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• Geometric - Mathematics 

• Learning - Statistics 

• Algorithms - Computer Science 

Central to the Technology of the next Century. 



The Issues. 


• Free labor through robotics. 

• Robots need senses. 

• uKnowledge is power." 

• Learning . 

•. Connecting geometry to symbols. 



Smooth Nonlinear Mappings 
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Classification 
Examples: OCR, Speech recognition,jace recognition 
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A classifier defines a partition of the feature space. 
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Learning From Examples 
Mappings Classification 
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Popular Approach: Backpropagation 


R12R3 
input space output space 

"Hill Climbing in Weight Space" 

Disadvantal:es: 
• no error bounds 	 • gets stuck at local maxima 

• how many units, how many 	 • poor scaling behavior 
weights? • units don't have "meaning" 

• training is slow and unpredictable • biologically implausible 



Nearest Neighbor Classification 
Theorem (Cover and Hart): Asymptotically the 

probability of error in using nearest neighbor 
classification is at most twice that of any other 
technique. 

·c 

Voronoi dial:ram: Partition of space induced by a 
set of points in which partition regions are all 
points closest to a given sample point. 
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8alltrees. 


A balltree is a complete binary tree with a ball 
associated to each node such that an interior node's 
ball is the smallest which contains the balls of its 
children. 
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2-d leaves. tree structure. tree balls. 



The beta distribution and non-parametric 

statistics. 


Let sa be a nested family of sets parameterized by a such that 
P (Sa) = a. If we draw N paints and choose the smallest set sa 
containing exactly n pOintsl then the a/S are distributed 
according to the Beta distribution: 

(a) = N! n 1 N - nPn , ... ,','lI.T 'fa (I-a) 

n n n 
~­E(a) ::: 'lI.T.... N 0'2 (a) ~ N 2 



8alltree queries. 

Pruning: 
• Return leaf balls containing a query point. 

Branch and bound queries: 
• Return nearest leaf to query point. 

Distribution independent average performance: 

If leaves and queries are drawn from an underlying distribution p 

then would like good performance on average with respect to 
p. 



Five balltree construction algorithms. 


• K -d algorithm 
Split most spread dimension at median. 

• Top-down algorithm 
Split best dimension at point to minimize new ball volume. 

• Insertion algorithm 
Insert ball on-line at minimum volume insertion location. 

• Cheap insertion algorithm 
Insert ball on-line at heuristically good location. 

• Bottom up algorithm 
Repeatedly pair the best two balls. 



8alltrees can find n nearest neighbors in log 

expected time. 


If N samples are drawn from a non-vanishing, smooth 
distribution on a compact region, then we can use a 
balltree to find the n nearest neighbors of a new sample 
in O(log N) expected time, asymptotically for large N. 

Idea: Asymptotically, volume of n nearest neighbor ball is beta 
distributed. With k-d construction, balltree regions are also 
beta distributed. n nearest neighbor ball will overlap only a 
constant number of balltree balls on average. Using branch 
and bound, we do log time initial search and then constant 
extra work. 
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Triangulation for Piecewise Linear 

Approximation 


Output 
Space 

Piecewise 
Linear 
Approximation 
of Mapping 

Triangulation of 
Input points 

Input Space 
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Delaunay is good for piecewise linear 

approximation. 


Theorem: Among all triangulations of a given set of 
input points, the Delaunay triangulation gives the 
smallest worst case error at each point for piecewise 
linear approximation of mappings with a bounded 
second derivative in each direction. 

Worst case error function in a simplex 

is quadratic, vanishing on vertices. 

level sets are spheres, so error is 

monotonic with radius of sphere 

determined by sample points. 
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Can find Delaunay simplex in log expected 

time. 

If N samples are drawn from a non-vanishing, smooth 
distribution on a compact region, then we can use a 
balltree to find the Delaunay simplex containing a new 
sample in O(log N) expected time, asymptotically for 
large N. 

Idea: Delaunay vertices are found among n nearest neighbors with 
high probability where n is constant but depends on the probability 
bound. Nearest neighbors are described by beta distribution as are 
balltree balls In k-d algorithm. Expected overlap of n nearest 
neighbor ball with balltree balls is constant I so get logarithmic 
search time asymptotically. 
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Some Geometric Learning tasks. 

• Learning smooth mappings. 

• Learning discrete mapping. 

• Probability density estimation. 

• Learning submanifolds. 

• Inverting mappings. 

• Least squares inverse of a map. 

• Nearest point in a parameterized family. 

• Partial match queries. 

• Discovering product structure. 

• Constraint networks. 

• Baysian networks. 


