004

Node RF1 RF2 Magnitude

1 -4286 -6429 7726

2 4286 -6429 7726

3 4286 6429 7726

4 -4286 6429 7726

Internal Energy 642.9
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.19: FE CODE - QUAD 4 INTEGRATION POINTS - TENSION - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 1.081e+004

2 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 1.081e+004

3 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 1.081e+004

4 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 1.081e+004

Node RF1 RF2 Magnitude

1 -4493 -6127 7598

2 4493 -6127 7598

3 4493 6127 7598

4 -4493 6127 7598

Internal Energy 622.4

Table I.20: ABAQUS STANDARD - CPE4R - TENSION - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 4286

Node RF1 RF2 Magnitude

1 -4286 -6429 7726

2 4286 -6429 7726

3 4286 6429 7726

4 -4286 6429 7726

Internal Energy 642.9

Table I.21: ABAQUS STANDARD - CPE4R - TENSION - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 4085

Node RF1 RF2 Magnitude

1 -4493 -6127 7598

2 4493 -6127 7598

3 4493 6127 7598

4 -4493 6127 7598

Internal Energy 642.4

Table I.22: ABAQUS EXPLICIT - CPE4R - TENSION - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 4286

Node RF1 RF2 Magnitude

1 -4286 -6429 7727

2 4286 -6429 7727

3 4286 6429 7727

4 -4286 6429 7727

Internal Energy 642.9
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.23: ABAQUS EXPLICIT - CPE4R - TENSION - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 4085

Node RF1 RF2 Magnitude

1 -4494 -6128 7599

2 4494 -6128 7599

3 4494 6128 7599

4 -4494 6128 7599

Internal Energy 622.4

Table I.24: FE CODE - QUAD 1 INTEGRATION POINT - TENSION - LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.1 0 0.1 0 8571 1.286e+004 0 1.286e+004 8571 1.134e+004

Node RF1 RF2 Magnitude

1 -4286 -6429 7726

2 4286 -6429 7726

3 4286 6429 7726

4 -4286 6429 7726

Internal Energy 642.9

Table I.25: FE CODE - QUAD 1 INTEGRATION POINT - TENSION - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0 0.09531 0 0.09531 0 8169 1.225e+004 0 1.225e+004 8169 1.081e+004

Node RF1 RF2 Magnitude

1 -4493 -6127 7598

2 4493 -6127 7598

3 4493 6127 7598

4 -4493 6127 7598

Internal Energy 622.5
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.26: FE CODE - QUAD 4 INTEGRATION POINTS - PATCH TEST - LINEAR GEOMETRY

Element-IP E11 E22 E12 S11 S22 S12

1-1 0.0009375 -0.0003125 0 1 0 0

1-2 0.0009375 -0.0003125 0 1 0 0

1-3 0.0009375 -0.0003125 0 1 0 0

1-4 0.0009375 -0.0003125 0 1 0 0

2-1 0.0009375 -0.0003125 0 1 0 0

2-2 0.0009375 -0.0003125 0 1 0 0

2-3 0.0009375 -0.0003125 0 1 0 0

2-4 0.0009375 -0.0003125 0 1 0 0

3-1 0.0009375 -0.0003125 0 1 0 0

3-2 0.0009375 -0.0003125 0 1 0 0

3-3 0.0009375 -0.0003125 0 1 0 0

3-4 0.0009375 -0.0003125 0 1 0 0

4-1 0.0009375 -0.0003125 0 1 0 0

4-2 0.0009375 -0.0003125 0 1 0 0

4-3 0.0009375 -0.0003125 0 1 0 0

4-4 0.0009375 -0.0003125 0 1 0 0

Node U1 U2 RF1 RF2

1 0 0 -2.25 0

2 0.00375 0 0 0

3 0.009375 0 0 0

4 0 -0.001406 -5 0

5 0.005156 -0.001719 0 0

6 0.009375 -0.001563 0 0

7 0 -0.003125 -2.75 0

8 0.003938 -0.003125 0 0

9 0.009375 -0.003125 0 0

Internal Energy 0.04688

Table I.27: FE CODE - QUAD 4 INTEGRATION POINTS - PATCH TEST - NON-LINEAR GEOMETRY

Element-IP E11 E22 E12 S11 S22 S12

1-1 0.0009378 -0.0003126 0 1 0 0

1-2 0.0009378 -0.0003126 0 1 0 0

1-3 0.0009378 -0.0003126 0 1 0 0

1-4 0.0009378 -0.0003126 0 1 0 0

2-1 0.0009378 -0.0003126 0 1 0 0

2-2 0.0009378 -0.0003126 0 1 0 0

2-3 0.0009378 -0.0003126 0 1 0 0

2-4 0.0009378 -0.0003126 0 1 0 0

3-1 0.0009378 -0.0003126 0 1 0 0

3-2 0.0009378 -0.0003126 0 1 0 0

3-3 0.0009378 -0.0003126 0 1 0 0

3-4 0.0009378 -0.0003126 0 1 0 0

4-1 0.0009378 -0.0003126 0 1 0 0

4-2 0.0009378 -0.0003126 0 1 0 0

4-3 0.0009378 -0.0003126 0 1 0 0

4-4 0.0009378 -0.0003126 0 1 0 0

Node U1 U2 RF1 RF2

1 0 0 -2.25 0

2 0.003753 0 0 0

3 0.009382 0 0 0

4 0 -0.001406 -5 0

5 0.00516 -0.001719 0 0

6 0.009382 -0.001563 0 0

7 0 -0.003125 -2.75 0

8 0.003941 -0.003125 0 0

9 0.009382 -0.003125 0 0

Internal Energy 0.04693
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.28: FE CODE - QUAD 1 INTEGRATION POINTS - PATCH TEST - LINEAR GEOMETRY

Element E11 E22 E12 S11 S22 S12

1 0.0009375 -0.0003125 0 1 0 0

2 0.0009375 -0.0003125 0 1 0 0

3 0.0009375 -0.0003125 0 1 0 0

4 0.0009375 -0.0003125 0 1 0 0

Node U1 U2 RF1 RF2

1 0 0 -2.25 0

2 0.004178 0.001958 0 0

3 0.008333 9.829e-005 0 0

4 0 0.0001716 -5 0

5 0.004633 -0.001196 0 0

6 0.01027 -0.0001705 0 0

7 0 -0.001963 -2.75 0

8 0.004577 -0.002035 0 0

9 0.008618 -0.002368 0 0

Internal Energy 0.04688

Table I.29: FE CODE - QUAD 1 INTEGRATION POINTS - PATCH TEST - NON-LINEAR GEOMETRY

Element E11 E22 E12 S11 S22 S12

1 0.0009378 -0.0003125 0 1 9.013e-005 6.192e-005

2 0.0009378 -0.0003126 0 1 -2.87e-005 -3.098e-005

3 0.0009377 -0.0003125 0 1 3.141e-005 -8.479e-006

4 0.0009378 -0.0003126 0 1 -1.629e-005 4.201e-005

Node U1 U2 RF1 RF2

1 0 0 -2.25 -0.0003197

2 0.004125 0.001899 0 0

3 0.008479 8.78e-005 0 0

4 0 0.0001616 -5 0

5 0.004706 -0.001264 0 0

6 0.01016 -0.0001544 0 0

7 0 -0.002116 -2.75 0

8 0.004495 -0.00198 0 0

9 0.008724 -0.002466 0 0

Internal Energy 0.04693
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.30: ABAQUS STANDARD - CPE3 - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0.002496 -0.002496 0.09983 0.04998 -0.04998 106 -106 2139 2142 -2142 3710

Node RF1 RF2 Magnitude

1 53.98 -1075 1076

2 -1124 1128 1592

3 1070 -52.99 1071

Internal Energy 53.53

Table I.31: FE CODE - TRIANGLE 1 INTEGRATION POINT - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E12 E Max P E Min P S11 S22 S12 S Max P S Min P S Mises

1 0.002496 -0.002496 0.09983 0.04998 -0.04998 107 -107 2139 2142 -2142 3710

Node RF1 RF2 Magnitude

1 53.48 -1075 1076

2 -1123 1128 1592

3 1070 -53.48 1071

Internal Energy 53.53
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.32: ABAQUS STANDARD - C3D8 - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 0.002496 0 -0.002496 0 0 0.09983 106 0 -106 0 0 2139

2 0.002496 0 -0.002496 0 0 0.09983 106 0 -106 0 0 2139

3 0.002496 0 -0.002496 0 0 0.09983 106 0 -106 0 0 2139

4 0.002496 0 -0.002496 0 0 0.09983 106 0 -106 0 0 2139

5 0.002496 0 -0.002496 0 0 0.09983 106 0 -106 0 0 2139

6 0.002496 0 -0.002496 0 0 0.09983 106 0 -106 0 0 2139

7 0.002496 0 -0.002496 0 0 0.09983 106 0 -106 0 0 2139

8 0.002496 0 -0.002496 0 0 0.09983 106 0 -106 0 0 2139

Node RF1 RF2 RF3

1 -507.8 0 -511

2 -561.8 0 564

3 -561.8 0 564

4 -507.8 0 -511

5 561.8 0 -564

6 507.8 0 511

7 507.8 0 511

8 561.8 0 -564

Internal Energy 107.1

Table I.33: FE CODE - HEX 8 INTEGRATION POINTS - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 0.002496 0 -0.002496 0 0 0.09983 107 0 -107 0 0 2139

2 0.002496 0 -0.002496 0 0 0.09983 107 0 -107 0 0 2139

3 0.002496 0 -0.002496 0 0 0.09983 107 0 -107 0 0 2139

4 0.002496 0 -0.002496 0 0 0.09983 107 0 -107 0 0 2139

5 0.002496 0 -0.002496 0 0 0.09983 107 0 -107 0 0 2139

6 0.002496 0 -0.002496 0 0 0.09983 107 0 -107 0 0 2139

7 0.002496 0 -0.002496 0 0 0.09983 107 0 -107 0 0 2139

8 0.002496 0 -0.002496 0 0 0.09983 107 0 -107 0 0 2139

Node RF1 RF2 RF3

1 -508.1 0 -510.8

2 -561.6 0 564.2

3 -561.6 0 564.2

4 -508.1 0 -510.8

5 561.7 0 -564.2

6 508.2 0 510.8

7 508.2 0 510.8

8 561.7 0 -564.2

Internal Energy 107.1
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.34: ABAQUS STANDARD - C3D6 - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 -0.002496 0.002496 0 0.09983 0 0 -106 106 0 2139 0 0

2 -0.002496 0.002496 0 0.09983 0 0 -106 106 0 2139 0 0

Node RF1 RF2 RF3

1 -519.8 -329.6 0

2 555.1 -383.5 0

3 17.66 -356.6 0

4 -555.1 383.5 0

5 519.8 329.6 0

6 -17.66 356.6 0

Internal Energy 53.53

Table I.35: FE CODE - WEDGE 2 INTEGRATION POINTS - SHEAR - NON-LINEAR GEOMETRY

Integration Point E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 -0.002496 0.002496 0 0.09983 0 0 -107 107 0 2139 0 0

2 -0.002496 0.002496 0 0.09983 0 0 -107 107 0 2139 0 0

Node RF1 RF2 RF3

1 -519.7 -329.8 0

2 555.3 -383.3 0

3 17.83 -356.5 0

4 -555.3 383.4 0

5 519.7 329.9 0

6 -17.83 356.6 0

Internal Energy 53.53
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.36: ABAQUS STANDARD - C3D8 - PATCH TEST - NON-LINEAR GEOMETRY

Element E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

2 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

3 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

4 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

5 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

6 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

7 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

8 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

Internal Energy 0.5008

Table I.37: FE CODE - HEX 8 INTEGRATION POINTS - PATCH TEST - NON-LINEAR GEOMETRY

Element E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

2 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

3 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

4 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

5 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

6 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

7 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

8 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

Internal Energy 0.5008
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.38: ABAQUS STANDARD - C3D6 - PATCH TEST - NON-LINEAR GEOMETRY

Element E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

2 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

3 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

4 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

5 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

6 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

7 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

8 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

9 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

10 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

11 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

12 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

13 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

14 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

15 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

16 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

Internal Energy 0.5008

Table I.39: FE CODE - WEDGE 2 INTEGRATION POINTS - PATCH TEST - NON-LINEAR GEOMETRY

Element E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

2 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

3 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

4 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

5 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

6 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

7 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

8 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

9 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

10 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

11 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

12 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

13 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

14 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

15 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

16 0.001001 -0.0002501 -0.0002501 0 0 0 1 0 0 0 0 0

Internal Energy 0.5008
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APPENDIX I: FINITE ELEMENT CODE VALIDATION

Table I.40: ABAQUS STANDARD - C3D8 - SHEAR - NON-LINEAR GEOMETRY - ANISOTROPIC -

100 ITERATIONS

Integration Point E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 -0.002496 0.002496 0 0.09983 0 0 151 -14.72 0 8.312 0 0

2 -0.002496 0.002496 0 0.09983 0 0 151 -14.72 0 8.312 0 0

3 -0.002496 0.002496 0 0.09983 0 0 151 -14.72 0 8.312 0 0

4 -0.002496 0.002496 0 0.09983 0 0 151 -14.72 0 8.312 0 0

5 -0.002496 0.002496 0 0.09983 0 0 151 -14.72 0 8.312 0 0

6 -0.002496 0.002496 0 0.09983 0 0 151 -14.72 0 8.312 0 0

7 -0.002496 0.002496 0 0.09983 0 0 151 -14.72 0 8.312 0 0

8 -0.002496 0.002496 0 0.09983 0 0 151 -14.72 0 8.312 0 0

Node RF1 RF2 RF3

1 -36.04 1.81 0

2 -39.44 -5.966 0

3 -39.44 -5.966 0

4 -36.04 1.81 0

5 39.44 5.966 0

6 36.04 -1.81 0

7 36.04 -1.81 0

8 39.44 5.966 0

Internal Energy 0.21

Table I.41: ABAQUS STANDARD - C3D8 - SHEAR - NON-LINEAR GEOMETRY - ANISOTROPIC -

1000 ITERATIONS

Integration Point E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 -0.002496 0.002496 0 0.09983 0 0 149.6 -14.59 0 8.238 0 0

2 -0.002496 0.002496 0 0.09983 0 0 149.6 -14.59 0 8.238 0 0

3 -0.002496 0.002496 0 0.09983 0 0 149.6 -14.59 0 8.238 0 0

4 -0.002496 0.002496 0 0.09983 0 0 149.6 -14.59 0 8.238 0 0

5 -0.002496 0.002496 0 0.09983 0 0 149.6 -14.59 0 8.238 0 0

6 -0.002496 0.002496 0 0.09983 0 0 149.6 -14.59 0 8.238 0 0

7 -0.002496 0.002496 0 0.09983 0 0 149.6 -14.59 0 8.238 0 0

8 -0.002496 0.002496 0 0.09983 0 0 149.6 -14.59 0 8.238 0 0

Node RF1 RF2 RF3

1 -35.72 1.794 0

2 -39.08 -5.913 0

3 -39.08 -5.913 0

4 -35.72 1.794 0

5 39.08 5.913 0

6 35.72 -1.794 0

7 35.72 -1.794 0

8 39.08 5.913 0

Internal Energy 0.2063
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Table I.42: FE CODE - HEX 8 INTEGRATION POINTS - SHEAR - NON-LINEAR GEOMETRY -

ANISOTROPIC

Integration Point E11 E22 E33 E12 E23 E13 S11 S22 S33 S12 S23 S13

1 -0.002496 0.002496 0 0.09983 0 0 149.3 -14.56 0 8.216 0 0

2 -0.002496 0.002496 0 0.09983 0 0 149.3 -14.56 0 8.216 0 0

3 -0.002496 0.002496 0 0.09983 0 0 149.3 -14.56 0 8.216 0 0

4 -0.002496 0.002496 0 0.09983 0 0 149.3 -14.56 0 8.216 0 0

5 -0.002496 0.002496 0 0.09983 0 0 149.3 -14.56 0 8.216 0 0

6 -0.002496 0.002496 0 0.09983 0 0 149.3 -14.56 0 8.216 0 0

7 -0.002496 0.002496 0 0.09983 0 0 149.3 -14.56 0 8.216 0 0

8 -0.002496 0.002496 0 0.09983 0 0 149.3 -14.56 0 8.216 0 0

Node RF1 RF2 RF3

1 -35.66 1.793 0

2 -39.01 -5.9 0

3 -39.01 -5.9 0

4 -35.66 1.793 0

5 39.01 6.025 0

6 35.66 -1.668 0

7 35.66 -1.668 0

8 39.01 6.025 0

Internal Energy 0.2056
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Quadtree

A quadtree is a tree data structure which can be used to partition a two-dimensional

space. In the context of this thesis it is used to optimise the contact algorithm. For large

models it can be very computationally intensive to perform intersection tests between

all surface triangles against all nodes in the model. The number of point-triangle inter-

section tests is equal to the number of nodes multiplied by the number of facets in the

model. For example, a simple model of a plain weave fabric may contain 2000 nodes

and 3000 facets. This results in a total of 6000000 point-triangle intersection tests for

every iteration. By partitioning space with a quadtree it is possible to cut down the

number of intersection tests considerably. The quadtree is generated as follows:

Given a number of nodes randomly placed in 2D space a square bounding box is cre-

ated that completely encompasses all of the nodes (Figure J.1).

Figure J.1: Unit cell containing randomly distributed nodes
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The bounding box is then divided into four equal sized child boxes labelled A, B, C and

D (Figure J.2). Box A keeps a list if all nodes contained within itself, similarly boxes B,

C, D each keep a list of all nodes contained within themselves. This is illustrated by

the colour coding in the figure.

Figure J.2: Unit cell divided into four equal sized child boxes

Box A can be further subdivided into four equal sized child boxes labelled a, b, c and

d (Figure J.3). Again each of the child boxes a, b, c and d keeps a list of the nodes con-

tained within themselves. This is accomplished by iterating over the nodes contained

within the parent box A, sorting the nodes into the appropriate child box a, b, c or d.

Note that it is not necessary to iterate over all the nodes since the child boxes will never

contain nodes that are not contained within the parent box thus providing a significant

increase in speed which is of course the point of the exercise.

Boxes B, C and D can be subdivided in a similar fashion and of course children of the

subdivided boxes can be further subdivided and so on. A criterion must be used to

determine when a box should no longer be subdivided. One solution is to limit the

number of subdivisions to a fixed number resulting in a homogeneous grid, another

solution is to only subdivide a box if it contains more than a certain number of nodes.

The method actually implemented is a combination of the two, subdivisions stop when

either of these criterion are met.

Once the quadtree has been built, it can be used to find nodes quickly within the vicin-

ity of a given point. Suppose the nodes within the vicinity of the point illustrated in red

in Figure J.4 are to be found.The nodes illustrated in green are the nodes that are in the
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Figure J.3: Unit cell top left box subdivided further

Figure J.4: Parent quadtree
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vicinity of the red point. Initially this includes all the nodes. It can be observed that the

red point lies within the lower left hand side of the bounding box. The quadtree can be

accessed to obtain a list of points within the lower left hand side of the bounding box,

thus reducing the number of nodes within the vicinity by a factor of 4 on average if the

nodes are randomly distributed (Figure J.5).

Figure J.5: 1st level subdivision

The red point now lies within the lower right hand side of the child box, reducing

the number of nodes within the vicinity by a further factor of 4 (Figure J.6). The total

reduction of nodes found within the vicinity of the red point is a factor of 16 in just 2

steps.

Continuing this process in an iterative manner until the quadtree no longer has any

child boxes the number of nodes found within the vicinity can be greatly reduced (Fig-

ure J.7).

This is a very efficient way to find nodes close to the specified point of interest. How-

ever in the case of the contact algorithm, it is necessary to perform intersection de-

tection between points and triangles. If all the nodes are sorted into a quadtree as

described above, the nodes within the vicinity of a triangle can be found. However the

location of a triangle cannot be expressed by a single point. A triangle may lie over

several quadtree boxes. The worse case scenario where the triangle lies over all four

quadtree boxes is shown in Figure J.8.

Each of the four boxes can be subdivided and combined to obtain a list of nodes within

the vicinity of the triangle J.9.
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Figure J.6: 2nd level subdivision

Figure J.7: 3rd level subdivision
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Figure J.8: Triangle used to index quadtree level 1

Figure J.9: Triangle used to index quadtree level 2
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The subdivision continues rejecting the nodes contained within the quadtree boxes that

do not intersect with the triangle J.10.

Figure J.10: Triangle used to index quadtree level 3

An alternative is to place the triangles in the quadtree rather than the nodes. The node

position is then used to obtain the triangles within the vicinity of the node rather than

the other way round.

The quadtree construction is complicated due to the fact that the triangles can overlap

between bounding boxes. The triangle must be added to all boxes with which it inter-

sects. Thus the triangles may be contained within several same-level quadtree boxes.

From J.11, triangles belonging to the bottom left box are illustrated in red, top left in

green, bottom right in blue and top right in black. Triangles belonging to several boxes

are illustrated as the combination of these colours.

The subdivision limits must be chosen with care. If subdivision continues until the

number of triangles found within a box is less than a certain number the process may

never end. Since when the subdivision box gets to be approximately equal to the size

of the triangle, further subdivisions may result in the triangle being placed in all four

of its child boxes.

Once the quadtree has been built, triangles in the vicinity of a given point can efficiently

be obtained in the same manner as was illustrated for the nodes (Figure J.12).

This technique is applied to the model of a cotton plain weave where the surface is

defined by triangles. The first quadtree subdivision step for the model is shown in

Figure J.13.
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Figure J.11: Triangles partitioned into a quadtree

Figure J.12: Triangles in 3rd level subdivision

251



APPENDIX J: QUADTREE

Figure J.13: Cotton weave partitioned into a quadtree

Further subdivisions are performed as described previously. Then the quadtree is used

to obtain a list of triangles in the vicinity of the specified point illustrated in red (Figure

J.14).

Figure J.14: Cotton weave triangles in 3rd level subdivision

In order to determine contact between a node and a triangle, it is only necessary to

iterate over the triangles shown in green rather than all of the triangles within the

model. With the use of a quadtree, the time taken to perform the contact algorithm is

O(n) as opposed to O(n2), where n is the number of nodes and triangles.
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Predicted fabric compaction graphs
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Figure K.1: Pressure vs thickness for different values of GTL

Figure K.1 shows the compaction results of the Chomarat 150TB fabric with different

values of transverse longitudinal shear modulus GTL to illustrate that the value of GTL

has little effect on the compaction pressure.

Figure K.2 shows the compaction results of the Chomarat 150TB fabric with different

values of damping. Increasing the damping reduces the fluctuations in pressure. How-

ever if the damping is too high it affects the results as can be seen by the graph. A

damping value of 100 was found to smooth out the fluctuations without significantly

affecting the results.

Figure K.3 shows the compaction results of the Chomarat 150TB fabric for different
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Figure K.2: Pressure vs thickness for different values of damping
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Figure K.3: Pressure vs thickness for different numbers of steps
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numbers of steps. Using a low number of steps means less sample points are obtained

and hence the pressure vs thickness curve looks jagged. Increasing the number of steps

increases the smoothness of the curve. Apart from that, the results are largely unaf-

fected.
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Figure K.4: Pressure vs thickness for different coefficients of friction

Figure K.4 shows the compaction results of the Chomarat 150TB fabric for different

coefficients of friction between yarns. It can be seen that the coefficient of friction has

very little effect on the results. This is to be expected since very little inter-yarn sliding

is expected during compaction.

Figure K.5 shows the compaction results of the Chomarat 150TB fabric for different

contact of stiffnesses. It can be seen that above a contact stiffness of 100000 the results

converge, thus this is a suitable contact stiffness to use.
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