## Geometric Learning Algorithms for Vision, Robotics, and Graphics

Stephen M. Omohundro International Computer Science Institute Berkeley, California

- *Geometric* Mathematics
- Learning Statistics
- Algorithms Computer Science

Central to the Technology of the next Century.

### The Issues.

- Free labor through robotics.
- Robots need senses.
- "Knowledge is power."
- Learning.
- Connecting geometry to symbols.





## Classification

Examples: OCR, Speech recognition, face recognition

**Input Space** 



**Output Space** 

C

A classifier defines a partition of the feature space.





"Hill Climbing in Weight Space"

#### **Disadvantages:**

- no error bounds
- how many units, how many weights?
- training is slow and unpredictable

- gets stuck at local maxima
- poor scaling behavior
- units don't have "meaning"
- biologically implausible

## **Nearest Neighbor Classification**

<u>Theorem</u> (*Cover and Hart*): Asymptotically the probability of error in using nearest neighbor classification is at most twice that of any other technique.



<u>Voronoi diagram</u>: Partition of space induced by a set of points in which partition regions are all points closest to a given sample point.

### Balltrees.

A *balltree* is a complete binary tree with a ball associated to each node such that an interior node's ball is the smallest which contains the balls of its children.



## The beta distribution and non-parametric statistics.



Let  $S_{\alpha}$  be a nested family of sets parameterized by  $\alpha$  such that  $p(S_{\alpha}) = \alpha$ . If we draw N points and choose the smallest set  $S_{\alpha}$  containing exactly n points, then the  $\alpha$ 's are distributed according to the Beta distribution:

$$p_{n}(\alpha) = \frac{N!}{(n-1)!(N-n)!}a^{n-1}(1-\alpha)^{N-n}$$

$$E(\alpha) = \frac{n}{N+1} \rightarrow \frac{n}{N}$$
  $\sigma^2(\alpha) \rightarrow \frac{n}{N^2}$ 

### Balltree queries.

#### Pruning:

• Return leaf balls containing a query point.

#### Branch and bound queries:

• Return nearest leaf to query point.

#### Distribution independent average performance:

If leaves and queries are drawn from an underlying distribution  $\rho$  then would like good performance on average with respect to  $\rho.$ 

### Five balltree construction algorithms.

#### K-d algorithm

Split most spread dimension at median.

#### Top-down algorithm

Split best dimension at point to minimize new ball volume.

#### Insertion algorithm

Insert ball on-line at minimum volume insertion location.

#### Cheap insertion algorithm

Insert ball on-line at heuristically good location.

#### Bottom up algorithm

Repeatedly pair the best two balls.

# Balltrees can find n nearest neighbors in log expected time.

If N samples are drawn from a non-vanishing, smooth distribution on a compact region, then we can use a balltree to find the n nearest neighbors of a new sample in O(log N) expected time, asymptotically for large N.

Idea: Asymptotically, volume of n nearest neighbor ball is beta distributed. With k-d construction, balltree regions are also beta distributed. n nearest neighbor ball will overlap only a constant number of balltree balls on average. Using branch and bound, we do log time initial search and then constant extra work.

### 2-d Random Cantor points.





# Balltree balls for bottom up construction from 2-d Cantor random points.









## Delaunay is good for piecewise linear approximation.

*Theorem*: Among all triangulations of a given set of input points, the Delaunay triangulation gives the smallest worst case error at each point for piecewise linear approximation of mappings with a bounded second derivative in each direction.



Worst case error function in a simplex is quadratic, vanishing on vertices. Level sets are spheres, so error is monotonic with radius of sphere determined by sample points.

# Spheres correspond to hyperplanes in the next higher dimension.



7

# Can find Delaunay simplex in log expected time.

If N samples are drawn from a non-vanishing, smooth distribution on a compact region, then we can use a balltree to find the Delaunay simplex containing a new sample in O(log N) expected time, asymptotically for large N.

Idea: Delaunay vertices are found among n nearest neighbors with high probability where n is constant but depends on the probability bound. Nearest neighbors are described by beta distribution as are balltree balls in k-d algorithm. Expected overlap of n nearest neighbor ball with balltree balls is constant, so get logarithmic search time asymptotically.

### Some Geometric Learning tasks.

- Learning smooth mappings.
- Learning discrete mapping.
- Probability density estimation.
- Learning submanifolds.
- Inverting mappings.
- Least squares inverse of a map.
- Nearest point in a parameterized family.
- Partial match queries.
- Discovering product structure.
- Constraint networks.
- Baysian networks.