Geometrically Adaptive Numerical Integration

Brian Luft*
Vadim Shapiro'
University of Wisconsin-Madison

Abstract

Numerical integration over solid domains often requires geomet-
ric adaptation to the solid’s boundary. Traditional approaches em-
ploy hierarchical adaptive space decomposition, where the integra-
tion cells intersecting the boundary are either included or discarded
based on their position with respect to the boundary and/or statis-
tical measures. These techniques are inadequate when accurate in-
tegration near the boundary is particularly important. In boundary
value problems, for instance, a small error in the boundary cells can
lead to a large error in the computed field distribution.

We propose a novel technique for exploiting the exact local geom-
etry in boundary cells. A classification system similar to marching
cubes is combined with a suitable parameterization of the boundary
cell’s geometry. We can then allocate integration points in bound-
ary cells using the exact geometry instead of relying on statistical
techniques. We show that the proposed geometrically adaptive in-
tegration technique yields greater accuracy with fewer integration
points than previous techniques.

CR Categories: G.1.4 [Quadrature and Numerical Differenti-
ation]: Adaptive and iterative quadrature; J.6 [Computer-Aided
Engineering]: Computer-aided design (CAD) G.4 [Mathematical
Software]: Algorithm design and analysis

Keywords: numerical integration, implicit function, quadrature,
adaptive integration, meshfree analysis

1 Introduction

Many problems in physics and engineering require computation of
integrals. Computation of surface areas and mass properties, such
as weight, center of gravity, and moments of inertia, have been
studied widely in solid modeling [Lee and Requicha 1982b; Lee
and Requicha 1982a; Sarraga 1982; Cattani and Paoluzzi 1990;
Gonzalez-Ochoa et al. 1998]. The important feature of all such
computations is that they deal with the integration of a priori known
functions over solid domains and/or their boundaries. Other phys-
ical quantities, such as work, energy, stiffness, and their sensitiv-
ities may involve integrating arbitrary a priori unknown functions
— that is, functions constructed at run time — over solid domains.
Engineering analysis applications rely on such integration for as-
sembling response matrices and for computing integral properties
of the physical fields being modeled. Most realistic shapes in engi-
neering are too complex for symbolic integration of such functions,
and so numerical methods for integration have to be used.

*e-mail: brianluft@mac.com
Te-mail:vshapiro @engr.wisc.edu
te-mail:igor.tsukanov @fiu.edu

Igor Tsukanov?
Florida International University

In contrast to symbolic methods, numerical integration gives an
approximate value of the integral. Volume integration in three-
dimensional geometric domains can be performed by using lat-
tice rules — sequential application of one-dimensional integration
rules [Press et al. 1992] which can be reduced to computation of a
weighted sum of the integrand’s values computed at the integration
nodes:

n n n
///fdQ:ZU)ZZwJ Zwkf(xi,yj,zk). (1)
3 i=1 j=1 k=1
The location and number of integration nodes (x;, y;, 2%) are based
on assumption that the integrand can be sufficiently accurately ap-
proximated by a polynomial of some degree. Thus, the nature of
the integration error is multifactorial. It depends on the integrand
f, geometry €2, as well as the type and the order of the integra-
tion rule. In addition, the integration error includes an unavoidable
roundoft error because numerical integration algorithms operate on
floating-point numbers. For many applications, integration accu-
racy is critical. For example, in finite element analysis, integration
error may lead to ill-conditioned elements of an algebraic system
and propagate further into the solution of an engineering analysis
problem. In order to keep the integration error under control and
guarantee the desired accuracy, integration algorithms have to adapt
to both the integrand and the geometry.

When the geometric domain (2 is a regular n-dimensional interval
(a “box”), adaptivity to the integrand is well understood and can be
achieved by choosing an appropriate integration rule and number
of integration nodes. If a priori information about the integrand is
unavailable, integration rules that allow a posteriori error estima-
tion [Berntsen et al. 1991; Press et al. 1992; Kronrod 1965; Joe and
Sloan 1993] can be used. If the integration error exceeds the speci-
fied value, the integration is performed using a increased number of
integration nodes. However, increasing the order of the integration
rule is not always a good strategy, especially if the integrand has
singularities inside the integration domain. Alternatively, divide-
and-conquer approach can be applied: if desired accuracy is not
achieved for the given maximal number of integration points, the
interval is subdivided and the integration procedure is recursively
applied to its parts [Piessens et al. 1983; Cools and Maerten 1998;
Berntsen et al. 1991].

When the integration domain €2 is not an n-dimensional box, allo-
cation of integration nodes is no longer straightforward and is the
cause for additional errors. Even though these geometry-induced
errors can can be comparable or even sometimes greater than the
errors caused by the approximate integrand, adaptation to geom-
etry of the integration domain is not widely described in the lit-
erature. Among the implementations supporting multiple integra-
tion, the ability to use complex integration domains is quite uncom-
mon. Integration domains are specified by an axis-aligned bound-
ing box, requiring complex geometries to be specified using a Heav-
iside function in the integrand (we will discuss this approach in the
Section 2). This reduces problem of geometric adaptivity to the
adaptivity to the integrand. For comparison between algorithms, we
compute the volume of two unit spheres side-by-side. The number
of integration nodes used is varied to see the effect on the relative
error in the integral value. We compare the geometrically adap-

tive algorithm, which is proposed in this paper and described in
detail in Section 3, against four standard integration packages. The
DCUHRE program described in [Berntsen et al. 1991] uses an 11-
degree integration rule, and error approximation to determine its
pattern of subdivision. The RADMUL program from the CERN
Program Library is a modified version of the algorithm described in
[Genz and Malik 1980], which is used by Mathematica’s Nintegrate
function. It uses a 7-degree integration rule and an adaptive subdi-
vision strategy. Matlab’s QUADL function uses adaptive Gauss-
Lobatto quadrature as described in [Gander and Gautschi 2000].
Finally, the GAULEG procedure defined in [Press et al. 1992] im-
plements nonadaptive integration over a simple lattice of Gauss-
Legendre points. Figure 1 shows that the geometrically adaptive
strategy presented in this paper offers improved accuracy for a given
number of integration nodes than preexisting adaptive integration
codes.

10

1

0.4
001 A V/\\/\/
0001 f VA%VPA"

0.0001 \/\,\

/\/\
VAT WMQ\%%

0.000001

Relative error %

0 20 40 60 80 100 120
Number of integration points (million)

‘ RADMUL — QUADL — GAULEG — DCUHRE —GeometncallyAdaplive‘

Figure 1: Accuracy comparison between existing implementations
of volume integration and the proposed geometrically adaptive in-
tegration technique

This paper fills the gap by focusing entirely on geometrically adap-
tive integration. In particular, we explain inadequacies of earlier ap-
proaches and propose a computationally efficient method for three-
dimensional geometrically adaptive volume integration that can be
implemented in any system supporting standard queries. Our ap-
proach uses the original geometry of the integration domain repre-
sented by a characteristic function. Using this general description
of the geometry, we can perform volume integration over a variety
of geometric representations including Boundary Representation,
CSG, meshed and polygonal geometric models.

Outline The rest of the paper is organized as follows: Section 2
reviews current techniques for handling the geometry of the inte-
gration domain and explains their weaknesses. Section 3 describes
the proposed geometrically adaptive integration technique in detail.
Some implementation issues are discussed in Section 4. In partic-
ular, we explain how our integration approach can be used to inte-
grate over CAD geometric models as well as different integration
modes which can be used for multiple integration over the same ge-
ometric model. Numerical examples in Section 5 demonstrate com-
putational properties of the proposed integration technique. Section
6 concludes the paper and explains how the presented geometrically
adaptive integration can be improved.

2 Background and related work

When the geometric domain €2 is irregularly shaped, careless or
improper allocation of integration nodes may result in substantial
accuracy degradation. A general principle informally suggested in

[Press et al. 1992] and illustrated in Figure 2 is aimed to guarantee
that all integration nodes are located inside €2 by scaling the one-
dimensional lattice rules to fit 2. However, it is not clear how to
apply this principle in practice, or how to estimate and to control
the resulting integration errors.

Figure 2: One-dimensional lattice rules are applied along the ver-
tical line segments that are themselves are allocated using the lat-
tice rule in the horizontal direction.

In order to achieve the desired integration accuracy, some form of
geometry adaptation has to be employed. There are two well known
ways to adapt to the geometry of the integration domain: (1) use hi-
erarchical space decomposition methods; and (2) allocate integra-
tion points within an extended domain and use known integrand-
adaptive techniques to adapt to the geometry.

FTT T FTTTY P

FTT T
SuE
PTTT
T
FIT TS
S

SuEs S SuE
(a) (b) (©)

Figure 3: Integration in boundary cells: (a) all boundary cells are
excluded from the integration; (b) all boundary cells are used for
the integration; (c) boundary cells are randomly excluded from the
integration.

The first approach — using hierarchical space decompositions such
as quad/octtrees — has been used widely in solid modeling for com-
puting mass properties [Lee and Requicha 1982a], as well as for
computing integrals in computational mechanics [Klaas and Shep-
hard 2000; Laguardia et al. 2005]. The simplicity and good com-
putational properties made these geometric representations attrac-
tive for a variety of applications. Octree representation can also be
viewed as a multiresolution representation where the level of geo-
metric details can be easily controlled by the size of the smallest
cell or by a subdivision level. With respect to the given geometric
domain, octree cells fall into two groups: internal cells completely
situated inside the geometric domain, and boundary cells which en-
close portions of the domain’s boundary. The simple geometric
shape of the internal cells allows direct application of the lattice
rules. The integration error in internal cells is completely deter-
mined by the integrand, and by the type and order of the numerical
integration rule used to compute the value of an integral. In con-
trast, integration in boundary cells introduces additional numerical
errors which are caused by the discrepancy of the octree with the
geometry of the integration domain. This makes the volume inte-
gration in the boundary cells challenging.

Recursive subdivision of the boundary cells may be used to adapt to
the given geometry domain €2, but sooner or later the integrals over
the boundary cells must be computed. There are several strategies
for deciding on how to treat the boundary cells [Sarraga 1982]: (1)
include all boundary cells and treat them as internal cells, (2) ex-
clude boundary cells from the integration, and (3) randomly include
and exclude boundary cells as shown in Figure 3. It is well known
that the first two approaches suffer from low integration accuracy

(Figure 4) because complete inclusion or exclusion of the bound-
ary cells introduces significant geometric error. The third approach
provides better accuracy by balancing inclusion and exclusion of
the boundary cells[Sarraga 1982]. Other criteria can be used to de-
cide whether a boundary cell should be included or excluded. For
example, if the integration domain occupies more than a half of a
boundary cell, it is used for integration; otherwise the cell is ig-
nored. A serious potential problem with all such approaches is that
the integrand may not be defined in the boundary cells outside of
the domain €2. Furthermore, even if the balance between included
and excluded cells is well maintained, the integration accuracy still
remains relatively low. And last, but not least, because geometric
adaptivity is achieved by subdivision of all boundary cells, this ap-
proach is computationally expensive. Each subsequent subdivision
of the boundary cell leads to an eight-fold increase in the number
of integration points allocated to this cell.

1000 1

100

Error, %

iiw

0.1

0.01 T T T T T T 1
0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000
Number of integration points

—4&— Exclude boundary cells
—/x— Randomly include

—— Include boundary cells
= Integration using Heaviside function

Figure 4: Accuracy of volume computation of a unit sphere using
different integration techniques.

- T~D

(a) (b)

Figure 5: (a) Integration domain. (b) Extended integration do-
main; white dots illustrate locations of the integration points out-
side of the geometric domain.

Another approach to geometric adaptation transforms the integra-
tion of function f over any domain €2 into integration over an “ex-
tended” regular domain D D 2 of another function that is equal
to f in © and vanishes on all other points of D. The approach is
illustrated in Figure 5(b) and appears to be popular in the compu-
tational mechanics literature [Osher and Fedkiw 2003; Belytschko
et al. 2003a; Kumar and Lee 2006]. It is based on the ability to
construct for a given geometric domain €2 a characteristic function
0 which is unity inside the domain and zero outside:

= 0 XEG @

For solid models, such a function can be defined using a point mem-
bership test: if a geometric engine reports that the given point lies

,;\/5‘5 0.5
-0.2

(b)

Figure 6: Polynomial interpolation of a Heaviside function: (a)
through 5 points; (b) through 21 points.

inside the domain the value of a characteristic function is set to one.
Otherwise it is zero. When the integration domain is described by
an inequality w(x) > 0, the characteristic function can be defined
via a Heaviside function §(x) = H(w(x)). Using the characteris-
tic function, a volumetric integral over a geometric domain {2 can
be transformed into an equal integral over the extended domain D
that encloses €2 (Figure 5):

///f(X)dQ:///f(X)5(X)dV)

Integrals in the both sides of this expression are mathematically
equivalent, and the problem of geometric adaptation is effectively
transformed into the already solved problem of integrand adapta-
tion.

But the two sides of the equation are different numerically. Con-
sider the integrand in the right hand side of the expression (3). Be-
cause the characteristic function § is discontinuous on the domain’s
boundary 02, the integrand f (x) ¢ (x) inherits this discontinuity.
If this function is numerically integrated using, for example, Gauss
integration rules, accuracy of the result will be questionable. It is
well known that numerical integration rules are derived based on
the assumption that the integrand is a polynomial of some degree
[Press et al. 1992]. For instance, n point Gauss integration rule
gives accurate results for all polynomials up to degree 2n — 1. If
the same integration rule is applied to a non-polynomial function,
it gives a value of the integral of a polynomial approximation to
the integrand. Thus, the accuracy of the approximation of the in-
tegrand by polynomials determines the integration accuracy. It is
also well known that polynomial approximations of discontinuous
functions tend to oscillate in the neighborhood of the discontinu-
ity. For example, plots in Figure 6 illustrate polynomial approx-
imation of a Heaviside function by a polynomials of 4th (Figure
6(a)) and 20th (Figure 6(b)) degree on the segment [—1, 1]. If we
raise the degree of an approximating polynomial, the amplitude of
oscillations raises as well. This implies that application of Gauss
integration rules to discontinuous integrand functions cannot pro-
vide sufficiently accurate results. Several authors [Osher and Fed-

kiw 2003; Kumar and Lee 2006; Belytschko et al. 2003b; Wang and
Wang 2006] suggested to construct a characteristic function ¢ using
smoothed step functions instead of the Heaviside function. Smooth-
ing reduces oscillations of the approximating polynomials, but it
also affects the integrand in the boundary’s neighborhood which,
in turn, leads to accuracy degradation. Integration accuracy can be
improved by the divide-and-conquer approach which we mentioned
earlier in this Section. But, unfortunately, numerous boundary cell
subdivisions make this geometrically adaptive approach computa-
tionally very expensive [Kumar and Lee 2006].

Several other approaches to geometrically adaptive integration of
two-dimensional domains have been reported [Stroubolis et al.
2001; Hollig 2003; Rvachev et al. 1994; Tsukanov and Shapiro
2002]. In [Hollig 2003], the author proposed to impose a Cartesian
grid over a two-dimensional geometric domain such that integra-
tion in boundary cells is performed over smoothly deformed rect-
angles. The approach described in [Rvachev et al. 1994] proposes
new integration rules for boundary cells classified by the standard
marching cubes algorithm, and a geometrically adaptive extension
of this approach was proposed in [Tsukanov and Shapiro 2002]. In
this paper we formulate key principles for geometrically adaptive
integration and generalize approaches described in [Rvachev et al.
1994; Tsukanov and Shapiro 2002] to 3D. We also describe soft-
ware implementation and present experimental evidence of superior
performance of the proposed integration approach.

N

F—

(a) (b)

Figure 7: Placement of the integration nodes using (a) Cartesian
and (b) polar coordinates

1.00E+02 -

1.00E+00 \m |
= 100802 23 4
2 1.00E-04
o
§ 1.00E-06
‘g 1.00E-08
2
£ 1.00E-10

1.00E-12 —74.:l:l:l=.:.zl;

1.00E-14 -

Degree of a Gauss integration rule
‘ —— Cartesian —— Polar ‘

Figure 8: Integration error of numerical evaluations of the inte-
grals (5) and (6)

3 Adaptive parameterization

3.1 Importance of Coordinate System

In this paper we propose a new geometrically adaptive integration
technique which can be considered an adaptive parameterization of

Q. Tt is built on the combination of two ideas: (1) convenient space
parameterization of the boundary integration cells and (2) hierar-
chical space decomposition. What does parameterization have to
do with geometric adaptation? It turns out that using different co-
ordinate systems for computing the same integral numerically we
obtain results with different accuracy. Let us illustrate this fact on
a simple example. The area of a quarter of a circle shown in Figure
7 can be defined as an integral of a unity function over a geometric

domain Q:
I= // 1dQ2. “)

Q

This integral can be evaluated analytically in Cartesian coordinates

1

L VisaE
I://ldQ:/ / 1dydm:/ 1fx2dx:£)
Q 0 0

0

and in polar coordinates:

71 Pl
I://ldﬂ://pdpdqb:/%dqﬁ:%. 6)
Q 0 0 0

In both instances we obtained the same result, which is not sur-
prising. However, numerical evaluation of the integrals (5) and
(6) using, for example, Gauss integration rules, gives different re-
sults. Graph in Figure 8 illustrates a sufficiently high integration
error when integral (4) is computed in Cartesian coordinates (Fig-
ure 7(a)). The integration error cannot be reduced by increasing the
number of integration points. In contrast, numerical evaluation of
the integral (4) in polar coordinates results in a negligibly small in-
tegration error. This difference in integration accuracy can be easily
explained. Numerical evaluation of the integral (4) in Cartesian co-

1
ordinates is reduced to computation of the integral f V1 — z2dz.
0

Singularity of the integrand at x = 1 determines significant in-
tegration error when Gauss integration rules are used. When the
integral (4) is evaluated in polar coordinates, the singularity in the
integrand disappears and numerical integration produces result with
almost no error (Figure 8). This example illustrates that the integra-
tion error depends on the space parameterization of the underlying
integration domain. Suitable parameterization can eliminate singu-
larities in the integrand and, therefore, reduce the integration error.

Finding a good parameterization for an arbitrary shaped geomet-
ric domain 2 appears to be a difficult problem, but the application
of hierarchical space decomposition reduces the parameterization
problem to parameterization of only those cells that intersect the
boundary of 2. Interior cells are integrated by directly applying
the usual lattice rules to allocate nodes throughout the cell. Cells
that intersect the boundary of the integration domain require more
work and attention, because numerical integration in these cells in-
troduces a “geometric” part of the integration error. Now, our goal
is to find for each boundary cell an appropriate space parameteriza-
tion that reduces this error.

3.2 Geometric interpretation of lattice rules

Let ¢ be a boundary cell, and X = ¢ N €2 is the portion of €2 con-
tained inside the boundary cell c. Because all lattice rules stem
from repeated application of the one-dimensional integration over a
connected closed interval, they apply only if X is homeomorphic to
an n-dimensional box (or equivalently, an n-ball). We shall assume

this to be the case, but we will discuss how this requirement may be
enforced in practice in Section 3.4.

As our example suggests, the choice of a proper space parameter-
ization of a boundary cell depends on how the cell intersects the
domain’s boundary 0f2. More specifically, the existence of singu-
larity may be determined by examining the geometry (e.g., the an-
gle) of intersection between Oc and 0f2. This approach appears to
be impractical when high accuracy of integration demands process-
ing of large number of boundary cells. Furthermore, we are more
interested in the behavior of the numerical approximation, than in
the details of the original geometry. The repeated application of
one-dimensional application of the lattice rule in expression (1) has
a simple geometric interpretation as is evident from Figure 7. If
z;, % = 1,2, 3 are the coordinates used to parameterize X, then for
any fixed values of x; and x2, the integration procedure reduces to
allocating integration nodes on one-dimensional interval spanned
by the values of x3. Each of this intervals correspond to a line
segment, and every choice of coordinate system for X implicitly
parameterizes the integral over X in terms of one-dimensional lat-
tice rules along the corresponding set of line segments. Thus, in
Figure 7, the parameterizing the quarter of a circle in Cartesian sys-
tem implies that the one-dimensional lattice rules are applied on a
set of vertical line segments, while polar coordinate system implies
that the lattice rules are applied to a set of rays emanating from the
origin. In case of the Cartesian system, the rays become shorter and
shorter, eventually becoming tangent to the boundary of X. By con-
trast, in the polar coordinate system, all rays intersect the boundary
of X transversally.

Based on the above observations, we postulate that a good choice of
coordinate system will allocate the integration rays to (1) maximize
the number of rays that do not intersect 9€2; and (2) increase the
likelyhood that all rays intersect 02 transversally and only once.
These principles are clearly heuristic and do not provide any the-
oretical guarantees; but our implementation and experiments indi-
cate that the resulting practical classification and parameterization
of the boundary cells yields a geometrically adaptive integration
that is superior to previous approaches.

3.3 Classification of boundary cells

The boundary integration cell X = ¢ N Q can be parameterized
using Cartesian, cylindrical or spherical coordinate systems. The
usual Cartesian lattice rules are applied when ¢ C €2; in this case,
X is the interior cell, none of the integration rays intersect 92 and
no geometric computations are needed. Cartesian coordinates can
be also used to integrate over the cells X that are “mostly inside”
the domain €2. More precisely, if at least one of the faces Y of X
is fully contained in €2, any choice of the coordinate system can be
used to parameterize face Y, since none of the rays lying in this
face intersect 9N2. Choosing the Cartesian coordinate system for
all three variables, allocation of the integration nodes starts with
imposing an initial N X N grid on the interior face according to
the chosen Gauss integration rule. The nodes of this grid are the
starting points for the rays which extend to 2. The same lattice
rule is used to allocate integration nodes along each ray. See Figure
9.

If no faces of X are interior to €2, we choose a different type of
coordinate system that would allow us to use all edges of X that
are interior to €2, while increasing the likelyhood that the rest of in-
tegration rays intersect OS2 transversally. If there is only one such
internal edge (Figure 10), it is convenient to parameterize the space
and perform the integration using cylindrical coordinates. As pre-
viously, the parameterizing procedure is based on the same ray-
boundary intersection principle. First, N starting points are allo-

Figure 9: Integration using Cartesian coordinates: most cell’s ver-
tices lie inside the integration domain

cated between the two interior vertices, according to the Gauss in-
tegration rule. Each of these points defines a section of X that is
parameterized using the polar coordinates, analogously to parame-
terization of the quarter of a circle. In each section, from each of
these points, /N coplanar rays are shot until intersection with 0f2.
The rays are arranged radially around the initial edge, according to
the chosen Gauss rule within the 90 ° span between the two adja-
cent cell faces.

Figure 10: Integration using cylindrical coordinates

If the only one vertex of a cell is inside the domain, the boundary
cell X can be parameterized using a spherical coordinates. The
vertex becomes the sole starting point for N X N rays. As the
cylindrical parameterization used Gauss nodes to determine 6, the
spherical technique uses them to create a “grid” of ¢ and 6 ray
angles. Each ray is intersected with the boundary and used to place
the integration nodes between the cell’s vertex and the intersection
point. Spherical coordinates are also used when one corner is inside
the domain as well as the three corners adjacent to it as it is shown

in Figure 11.

Figure 11: Integration using spherical coordinates

The above rules are proposed in the spirit of postulated principles
aimed to increase the accuracy of numerical integration. While
our experiments (see below) support the expected improved per-
formance, the proposed rules provide no theoretical guarantees and
are not unique. In particular, to assure that every ray intersect the
boundary 0X only once, X must be star-shaped in the case of the
spherical coordinate system, monotone in the case of Cartesian co-
ordinate system, and both in the case of cylindrical coordinate sys-
tem. There is no reason to expect that this is always the case; how-
ever multiple ray intersections are readily detected and in this case
X is subdivided again.

3.4 Marching cubes and small features

A reader may have noticed that the classification of the boundary
cells closely resembles the classification of the boundary cells in

the classical marching cube algorithm [Lorensen and Cline 1987b].
Under suitable assumption about absence of small features, all
boundary cells are classified by checking which of the eight vertices
of the cell are inside the integration domain and which are outside.
With eight vertices we can obtain 256 different intersection cases
which can be reduced by symmetry transformations to only 8 basic
cases [Lorensen and Cline 1987b]. It is also well known that some
of the cases are ambiguous and, therefore, cannot be used for vol-
ume integration. Geometry of the region of the integration domain
that lies inside such boundary cell cannot be determined from just
the point membership of the eight corners. For instance, in Figure
12 it is unclear whether the geometry in this cell is a contiguous
strip between the two corners that are interior to the geometry, or
whether the geometry is two disconnected islands. These and other
ambiguities have been studied in literature and can be avoided when
a number of sampling and topological conditions are satisfied (for
example, see [Varadhan et al. 2004]). When the conditions are not
satisfied, ambiguous cells must be detected and subdivided to sim-
plify the geometry in each cell, until the ambiguities are resolved or
the size of cell is consistent with the acceptable errors in integration.

?
——
| ?
/. e
(a) (b)

Figure 12: Boundary integration cells: (a) unambiguous; (b) am-
biguous

Testing values of a characteristic function at cell’s vertices is a rel-
atively coarse geometry identification method. If a geometric fea-
ture or a void is smaller than a cell, it may not be discovered by
this method. Figure 13(a) illustrates this situation: the void is com-
pletely situated inside the cell. Since all vertices of a cell are inside
the geometric domain, this void is missed during the allocation of
the integration nodes, and, as a result, the integration accuracy will
deteriorate. There are several ways to detect small geometric fea-
tures and voids.

(a) (b)

Figure 13: Small feature detection by increasing grid resolution:
(a) missed feature; (b) detected feature

(a) (b) (©

Figure 14: Small feature detection by (a) imposing a non-uniform
grid; (b) imposing a uniform grid within a cell; (c) sampling ran-
dom points

If the user knows that small features exist in the domain geometry,

an initial grid with tighter spacing (Figure 13(b)) can be provided
to ensure a cell corner intersects the feature. This is a simple way
to globally ensure that features down to a given size are detected.
However, because the increased grid resolution applies everywhere
in the domain, including regions where it is not needed, it can un-
necessarily drive up the computational cost. This approach can be
optimized if an additional information about location of small ge-
ometric features is available. In this case, as it is illustrated by
Figures 14(a) and (b), a non-uniform initial grid can be used, or a
denser grid is imposed within a cell.

Checking the values of a characteristic function at randomly dis-
tributed points offers another alternative. When totally interior or
totally exterior cells are encountered, the characteristic function
is computed at some randomly-placed points, as shown in Figure
14(c), to ensure the cell does not contain any undetected voids or
features. If a such region is detected, the cell is subdivided and in-
tegration is retried on each of the subcells. The user can specify the
number of random points to check in each cell, and increasing that
number increases the likelihood of catching small features. Ran-
dom points are a good safeguard against missing small features, but
sampling the characteristic function for every random point and for
every interior or exterior cell can be computationally expensive.

When the integration domain €2 is provided by a solid modeling
kernel such as Parasolid, the engine’s native cube-boundary inter-
section function can be used to determine whether a cell c is truly
completely interior or exterior. If cell X = ¢ N 2 contains any
interior voids, it is subdivided.

4 Implementation issues

We have implemented the described geometrically adaptive inte-
gration technique in a C++ class called Volumelntegrator. The core
of the integration procedure is the set of C++ functions which pa-
rameterize a given boundary cell. Each type of parameterization —
Cartesian, cylindrical, and spherical — is implemented by a sep-
arate, generalized function which uses its arguments to tailor the
parameterization to the specific boundary intersection case. For in-
stance, the spherical parameterization is used when only one of the
eight vertices is inside the geometry. To handle each of these cases,
the parameterization function takes as input the vertex which is in-
side, and the range of 8 and ¢ values which will ensure that nodes
will not be placed outside of the cell. The other two parameteri-
zations take similar ranges as input. Because the inputs to these
functions differ for each boundary intersection case, it is conve-
nient to store the information in a table. The table has 256 entries,
one for each possible intersection case. Each entry is a structure
which specifies which parameterization to use (or if the cell should
be subdivided) and includes the extra input that the parameteriza-
tion functions require.

Volumelntegrator class provides user-friendly interface to the inte-
grand and functions defining the integration domain. The C call-
back function mechanism is used to allow easy integration of any
geometry representation. The user provides the point membership
test as a pointer to a callback function which takes a point in space
(X,Y, Z) and returns whether that point is interior or exterior. Op-
tional cube-geometry and ray-boundary intersection functions are
similarly implemented as callback functions. To use a geometric
engine like Parasolid, the user needs only to implement these call-
back functions as wrappers around the engine’s API functions.

Also provided to the integration procedure is the bounding box for
the geometry. This bounding box is not the boundary of the integra-
tion domain, it contains the domain which is implicitly defined by
the point membership function. The number of integration nodes
per dimension per cell is provided; if the user requests 5 nodes per

dimension, then each integration cell will contain 53 = 125 nodes.
The initial grid can be specified as either a uniform n, X ny X n.
lattice or as a list of nonuniform lattice intersection locations.

Our implementation of Volumelntegrator class provides two modes
of integration: on-the-fly and on-disk. On-the-fly integration per-
forms node allocation and integration in one pass. As leaf cells are
encountered, integration nodes are allocated, the integrand is sam-
pled, and node weights are computed. After the computation of
a cell’s contribution to the integral result, the cell can be thrown
away. In this way, only one cell is held in memory at a time, and
the octree is implied by recursive calls to the integration procedure.
Therefore, both memory and disk requirements for the on-the-fly al-
gorithm are constant, regardless of the number of integration cells
and the maximum level of subdivision.

On-disk integration mode separates node allocation from integra-
tion. The first phase generates the octree and places all integration
nodes, storing the results to a file on a disk. With this precomputed
octree, any number of integrations can be performed by providing
an integrand and running just the second phase of the integration.
When performing a series of integrations with differing integrands
over the same domain, on-disk integration offers substantial savings
in computation time, because the octree and node allocations need
to be performed only once. The on-disk integration procedure has
constant memory requirements, but disk storage requirements grow
with the number of leaf cells in the octree.

The Volumelntegrator class provides convenient interface that al-
lows fast integration in time-varying geometric domains. Some ap-
plications requiring a series of integrations also require slight, local
changes to the shape of the integration domain. Instead of recom-
puting the entire octree and node placements with each step, com-
putation time can be saved by taking advantage of the knowledge
that most of the domain remains the same between steps. Between
successive integrations, the user can provide a bounding box which
contains the changes to the integration domain. The on-disk oc-
tree is traversed and any integration cells intersecting the changes
bounding box are thrown away. Integration node placements for
the thrown away cells are recomputed, while the rest of the inte-
gration domain retains the prior, untouched node placement. In this
way, the octree can be “patched” to include domain shape changes
without fully recomputing the octree.

5 Numerical examples

To verify the accuracy of our geometrically adaptive integration al-
gorithm we perform several numerical experiments.

Volume computation of a unit sphere This experiment deter-
mines the accuracy of numerical integration of a unity function over
a unit sphere. Choosing a unity function as an integrand, we elim-
inate numerical errors associated with the integrand. This means
that the integration error is completely determined by the geometry
of the integration domain. In addition, integrating a unity function
simplifies error computations, because the numerical value of the
integral gives a volume of the underlying geometric domain, which
has an exact value for simple geometric domains such as a unit
sphere.

Figure 15(a) illustrates dependence of the relative integration error
on the degree of a Gauss integration rule. To perform the integration
we imposed a uniform Cartesian grid 3 x 3 x 3 over a bounding box
that contains a unit sphere. The plot in Figure 15(a) demonstrates
exponential convergence of our geometrically adaptive integration
algorithm. It provides much more accurate results than the integra-
tion approaches that use a Heaviside function including those used

100 ~
10 %
BN
m,%
0.01 'y

\
0.001

\

0.0001
\

0.00001
0.000001 7%&%

0.0000001

Error, %

0 5 10 15 20

Degree of a Gauss integration rule

—=a&— Geometrically adaptive approach —#— Heaviside function approach

()

10 1
1 A

0.1 \
001 P\/\._./\ AL

g V\
000t %VAW
0.0001 / N
0.00001 /
0.000001 '\1
0.0000001 " ; |
0 5 10 15 20 25 30

Density of the initial integration grid

Error, %

—a— Geometrically adaptive approach —#— Heaviside function approach

(b)

Figure 15: Dependence of the integration error over a unit sphere
on (a) degree of a Gauss integration rule (3 x 3 initial grid); (b)
density of the initial integration grid (Gauss rule of 10th degree)

by the commercial packages compared in Section 1.

Dependence of the integration error on the density of the initial
Cartesian grid is shown in Figure 15(b). The computations were
performed using a Gauss rule of 10th degree. This plot and the
plot in Figure 1 illustrate better accuracy of a geometrically adap-
tive integration in comparison with a Heaviside function approach.
Convergence rate of a geometrically adaptive integration with in-
creasing density of the initial grid is slower than with increasing
the order of the integration rule. Increasing density of the initial
integration grid changes the type of space parameterization in the
integration cells, which, in turn, causes some oscillations of the
integration error. However, increasing density of the initial inte-
gration grid can be useful if the integration domain contains small
geometric features, as illustrated by the next experiment.

Error %
o
/

0.01

0 5 10 15 20

Degree of a Gauss integration rule

(a)

0.1 \\\’\-\
0.01 \\
0.001

0.0001 V

Error, %

0.00001 T T T T T {
0 5 10 15 20 25 30

Density of the initial integration grid

(b)

Figure 16: Integration error over a cube with five random spherical
voids: (a) using 10 x 10 x 10 initial integration grid; (b) using
Gauss integration rule of 10th degree

Volume of a cube with randomly distributed spherical cavities
This numerical experiment illustrates automatic detection of small
geometric features in the integration domain. We choose integration
domain to be a cube defined by its extreme vertices (—1, —1, —1)
and (1, 1, 1) with five spherical voids of random radii and with cen-
ters located at random points (see Figure 18). The size and location
of these voids are chosen in a such way that they do not intersect
with an initial 10 x 10 x 10 uniform integration grid. The plot in
Figure 16(a) illustrates dependence of the relative integration error
on the degree of Gauss integration rule. For degrees greater 10,
the integration error stabilizes at the value of 0.019%. This sug-
gests that despite using 10 random points to find small voids, some
of them have been missed. As we discussed earlier, increasing the

0.25
0.23 ‘\
0.21 ‘\\
0.19 \\
R 017 \]
‘g‘ 0.15 \ \
w 0.13 B
0.11 \Q........
0.09)
0.07
0.05 T T T T T |
0 50 100 150 200 250 300
Number of random points per cell
‘ —— Normal heuristics —#— Highest heuristics ‘

Figure 17: Detection of small geometric features using randomly
sampled points. Drastic changes in the integration error indicate
detection of small voids

X Ye Ze R
-0.396954 | 0.120579 | 0.225074 | 0.103729
-0.066866 | 0.117954 | -0.663381 | 0.219211
0.350078 | -0.823847 | 0.305155 | 0.164589
0.300638 | 0.673696 | 0.084994 | 0.252837
-0.639149 | 0.792718 | 0.457930 | 0.133271

Figure 18: Location and radii of five randomly distributed spheri-
cal voids

density of the initial grid enhances the chances that small geomet-
ric features will be detected. Plot in Figure 16(b) reveals that in the
presence of small geometric features density increase of the inte-
gration grid may substantially improve the integration accuracy.

Sampling of random points is another way of detecting small
and irregular geometric features. Figure 17 shows dependence
of an integration error on the number of random points sampled.
The geometric domain is a cube defined by its extreme vertices
(=1,—1,-1) and (1,1, 1) with three spherical voids (see Figure
19). Numerical integration was performed without imposing any
initial grid. If no random points were sampled all these voids will
be missed because they do not intersect with the boundary of the in-
tegration cell. Plots in in Figure 17 clearly demonstrate detection of
all three voids by sampling random points only inside the cell, and,
in addition to, by sampling random points on the faces and edges
of the integration cells. As we described earlier, when a small geo-
metric feature is found, the cell is hierarchically subdivided and the
same procedure is applied to all of its children cells.

Integration over solid model This numerical experiment com-
pares the integration accuracy for two different representations of
the same geometric domain (Figure 20): (1) by a characteristic
function and (2) by Parasolid geometric engine. Parasolid, in ad-

X Y. Ze R
-0.726554 | -0.764214 | 0.857295 | 0.05
-0.244179 | 0.102634 | 0.732963 | 0.1
-0.321635 | -0.283609 | -0.363933 | 0.4

Figure 19: Location and radii of three randomly distributed spher-
ical void

)

! B/l

SN g

NSNS di
Lo
LA

Figure 20: CAD geometric model

™
AN
VT %\D

0 5 10 15 20 25 30
Density of the initial integration grid

Error, %

—— Characteristic function —#— Parasolid ‘

(a)

VAV = S
— Y W

Error, %

I

0.1 T T T
0 5 10 15 20
Degree of a Gauss integration rule

—— Characteristic function —&— Parasolid

(b)

Figure 21: Comparison of the integration accuracy for two rep-
resentations of the same geometric model. (a) Dependence of the
integration error on the density of the initial grid (Gauss integra-
tion rule of 5Sth degree); (b) dependence of the integration error on
the degree of a Gauss rule (10 x 10 x 10 initial integration grid)

dition to the point membership test, provides all geometric tools to
detect small and irregular features without sampling random points.
Plots in Figures 21 show that better accuracy can be achieved if the
geometric model is represented using Parasolid. As we explained
earlier, our integration approach assumes that integration rays inter-
sect the domain’s boundary only once. Using a characteristic func-
tion alone to represent the geometric domain, it is impossible to de-
tect multiple intersections of the integration ray with the domain’s
boundary. This results in higher integration error. Plot in Figure
21(a) illustrates that increasing the density of the initial integration
grid improves the integration accuracy for the domain represented
by a characteristic function.

2500002

2250002

20001002

175064002

1.500E 4002

125084002

1000E4002]

0 000E +000

(b)

Figure 22: (a) Acquired geometric model of the Michelangelo’s
David statue; (b) signed approximate distance to the boundary of a
geometric model shown in Figure 22(a)

2.34E+09

2.32E+09 ~
. 2.30E+09 /HY T n— 5 N
E 2.28E+09 = / M
o 2.26E+09
—§ 2.24E+09 /
> 2.22E+09

2.20E+09 !

2.18E+09 . ; : ‘ ‘

0 2 4 6 8 10
Degree of a Gauss integration rule
[——Nx=10 —s—Nx=20 NX= 30

Figure 23: Convergence of the volume computation of the
Michelangelo’s David statue

Integration over acquired geometric data This numerical ex-
periment studies convergence of the volume integration over com-
plex geometric object, such as the Michelangelo’s David statue
(Figure 22(a)). The geometry of the integration domain is described
by a signed approximate distance function w (Figure 22(b)) that was
constructed from the originally acquired geometric data [Bracci and
et. al. 2004]. To simplify reading, plot in Figure 22(b) shows only
the positive portion of w. The sign of w helps to distinguish internal
points from the outer ones w is positive inside the geometric domain
and negative outside. Using the sign of w we define a characteristic

function for the statue as follows:
. 1, w>0;
0= { 0, w<o. ™

Figure 23 illustrates numerical convergence of the volume compu-
tations via integrating a unity function over a geometric domain
described by the characteristic function (7). The volume integrals
were computed using different initial grids and degrees of a Gauss
integration rule. The plots exhibit almost identical results for grids
20 x 20 x 20 and 30 x 30 x 30. The plots reveal insignificant vari-
ation of the computed integrals for degrees of a Gauss integration
rule greater than 4.

6 Conclusions

6.837E-003 3.000E+006

2.650E+006

230084006

1.960E+006

1.600E+008

1.250E+008

9.000E+005

2051E-003 5.500E4005

1.367E-003

2.000E+005

6.837E-004 -1 50DE+005

0.000F+000 -5.000E+005'

(a) (b)

Figure 24: Meshfree stress analysis of the Michelangelo’s David
statue for tilted position of the statue (g, = —3°, ¢, = 3°): (a)
displacement field (mm); (b) first principal stress (Pa)

In this paper we described a geometrically adaptive integration ap-
proach that is faster for the same accuracy or, in different words,
provides better numerical accuracy for the same computational
cost. This was achieved by using the provided geometric infor-
mation directly, and by imposing in each integration cell a proper
coordinate system that simplifies parameterization of the domain’s
boundary within that cell. In order to achieve the required accuracy,
our geometrically adaptive integration approach does not necessar-
ily require hierarchical subdivision of boundary cells — only those
cells that have difficulty to impose a suitable space parameteriza-
tion or contain small or irregular geometric features are subdivided.
This substantially reduces the computational cost of the proposed
approach in comparison to other volume integration techniques.

The presented geometrically adaptive integration approach requires
minimal knowledge about geometry of the integration domain. It
is based on a general representation of the integration domain by a
characteristic function. Since most geometric representations sup-
port computation of a such function, our integration technique is
applicable to a wide class of geometric representations. However, if
an additional geometric information is available, it can be also used
by the integration algorithm. Combination with a standard geomet-
ric engines, such as Parasolid, improves both accuracy and com-
putational cost of volumetric integration by detecting small and ir-
regular geometric features, and avoiding heuristic geometry checks
at random locations. Besides computing values of a characteristic
function, the proposed integration approach also requires computa-
tion of the intersections of rays with the domain’s boundary. This
geometric operation can be easily performed for simple geometric

boundaries such as cylinders, spheres, conical sections and meshes.
For parametric patches, however, the elevated computational cost
of the ray intersection with a boundary is well justified by the high
integration accuracy delivered by the presented geometrically adap-
tive integration technique.

Software implementation of our geometrically adaptive integration
provides convenient interface to user-defined functions and can sup-
port 3D volumetric integration for a variety of applications. In this
paper we already demonstrated integration over implicitly defined
geometric domains. The proposed integration approach was devel-
oped to support 3D meshfree analysis [Freytag et al. 2006; Freytag
et al. 2007]. All meshfree engineering analysis methods assemble
the stiffness matrix by integrating shape functions and their deriva-
tives over non-meshed geometric domains [Tsukanov and Shapiro
2002]. Accuracy of the integration determines stability and accu-
racy of the fields being modeled. Geometrical adaptivity makes it
possible to perform field modeling in geometrically complex do-
mains, such as, for example, statues and human bones without any
simplifications of the geometry. Figure 24(a) presents the original
(undeformed) and deformed statue of the Michelangelo’s David.
The first principal stress computed for tilted position of the statue
(pe = —3°, ¢, = 3°) under its own weight (Figure 24(b)) are in
a good agreement with the results obtained by the Finite Element
Method [Bracci and et. al. 2004].

Acknowledgments

This research is supported in part by the National Science Foun-
dation grants CMMI-0323514, CMMI-0322134, CMMI-0621116
and Intact Solutions, LLC. The authors would like to thank Pro-
fessor Marc Levoy for providing original 3D scanned data of the
David statue; and Professor Krishnan Suresh for many suggestions,
encouragement and support of this research.

References

BELYTSCHKO, T., PARIMI, C., M0éS, N., SUKUMAR, N., AND
Usul, S. 2003. Structured extended finite element methods
for solids defined by implicit surfaces. International Journal for
Numerical Methods in Engineering 56, 4 (January), 609-635.

BELYTSCHKO, T., XIAO, S., AND PARIMI, C. 2003. Topology
optimization with implicit functions and regularization. Inter-
national Journal for Numerical Methods in Engineering 57, 8,
1177-1196.

BERNTSEN, J., ESPELID, T., AND GENZ, A. 1991. An Adap-
tive Algorithm for the Approximate Calculation of Multiple In-
tegrals. ACM Transactions on Mathematical Software 17,4 (De-
cember), 437-451.

BLOOMENTHAL, J. 1997. Introduction to Implicit Surfaces. Mor-
gan Kaufmann Publishers.

BRACCI, S., AND ET. AL. 2004. Exploring David: diagnostic
tests and state of conservation. Giunti Editore S.p.A., Florence-
Milan.

CATTANI, C., AND PAOLUZZI, A. 1990. Symbolic analysis of
linear polyhedra. Engineering with Computers 6, 1, 17-29.

CooLs, R., AND HAEGEMANS, A. 2003. Algorithm 824: CUB-
PACK: A Package for Automatic Cubature; Framework De-
scription. ACM Transactions on Mathematical Software 29, 3
(September), 287-296.

CooLs, R., AND MAERTEN, B. 1998. A Hybrid Subdivision
Strategy for Adaptive Integration Routines. Journal of Universal
Computer Science 4, 5, 486-500.

CooLs, R., LAURIE, D., AND PLUYM, L. 1997. Algorithm 764:
Cubpack++: A C++ Package for Automatic Two-Dimensional
Cubature. ACM Transactions on Mathematical Software 23, 1
(March), 1-15.

FREYTAG, M., SHAPIRO, V., AND TSUKANOV, I. 2006. Field
modeling with sampled distances. Computer Aided Design 38,
2, 87-100.

FREYTAG, M., SHAPIRO, V., AND TSUKANOV, I. 2007. Scan
and solve: Acquiring the physics of artifacts. In Proceedings
of the 2007 ASME International Design Engineering Technical
Conference.

GANDER, W., AND GAUTSCHI, W. 2000. Adaptive quadrature—
revisited. BIT Numerical Mathematics 40, 1, 84—101.

GENZ, A., AND CooLs, R. 1993. Algorithm 720: An Algo-
rithm for Adaptive Cubature Over a Collection of 3-Dimensional
Simplices. ACM Transactions on Mathematical Software 19, 3
(September), 320-332.

GENZ, A., AND CooLS, R. 2003. An Adaptive Numerical Cuba-
ture Algorithm for Simplices. ACM Transactions on Mathemat-
ical Software 29, 3 (September), 297-308.

GENZ, A., AND MALIK, A. 1980. Remarks on algorithm
006: An adaptive algorithm for numerical integration over an n-
dimensional rectangular region. Journal of Computational and
Applied Mathematics 6, 295-302.

GONZALEZ-OCHOA, C., MCCAMMON, S., AND PETERS, J.
1998. Computing Moments of Objects Enclosed by Piecewise
Polynomial Surfaces. ACM Transactions on Graphics 17, 3,
143-157.

GUo, X., AND QIN, H. 2005. Real-time mesh-free deformation.
Computer Animation and Virtual Worlds 16, 3-4 (July), 189—
200.

HAMMERSLEY, J., AND HANDSCOMB, D. 1964. Monte Carlo
Methods. Methuen, London.

HOLLIG, K. 2003. Finite Element Methods with B-Splines. No. 26
in Frontiers in Applied Mathematics. STAM.

JOE, S., AND SLOAN, I. 1993. Implementation of a Lattice Method
for Numerical Multiple Integration. ACM Transactions on Math-
ematical Software 19, 4 (December), 523-545.

KALOS, M., AND WHITLOCK, P. 1986. Monte Carlo Methods.
Wiley, New York.

KLAAS, O., AND SHEPHARD, M. 2000. Automatic generation
of octree based three dimensional discretizations for partition of
unity methods. Computational Mechanics 25, 2-3, 296-304.

KRONROD, A. S. 1965. Nodes and Weights of Quadrature Formu-
las: Sixteen place tables. Consultants Bureau, New York.

KUMAR, A., AND LEE, J. 2006. Step function representation of
solid models and application to mesh free engineering analysis.
Journal of Mechanical Design(Transactions of the ASME) 128,
1 (January), 46-56.

LAGUARDIA, J., CUETO, E., AND DOBLARE, M. 2005. A natural
neighbor Galerkin method with quadtree structure. International
Journal for Numerical Methods in Engineering 63, 6, 789-812.

LEE, Y. T., AND REQUICHA, A. A. G. 1982. Algorithms for
computing the volume and other integral properties of solids. I.
known methods and open issues. Commun. ACM 25,9, 635-641.

LEE, Y. T., AND REQUICHA, A. A. G. 1982. Algorithms for
computing the volume and other integral properties of solids. II.
a family of algorithms based on representation conversion and
cellular approximation. Commun. ACM 25, 9, 642—650.

LIEN, S., AND KAJIYA, J. T. 1984. Symbolic method for calcu-
lating the integral properties of arbitrary nonconvex polyhedra.
IEEE Computer Graphics and Applications 4, 10, 35-41.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching Cubes: A
high resolution 3D surface construction algorithm. In ACM SIG-
GRAPH Computer Graphics, Proceedings of the 14th annual
conference on Computer graphics and interactive techniques
SIGGRAPH ’87, ACM Press, New York, NY, USA, vol. 21, 163—
169.

LORENSEN, W., AND CLINE, H. 1987. Marching cubes: A high
resolution 3D surface construction algorithm. Computer Graph-
ics 21, 4, 163-169.

OSHER, S., AND FEDKIW, R. 2003. Level Set Methods and Dy-
namic Implicit Surfaces. Springer-Verlag.

PIESSENS, R., DEDONCKER KAPENGA, E., UEBERHUBER, C.,
AND KAHANER, D. 1983. QUADPACK: A Subroutine Package
for Automatic Integration. Springer, Berlin; New York.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C, second ed.
Cambridge University Press.

RVACHEV, V., SHEVCHENKO, A., AND VERETELNIK, V. 1994,
Numerical integration software for projection and projection-
grid methods. Cybernetics and Systems Analysis 30, 1 (January),
154-158.

SARRAGA, R. 1982. Computation of surface areas in GMSolid.
1IEEE Computer Graphics and Applications 2,7, 65 —70.

SHEFFER, A., AND UNGOR, A. 2001. Efficient adaptive meshing
of parametric models. Journal of Computing and Information
Science in Engineering 1, 4, 366-375.

STROUBOLIS, T., CoPPS, K., AND BABUSKA, 1. 2001. The gen-
eralized finite element method. Computer methods in applied
mechanics and engineering 190, 4081-4193.

STROUD, A. H. 1971. Approximate Calculation of Multiple Inte-
grals. Prentice-Hall, Englewood Cliffs, New Jersey.

TSUKANOV, I., AND SHAPIRO, V. 2002. The architecture of SAGE
— a meshfree system based on RFM. Engineering with Comput-
ers 18,4,295-311.

VARADHAN, G., KRISHNAN, S., SRIRAM, T., AND MANOCHA,
D. 2004. Topology preserving surface extraction using adaptive
subdivision. Proceedings of the 2004 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing, 235-244.

WANG, S., AND WANG, M. 2006. Radial basis functions and level
set method for structural topology optimization. [International
Journal for Numerical Methods in Engineering 65, 12 (March),
2060-2090.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

