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1.1 Principle of Galilean relativity

Galileo Galilei

Principles of relativity address the prob-
lem of how events that occur in one
place or state of motion are observed
from another. And if events occurring
in one place or state of motion look dif-
ferent from those in another, how should
one determine the laws of motion?

Galileo approached this problem via
a thought experiment which imagined
observations of motion made inside a
ship by people who could not see out-
side. He showed that the people isolated

inside a uniformly moving ship would be unable to determine by mea-
surements made inside it whether they were moving!

. . . have the ship proceed with any speed you like, so
long as the motion is uniform and not fluctuating this
way and that. You will discover not the least change
in all the effects named, nor could you tell from any of
them whether the ship was moving or standing still.
– Galileo, Dialogue Concerning the Two Chief World
Systems [Ga1632]

Galileo’s thought experiment showed that a man who is below
decks on a ship cannot tell whether the ship is docked or is moving
uniformly through the water at constant velocity. He may observe
water dripping from a bottle, fish swimming in a tank, butterflies
flying, etc. Their behaviour will be just the same, whether the ship
is moving or not.

Definition 1.1.1 (Galilean transformations) Transformations of ref-
erence location, time, orientation or state of uniform translation at con-
stant velocity are called Galilean transformations.
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Definition 1.1.2 (Uniform rectilinear motion) Coordinate systems re-
lated by Galilean transformations are said to be in uniform rectilinear
motion relative to each other.

Galileo’s thought experiment led him to the following principle.

Definition 1.1.3 (Principle of Galilean relativity) The laws of mo-
tion are independent of reference location, time, orientation or state of
uniform translation at constant velocity. Hence, these laws are invariant
(i.e., they do not change their forms) under Galilean transformations.

Remark 1.1.1 (Two tenets of Galilean relativity) Galilean relativity
sets out two important tenets:

It is impossible to determine who is actually at rest.

Objects continue in uniform motion unless acted upon.

The second tenet is known as Galileo’s law of inertia. It is also the
basis for Newton’s first law of motion. 2

1.2 Galilean transformations

Definition 1.2.1 (Galilean transformations) Galilean transformations
of a coordinate frame consist of space-time translations, rotations and re-
flections of spatial coordinates, as well as Galilean “boosts” into uniform
rectilinear motion.

In three dimensions, the Galilean transformations depend smoothly on
ten real parameters, as follows:

Space-time translations,

g1(r, t) = (r + r0, t+ t0) .

These possess four real parameters: (r0, t0) ∈ R3 × R, for the three
dimensions of space, plus time.
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Spatial rotations and reflections,

g2(r, t) = (Or, t) ,

for any linear orthogonal transformation O : R3 7→ R3 with
OT = O−1. These have three real parameters, for the three axes of ro-
tation and reflection. Because the inverse of an orthogonal transfor-
mation is its transpose (O−1 = OT ) they preserve both the lengths
and relative orientations of vectors. It has two connected compo-
nents corresponding to the positive and negative values of the deter-
minant, detO = ±1, which changes sign under reflections.

Galilean boosts into uniform rectilinear motion,

g3(r, t) = (r + v0t, t) .

These have three real parameters: v0 ∈ R3, for the three components
of the velocity boost vector.

Definition 1.2.2 (Group) A group G is a set of elements that possesses
a binary product (multiplication), G × G → G, such that the following
properties hold:

The product gh of g and h is associative, that is, (gh)k = g(hk).

An identity element exists, e : eg = g and ge = g, for all g ∈ G.

The inverse operation exists, G→ G, so that gg−1 = g−1g = e.

Definition 1.2.3 (Lie group) A Lie group is a group that depends
smoothly on a set of parameters. That is, a Lie group is both a group
and a smooth manifold, for which the group operation is by composition of
smooth invertible functions.

Proposition 1.2.1 (Lie group property) Galilean transformations form
a Lie group, modulo reflections.

Proof. Any Galilean transformation

g ∈ G(3) : R3 × R 7→ R3 × R
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may be expressed uniquely as a composition of the three basic trans-
formations {g1, g2, g3} ∈ G(3). Consequently, the set of elements
comprising the transformations {g1, g2, g3} ∈ G(3) closes under the
binary operation of composition. The Galilean transformations also
possess an identity element e : egi = gi = gie, i = 1, 2, 3, and each
element g possesses a unique inverse g−1, so that gg−1 = e = g−1g.

These properties, plus associativity, define a group. The smooth
dependence of the group of Galilean transformations on its ten pa-
rameters means that the Galilean group G(3) is a Lie group (except
for the reflections, which are discrete, not smooth).

Remark 1.2.1 Compositions of Galilean boosts and translations
commute. That is,

g1g3 = g3g1 .

However, the order of composition does matter in Galilean transfor-
mations when rotations and reflections are involved. For example,
the action of the Galilean group composition g1g3g2 on (r, t) from
the left is given by

g(r, t) = (Or + tv0 + r0, t+ t0) ,

for

g = g1(r0, t0)g3(v0)g2(O) =: g1g3g2 .

However, the result for another composition, say g1g2g3, would in
general be different. 2

Exercise. Write the corresponding transformations for
g1g2g3, g1g3g2, g2g1g3 and g3g2g1, showing how they de-
pend on the order in which the rotations, boosts and trans-
lations are composed. Write the inverse transformation for
each of these compositions of left actions. F
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Answer. The various compositions of translations
g1(r0, t0), rotations g2(O) and boosts g3(v0) in general
yield different results, as

g1g2g3(r, t) =
(
O(r + tv0) + r0, t+ t0

)
,

g1g3g2(r, t) =
(
Or + tv0 + r0, t+ t0

)
,

g2g1g3(r, t) =
(
O(r + tv0 + r0), t+ t0

)
,

g3g2g1(r, t) =
(
O(r + r0) + tv0, t+ t0

)
.

The inverses are (g1g2g3)−1 = g−1
3 g−1

2 g−1
1 , etc. N

Remark 1.2.2 (Decomposition of the Galilean group) Because the
rotations take vectors into vectors, any element of the transforma-
tions g1g2g3, g2g1g3 and g3g2g1 in the Galilean group may be written
uniquely in the simplest form, as g1g3g2.

Thus, any element of the Galilean group may be written
uniquely as a rotation, followed by a space translation, a Galilean
boost and a time translation. The latter three may be composed in
any order, because they commute with each other. 2

Exercise. What properties are preserved by the Galilean
group? F

Answer. The Galilean group G(3) preserves the results
of measuring length and time intervals, and relative ori-
entation in different frames of motion related to each
other by Galilean transformations. N

1.2.1 Admissible force laws for an N -particle system

For a system ofN interacting particles, Newton’s second law of mo-
tion (the law of acceleration) determines the motion resulting from
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the force Fj exerted on the jth particle by the other N − 1 particles
as

mj r̈j = Fj(rk − rl, ṙk − ṙl) , with j, k, l = 1, 2, . . . , N (no sum) .

This force law is independent of reference location, time or state of
uniform translation at constant velocity. It will also be independent
of reference orientation and thus will be Galilean-invariant, pro-
vided the forces Fj transform under rotations and parity reflections
as vectors

mjOr̈j = OFj = Fj

(
O(rk − rl), O(ṙk − ṙl)

)
, (1.2.1)

for any orthogonal transformation O.

This requirement for Galilean invariance that the force in New-
ton’s law of acceleration transforms as a vector is the reason that
vectors are so important in classical mechanics.

For example, Newton’s law of gravitational motion is given by

mj r̈j =
∑
k 6=j

Fjk , (1.2.2)

in which the gravitational forces Fjk between (j, k) particle pairs
are given by

Fjk =
γ mjmk

|rjk|3
rjk , with rjk = rj − rk , (1.2.3)

and γ is the gravitational constant.

Exercise. Prove that Newton’s law (1.2.2) for gravitational
forces (1.2.3) is Galilean-invariant. That is, prove that New-
ton’s law of gravitational motion takes the same form in
any Galilean reference frame. F
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1.3 Subgroups of the Galilean transformations

Definition 1.3.1 (Subgroup) A subgroup is a subset of a group whose
elements also satisfy the defining properties of a group.

Exercise. List the subgroups of the Galilean group that do
not involve time. F

Answer. The subgroups of the Galilean group that are
independent of time consist of

Spatial translations g1(r0) acting on r as g1(r0)r =
r + r0.
Proper rotations g2(O) with g2(O)r = Or where
OT = O−1 and detO = +1. This subgroup is
called SO(3), the special orthogonal group in three
dimensions.
Rotations and reflections g2(O) withOT = O−1 and
detO = ±1. This subgroup is called O(3), the or-
thogonal group in three dimensions.
Spatial translations g1(r0) with r0 ∈ R3 compose
with proper rotations g2(O) ∈ SO(3) acting on a
vector r ∈ R3 as

E(O, r0)r = g1(r0)g2(O)r = Or + r0 ,

whereOT = O−1 and detO = +1. This subgroup is
called SE(3), the special Euclidean group in three
dimensions. Its action on R3 is written abstractly
as SE(3)× R3 → R3.
Spatial translations g1(r0) compose with proper ro-
tations and reflections g2(O), as g1(r0)g2(O) acting
on r. This subgroup is called E(3), the Euclidean
group in three dimensions. N
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Remark 1.3.1 Spatial translations and rotations do not commute in
general. That is, g1g2 6= g2g1, unless the direction of translation and
axis of rotation are collinear. 2

1.3.1 Matrix representation of SE(3)

As we have seen, the special Euclidean group in three dimensions
SE(3) acts on a position vector r ∈ R3 by

E(O, r0)r = Or + r0 .

A 4×4 matrix representation of this action may be found by noticing
that its right-hand side arises in multiplying the matrix times the
extended vector (r, 1)T as(

O r0

0 1

)(
r

1

)
=

(
Or + r0

1

)
.

Therefore we may identify a group element of SE(3) with a 4 × 4
matrix,

E(O, r0) =

(
O r0

0 1

)
.

The group SE(3) has six parameters. These are the angles of ro-
tation about each of the three spatial axes by the orthogonal matrix
O ∈ SO(3) with OT = O−1 and the three components of the vector
of translations r0 ∈ R3.

The group composition law for SE(3) is expressed as

E(Õ, r̃0)E(O, r0)r = E(Õ, r̃0)(Or + r0)

= Õ(Or + r0) + r̃0 ,

with (O , Õ) ∈ SO(3) and (r , r̃0) ∈ R3. This formula for group
composition may be represented by matrix multiplication from the
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left as

E(Õ, r̃0)E(O, r0) =

(
Õ r̃0

0 1

)(
O r0

0 1

)

=

(
ÕO Õr0 + r̃0

0 1

)
,

which may also be expressed by simply writing the top row,

(Õ , r̃0)(O , r0) = (ÕO , Õr0 + r̃0) .

The identity element (e) of SE(3) is represented by

e = E(I,0) =

(
I 0

0 1

)
,

or simply e = (I,0). The inverse element is represented by the
matrix inverse

E(O, r0)−1 =

(
O−1 −O−1r0

0 1

)
.

In this matrix representation of SE(3), one checks directly that

E(O, r0)−1E(O, r0) =

(
O−1 −O−1r0

0 1

)(
O r0

0 1

)

=

(
I 0

0 1

)
= (I,0) = e .

In the shorter notation, the inverse may be written as

(O , r0)−1 = (O−1 , −O−1r0)

and O−1 = OT since the 3× 3 matrix O ∈ SO(3) is orthogonal.

Remark 1.3.2 The inverse operation of SE(3) involves composition
of the inverse for rotations with the inverse for translations. This
entwining means that the group structure of SE(3) is not simply a
direct product of its two subgroups R3 and SO(3). 2
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1.4 Lie group actions of SE(3)

Group multiplication in SE(3) is denoted as

(Õ , r̃0)(O , r0) = (ÕO , Õr0 + r̃0) . (1.4.1)

This notation demonstrates the following group properties of
SE(3):

Translations in the subgroup R3 ⊂ SE(3) act on each other by
vector addition,

R3 × R3 7→ R3 : (I , r̃0)(I , r0) = (I , r0 + r̃0) .

Rotations in the subgroup SO(3) ⊂ SE(3) act on each other
by composition,

SO(3)× SO(3) 7→ SO(3) : (Õ , 0)(O , 0) = (ÕO , 0) .

Rotations in the subgroup SO(3) ⊂ SE(3) act homogeneously
on the vector space of translations in the subgroup R3 ⊂
SE(3),

SO(3)× R3 7→ R3 : (Õ , 0)(I , r0) = (Õ , Õr0) .

That is, the action of the subgroup SO(3) ⊂ SE(3) on the
subgroup R3 ⊂ SE(3) maps R3 into itself. The translations
R3 ⊂ SE(3) are thus said to form a normal, or invariant sub-
group of the group SE(3).

Every element of (O , r0) of SE(3) may be represented
uniquely by composing a translation acting from the left on a
rotation. That is, each element may be decomposed into

(O , r0) = (I , r0)(O , 0) ,

for a unique r0 ∈ R3 and O ∈ SO(3). Conversely, one may
uniquely represent

(O , r0) = (O , 0)(I , O−1r0) ,
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by composing a rotation acting from the left on a translation.

This equivalence endows the Lie group SE(3) with a semidi-
rect-product structure,

SE(3) = SO(3)sR3 . (1.4.2)

Definition 1.4.1 (Semidirect-product Lie group) A Lie group G
that may be decomposed uniquely into a normal subgroup N and a sub-
group H such that every group element may be written as

g = nh or g = hn (in either order), (1.4.3)

for unique choices of n ∈ N and h ∈ H , is called a semidirect product
of H and N , denoted here bys, as in

G = HsN .

When the normal subgroup N is a vector space, the action of a
semidirect-product group on itself is given as in formula (1.4.1) for
SE(3). If the normal subgroup N is not a vector space, then the op-
eration of addition in formula (1.4.1) is replaced by the composition
law for N .

1.5 Lie group actions ofG(3)

The Galiliean group in three dimensions G(3) has ten parameters
(O ∈ SO(3) , r0 ∈ R3 , v0 ∈ R3 , t0 ∈ R ). The Galilean group is also
a semidirect-product Lie group, which may be written as

G(3) = SE(3)sR4 =
(
SO(3)sR3

)
sR4 . (1.5.1)

That is, the subgroup of Euclidean motions consisting of rotations
and Galilean velocity boosts (O,v0) ∈ SE(3) acts homogeneously
on the subgroups of space and time translations (r0, t0) ∈ R4 which
commute with each other.
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Exercise. Compute explicitly the inverse of the Galilean
group element g = g1g3g2 obtained by representing the ac-
tion of the Galilean group as matrix multiplication G(3) ×
R4 → R4 on the extended vector (r, t, 1)T ∈ R4,

g1g3g2

 r

t

1

 =

 O v0 r0

0 1 t0
0 0 1


 r

t

1

 (1.5.2)

=

 Or + tv0 + r0

t+ t0
1

 .

F

Answer. Write the product g = g1g3g2 as

g = g1g3g2 =

 I 0 r0

0 1 t0
0 0 1


 I v0 0

0 1 0

0 0 1


 O 0 0

0 1 0

0 0 1

 .

Then, the product g−1 = (g1g3g2)−1 = g−1
2 g−1

3 g−1
1 ap-

pears in matrix form as

g−1 =

 O−1 0 0

0 1 0

0 0 1


 I −v0 0

0 1 0

0 0 1


 I 0 − r0

0 1 − t0
0 0 1



=

 O−1 −O−1v0 −O−1(r0 − tv0)

0 1 − t0
0 0 1

 .

N
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Exercise. Write the corresponding matrices for the Galilean
transformations for g1g2g3, g2g1g3 and g3g2g1. F

1.5.1 Matrix representation of G(3)

The formula for group composition G(3) × G(3) → G(3) may be
represented by matrix multiplication from the left as Õ ṽ0 r̃0

0 1 t̃0
0 0 1


 O v0 r0

0 1 t0
0 0 1

 (1.5.3)

=

 ÕO Õv0 + ṽ0 Õr0 + ṽ0t0 + r̃0

0 1 t̃0 + t0
0 0 1

 ,

which may be expressed more succinctly as

(Õ, ṽ0, r̃0, t̃0)(O,v0, r0, t0) (1.5.4)
= (ÕO, Õv0 + ṽ0, Õr0 + ṽ0t0 + r̃0, t̃0 + t0).

Exercise. Check the semidirect-product structure (1.5.1) for
the Lie group G(3) = SE(3)sR4, by writing explicit ma-
trix expressions for g = nh and g = hnwith h = SE(3) and
n = R4. F

Answer. In verifying the semidirect-product structure
condition (1.4.3) that g = nh or g = hn in either order,
we write explicitly

(O,v0, r0, t0) = (I, 0, r0, t0) (O,v0, 0, 0) (1.5.5)
= (O,v0, 0, 0) (I, 0, O−1(r0 − v0t0), t0) .

N
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1.6 Lie algebra of SE(3)

A 4 × 4 matrix representation of tangent vectors for SE(3) at the
identity may be found by first computing the derivative of a general
group element (O(s), r0(s)) along the group path with parameter s
and bringing the result back to the identity at s = 0,[(

O(s) r0(s)

0 1

)−1(
O ′(s) r′0(s)

0 0

)]
s=0

=

(
O−1(0)O ′(0) O−1(0)r′0(0)

0 0

)
=:

(
Ξ̂ r0

0 0

)
,

where in the last step we have dropped the unnecessary superscript
prime ( ′ ). The quantity Ξ̂ = O−1(s)O ′(s)|s=0 is a 3 × 3 skew-
symmetric matrix, since O is a 3 × 3 orthogonal matrix. Thus, Ξ̂
may be written using the hat map, defined by

Ξ̂ =

 0 −Ξ3 Ξ2

Ξ3 0 −Ξ1

−Ξ2 Ξ1 0

 , (1.6.1)

in terms of a vector Ξ ∈ R3 with components Ξi, with i = 1, 2, 3.
Infinitesimal rotations are expressed by the vector cross product,

Ξ̂r = Ξ× r . (1.6.2)

The matrix components of Ξ̂ may also be written in terms of the
components of the vector Ξ as

Ξ̂jk =

(
O−1dO

ds

)
jk

∣∣∣∣∣
s=0

= −Ξiεijk ,

where εijk with i, j, k = 1, 2, 3 is the totally antisymmetric tensor
with ε123 = 1, ε213 = −1, etc. One may compute directly, for a fixed
vector r,

d

ds
esΞ̂r = Ξ̂esΞ̂r = Ξ× esΞ̂r .
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Consequently, one may evaluate, at s = 0,

d

ds
esΞ̂r

∣∣∣∣
s=0

= Ξ̂r = Ξ× r .

This expression recovers the expected result in (1.6.2) in terms of
the exponential notation. It means the quantity r(s) = exp(sΞ̂)r
describes a finite, right-handed rotation of the initial vector r = r(0)
by the angle s|Ξ| around the axis pointing in the direction of Ξ.

Remark 1.6.1 (Properties of the hat map) The hat map arises in the
infinitesimal rotations

Ξ̂jk = (O−1dO/ds)jk|s=0 = −Ξiεijk .

The hat map is an isomorphism:

(R3,×) 7→ (so(3), [ · , · ] ) .

That is, the hat map identifies the composition of two vectors in
R3 using the cross product with the commutator of two skew-
symmetric 3× 3 matrices. Specifically, we write for any two vectors
Q,Ξ ∈ R3,

− (Q×Ξ)k = εklmΞ lQm = Ξ̂kmQ
m .

That is,
Ξ×Q = Ξ̂ Q for all Ξ, Q ∈ R3 .

The following formulas may be easily verified for P,Q,Ξ ∈ R3:

(P×Q)̂ =
[
P̂ , Q̂

]
,[

P̂ , Q̂
]
Ξ = (P×Q)×Ξ ,

P ·Q = − 1

2
trace

(
P̂ Q̂
)
.

2

Remark 1.6.2 The commutator of infinitesimal transformation ma-
trices given by the formula[(

Ξ̂1 r1

0 0

)
,

(
Ξ̂2 r2

0 0

)]
=

(
Ξ̂1Ξ̂2 − Ξ̂2Ξ̂1 Ξ̂1r2 − Ξ̂2r1

0 0

)
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provides a matrix representation of se(3), the Lie algebra of the Lie
group SE(3). In vector notation, this becomes[(

Ξ1× r1

0 0

)
,

(
Ξ2× r2

0 0

)]
=

((
Ξ1 ×Ξ2

)
× Ξ1 × r2 −Ξ2 × r1

0 0

)
.

2

Remark 1.6.3 The se(3) matrix commutator yields[
(Ξ̂1 , r1) , (Ξ̂2 , r2)

]
=

(
Ξ̂1Ξ̂2 − Ξ̂2Ξ̂1, Ξ̂1r2 − Ξ̂2r1

)
=

([
Ξ̂1, Ξ̂2

]
, Ξ̂1r2 − Ξ̂2r1

)
,

which is the classic expression for the Lie algebra of a semidirect-
product Lie group. 2

1.7 Lie algebra ofG(3)

A 5×5 matrix representation of tangent vectors forG(3) at the iden-
tity may be found by computing the derivative of a general group
element (O(s),v0(s), r0(s), t0(s)) along the group path with param-
eter s and bringing the result back to the identity at s = 0,

[O(s) v0(s) r0(s)

0 1 t0(s)

0 0 1

−1O ′(s) v′0(s) r′0(s)

0 0 t′0(s)

0 0 0

]
s=0

=

O−1(s)O ′(s) O−1(s)v′0(s) O−1(s)(r′0(s)− v′0(s)t′0(s))

0 0 t′0(s)

0 0 0

∣∣∣∣∣
s=0

=

 Ξ̂ v0 r0 − v0t0
0 0 t0
0 0 0

 =:
(

Ξ̂, v0, r0, t0

)
,

in terms of the 3 × 3 skew-symmetric matrix Ξ̂ = O−1(s)O ′(s)|s=0.
For notational convenience, the superscript primes that would have
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appeared on the tangents of the Galilean shift parameters r′0(0),
v′0(0) and t′0(0) at the identity s = 0 have been dropped in the last
line and replaced by the simpler forms r0, v0, t0, respectively.

Exercise. (Galilean Lie algebra commutator) Verify the
commutation relation[
(Ξ̂1, v1, r1, t1), (Ξ̂2, v2, r2, t2)

]
=
([

Ξ̂1, Ξ̂2

]
, Ξ̂1v2 − Ξ̂2v1, Ξ̂1(r2,v2, t2)− Ξ̂2(r1,v1, t1), 0

)
,

where

Ξ̂1(r2,v2, t2)− Ξ̂2(r1,v1, t1)

=
(

Ξ̂1(r2 − v2t2) + v1t2

)
−
(

Ξ̂2(r1 − v1t1) + v2t1

)
.

F

According to the principle of Galilean relativity, the laws of
mechanics must take the same form in any uniformly moving
reference frame. That is, the expressions of these laws must be
invariant in form under Galilean transformations. In this chap-
ter, we have introduced the Galilean transformations, shown that
they comprise a Lie group, found its subgroups, endowed them
with a matrix representation, and identified their group structure
mathematically as a nested semidirect product.

Rigid motion in R3 corresponds to a smoothly varying se-
quence of changes of reference frame along a time-dependent
path in the special Euclidean Lie group, SE(3). This is the main
subject of the text.




