
CS488
Geometric Transformations

Luc RENAMBOT

1

Previous Lectures

• Frame buffers

• Drawing a line (Midpoint Line Algorithm)

• Polygon Filling (Edge-table algorithm)

• Line Clipping (Cohen-Sutherland algorithm)

• Polygon Clipping

• Circles

‣ Geometric Transformations

2

Now

• At this point we have discussed the primitive operations to set
the contents of the frame buffer. Now we are going to go up a
level of abstraction and look at how geometric
transformations are used to alter the view of a 2D model: how
we can translate, scale, and rotate the model, and how
transformations affect what the viewport 'sees'
→Geometric Transformations

• Section 5.1 in the textbook: matrices and vectors operations

3

Geometric Transformations

• How transforms using matrices are used to
affect

• Position

• Size

• Orientation of polygons in the scene

• Transforms are applied to vertices and then
the edges are drawn between the new
vertices

4

Coordinate Systems

• Right Hand Coordinate System (RHS)

• Left Hand Coordinate System (LHS)

• Point thumb, index finger, and middle finger
in orthogonal directions

• Thumb = x-axis

• Index = y-axis

• Middle = z-axis

5

RHS

• Right Hand Coordinate System (RHS)

• Z is coming out of the screen

• Counterclockwise rotations are positive

• If we rotate about the X axis

the rotation Y→Z is positive

• If we rotate about the Y axis

the rotation Z→X is positive

• If we rotate about the Z axis

the rotation X→Y is positive

6

X

Y

Z

RHS

LHS

• Left Hand Coordinate System (LHS)

• Z is going into the screen

• Clockwise rotations are positive

• If we rotate about the X axis

the rotation Y→Z is positive

• If we rotate about the Y axis

the rotation Z→X is positive

• If we rotate about the Z axis

the rotation X→Y is positive

7

X

Y
ZLHS

Translation

8

Translation

8

Uniform Scaling

9

Uniform Scaling

9

Non-uniform Scaling

10

Non-uniform Scaling

10

Rotation around origin

11

Rotation around origin

11

Rotation around center

12

Rotation around center

12

Translation

• Point P(X,Y) is to be translated by amount
Dx and Dy to location P’(X',Y')

• X' = Dx + X

• Y' = Dy + Y

• P' = T + P where

13

P ′
=

(

X ′

Y ′

)

, T =

(

Dx

Dy

)

, P =

(

X

Y

)

Scaling

• Point P (X,Y) is to be scaled by amount Sx
and Sy to location P’(X',Y')

• X' = Sx * X

• Y' = Sy * Y

• or P' = S * P where

14

S =

(

Sx 0

0 Sy

)

Scaling

• Scaling is performed about the origin (0,0) not about
the center of the primitive

• Scale > 1 enlarge the object and move it away from the
origin.
Scale = 1 leave the object alone
Scale < 1 shrink the object and move it towards the
origin.

• Uniform scaling Sx = Sy

• Differential scaling Sx != Sy

• alters proportions

15

Rotation

• Point (X,Y) is to be rotated about the origin by
angle theta to location (X',Y')
note that this does involve sin and cos which are
much more costly than addition or multiplication

• X' = X * cos(theta) - Y * sin(theta)

• Y' = X * sin(theta) + Y *cos(theta)

• or P' = R * P where

16

R =

(

cos(theta) −sin(theta)
sin(theta) cos(theta)

)

Rotation

• Rotation is performed about the origin (0,0) not
about the center of the line/polygon/whatever

• Where does this matrix come from?

• (X,Y) is located r away from (0,0) at a CCW angle
of phi from the X axis.

• (X',Y') is located r away from (0,0) at a CCW
angle of theta+phi from the X axis

• Since rotation is about the origin, (X',Y') must be the
same distance from the origin as (X,Y)

17

Rotation

18

X

Y

P(x,y)

P’(x’,y’)

r

Phi

Theta

Rotation Matrix
• From trigonometry

X = r * cos(phi)
Y = r * sin(phi)

• X' = r * cos(theta+phi)
Y' = r * sin(theta+phi)

• since
cos(a+b) = cos(a) * cos(b) - sin(a) * sin(b)
sin(a+b) = sin(a) * cos(b) + cos(a) * sin(b)

• X' = r * cos(theta) * cos(phi) - r * sin(theta) * sin(phi)
Y' = r * sin(theta) * cos(phi) + r * cos(theta) * sin(phi)

• X' = X * cos(theta) - Y * sin(theta)
Y' = X * sin(theta) + Y * cos(theta)

19

Operations

• Translation P’ = T + P

• Scaling P’ = S * P

• Rotation P’ = R * P

• How to represent all operations as
multiplication, in a consistent manner ?

20

Homogeneous Coordinates

• Want to be able to treat all 3 transformations
(translation, scaling, rotation) in the same way - as
multiplications

• Each point given a third coordinate (X, Y, W)

• Two triples (X,Y,W) and (X',Y',W') represent the
same point if they are multiples of each other
e.g. (1,2,3) and (2,4,6)

• At least one of the three coordinates must be
nonzero

21

Homogeneous Coordinates

• If W is 0 then the point is at infinity

• If W is nonzero we can divide the triple by W
to get the cartesian coordinates of X and Y

• Which will be identical for triples representing
the same point (X/W, Y/W, 1)

• Homogeneous coordinates seem unintuitive,
but they make graphics operations much easier

22

Homogeneous Coordinates

23

X

W

Y

W=1 Plane

P (x,y,w)

XYW homogeneous coordinate space

New Translation

• Point P(X,Y,1) is to be translated by amount Dx
and Dy to location P’(X',Y',1)

• X' = Dx + X

• Y' = Dy + Y

• P' = T * P where

• P’ = [X’ / Y’ /1] P=[X / Y /1]

24

T =

1 0 Dx

0 1 Dy

0 0 1

New Scaling

• Point P (X,Y,1) is to be scaled by amount Sx and Sy
to location P’(X',Y',1)

• X' = Sx * X

• Y' = Sy * Y

• or P' = S * P where

• P’ = [X’ / Y’ /1] P=[X / Y /1]

25

S =

Sx 0 0

0 Sy 0

0 0 1

New Rotation

• Point (X,Y,1) is to be rotated about the origin by
angle theta to location (X',Y',1)

• X' = X * cos(theta) - Y * sin(theta)

• Y' = X * sin(theta) + Y *cos(theta)

• or P' = R * P where

26

R =

cos(theta) −sin(theta) 0
sin(theta) cos(theta) 0

0 0 1

Composition of 2D
Transformations

• Instead of applying several transformations
matrices to a point, we want to use the
transformations to produce 1 matrix which
can be applied to the point

• In the simplest case, we want to apply the
same type of transformation (translation,
rotation, scaling) more than once

27

Composition

• Translation is additive as expected

• Scaling is multiplicative as expected

• Rotation is additive as expected

• But what if we want to combine different
types of transformations?

28

Example
• A very common reason for doing this is to rotate

a polygon about an arbitrary point (e.g. the center
of the polygon) rather than around the origin

• Translate so that P1 is at the origin T(-Dx,-Dy)

• Rotate R(theta)

• Translate so that the point at the origin is at P1
T(Dx,Dy)

• Order of operations here is right to left

29

P
′ = T

(

Dx

Dy

)

∗ R (theta) ∗ T

(

−Dx

−Dy

)

∗ P

Another Example

• Another common reason for doing this is to
scale a polygon about an arbitrary point
(e.g. the center of the polygon) rather than
around the origin

• Translate so that P1 is at the origin

• Scale

• Translate so that the point at the origin is
at P1

30

Center of Polygon

• How do we determine the 'center' of the
polygon?

• Specifically define the center (e.g. the
center of mass)

• Average the location of all the vertices

• Take the center of the bounding box of
the polygon

31

Example

32

a a

Rotation around (a)

Example

32

a a

Rotation around (a)

a
a

Applying rotation to segment →Wrong

Example

32

a a

Rotation around (a)

a
a

Applying rotation to segment →Wrong

a

a

a

a

Rotation

Translation

Translation

Initial Position

Window to Viewport
• Generally user's prefer to work in world-coordinates.

• 1 unit can be 1 micron

• 1 unit can be 1 meter

• 1 unit can be 1 kilometer

• 1 unit can be 1 mile

• These coordinates must then be translated to screen
coordinates to be displayed in a rectangular region of the
screen called the viewport

• The objects are in world coordinates (with n dimensions)
The viewport is in screen coordinates (with n=2)

33

Windows

• Want one matrix that can be applied to all
points:

• rectangular area of world from (Xmin,Ymin)
to (Xmax,Ymax)

• world-coordinate window

• rectangular area of screen from (Umin,Vmin)
to (Umax,Vmax)

• viewport

34

Scaling back to screen

• Need to re-scale the world-coordinate rectangle to the screen rectangle

1. Translate world-coordinate window to the origin of the world
coordinate system.

2. Re-scale the window to the size and aspect ratio of the viewport.

3. Translate the viewport to its position on the screen in the screen
coordinate system.

• Pscreen = M * Pworld

35

M = T

(

Umin

Vmin

)

∗ S

(

deltaU/deltaX
deltaV/deltaY

)

∗ T

(

−Xmin

−Ymin

)

3D Transformations

• Similar to 2D transformations, which used
3x3 matrices (X,Y,W)

• 3D transformations use 4X4 matrices
(X, Y, Z, W)

36

3D Translation

• Point P (X,Y,Z,1) is to be translated by
amount Dx, Dy and Dz to location (X',Y',Z',1)
X' = Dx + X
Y' = Dy + Y
Z' = Dz + Z

• or P' = T * P where

37

T =

1 0 0 Dx

0 1 0 Dy

0 0 1 Dz

0 0 0 1

3D Scaling

• Point P (X,Y,Z,1) is to be scaled by amount
Sx, Sy and Sz
X' = Sx * X
Y' = Sy * Y
Z' = Sz * Z

• or P' = S * P where

38

S =

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

3D Rotation

• We need to pick an axis to rotate about. The
most common choices are the X-axis, the Y-
axis, and the Z-axis

• Point P (X,Y,Z,1) to be rotated to
P’(X’,Y’,Z’,1) and angle theta

39

3D Rotations

40

Rx =

1 0 0 0
0 cos(theta) −sin(theta) 0
0 sin(theta) cos(theta) 0
0 0 0 1

Rz =

cos(theta) −sin(theta) 0 0
sin(theta) cos(theta) 0 0

0 0 1 0
0 0 0 1

P
′
=

X ′

Y ′

Z ′

1

P =

X

Y

Z

1

Ry =

cos(theta) 0 sin(theta) 0
0 1 0 0

−sin(theta) 0 cos(theta) 0
0 0 0 1

3D Composition

• Composition is handled in a similar way to
the 2D case

• Multiplications of matrices

41

OpenGL Operations

• glTranslate{fd}(X,Y,Z)

• glTranslatef(1.0, 2.5, 3.0)

• glRotate{df}(Angle, X, Y, Z)

• glRotatef(60.0, 0.0, 0.0, 1.0)

• glScale{df}(X, Y, Z)

• glScalef(1.0, 1.5, 2.0)

42

Next Time

• More Geometric Transformations

43

