Geometric Transformation CS 211A

What is transformation?

- Moving points
- (x,y) moves to (x+t, y+t)
- Can be in any dimension
 - 2D Image warps
 - 3D 3D Graphics and Vision
- Can also be considered as a movement to the coordinate axes

Homogeneous Coordinates

(x,y)

y=1

X

Note: (2x/y, 2), (3x/y,3), and (x/y,1) represent the same 1D point P'

P'(x/y,1)

Y

Q (2x,2y)

Any point on the same vector has the same homogeneous coordinates

1D points on the line is represented by 2D array, called homogeneous coordinates

Generalize to Higher Dimensions

P(x, y, z)

P'(x/z, y/z, 1)

Ζ

2D points represented by homogeneous coordinates

Similarly, 3D points are represented by homogeneous coordinates

If (x,y,z,w) is the homogeneous coordinate of a 3D point, where $w \neq 1$, then the 3D point is given by (x/w,y/w,z/w,1)

Χ

Practically

• [x y z w], w≠1

- Then, [x/w, y/w, z/w, 1]
- Try to put it the w=1 hyperplane
- Why?
 - Can represent pts at infinity
 - -2D [∞, ∞]
 - 3D homogeneous [2, 3, 0]
 - Point at infinity in the direction of [2, 3]
 - Distinguish between points and vectors
 - [2, 3, 1] vs [2, 3, 0]

Linear Transformation

- L(ap+bq) = aL(p) + bL(q)
- Lines/planes transform to lines/planes
- If transformation of vertices are known, transformation of linear combination of vertices can be achieved
- p and q are points or vectors in (n+1)x1 homogeneous coordinates
 - For 2D, 3x1 homogeneous coordinates
 - For 3D, 4x1 homogeneous coordinates
- L is a (n+1)x(n+1) square matrix
 - For 2D, 3x3 matrix
 - For 3D, 4x4 matrix

Linear Transformations

- Euclidian
 - Length and angles are preserved
- Affine
 - Ratios of lengths and angles are preserved
- Projective
 - Can move points at infinity in range and finite points to infinity

Euclidian Transformations

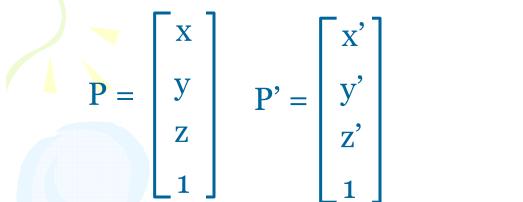
- Lengths and angles are preserved
 Translation
 - Rotation

2D Translation

 $\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & h\\0 & 1 & k\\0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\1 \end{bmatrix}$

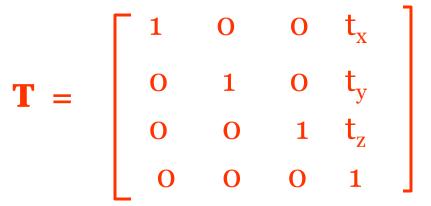
 Line between two points is transformed to a line between the transformed points

3D Translation



 $\mathbf{x'} = \mathbf{x} + \mathbf{t}_{\mathbf{x}}$

 $y' = y + t_y$ $z' = z + t_z$ $\mathbf{P'} = \mathbf{T}\mathbf{P}$



Denoted by $T(t_x, t_y, t_z)$

Inverse Translation

$$P = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} P' = \begin{bmatrix} X' \\ Y' \\ Z' \\ 1 \end{bmatrix}$$

 $\mathbf{x} = \mathbf{x}' - \mathbf{t}_{\mathbf{x}}$

 $y = y' - t_y$ $z = z' - t_z$ $\mathbf{P} = \mathbf{T}^{-1}\mathbf{P}'$

$$\mathbf{T}^{-1} = \begin{bmatrix} 1 & 0 & 0 & -t_x \\ 0 & 1 & 0 & -t_y \\ 0 & 0 & 1 & -t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $T^{-1} = T(-t_x, -t_y, -t_z)$

2D Rotation

(x',y')

ρ

(x,y)

 $x = \rho \cos \phi$ y = ρ sin φ $x' = \rho \cos (\theta + \phi)$ θ $y' = \rho \sin(\theta + \phi)$ $x' = \rho \cos\theta \cos\phi - \rho \sin\theta \sin\phi = x \cos\theta - y \sin\theta$ $y' = \rho \sin\theta \cos\phi + \rho \cos\theta \sin\phi = x \sin\theta + y \cos\theta$ $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \mathbf{R} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Example

Image Rotation	X
Angle	Direction
 0 degrees 90 degrees 180 degrees 	 Clockwise Anti-clockwise
ОК	Cancel

Rotation in 3D about z axis

 $x' = x \cos\theta - y \sin\theta$ $y' = x \sin\theta + y \cos\theta$ z' = z

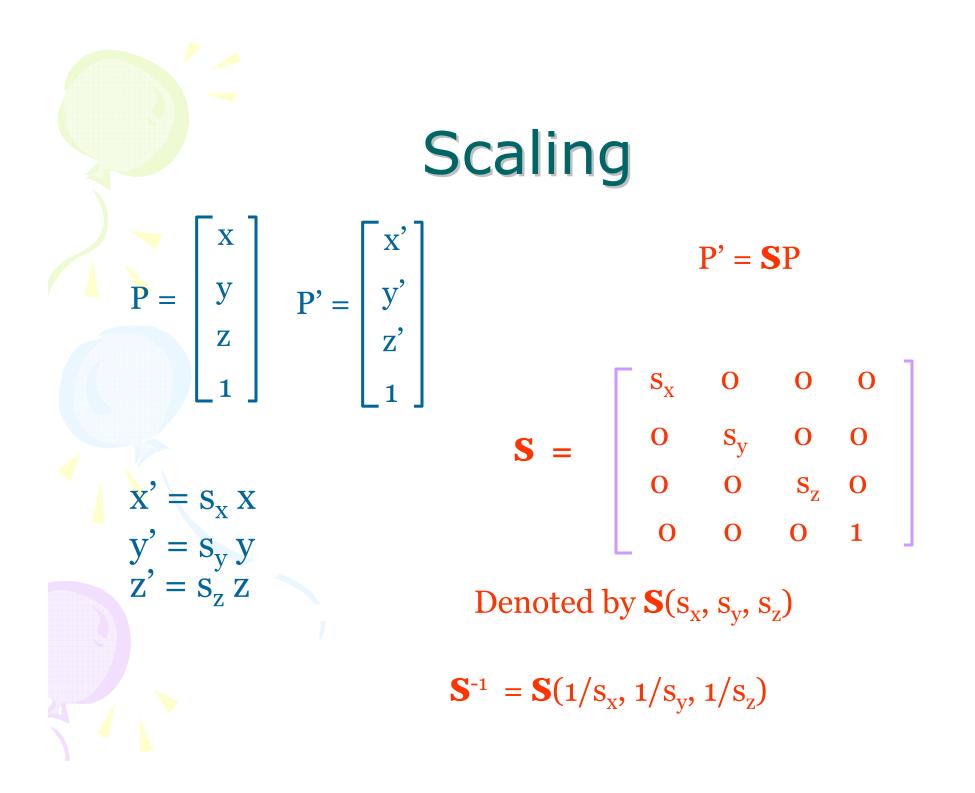
$$\mathbf{R}_{z} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0\\ \sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} \mathbf{L} & \mathbf{0} & \mathbf{0} \\ \text{Denoted by } \mathbf{R}(\theta) \\ \mathbf{R}^{-1} = \mathbf{R}(-\theta) = \mathbf{R}^{T}(\theta) \\ \text{Where } \mathbf{R} = \mathbf{R}_{y} \text{ or } \mathbf{R}_{y} \end{array}$

Where $\mathbf{R} = \mathbf{R}_{x}$ or \mathbf{R}_{y} or \mathbf{R}_{z}

Affine Transformations

- Ratio of lengths and angles are preserved
 - Scale
 - Lengths are not preserved
 - Shear
 - Angles are not preserved

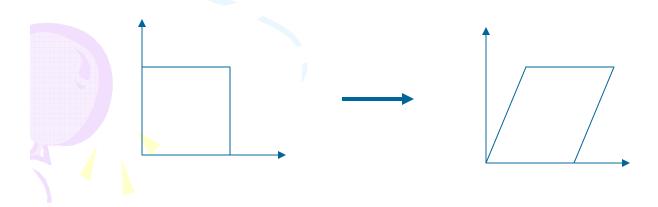


Shear

 Translation of one coordinate of a point is proportional to the 'value' of the other coordinate of the same point.

- -Point : (x,y)
- -After `y-shear': (x+ay,y)
- -After `x-shear': (x,y+bx)

Changes the shape of the object.



Using matrix for Shear

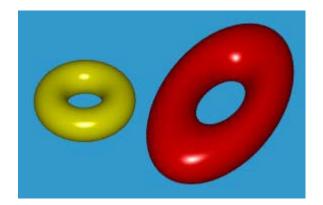
 Example: Z-shear (Z coordinate does not change)

$$\begin{bmatrix} 1 & 0 & a & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x+az \\ y+bz \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

General Affine Transformation

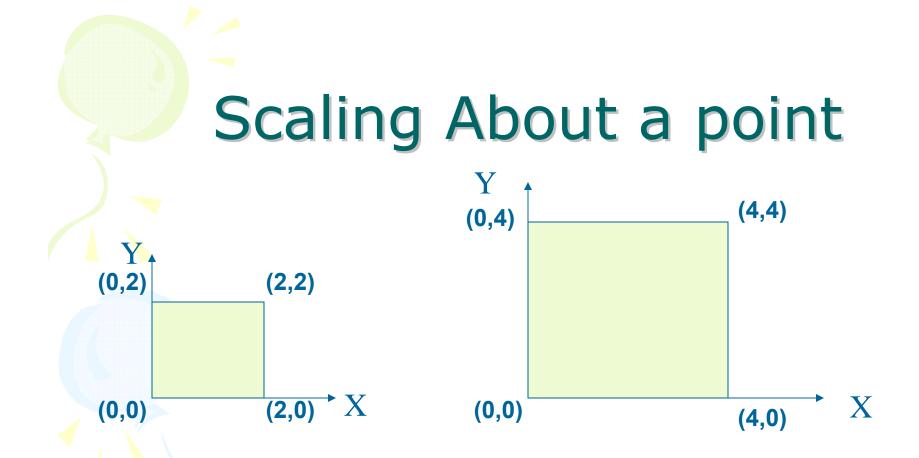
- The last row is fixed
- Has 12 degrees of A = freedom
- Does not change degrees of polynomial
- Parallel and intersecting lines/planes to the same

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Fixed Points and Lines

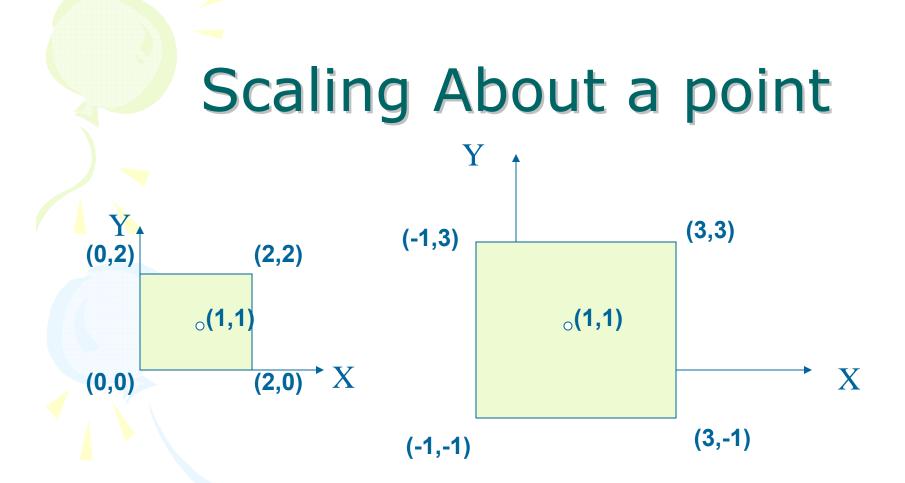
- Some points and lines can be fixed under a transformation
- Scaling Point
 - Origin
- Rotation Line
 - Axis of rotation



Origin is fixed with transformation -> Scaling about origin

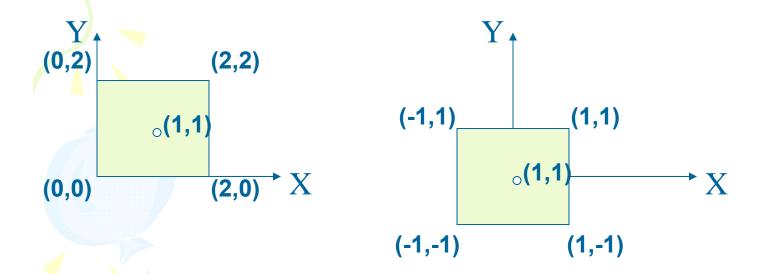
Concatenation of Transformations

- How do we use multiple transformation?
- Apply F
 - Get to a known situation
- Apply the required L
- Apply F⁻¹



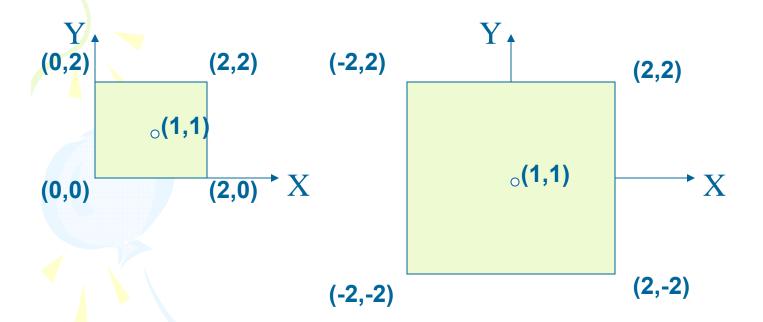
Scaling about center -> Center is fixed with transformation

Done by concatenation



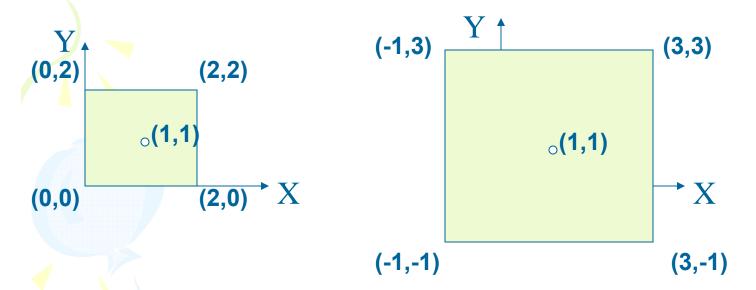
Translate so that center coincides with origin - T(-1,-1).

Done by concatenation



Scale the points about the center - S(2,2)

Done by concatenation

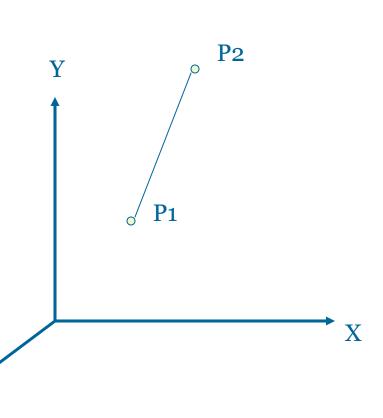


Translate it back by reverse parameters – T(1,1) Total Transformation: T(1,1) S(2,2) T(-1,-1) P

Rotation about a fixed point

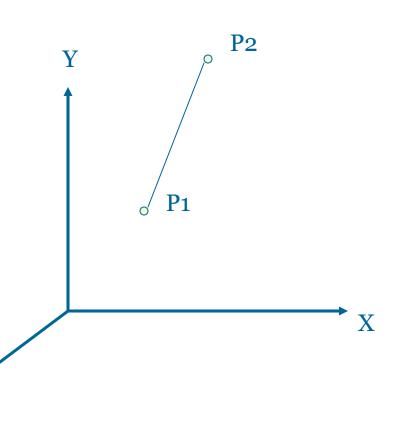
- z-axis rotation of θ about its center P_f
- Translate by $-P_f : T(-P_f)$
- Rotate about z-axis : $R_z(\theta)$
- Translate back by P_f: T(P_f)
- Total Transformation $M = T(P_f)R_z(\theta)T(-P_f)$

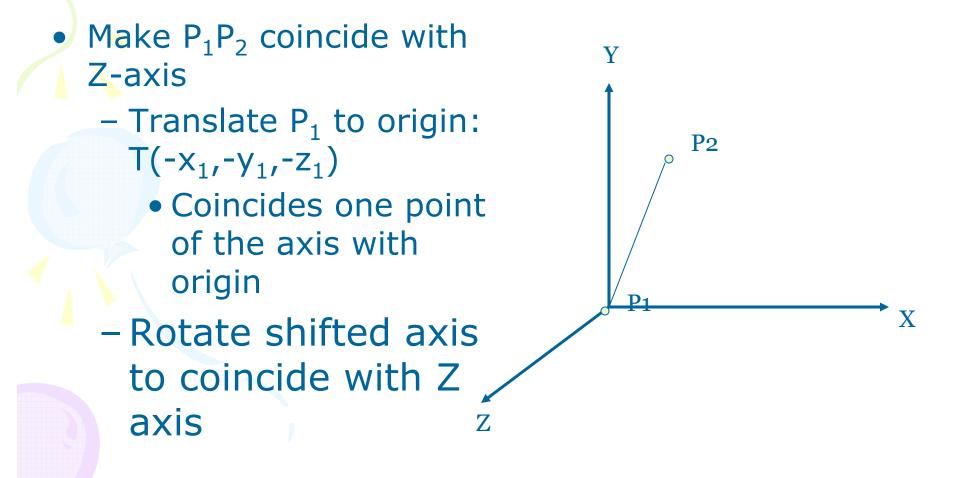
- Axis given by two points
 - P₁ (starting point)
 and P₂ (ending point)
 - P_1 (x₁, y₁, z₁) and P_2 (x₂, y₂, z₂)
- Anticlockwise angle of rotation is θ
- Rotate all points to around P_1P_2 by θ

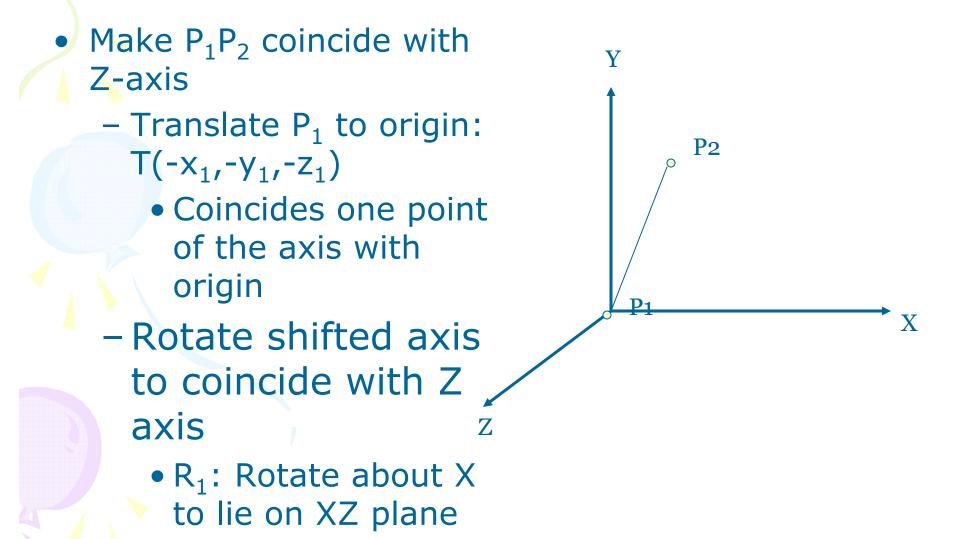


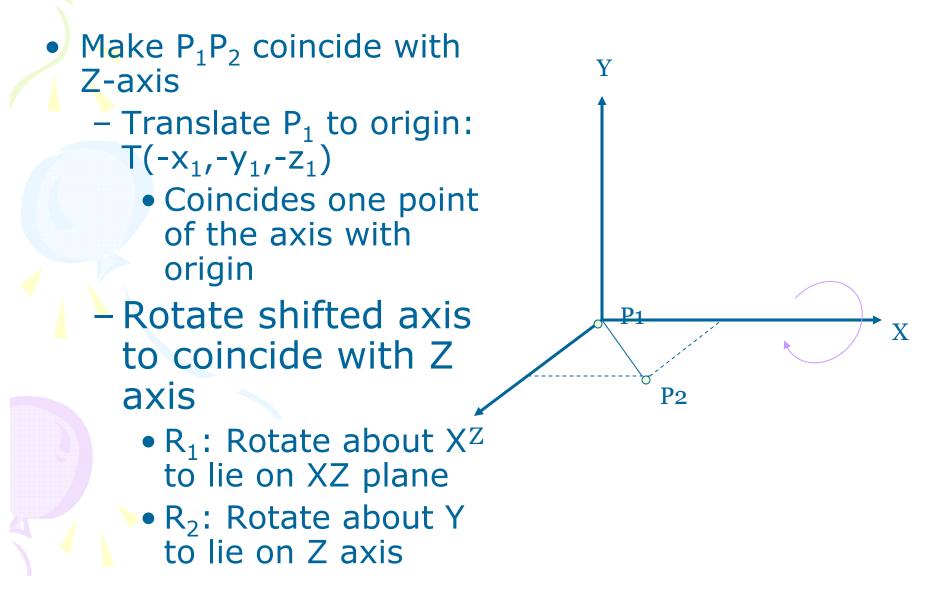
Ζ

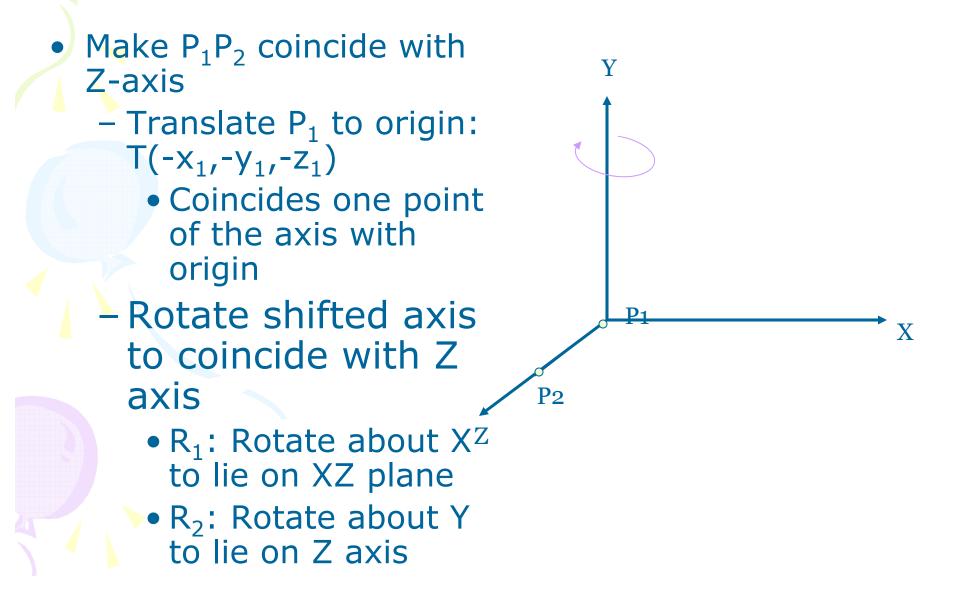
Make P₁P₂ coincide with Z-axis
 Translate P₁ to origin: T(-x₁,-y₁,-z₁)
 Coincides one point of the axis with origin







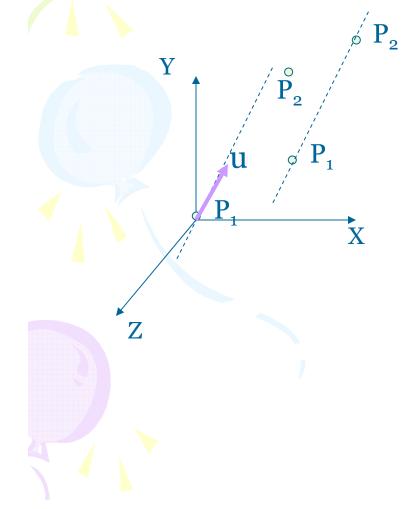




- Make the axis P_1P_2 coincide with the Z-axis
 - -Translation to move P_1 to the origin: $T(-x_1, -y_1, -z_1)$
 - Coincides one point of the axis with origin
 - Rotation to coincide the shifted axis with Z axis
 - R_1 : Rotation around X such that the axis lies on the XZ plane.
 - R₂: Rotation around Y such that the axis coincides with the Z axis
- R₃: Rotate the scene around the Z axis by an angle θ
- Inverse transformations of R₂, R₁ and T₁ to bring back the axis to the original position
- $\mathbf{M} = \mathbf{T}^{-1} \, \mathbf{R}_1^{-1} \, \mathbf{R}_2^{-1} \, \mathbf{R}_3 \, \mathbf{R}_2 \, \mathbf{R}_1 \, \mathbf{T}$

Translation

After translation



Axis V =
$$P_2 - P_1$$

= $(x_1 - x_2, y_1 - y_2, z_1 - z_2)$

$$u = \frac{V}{|V|} = (a, b, c)$$

Rotation about X axis

 Rotate u about X so that it coincides with XZ plane

$$u' = (o, b, c)$$

$$u = (a, b, c)$$

$$\alpha$$

$$\alpha$$

$$u'' = (a, o, d)$$

$$Z$$

$$R_{1}$$

Project u on YZ plane : u' (o, b, c)

 α is the angle made by u' with Z axis

$$Cos \alpha = c/\sqrt{b^2 + c^2} = c/d$$

Sin $\alpha = b/d$

Rotation about Y axis

 Rotate u" about Y so that it coincides with Z axis

Y

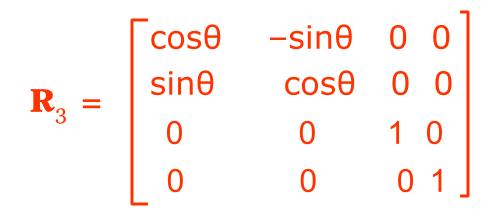
Ζ

 $Cos \beta = d/\sqrt{a^2+d^2} = d/\sqrt{a^2+b^2+c^2} = d$ Sin $\beta = a$

$$\mathbf{R}_{2} = \begin{bmatrix} d & 0 & -a & 0 \\ 0 & 1 & 0 & 0 \\ a & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about Z axis

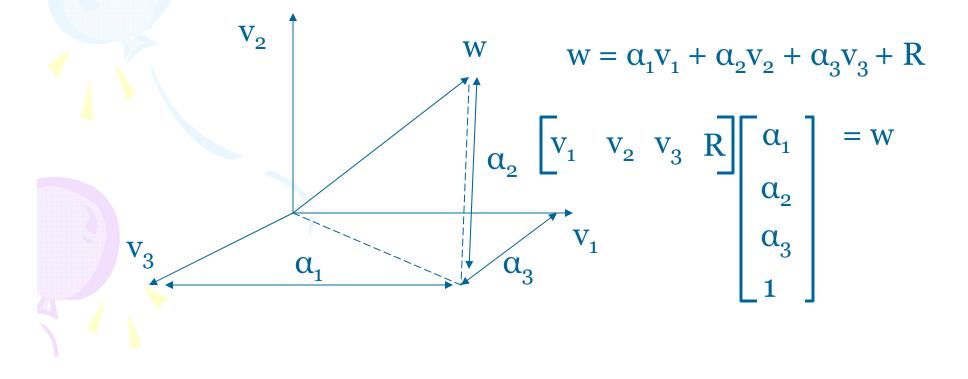
Rotate by θ about Z axis



Potation about Arbitrary Axis $M = T^{-1} R_1^{-1} R_2^{-1} R_3(\theta) R_2(\beta) R_1(\alpha) T$ $= T^{-1} R_x^{-1} R_y^{-1} R_z(\theta) R_y(\beta) R_x(\alpha) T$ $= T^{-1} R_x(-\alpha) R_y(-\beta) R_z(\theta) R_y(\beta) R_x(\alpha) T$

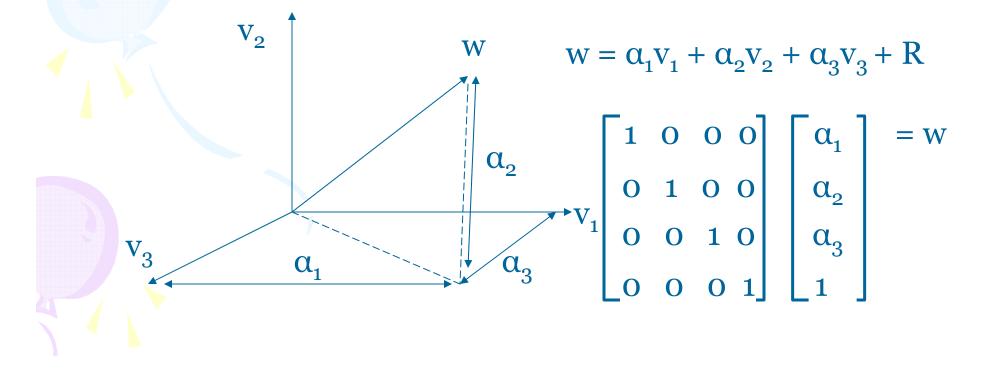
Coordinate Systems

- Represent a point as a linear combination of three vectors and the origin
- Linearly independent vectors basis
 - Orthogonal vectors are linearly independent

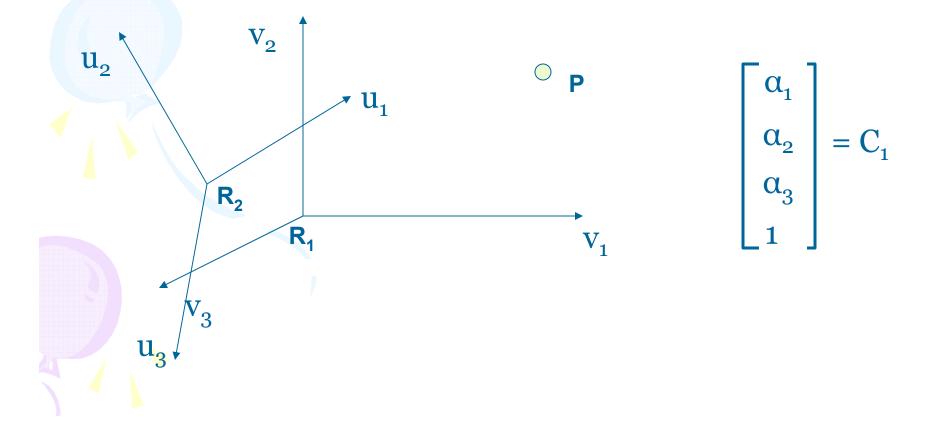


Coordinate Systems

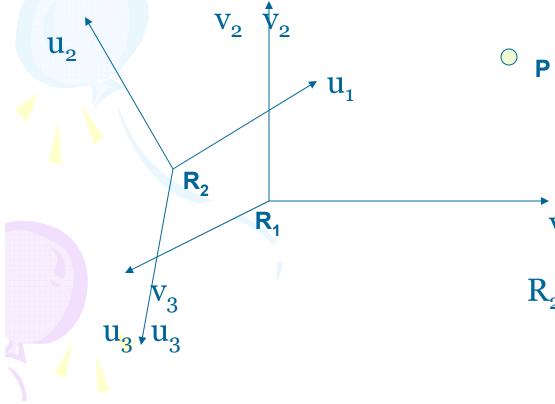
- Represent a point as a linear combination of three vectors and the origin
- Linearly independent vectors basis
 - Orthogonal vectors are linearly independent



First coordinate - v₁, v₂, v₃, R₁
Second coordinate - u₁, u₂, u₃, R₂



First coordinate - v₁, v₂, v₃, R₁
Second coordinate - u₁, u₂, u₃, R₂



P $u_{1} = \gamma_{11}v_{1} + \gamma_{21}v_{2} + \gamma_{31}v_{3}$ $u_{2} = \gamma_{12}v_{1} + \gamma_{22}v_{2} + \gamma_{32}v_{3}$ $V_{1} u_{3} = \gamma_{13}v_{1} + \gamma_{23}v_{2} + \gamma_{33}v_{3}$ $R_{2} = \gamma_{14}v_{1} + \gamma_{24}v_{2} + \gamma_{34}v_{3} + R_{1}$

$$\mathbf{u}_{1} = \gamma_{11}\mathbf{v}_{1} + \gamma_{21}\mathbf{v}_{2} + \gamma_{31}\mathbf{v}_{3}$$

$$\mathbf{u}_{2} = \gamma_{12}\mathbf{v}_{1} + \gamma_{22}\mathbf{v}_{2} + \gamma_{32}\mathbf{v}_{3}$$

$$\mathbf{u}_{3} = \gamma_{13}\mathbf{v}_{1} + \gamma_{23}\mathbf{v}_{2} + \gamma_{33}\mathbf{v}_{3}$$

$$\mathbf{R}_{2} = \gamma_{14}\mathbf{v}_{1} + \gamma_{24}\mathbf{v}_{2} + \gamma_{34}\mathbf{v}_{3} + \mathbf{R}_{1}$$

$$\begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & \gamma_{14} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & \gamma_{24} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & \gamma_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

If
$$R_1 = R_2$$
,

then $\gamma_{14} = \gamma_{24} = \gamma_{34} = 0$

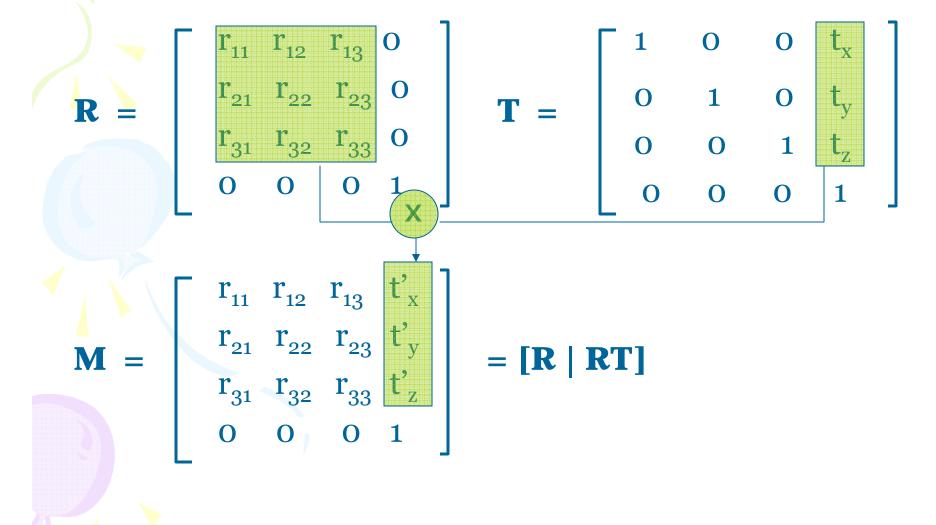
$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} u_1 & u_2 & u_3 & R_2 \end{bmatrix} C_2$$
$$= \begin{bmatrix} v_1 & v_2 & v_3 & R_1 \end{bmatrix} M C_2$$
$$= \begin{bmatrix} v_1 & v_2 & v_3 & R_1 \end{bmatrix} C_1$$

Hence, $C_1 = MC_2$

What is this matrix? You need translate - Coincide origins You need to rotate To make the axis match This is a rotation and translation **M** = concatenated

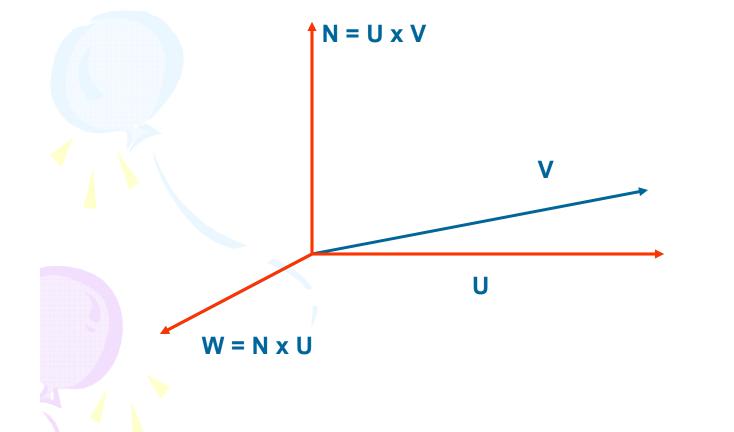
What is this concatenation?

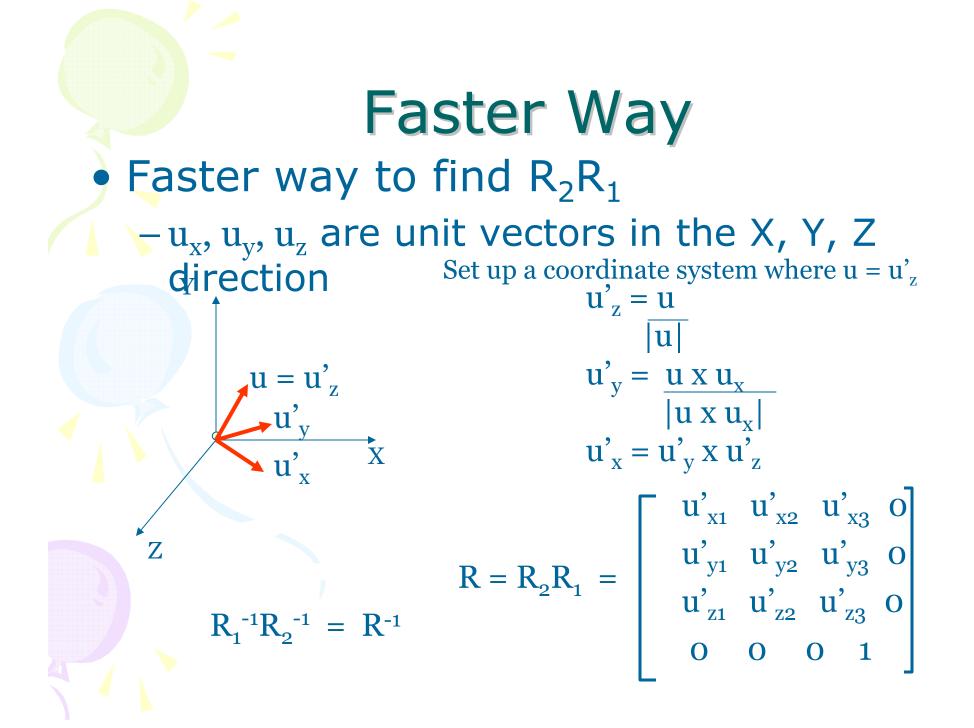


How to simplify rotation about arbitrary axis?

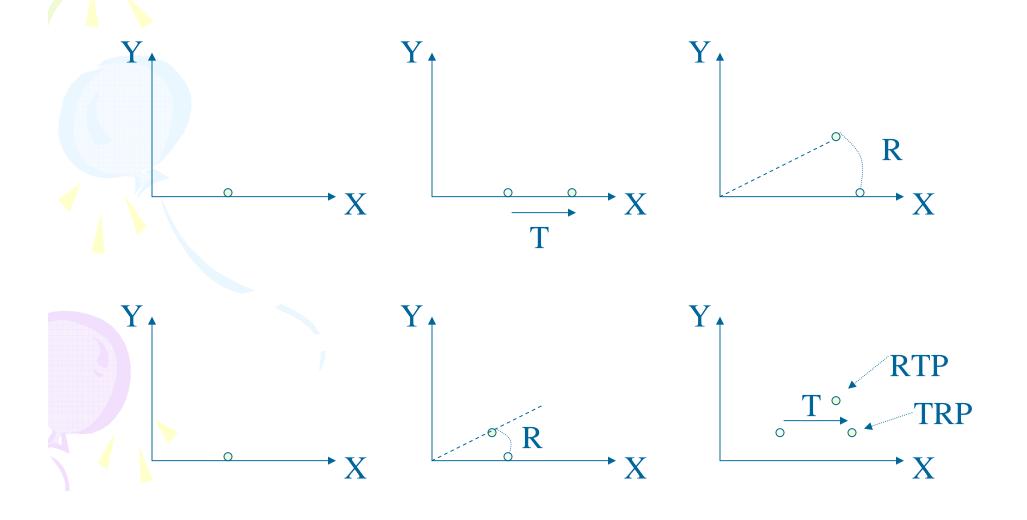
 Translation goes in the last column
 The rotation matrix defined by finding a new coordinate with the arbitrary axis as a X, Y or Z axis

How to find coordinate axes?





Properties of Concatenation Not commutative



Properties of Concatenation

Associative

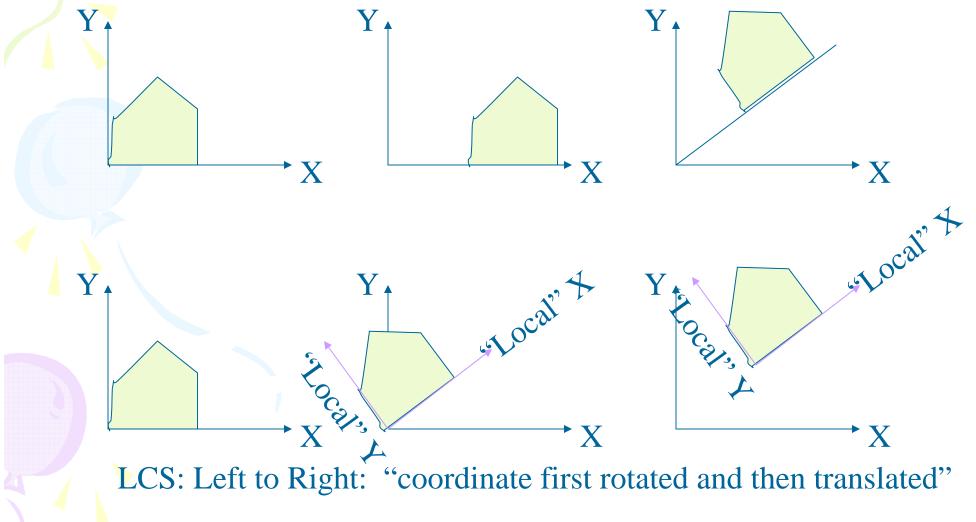
- Does not matter how to multiply
- ((AB)C)P = (A(BC))P
- What is the interpretation of these two?
- Till now we were doing (A(BC))P
 - Right to left
 - Transforming points
 - Coordinate axes same across A, B and C
 - GLOBAL COORDINATES

Properties of Concatenation

- What is the geometric interpretation of (AB)C
 - Left to right
 - Transforms the axes (not the points)
 - LOCAL COORDINATES
- Results are the same as long as the matrix is (ABC)

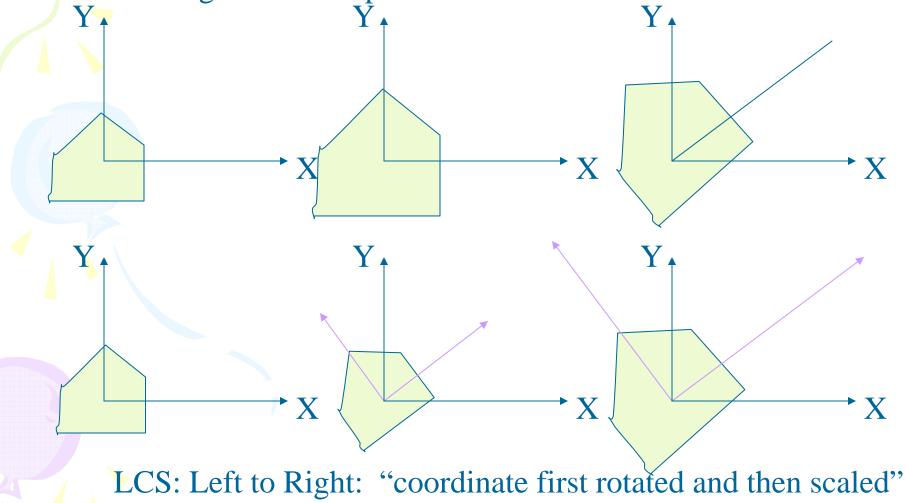
Local/Global Coordinate Systems

GCS: Right to Left: "point is first translated and then rotated"



Local / Global Coordinate Systems

GCS: Right to Left: "point is first scaled and then rotated"



Projective Transformation

- Most general form of linear transformation
- Note that we are interested in points such that w'=1
- Takes finite points to infinity and vice versa

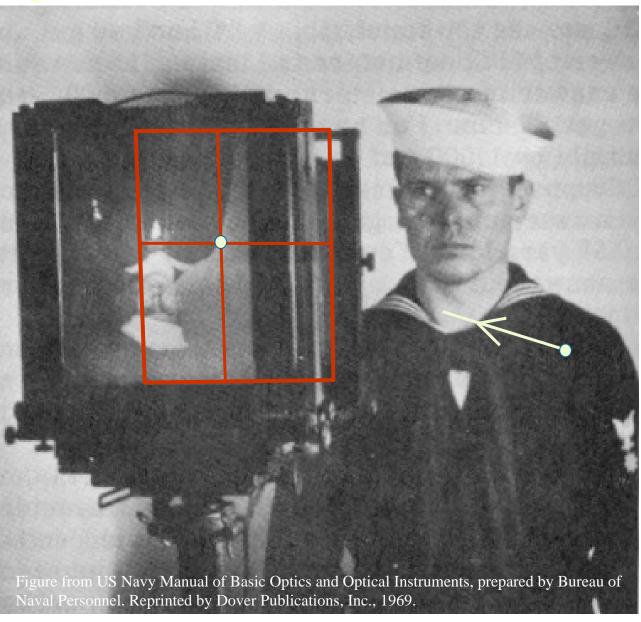
$$\begin{bmatrix} x'\\y'\\z'\\w' \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14}\\p_{21} & p_{22} & p_{23} & p_{24}\\p_{31} & p_{32} & p_{33} & p_{34}\\p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix} \cdot \begin{bmatrix} x\\y\\z\\w \end{bmatrix}$$

Example

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0\\-1 & 2 & 0\\-1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\w \end{bmatrix} \qquad \begin{bmatrix} x\\y\\w \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0\\1 & 1 & 0\\2 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x'\\y'\\w' \end{bmatrix}$$

- Take a circle in $(x,y) x^2+y^2=1$
 - Show that it goes to parabola
- Take two parallel lines
 - Show that they go to intersecting lines
- Intersection lines can become parallel
- Degree of the polynomials are preserved
 Since linear

Images are two-dimensional patterns of brightness values.



They are formed by the projection of 3D objects.

Distant objects appear smaller В CΑ 0 B'

A

Parallel lines meet vanishing point 0 H, L П

