Geometric transformations in 3D and coordinate frames

Computer Graphics CSE 167 Lecture 3

CSE 167: Computer Graphics

- 3D points as vectors
- Geometric transformations in 3D
- Coordinate frames

Representing 3D points using vectors

• 3D point as 3-vector

$$\mathbf{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

 3D point using affine homogeneous coordinates as 4-vector

$$\begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

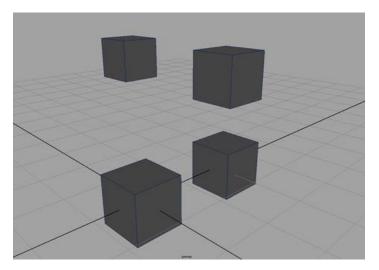
Geometric transformations

- Translation
- Linear transformations
 - Scale
 - Rotation
- 3D rotations
- Affine transformation
 - Linear transformation followed by translation
- Euclidean transformation
 - Rotation followed by translation
- Composition of transformations
- Transforming normal vectors

3D translation

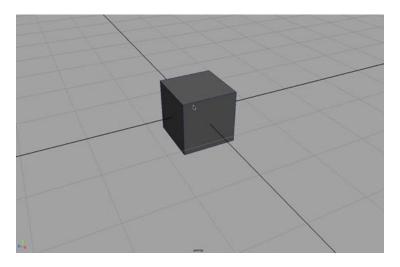
$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} t_X \\ t_Y \\ t_Z \end{bmatrix}$$
$$\mathbf{X}' = \mathbf{X} + \mathbf{t}$$
$$\begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$

Using homogeneous coordinates



3D uniform scale

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
$$\mathbf{X}' = s \mathbf{I} \mathbf{X}$$
$$\begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} = \begin{bmatrix} s \mathbf{I} & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} \qquad \begin{array}{c} \text{Using} \\ \text{homogeneous} \\ \text{coordinates} \end{array}$$

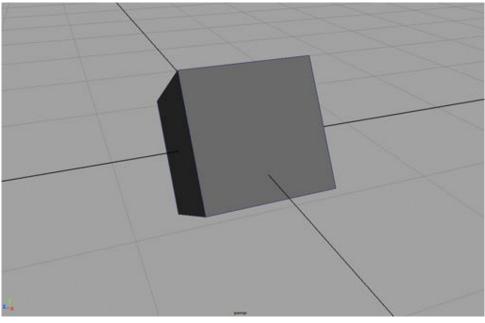


3D nonuniform scale

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \begin{bmatrix} s_X & 0 & 0 \\ 0 & s_Y & 0 \\ 0 & 0 & s_Z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
$$\mathbf{X}' = \operatorname{diag}(s_X, s_Y, s_Z) \mathbf{X}$$
$$\begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(s_X, s_Y, s_Z) & \mathbf{0} \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} \overset{\mathsf{Using}}{\underset{\text{homogeneous coordinates}}{}$$

3D rotation about X-axis

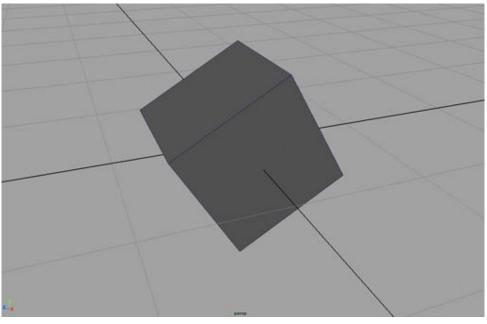
$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
$$\mathbf{X}' = \mathbf{R}_X(\alpha)\mathbf{X}$$



CSE 167, Winter 2020

3D rotation about Y-axis

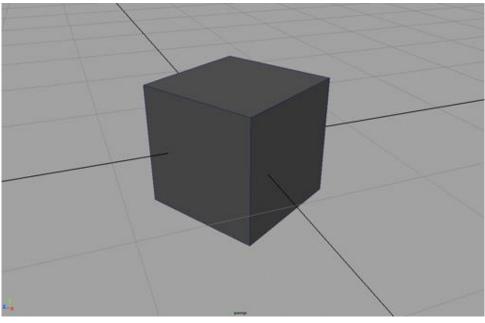
$$\begin{bmatrix} X'\\Y'\\Z' \end{bmatrix} = \begin{bmatrix} \cos\beta & 0 & \sin\beta\\ 0 & 1 & 0\\ -\sin\beta & 0 & \cos\beta \end{bmatrix} \begin{bmatrix} X\\Y\\Z \end{bmatrix}$$
$$\mathbf{X}' = \mathbf{R}_Y(\beta)\mathbf{X}$$



CSE 167, Winter 2020

3D rotation about Z-axis

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
$$\mathbf{X}' = \mathbf{R}_Z(\gamma)\mathbf{X}$$



CSE 167, Winter 2020

Rotation matrix

- A rotation matrix is a special orthogonal matrix
 - Properties of special orthogonal matrices

$$\mathbf{R}^{\top}\mathbf{R} = \mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$$
 $\mathbf{R}^{\top} = \mathbf{R}^{-1}$

The inverse of a special orthogonal matrix is also a special orthogonal matrix

Transformation matrix using homogeneous coordinates

 ^R
 0
 1

 $\det(\mathbf{R}) = +1$

3D rotations

- A 3D rotation can be parameterized with three numbers
- Common 3D rotation formalisms
 - Rotation matrix
 - 3x3 matrix (9 parameters), with 3 degrees of freedom
 - Euler angles
 - 3 parameters
 - Euler axis and angle
 - 4 parameters, axis vector (to scale)
 - Quaternions
 - 4 parameters (to scale)

3D rotation, Euler angles

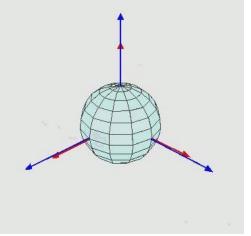
- A sequence of 3 elemental rotations
- 12 possible sequences

7-Y-7

X-Y-X Y-X-Y Z-X-Y X-Y-Z Y-X-Z Z-X-Z X-Z-X Y-Z-X Z-Y-X

X-7-Y Y-7-Y

Tait-Bryan angles, also



- Example: Roll-Pitch-Yaw (ZYX convention)
 - Rotation about X-axis, followed by rotation about Y-axis, followed by rotation about Z-axis $R = R_Z(\gamma)R_Y(\beta)R_X(\alpha)$ Composition of rotations

3D rotation, Euler axis and angle

- 3D rotation about an arbitrary axis
 Axis defined by unit vector
- Corresponding rotation matrix $\mathbf{R} = \cos(\theta)\mathbf{I} + \sin(\theta)[\hat{\mathbf{v}}]_{\times} + (1 - \cos(\theta))\hat{\mathbf{v}}\hat{\mathbf{v}}^{\top}$

Cross product revisited

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b} \qquad \text{where } [\mathbf{a}]_{\times} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$
$$\text{CSE 167, Winter 2020} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

3D affine transformation

Linear transformation followed by translation

A is linear transformation matrix

t is translation vector

$\mathbf{X'} = \mathtt{A}\mathbf{X} + \mathbf{t}$	
$\begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ 0^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$	
$\begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} = \mathtt{H}_{\mathrm{A}} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$	
where $\mathbf{H}_{A} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ 0^{\top} & 1 \end{bmatrix}$	

Using homogeneous coordinates

Notes:

1. Invert an affine transformation using a general 4x4 matrix inverse

2. An inverse affine transformation is also an affine transformation

Affine transformation using homogeneous coordinates

 $\begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$

A is linear transformation matrix

• Translation $\begin{bmatrix} I & t \\ 0^T & 1 \end{bmatrix}$

Linear transformation is identity matrix

• Scale $\begin{bmatrix} \operatorname{diag}(s_X, s_Y, s_Z) & 0 \\ 0^\top & 1 \end{bmatrix}$

- Linear transformation is diagonal matrix

• Rotation $\begin{bmatrix} R & 0 \\ 0^T & 1 \end{bmatrix}$

- Linear transformation is special orthogonal matrix

3D Euclidean transformation

Rotation followed by translation

$$\begin{split} \mathbf{X}' &= \mathtt{R}\mathbf{X} + \mathbf{t} \\ \begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} &= \begin{bmatrix} \mathtt{R} & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} & \mbox{Using homogeneous coordinates} \\ \begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} &= \mathtt{H}_E \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} \\ & \mbox{A Euclideat transformation transformation} \\ \end{split}$$

A Euclidean transformation is an affine transformation where the linear component is a rotation

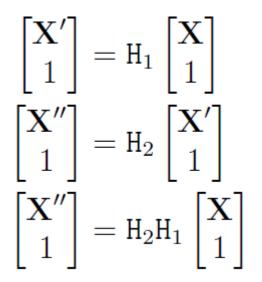
Inverse Euclidean transformation

Euclidean transformation $\mathbf{X}' = \mathtt{R}\mathbf{X} + \mathbf{t}$ $\mathbf{X}' - \mathbf{t} = \mathbf{R}\mathbf{X}$ $\mathbf{R}^{\top}(\mathbf{X}' - \mathbf{t}) = \mathbf{X}$ Inverse Euclidean transformation $\mathbf{R}^{\top}\mathbf{X}' - \mathbf{R}^{\top}\mathbf{t} = \mathbf{X}$ Using $\begin{vmatrix} \mathsf{R}^{\mathsf{'}} & -\mathsf{R}^{\mathsf{'}} \mathsf{t} \\ \mathsf{0}^{\mathsf{T}} & 1 \end{vmatrix} \begin{vmatrix} \mathbf{X}' \\ 1 \end{vmatrix} = \begin{vmatrix} \mathbf{X} \\ 1 \end{vmatrix}$ homogeneous coordinates $\mathbf{H}_{\mathrm{E}}^{-1} \begin{bmatrix} \mathbf{X}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$ An inverse Euclidean where $\mathbf{H}_{\mathrm{E}}^{-1} = \begin{bmatrix} \mathbf{R}^{\top} & -\mathbf{R}^{\top}\mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$ Use this instead of transformation a general 4x4 is also a Euclidean matrix inverse transformation

Composition of transformations

• Compose geometric transformation by multiplying 4x4 transformation matrices

Composition of two transformations



Composition of *n* transformations

$$\begin{bmatrix} \mathbf{X}^{(n)} \\ 1 \end{bmatrix} = \mathbf{H}_{n}\mathbf{H}_{n-1}\cdots\mathbf{H}_{2}\mathbf{H}_{1}\begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix}$$

Order of matrices is important! Matrix multiplication is **not** (in general) commutative

Transforming normal vectors

 Tangent vector v at surface point X is orthogonal to normal vector n at X

 $\mathbf{v}^{\top}\mathbf{n} = \mathbf{n}^{\top}\mathbf{v} = 0$

 Transformed tangent vector and transformed normal vector must also be orthogonal

 $\mathbf{v}^{\prime \top} \mathbf{n}^{\prime} = \mathbf{n}^{\prime \top} \mathbf{v}^{\prime} = 0$

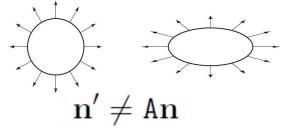
Transforming normal vectors

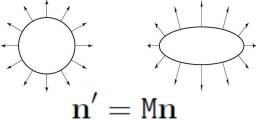
Tangent vector can be thought of as a difference of points, so it transforms the same as a surface point
 We are only concerned about

$$\mathbf{v}' = A\mathbf{v}$$

We are only concerned about direction of vectors, so do not add translation vector

 Normal vector does not transform the same as tangent vector





How is **M** related to **A**?

Transforming normal vectors

• How is **M** related to **A**? $\mathbf{v}^{\prime \top} \mathbf{n}^{\prime} = 0$ $(\mathbf{A}\mathbf{v})^{\top} \mathbf{M} \mathbf{n} = 0$ $\mathbf{v}^{\top} \mathbf{A}^{\top} \mathbf{M} \mathbf{n} = 0$

$$\mathbf{v}^{\mathsf{T}}\mathbf{n} = 0$$
 if $\mathbf{A}^{\mathsf{T}}\mathbf{M} = \mathbf{I}$

• Solve for M

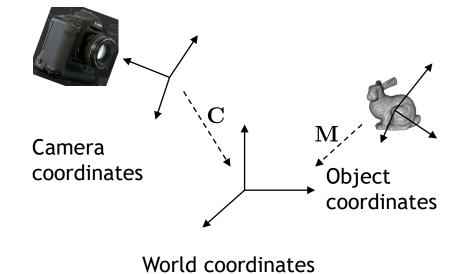
$$\mathbf{M} = (\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top} = \mathbf{A}^{-\top}$$

• Transform normal vectors using

$$\mathbf{n}' = \mathbf{A}^{- op} \mathbf{n}$$

Coordinate frames

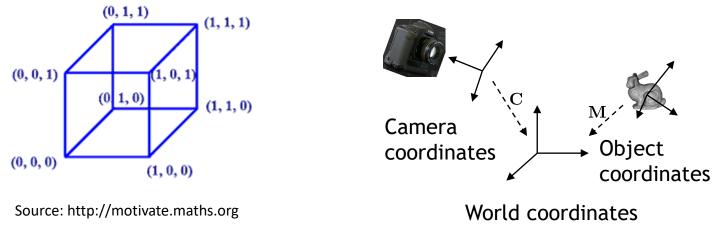
- In computer graphics, we typically use at least three coordinate frames
 - Object (or Model) coordinate frame
 - World coordinate frame
 - Camera (or Eye) coordinate frame



CSE 167, Winter 2020

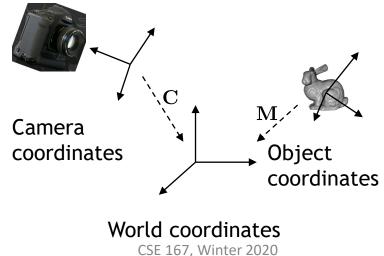
Object (or Model) coordinates

- Local coordinates in which points and other object geometry are given
- Often origin is the geometric center, on the base, or in a corner of the object
 - Depends on how object is generated or used



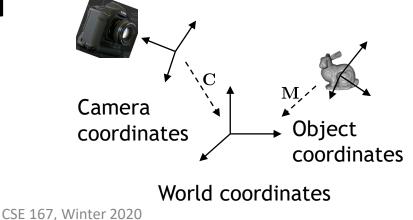
World coordinates

- Common reference frame for all objects in the scene
- No standard for coordinate frame orientation
 - If there is a ground plane, usually X-Y plane is horizontal and positive Z is up
 - Otherwise, X-Y plane is often screen plane and positive Z is out of the screen



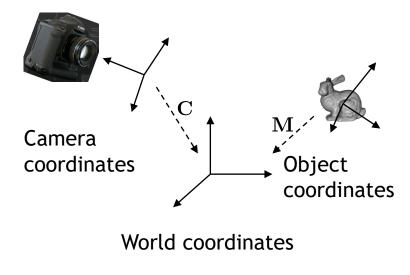
Object (or Model) transformation

- The transformation from object (or model) coordinates to world coordinates is different for each object
- Defines placement of object in scene
- Given by "model matrix" (model-to-world transformation) M



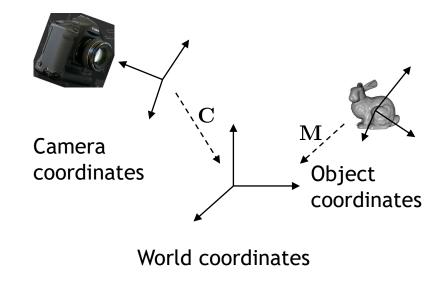
Camera (or eye) coordinates

- Origin defines center of projection of camera (or eye)
- X-Y plane is parallel to image plane
- Z-axis is orthogonal to image plane



Camera (or eye) coordinates

- The "camera matrix" defines the transformation from camera (or eye) coordinates to world coordinates
 - Placement of camera (or eye) in world

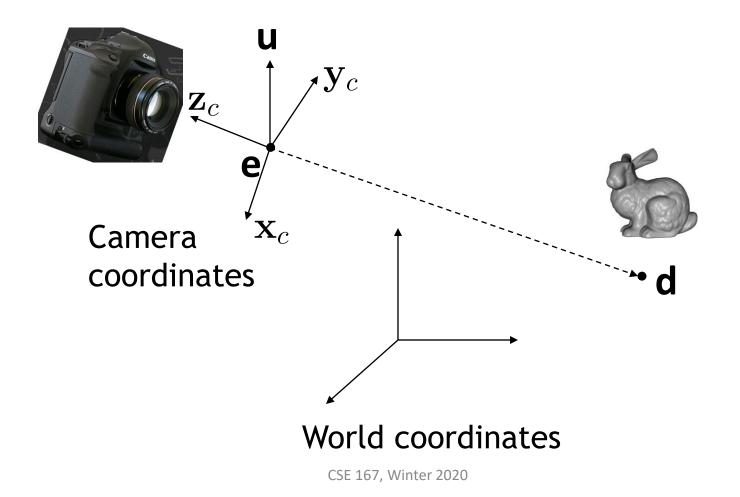


Camera matrix

Given: lacksquare- Center point of projection e U - Look at point d Camera up vector u e Camera coordinates Ω World coordinates

Camera matrix

• Construct **x**_c, **y**_c, **z**_c



Camera matrix

• Step 1: Z-axis $z_C = \frac{e-d}{\|e-d\|}$

• Step 2: X-axis $x_C = \frac{u \times z_C}{\|u \times z_C\|}$

• Step 3: Y-axis $y_C = z_C \times x_C = \frac{u}{\|u\|}$

• Camera Matrix: $C = \begin{bmatrix} x_c & y_c & z_c & e \\ 0 & 0 & 0 & 1 \end{bmatrix}$

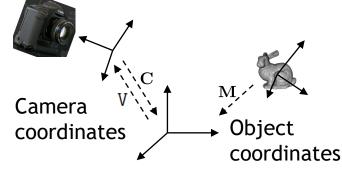
Transforming object (or model) coordinates to camera (or eye) coordinates

- Object to world coordinates: M
- Camera (or eye) to world coordinates: C

Use inverse of Euclidean transformation (slide 18) instead of a general 4x4 matrix inverse

 $\mathbf{X}' = \mathbf{C}^{-1}\mathbf{M}\mathbf{X}$ $\mathbf{X}' = \mathbf{V}\mathbf{M}\mathbf{X}$, where $\mathbf{V} = \mathbf{C}^{-1}$

> The "view matrix" defines the transformation from world coordinates to camera (or eye) coordinates



World coordinates

Objects in camera (or eye) coordinates

- We have things lined up the way we like them on screen
 - The positive X-axis points to the right
 - The positive Y-axis points up
 - The positive Z-axis points out of the screen
 - Objects to look at are in front of us, i.e., have negative Z values
- But objects are still in 3D
- Next step: project scene to 2D plane