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Previous Lectures

• Frame buffers

• Drawing a line (Midpoint Line Algorithm)

• Polygon Filling (Edge-table algorithm)

• Line Clipping (Cohen-Sutherland algorithm)

• Polygon Clipping

• Circles

‣ Geometric Transformations
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Now

• At this point we have discussed the primitive operations to set 
the contents of the frame buffer. Now we are going to go up a 
level of abstraction and look at how geometric 
transformations are used to alter the view of a 2D model: how 
we can translate, scale, and rotate the model, and how 
transformations affect what the viewport 'sees'
→Geometric Transformations

• Section 5.1 in the textbook: matrices and vectors operations
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Geometric Transformations

• How transforms using matrices are used to 
affect

• Position

• Size

• Orientation of polygons in the scene

• Transforms are applied to vertices and then 
the edges are drawn between the new 
vertices
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Coordinate Systems

• Right Hand Coordinate System (RHS)

• Left Hand Coordinate System (LHS)

• Point thumb, index finger, and middle finger 
in orthogonal directions

• Thumb = x-axis

• Index = y-axis

• Middle = z-axis
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RHS

• Right Hand Coordinate System (RHS)

• Z is coming out of the screen

• Counterclockwise rotations are positive

• If we rotate about the X axis 

the rotation Y→Z is positive

• If we rotate about the Y axis

the rotation Z→X is positive

• If we rotate about the Z axis

the rotation X→Y is positive
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LHS

• Left Hand Coordinate System (LHS)

• Z is going into the screen

• Clockwise rotations are positive

• If we rotate about the X axis

the rotation Y→Z is positive

• If we rotate about the Y axis

the rotation Z→X is positive

• If we rotate about the Z axis

the rotation X→Y is positive
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Translation
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Translation
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Uniform Scaling
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Uniform Scaling
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Non-uniform Scaling
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Non-uniform Scaling
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Rotation around origin

11



Rotation around origin
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Rotation around center

12



Rotation around center
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Translation

• Point P(X,Y) is to be translated by amount 
Dx and Dy to location P’(X',Y')

• X' = Dx + X

• Y' = Dy +  Y

• P' = T + P where
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Scaling

• Point P (X,Y) is to be scaled by amount Sx 
and Sy to location P’(X',Y')

• X' = Sx * X

• Y' = Sy *  Y

• or P' = S * P where
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Scaling

• Scaling is performed about the origin (0,0) not about 
the center of the primitive

• Scale > 1 enlarge the object and move it away from the 
origin.
Scale = 1 leave the object alone
Scale < 1 shrink the object and move it towards the 
origin.

• Uniform scaling Sx = Sy

• Differential scaling Sx != Sy

• alters proportions
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Rotation

• Point (X,Y) is to be rotated about the origin by 
angle theta to location (X',Y')
note that this does involve sin and cos which are 
much more costly than addition or multiplication

• X' = X * cos(theta) - Y * sin(theta)

• Y' = X * sin(theta) + Y *cos(theta)

• or P' = R * P where
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Rotation

• Rotation is performed about the origin (0,0) not 
about the center of the line/polygon/whatever

• Where does this matrix come from?

• (X,Y) is located r away from (0,0) at a CCW angle 
of phi from the X axis.

• (X',Y') is located r away from (0,0) at a CCW 
angle of theta+phi from the X axis

• Since rotation is about the origin, (X',Y') must be the 
same distance from the origin as (X,Y)
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Rotation
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Rotation Matrix
• From trigonometry

X = r * cos(phi)
Y = r * sin(phi)

• X' = r * cos(theta+phi)
Y' = r * sin(theta+phi)

• since
cos(a+b) = cos(a) * cos(b) - sin(a) * sin(b)
sin(a+b) = sin(a) * cos(b) + cos(a) * sin(b)

• X' = r * cos(theta) * cos(phi) - r * sin(theta) * sin(phi)
Y' = r * sin(theta) * cos(phi) + r * cos(theta) * sin(phi)

• X' = X * cos(theta) - Y * sin(theta)
Y' = X * sin(theta) + Y * cos(theta)
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Operations

• Translation P’ = T + P

• Scaling P’ = S * P

• Rotation P’ = R * P

• How to represent all operations as 
multiplication, in a consistent manner ?

20



Homogeneous Coordinates

• Want to be able to treat all 3 transformations 
(translation, scaling, rotation) in the same way - as 
multiplications

• Each point given a third coordinate (X, Y, W)

• Two triples (X,Y,W) and (X',Y',W') represent the 
same point if they are multiples of each other 
e.g. (1,2,3) and (2,4,6)

• At least one of the three coordinates must be 
nonzero
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Homogeneous Coordinates

• If W is 0 then the point is at infinity

• If W is nonzero we can divide the triple by W 
to get the cartesian coordinates of X and Y

• Which will be identical for triples representing 
the same point (X/W,  Y/W,  1)

• Homogeneous coordinates seem unintuitive, 
but they make graphics operations much easier
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Homogeneous Coordinates
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New Translation

• Point P(X,Y,1) is to be translated by amount Dx 
and Dy to location P’(X',Y',1)

• X' = Dx + X

• Y' = Dy + Y

• P' = T * P where

• P’ = [ X’ / Y’ /1 ]    P=[X / Y /1]
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New Scaling

• Point P (X,Y,1) is to be scaled by amount Sx and Sy 
to location P’(X',Y',1)

• X' = Sx * X

• Y' = Sy * Y

• or P' = S * P where

• P’ = [ X’ / Y’ /1 ]    P=[X / Y /1]
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New Rotation

• Point (X,Y,1) is to be rotated about the origin by 
angle theta to location (X',Y',1)

• X' = X * cos(theta) - Y * sin(theta)

• Y' = X * sin(theta) + Y *cos(theta)

• or P' = R * P where
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cos(theta) −sin(theta) 0
sin(theta) cos(theta) 0
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Composition of 2D 
Transformations

• Instead of applying several transformations 
matrices to a point, we want to use the 
transformations to produce 1 matrix which 
can be applied to the point

• In the simplest case, we want to apply the 
same type of transformation (translation, 
rotation, scaling) more than once
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Composition

• Translation is additive as expected

• Scaling is multiplicative as expected

• Rotation is additive as expected

• But what if we want to combine different 
types of transformations?
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Example
• A very common reason for doing this is to rotate 

a polygon about an arbitrary point (e.g. the center 
of the polygon) rather than around the origin

• Translate so that P1 is at the origin T(-Dx,-Dy)

• Rotate R(theta)

• Translate so that the point at the origin is at P1 
T(Dx,Dy)

• Order of operations here is right to left
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Another Example

• Another common reason for doing this is to 
scale a polygon about an arbitrary point 
(e.g. the center of the polygon) rather than 
around the origin

• Translate so that P1 is at the origin

• Scale

• Translate so that the point at the origin is 
at P1
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Center of Polygon

• How do we determine the 'center' of the 
polygon?

• Specifically define the center (e.g. the 
center of mass)

• Average the location of all the vertices

• Take the center of the bounding box of 
the polygon
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Example
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Example
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Example
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Window to Viewport
• Generally user's prefer to work in world-coordinates.

• 1 unit can be 1 micron

• 1 unit can be 1 meter

• 1 unit can be 1 kilometer

• 1 unit can be 1 mile

• These coordinates must then be translated to screen 
coordinates to be displayed in a rectangular region of the 
screen called the viewport

• The objects are in world coordinates (with n dimensions)
The viewport is in screen coordinates (with n=2)
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Windows

• Want one matrix that can be applied to all 
points:

• rectangular area of world from (Xmin,Ymin) 
to (Xmax,Ymax)

• world-coordinate window

• rectangular area of screen from (Umin,Vmin) 
to (Umax,Vmax)

• viewport
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Scaling back to screen

• Need to re-scale the world-coordinate rectangle to the screen rectangle

1. Translate world-coordinate window to the origin of the world 
coordinate system.

2. Re-scale the window to the size and aspect ratio of the viewport.

3. Translate the viewport to its position on the screen in the screen 
coordinate system.

• Pscreen = M * Pworld
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3D Transformations

• Similar to 2D transformations, which used 
3x3 matrices (X,Y,W)

• 3D transformations use 4X4 matrices
(X, Y, Z, W)
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3D Translation

• Point P (X,Y,Z,1) is to be translated by 
amount Dx, Dy and Dz to location (X',Y',Z',1)
X' = Dx + X
Y' = Dy + Y
Z' = Dz + Z

• or P' = T * P where
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1 0 0 Dx

0 1 0 Dy
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3D Scaling

• Point P (X,Y,Z,1) is to be scaled by amount 
Sx, Sy and Sz
X' = Sx * X
Y' = Sy *  Y
Z' = Sz * Z

• or P' = S * P where
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3D Rotation

• We need to pick an axis to rotate about. The 
most common choices are the X-axis, the Y-
axis, and the Z-axis

• Point P (X,Y,Z,1) to be rotated to 
P’(X’,Y’,Z’,1) and angle theta
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3D Rotations
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Rx =









1 0 0 0
0 cos(theta) −sin(theta) 0
0 sin(theta) cos(theta) 0
0 0 0 1









Rz =









cos(theta) −sin(theta) 0 0
sin(theta) cos(theta) 0 0

0 0 1 0
0 0 0 1
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Ry =









cos(theta) 0 sin(theta) 0
0 1 0 0

−sin(theta) 0 cos(theta) 0
0 0 0 1











3D Composition

• Composition is handled in a similar way to 
the 2D case

• Multiplications of matrices
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OpenGL Operations

• glTranslate{fd}(X,Y,Z) 

• glTranslatef(1.0, 2.5, 3.0)

• glRotate{df}(Angle, X, Y, Z)

• glRotatef(60.0, 0.0, 0.0, 1.0)

• glScale{df}(X, Y, Z)

• glScalef(1.0, 1.5, 2.0)
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Next Time

• More Geometric Transformations
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