Geometric transformations in 3D and coordinate frames

Computer Graphics
 CSE 167
 Lecture 3

CSE 167: Computer Graphics

- 3D points as vectors
- Geometric transformations in 3D
- Coordinate frames

Representing 3D points using vectors

- 3D point as 3-vector

$$
\mathbf{X}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

- 3D point using affine homogeneous coordinates as 4-vector

$$
\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Geometric transformations

- Translation
- Linear transformations
- Scale
- Rotation
- 3D rotations
- Affine transformation
- Linear transformation followed by translation
- Euclidean transformation
- Rotation followed by translation
- Composition of transformations
- Transforming normal vectors

3D translation

$$
\begin{aligned}
{\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] } & =\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]+\left[\begin{array}{l}
t_{X} \\
t_{Y} \\
t_{Z}
\end{array}\right] \\
\mathbf{X}^{\prime} & =\mathbf{X}+\mathbf{t} \\
{\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{cc}
\mathrm{I} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right] \begin{array}{c}
\text { Using } \\
\text { homogeneous } \\
\text { coordinates }
\end{array}
\end{aligned}
$$

3D uniform scale

$$
\begin{aligned}
{\left[\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] } & =\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & s
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
\mathbf{X}^{\prime} & =s \mathbf{I} \mathbf{X}
\end{aligned}
$$

$$
\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ll}
s \mathrm{I} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{X} \\
1
\end{array}\right] \begin{gathered}
\text { Using } \\
\text { homogeneous } \\
\text { coordinates }
\end{gathered}
$$

3D nonuniform scale

$$
\begin{aligned}
{\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] } & =\left[\begin{array}{ccc}
s_{X} & 0 & 0 \\
0 & s_{Y} & 0 \\
0 & 0 & s_{Z}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
\mathbf{X}^{\prime} & =\operatorname{diag}\left(s_{X}, s_{Y}, s_{Z}\right) \mathbf{X} \\
{\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{cc}
\operatorname{diag}\left(s_{X}, s_{Y}, s_{Z}\right) & 0 \\
0^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right] \begin{array}{c}
\text { Using } \\
\text { omogeneous } \\
\text { coordinates }
\end{array}
\end{aligned}
$$

3D rotation about X -axis

$$
\begin{aligned}
{\left[\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
\mathbf{X}^{\prime} & =\mathrm{R}_{X}(\alpha) \mathbf{X}
\end{aligned}
$$

3D rotation about Y -axis

$$
\begin{aligned}
{\left[\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] } & =\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
\mathbf{X}^{\prime} & =\mathrm{R}_{Y}(\beta) \mathbf{X}
\end{aligned}
$$

3D rotation about Z-axis

$$
\begin{aligned}
{\left[\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] } & =\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
\mathbf{X}^{\prime} & =\mathbf{R}_{Z}(\gamma) \mathbf{X}
\end{aligned}
$$

Rotation matrix

- A rotation matrix is a special orthogonal matrix
- Properties of special orthogonal matrices

$$
\begin{array}{cc}
\mathrm{R}^{\top} \mathrm{R}=\mathrm{RR}^{\top}=\mathrm{I} & \mathrm{R}^{\top}=\mathrm{R}^{-1} \\
\operatorname{det}(\mathrm{R})=+1 & \begin{array}{c}
\text { The inverse of a special } \\
\text { orthogonal matrix is } \\
\text { also a special } \\
\text { orthogonal matrix }
\end{array}
\end{array}
$$

- Transformation matrix using homogeneous coordinates $\quad\left[\begin{array}{cc}R & 0 \\ 0^{\top} & 1\end{array}\right]$

3D rotations

- A 3D rotation can be parameterized with three numbers
- Common 3D rotation formalisms
- Rotation matrix
- 3×3 matrix (9 parameters), with 3 degrees of freedom
- Euler angles
- 3 parameters
- Euler axis and angle
- 4 parameters, axis vector (to scale)
- Quaternions
- 4 parameters (to scale)

3D rotation, Euler angles

- A sequence of 3 elemental rotations
- 12 possible sequences

```
X-Y-X Y-X-Y Z-X-Y
X-Y-Z Y-X-Z Z-X-Z
X-Z-X Y-Z-X Z-Y-X
X-Z-Y Y-Z-Y Z-Y-Z
- Example: Roll-Pitch-Yaw (ZYX convention)
- Rotation about \(X\)-axis, followed by rotation about Y -axis, followed by rotation about Z-axis \(\mathrm{R}=\mathrm{R}_{Z}(\gamma) \mathrm{R}_{Y}(\beta) \mathrm{R}_{X}(\alpha) \quad\) Composition of rotations

\section*{\(3 D\) rotation, Euler axis and angle}
- 3D rotation about an arbitrary axis - Axis defined by unit vector
- Corresponding rotation matrix
\[
\mathrm{R}=\cos (\theta) \mathrm{I}+\sin (\theta)[\hat{\mathbf{v}}]_{\times}+(1-\cos (\theta)) \hat{\mathbf{v}} \hat{\mathbf{v}}^{\top}
\]


Cross product revisited
\[
\begin{aligned}
{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] } & =\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right] \\
{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
\mathbf{a} \times \mathbf{b} & =[\mathbf{a}]_{\times \mathbf{b}}
\end{aligned}
\]

\section*{3D affine transformation}
- Linear transformation followed by translation


Notes:
1. Invert an affine transformation using a general \(4 \times 4\) matrix inverse
2. An inverse affine transformation is also an affine transformation

\section*{Affine transformation using homogeneous coordinates}
\[
\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{A} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
\]

A is linear
transformation matrix
- Translation \(\left[\begin{array}{ll}1 & t \\ 0^{\top} & 1\end{array}\right]\)
- Linear transformation is identity matrix
- Scale \(\left[\begin{array}{cc}\operatorname{diag}\left(s_{X}, s_{Y}, s_{Z}\right) & 0 \\ 0^{\top} & 1\end{array}\right]\)
- Linear transformation is diagonal matrix
- Rotation \(\left[\begin{array}{ll}R & 0 \\ 0^{\top} & 1\end{array}\right]\)
- Linear transformation is special orthogonal matrix

\section*{3D Euclidean transformation}
- Rotation followed by translation
\[
\begin{aligned}
& \mathbf{X}^{\prime}=\mathrm{RX}+\mathbf{t} \\
& {\left[\begin{array}{c}
\mathrm{X}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{R} & \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{X} \\
1
\end{array}\right] \begin{array}{c}
\text { Using } \\
\text { homogeneous } \\
\text { coordinates }
\end{array}} \\
& {\left[\begin{array}{c}
\mathbf{X}^{\prime} \\
1
\end{array}\right]=\mathrm{H}_{\mathrm{E}}\left[\begin{array}{c}
\mathrm{X} \\
1
\end{array}\right]} \\
& \text { where } \mathrm{H}_{\mathrm{E}}=\left[\begin{array}{rr}
\mathrm{R} & \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \begin{array}{c}
\text { A Euclidean } \\
\text { transformation } \\
\text { is an affie } \\
\text { transformation where } \\
\text { the linear component is } \\
\text { a rotation }
\end{array}
\end{aligned}
\]

\section*{Inverse Euclidean transformation}
\[
\text { Euclidean transformation } \mathrm{X}^{\prime}=\mathrm{RX}+\mathrm{t}
\]
\[
\mathrm{X}^{\prime}-\mathrm{t}=\mathrm{RX}
\]
\[
\mathrm{R}^{\top}\left(\mathrm{X}^{\prime}-\mathbf{t}\right)=\mathbf{X}
\]

Inverse Euclidean transformation \(R^{\top} \mathbf{X}^{\prime}-R^{\top} \mathbf{t}=\mathbf{X}\)
\[
\begin{aligned}
{\left[\begin{array}{cc}
\mathrm{R}^{\top} & -\mathrm{R}^{\top} \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{X}^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{c}
\mathrm{X} \\
1
\end{array}\right] \begin{array}{c}
\text { Using } \\
\text { homogeneous } \\
\text { coordinates }
\end{array} \\
\mathrm{H}_{\mathrm{E}}^{-1}\left[\begin{array}{c}
\mathrm{X}^{\prime} \\
1
\end{array}\right] & =\left[\begin{array}{c}
\mathrm{X} \\
1
\end{array}\right]
\end{aligned}
\]

Use this instead of a general \(4 \times 4\) matrix inverse
\[
\text { where } \mathrm{H}_{\mathrm{E}}^{-1}=\left[\begin{array}{cc}
\mathrm{R}^{\top} & -\mathrm{R}^{\top} \mathrm{t} \\
\mathrm{0}^{\top} & 1
\end{array}\right]
\]

An inverse Euclidean transformation is also a Euclidean transformation

\section*{Composition of transformations}
- Compose geometric transformation by multiplying \(4 \times 4\) transformation matrices

Composition of two transformations
\[
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{X}^{\prime} \\
1
\end{array}\right]=\mathrm{H}_{1}\left[\begin{array}{l}
\mathrm{X} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
\mathrm{X}^{\prime \prime} \\
1
\end{array}\right]=\mathrm{H}_{2}\left[\begin{array}{c}
\mathrm{X}^{\prime} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
\mathrm{X}^{\prime \prime} \\
1
\end{array}\right]=\mathrm{H}_{2} \mathrm{H}_{1}\left[\begin{array}{c}
\mathrm{X} \\
1
\end{array}\right]}
\end{aligned}
\]

Composition of \(n\) transformations
\[
\left[\begin{array}{c}
\mathbf{X}^{(n)} \\
1
\end{array}\right]=\mathrm{H}_{n} \mathrm{H}_{n-1} \cdots \mathrm{H}_{2} \mathrm{H}_{1}\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
\]

Order of matrices is important!
Matrix multiplication is not (in general) commutative

\section*{Transforming normal vectors}
- Tangent vector \(\mathbf{v}\) at surface point \(\mathbf{X}\) is orthogonal to normal vector \(\mathbf{n}\) at \(\mathbf{X}\)
\[
\mathbf{v}^{\top} \mathbf{n}=\mathbf{n}^{\top} \mathbf{v}=0
\]
- Transformed tangent vector and transformed normal vector must also be orthogonal
\[
\mathbf{v}^{\prime \top} \mathbf{n}^{\prime}=\mathbf{n}^{\prime \top} \mathbf{v}^{\prime}=0
\]

\section*{Transforming normal vectors}
- Tangent vector can be thought of as a difference of points, so it transforms the same as a surface point We are only concerned about
\[
\mathbf{v}^{\prime}=\mathrm{A} \mathbf{v}
\]
- Normal vector does not transform the same as tangent vector


How is \(\mathbf{M}\) related to \(\mathbf{A}\) ?

\section*{Transforming normal vectors}
- How is \(\mathbf{M}\) related to \(\mathbf{A}\) ?
\[
\begin{aligned}
\mathbf{v}^{\prime \top} \mathbf{n}^{\prime} & =0 \\
(\mathbf{A v})^{\top} \mathbf{M n} & =0 \\
\mathbf{v}^{\top} \mathbf{A}^{\top} \mathbf{M} \mathbf{n} & =0
\end{aligned}
\]
- Solve for \(\mathbf{M}\)
\[
\mathbf{v}^{\top} \mathbf{n}=0 \text { if } \mathrm{A}^{\top} \mathrm{M}=\mathrm{I}
\]
\[
M=\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}=A^{-\top}
\]
- Transform normal vectors using
\[
\mathbf{n}^{\prime}=\mathrm{A}^{-\top} \mathbf{n}
\]

\section*{Coordinate frames}
- In computer graphics, we typically use at least three coordinate frames
- Object (or Model) coordinate frame
- World coordinate frame
- Camera (or Eye) coordinate frame


World coordinates

\section*{Object (or Model) coordinates}
- Local coordinates in which points and other object geometry are given
- Often origin is the geometric center, on the base, or in a corner of the object
- Depends on how object is generated or used


Source: http://motivate.maths.org


World coordinates

\section*{World coordinates}
- Common reference frame for all objects in the scene
- No standard for coordinate frame orientation
- If there is a ground plane, usually \(X-Y\) plane is horizontal and positive \(Z\) is up
- Otherwise, X-Y plane is often screen plane and positive \(Z\) is out of the screen


World coordinates

\section*{Object (or Model) transformation}
- The transformation from object (or model) coordinates to world coordinates is different for each object
- Defines placement of object in scene
- Given by "model matrix" (model-to-world transformation) M


World coordinates

\section*{Camera (or eye) coordinates}
- Origin defines center of projection of camera (or eye)
- X-Y plane is parallel to image plane
- Z-axis is orthogonal to image plane


World coordinates

\section*{Camera (or eye) coordinates}
- The "camera matrix" defines the transformation from camera (or eye) coordinates to world coordinates
- Placement of camera (or eye) in world


World coordinates

\section*{Camera matrix}
- Given:


\section*{Camera matrix}
- Construct \(\mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}}, \mathbf{z}_{\mathbf{c}}\)


\section*{Camera matrix}
- Step 1: Z-axis
\[
z_{C}=\frac{e-d}{\|e-d\|}
\]
- Step 2: X-axis
\[
\boldsymbol{x}_{C}=\frac{\boldsymbol{u} \times \boldsymbol{z}_{C}}{\left\|\boldsymbol{u} \times \boldsymbol{z}_{C}\right\|}
\]
- Step 3: Y-axis
\[
\boldsymbol{y}_{C}=z_{C} \times x_{C}=\frac{u}{\|u\|}
\]
- Camera Matrix:
\[
\boldsymbol{C}=\left[\begin{array}{cccc}
\boldsymbol{x}_{C} & \boldsymbol{y}_{C} & \boldsymbol{z}_{C} & \boldsymbol{e} \\
0 & 0 & 0 & 1
\end{array}\right]
\]

\section*{Transforming object (or model) coordinates to camera (or eye) coordinates}
- Object to world coordinates: M
- Camera (or eye) to world coordinates: C

\section*{Use inverse of}

Euclidean
transformation
(slide 18) instead
of a general \(4 x 4\)
matrix inverse


The "view matrix" defines the transformation from world coordinates to camera (or eye) coordinates


World coordinates

\section*{Objects in camera (or eye) coordinates}
- We have things lined up the way we like them on screen
- The positive X -axis points to the right
- The positive Y -axis points up
- The positive Z-axis points out of the screen
- Objects to look at are in front of us, i.e., have negative \(Z\) values
- But objects are still in 3D
- Next step: project scene to 2D plane```

