\qquad
\qquad
\qquad

Geometry

1st Semester Exam Review

\qquad 1. Based on the pattern, what are the next two terms of the sequence? 9, 15, 21, 27, ...
a. 33,972
b. 39,45
c. 162,972
d. 33,39
\qquad 2. According to the pattern, make a conjecture about the product of 13 and $8,888,888$.

$$
\begin{aligned}
13 \cdot 88 & =1144 \\
13 \cdot 888 & =11,544 \\
13 \cdot 8888 & =115,544 \\
13 \cdot 88,888 & =1,155,544
\end{aligned}
$$

a. $115,555,544$
b. $1,115,555,444$
c. $1,155,555,544$
d. $11,155,555,444$
\qquad 3. Find a counterexample to show that the conjecture is false.

Conjecture: Any number that is divisible by 4 is also divisible by 8 .
a. 24
b. 40
c. 12
d. 26
4. Are O, N, and P collinear? If so, name the line on which they lie.

a. No, the three points are not collinear.
b. Yes, they lie on the line $M P$.
c. Yes, they lie on the line $N P$.
d. Yes, they lie on the line $M O$.
\qquad 5. Name the plane represented by the front of the box.

a. $F B C$
b. $B A D$
c. $F E C$
d. $F K G$
\qquad 6. Are points B, J, and C collinear or noncollinear?

a. collinear
b. noncollinear
c. impossible to tell
\qquad 7. Name the line and plane shown in the diagram.

a. $\quad R S$ and plane $R S U$
c. $\quad R S$ and plane $U R$
b. line R and plane $R S U$
d. $\overleftrightarrow{S R}$ and plane $U T$
8. What is the intersection of plane $T U Y X$ and plane $V U Y Z$?

c. $\overleftrightarrow{T X}$
d. $\overleftrightarrow{V Z}$
9. Which diagram shows plane $P Q R$ and plane $Q R S$ intersecting only in $\overleftrightarrow{Q R}$?
a.

c.

b.

d.

10. Name the ray in the figure.

a. $\overrightarrow{B A}$
b. $\overleftrightarrow{A B}$
c. $\overline{B A}$
d. $\overrightarrow{A B}$
\qquad 11. Name the ray that is opposite $\overrightarrow{B A}$.

a. $\quad \overrightarrow{B D}$
b. $\overrightarrow{B A}$
c. $\overrightarrow{C A}$
d. $\overrightarrow{D A}$
\qquad 12. Name the three labeled segments that are parallel to $\overline{E F}$.

a. $\overline{A B}, \overline{C D}, \overline{G H}$
b. $\overline{G H}, \overline{E G}, \overline{C D}$
c. $\overline{B F}, \overline{A B}, \overline{C D}$,
d. $\overline{A C}, \overline{C D}, \overline{G H}$
13. Which plane is parallel to plane $E F H G$?

a. plane $A B D C$
b. plane $A C G E$
c. plane $C D H G$
d. plane $B D H F$
\qquad 14. Find $A C$.

a. 14
b. 15
c. 12
d. 4
15. If $E F=2 x-12, F G=3 x-15$, and $E G=23$, find the values of $x, E F$, and $F G$. The drawing is not to scale.

a. $\quad x=10, E F=8, F G=15$
b. $\quad x=3, E F=-6, F G=-6$
c. $\quad x=10, E F=32, F G=45$
d. $\quad x=3, E F=8, F G=15$
16. If T is the midpoint of $\overline{S U}$, find the values of x and $S T$. The diagram is not to scale.

a. $\quad x=5, S T=45$
b. $x=5, S T=60$
c. $x=10, S T=60$
d. $x=10, S T=45$
17. Which point is the midpoint of $\overline{A E}$?

a. D
b. B
c. not B, C, or D
d. C
\qquad 18. Which angle is a right angle?
a.

c.

b.

d.

\qquad 19. If $m \angle E O F=26$ and $m \angle F O G=38$, then what is the measure of $\angle E O G$? The diagram is not to scale.

a. 64
b. 12
c. 52
d. 76
20. If $m \angle B O C=27$ and $m \angle A O C=47$, then what is the measure of $\angle A O B$? The diagram is not to scale.

a. 74
b. 40
c. 20
d. 54
\qquad 21. If $m \angle D E F=122$, then what are $m \angle F E G$ and $m \angle H E G$? The diagram is not to scale.

a. $m \angle F E G=122, m \angle H E G=58$
b. $m \angle F E G=58, m \angle H E G=132$
c. $m \angle F E G=68, m \angle H E G=122$
d. $m \angle F E G=58, m \angle H E G=122$
\qquad 22. $M O$ bisects $\angle L M N, m \angle L M O=8 x-23$, and $m \angle N M O=2 x+37$. Solve for x and find $m \angle L M N$. The diagram is not to scale.

a. $\quad x=9, m \angle L M N=98$
b. $\quad x=9, m \angle L M N=49$
c. $x=10, m \angle L M N=114$
d. $x=10, m \angle L M N=57$
23. $\overrightarrow{M O}$ bisects $\angle L M N, m \angle L M N=5 x-23, m \angle L M O=x+32$. Find $m \angle N M O$. The diagram is not to scale.

a. 61
b. 45.75
c. 91.5
d. 66
24. Find the distance between points $P(8,2)$ and $Q(3,8)$ to the nearest tenth.
a. 11
b. 7.8
c. 61
d. 14.9
25. Find the coordinates of the midpoint of the segment whose endpoints are $H(8,2)$ and $K(6,10)$.
a. $(7,6)$
b. $(1,4)$
c. $(14,12)$
d. $(2,8)$
26. Find the perimeter of the rectangle. The drawing is not to scale.

a. 151 feet
b. 208 feet
c. 161 feet
d. 104 feet
27. Find the area of a rectangle with base 2 yd and height 5 ft .
a. $10 \mathrm{yd}^{2}$
b. $\quad 30 \mathrm{ft}^{2}$
c. $\quad 10 \mathrm{ft}^{2}$
d. $30 \mathrm{yd}^{2}$
28. Find the area of the circle in terms of π.

a. $\quad 30 \pi$ in. 2
b. $\quad 900 \pi$ in. ${ }^{2}$
c. 60π in. ${ }^{2}$
d. 225π in. ${ }^{2}$
29. The figure is formed from rectangles. Find the total area. The diagram is not to scale.

a. $\quad 104 \mathrm{ft}^{2}$
b. $36 \mathrm{ft}^{2}$
c. $80 \mathrm{ft}^{2}$
d. $68 \mathrm{ft}^{2}$
30. Identify the hypothesis and conclusion of this conditional statement:

If two lines intersect at right angles, then the two lines are perpendicular.
a. Hypothesis: The two lines are perpendicular. Conclusion:

Two lines intersect at right angles.
b. Hypothesis: Two lines intersect at right angles. Conclusion:

The two lines are perpendicular.
c. Hypothesis: The two lines are not perpendicular. Conclusion:

Two lines intersect at right angles.
d. Hypothesis: Two lines intersect at right angles. Conclusion:

The two lines are not perpendicular.
31. Write this statement as a conditional in if-then form:

All triangles have three sides.
a. If a triangle has three sides, then all triangles have three sides.
b. If a figure has three sides, then it is not a triangle.
c. If a figure is a triangle, then all triangles have three sides.
d. If a figure is a triangle, then it has three sides.
32. Another name for an $i f$-then statement is a \qquad . Every conditional has two parts. The part following if is the \qquad and the part following then is the \qquad -
a. conditional; conclusion; hypothesis
c. conditional; hypothesis; conclusion
b. hypothesis; conclusion; conditional
d. hypothesis; conditional; conclusion
33. A conditional can have a \qquad of true or false.
a. hypothesis
b. truth value
c. counterexample
d. conclusion
34. What is the converse of the following conditional?

If a point is in the first quadrant, then its coordinates are positive.
a. If a point is in the first quadrant, then its coordinates are positive.
b. If a point is not in the first quadrant, then the coordinates of the point are not positive.
c. If the coordinates of a point are positive, then the point is in the first quadrant.
d. If the coordinates of a point are not positive, then the point is not in the first quadrant.
35. When a conditional and its converse are true, you can combine them as a true \qquad .
a. counterexample
c. unconditional
b. biconditional
d. hypothesis
36. Use the Law of Detachment to draw a conclusion from the two given statements.

If two angles are congruent, then they have equal measures.
$\angle P$ and $\angle Q$ are congruent.
a. $m \angle P+m \angle Q=90$
b. $m \angle P=m \angle Q$
c. $\angle P$ is the complement of $\angle Q$.
d. $m \angle P \neq m \angle Q$
37. Use the Law of Detachment to draw a conclusion from the two given statements. If not possible, write not possible.
I can go to the concert if I can afford to buy a ticket.
I can go to the concert.
a. I can afford to buy a ticket.
b. I cannot afford to buy the ticket.
c. If I can go to the concert, I can afford the ticket.
d. not possible
38. Use the Law of Syllogism to draw a conclusion from the two given statements.

If a number is a multiple of 64 ,then it is a multiple of 8 .
If a number is a multiple of 8 , then it is a multiple of 2 .
a. If a number is a multiple of 64 , then it is a multiple of 2 .
b. The number is a multiple of 2 .
c. The number is a multiple of 8 .
d. If a number is not a multiple of 2 , then the number is not a multiple of 64 .

Fill in each missing reason.
39. Given: $m \angle P Q R=x-5, m \angle S Q R=x-11$, and $m \angle P Q S=100$.

Find x.

Drawing not to scale

$$
\begin{aligned}
m \angle P Q R+m \angle S Q R=m \angle P Q S & \text { a. } \\
x-5+x-11=100 & \text { b. Substitution Property } \\
2 x-16=100 & \text { c. Simplify } \\
2 x=116 & \text { d. } \left.\overline{\text { d. } \overline{\text { Division Property of Equality }}} \begin{array}{rl}
x=58 & \text { e. }
\end{array}=\begin{array}{rl}
\\
x-5
\end{array}\right)
\end{aligned}
$$

a. Angle Addition Postulate; Subtraction Property of Equality
b. Protractor Postulate; Addition Property of Equality
c. Angle Addition Postulate; Addition Property of Equality
d. Protractor Postulate; Subtraction Property of Equality
40. Name the Property of Equality that justifies the statement:

If $p=q$, then $p-r=q-r$.
a. Reflexive Property
c. Symmetric Property
b. Multiplication Property
d. Subtraction Property
41. Which statement is an example of the Addition Property of Equality?
a. If $p=q$ then $p \cdot s=q \cdot s$
c. If $p=q$ then $p-s=q-s$
b. If $p=q$ then $p+s=q+s$.
d. $p=q$
42. Name the Property of Congruence that justifies the statement:

If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.
a. Transitive Property
c. Reflexive Property
b. Symmetric Property
d. none of these

Use the given property to complete the statement.

43. Transitive Property of Congruence

If $\overline{C D} \cong \overline{E F}$ and $\overline{E F} \cong \overline{G H}$, then \qquad .
a. $\overline{E F} \cong \overline{G H}$
b. $\overline{E F} \cong \overline{E F}$
c. $\overline{C D} \cong \overline{G H}$
d. $\overline{C D} \cong \overline{E F}$
44. Multiplication Property of Equality If $4 x \div 2=4$, then \qquad .
a. $4=4 x \cdot 2$
b. $4=4 x \div 2$
c. $4 x=8$
d. $4 x \cdot 2=8$
45. Substitution Property of Equality If $y=3$ and $8 x+y=12$, then \qquad .
a. $8(3)-y=12$
b. $\quad 3-y=12$
c. $8 x+3=12$
d. $8 x-3=12$
46. $\overline{B D}$ bisects $\angle A B C . m \angle A B C=7 x . m \angle A B D=3 x+25$. Find $m \angle D B C$.
a. 50
b. 125
c. 75
d. 175
47. Supplementary angles are two angles whose measures have sum \qquad .
Complementary angles are two angles whose measures have sum \qquad
a. $90 ; 180$
b. $90 ; 45$
c. $180 ; 360$
d. 180; 90
\qquad 48. Two angles whose sides are opposite rays are called \qquad angles. Two coplanar angles with a common side, a common vertex, and no common interior points are called \qquad angles.
a. vertical; adjacent
b. adjacent; vertical
c. vertical; supplementary
d. adjacent; complementary
49. The complement of an angle is 25°. What is the measure of the angle?
a. 75°
b. 155°
c. 65°
d. 165°
50. $\angle D F G$ and $\angle J K L$ are complementary angles. $m \angle D F G=x+5$, and $m \angle J K L=x-9$. Find the measure of each angle.
a. $\angle D F G=47, \angle J K L=53$
b. $\angle D F G=47, \angle J K L=43$
c. $\angle D F G=52, \angle J K L=48$
d. $\angle D F G=52, \angle J K L=38$
51. $\angle 1$ and $\angle 2$ are supplementary angles. $m \angle 1=x-39$, and $m \angle 2=x+61$. Find the measure of each angle.
a. $\angle 1=79, \angle 2=101$
b. $\angle 1=40, \angle 2=140$
c. $\angle 1=40, \angle 2=150$
d. $\angle 1=79, \angle 2=111$
52. Find the value of x.

Drawing not to scale
a. -19
b. 125
c. 19
d. 55
53. $m \angle 3=37$. Find $m \angle 1$.

Drawing not to scale
a. 37
b. 143
c. 27
d. 153
\qquad 54. Find the values of x and y.

Drawing not to scale
a. $\quad x=15, y=17$
b. $x=112, y=68$
c. $x=68, y=112$
d. $x=17, y=15$
55. Which angles are corresponding angles?

a. $\quad \angle 8$ and $\angle 16$
c. $\angle 4$ and $\angle 8$
b. $\quad \angle 7$ and $\angle 8$
d. none of these
56. Line r is parallel to line t. Find $m \angle 5$. The diagram is not to scale.

a. 45
b. 35
c. 135
d. 145
57. Find the value of the variable if $m \| l, m \angle 1=2 x+44$ and $m \angle 5=5 x+38$. The diagram is not to scale.

a. 1
b. 2
c. 3
d. -2
58. Find the values of x and y. The diagram is not to scale.

a. $x=77, y=59$
b. $x=77, y=57$
c. $x=57, y=77$
d. $x=41, y=57$
59. Complete the statement. If a transversal intersects two parallel lines, then \qquad .
a. corresponding angles are supplementary
b. same-side interior angles are complementary
c. alternate interior angles are congruent
d. none of these
60. Complete the statement. If a transversal intersects two parallel lines, then \qquad angles are supplementary.
a. acute
c. same-side interior
b. alternate interior
d. corresponding
\qquad 61. Find $m \angle Q$. The diagram is not to scale.

a. 60
b. 120
c. 110
d. 70
62. $m \angle 1=6 x$ and $m \angle 3=120$. Find the value of x for p to be parallel to q. The diagram is not to scale.

a. 114
b. 126
c. 120
d. 20
63. Find the value of x for which l is parallel to m. The diagram is not to scale.

a. 28
b. 56
c. 84
d. 152
\qquad 64. Find the value of k. The diagram is not to scale.

a. 17
b. 73
c. 118
d. 107
65. Find the values of x, y, and z. The diagram is not to scale.

a. $x=86, y=94, z=67$
b. $x=67, y=86, z=94$
c. $x=67, y=94, z=86$
d. $x=86, y=67, z=94$
66. Classify $\triangle A B C$ by its angles, when $m \angle A=32, m \angle B=85$, and $m \angle C=63$.
a. right
b. straight
c. obtuse
d. acute
67. Find the value of x. The diagram is not to scale.

a. 33
b. 162
c. 147
d. 75
\qquad 68. Find the value of the variable. The diagram is not to scale.

a. 66
b. 19
c. 29
d. 43
69. Find the value of x. The diagram is not to scale.

Given: $\angle S R T \cong \angle S T R, m \angle S R T=20, m \angle S T U=4 x$

a. 5
b. 24
c. 20
d. 40
70. Classify the polygon by its sides.

a. triangle
b. hexagon
c. pentagon
d. octagon
71. How many sides does a regular polygon have if each exterior angle measures 20 ?
a. $\quad 17$ sides
b. 20 sides
c. 21 sides
d. 18 sides
\qquad 72. Find the missing angle measures. The diagram is not to scale.

a. $x=124, y=125$
b. $x=56, y=114$
c. $x=114, y=56$
d. $x=56, y=124$
73. The Polygon Angle-Sum Theorem states: The sum of the measures of the angles of an n-gon is \qquad .
a. $\frac{n-2}{180}$
b. $(n-1) 180$
c. $\frac{180}{n-1}$
d. $(n-2) 180$
74. Find $m \angle A$. The diagram is not to scale.

a. 107
b. 117
c. 63
d. 73
75. Graph $y=\frac{1}{5} x+3$.
a.

c.

b.

d.

76. Write an equation in slope-intercept form of the line through points $S(-10,-3)$ and $T(-1,1)$.
a. $y=-\frac{4}{9} x+\frac{13}{9}$
b. $y=\frac{4}{9} x-\frac{13}{9}$
c. $y=-\frac{4}{9} x-\frac{13}{9}$
d. $y=\frac{4}{9} x+\frac{13}{9}$
\qquad 77. If $B C D E$ is congruent to $O P Q R$, then $\overline{D E}$ is congruent to ?._.
a. $\overline{P Q}$
b. $\overline{O R}$
c. $\overline{O P}$
d. $\overline{Q R}$
78. $\angle A B C \cong$?

a. $\angle P M N$
b. $\angle N P M$
c. $\angle N M P$
d. $\angle M N P$
\qquad 79. The two triangles are congruent as suggested by their appearance. Find the value of c. The diagrams are not to scale.

a. 4
b. 5
c. 3
d. 38
80. Given $\triangle Q R S \cong \triangle T U V, Q S=3 v+2$, and $T V=7 v-6$, find the length of $Q S$ and $T V$.
a. 2
b. 9
c. 8
d. 20
81. Given $\triangle A B C \cong \triangle P Q R, m \angle B=3 v+4$, and $m \angle Q=8 v-6$, find $m \angle B$ and $m \angle Q$.
a. 22
b. 11
c. 10
d. 25
82. Name the angle included by the sides $\overline{P N}$ and $\overline{N M}$.

a. $\angle N$
b. $\angle P$
c. $\angle M$
d. none of these
\qquad 83. From the information in the diagram, can you prove $\triangle F D G \cong \triangle F D B$? Explain.

a. yes, by ASA
c. yes, by SAS
b. yes, by AAA
d. no
84. Can you use the ASA Postulate, the AAS Theorem, or both to prove the triangles congruent?

a. either ASA or AAS
c. AAS only
b. ASA only
d. neither
85. Based on the given information, what can you conclude, and why?

Given: $\angle H \cong \angle L, \overline{H J} \cong \overline{J L}$

a. $\triangle H I J \cong \triangle L K J$ by ASA
b. $\triangle H I J \cong \triangle J L K$ by SAS
c. $\Delta H I J \cong \triangle J L K$ by ASA
d. $\Delta H I J \cong \triangle L K J$ by SAS
86. Name the theorem or postulate that lets you immediately conclude $\triangle A B D \cong \triangle C B D$.

a. SAS
b. ASA
c. AAS
d. none of these
87. Find the values of x and y.

a. $x=90, y=47$
b. $x=43, y=47$
c. $x=47, y=43$
d. $x=90, y=43$
88. What is the measure of a base angle of an isosceles triangle if the vertex angle measures 38° and the two congruent sides each measure 21 units?

Drawing not to scale
a. 71°
b. 142°
c. 152°
d. 76°
89. What is the measure of the vertex angle of an isosceles triangle if one of its base angles measures 42° ?
a. 69°
b. 84°
c. 138°
d. 96°
90. Use the information in the figure. Find $m \angle D$.

Drawing not to scale
a. 32°
b. 122°
c. 64°
d. 58°
\qquad 91. Find the value of x. The diagram is not to scale.

a. $x=23$
b. $x=40$
c. $x=13$
d. none of these
92. Find the value of x. The diagram is not to scale.

a. 32
b. 50
c. 64
d. 80
\qquad 93. Find the value of x.

a. 4
b. 8
c. 6.6
d. 6
\qquad 94. Find the length of the midsegment. The diagram is not to scale.

a. 24
b. 0
c. 42
d. 84
95. Q is equidistant from the sides of $\angle T S R$. Find the value of x. The diagram is not to scale.

a. 27
b. 3
c. 15
d. 30
96. $\overline{D F}$ bisects $\angle E D G$. Find the value of x. The diagram is not to scale.

a. $\frac{23}{42}$
b. 90
c. 30
d. 6
97. $\overrightarrow{D F}$ bisects $\angle E D G$. Find $F G$. The diagram is not to scale.

a. 15
b. 14
c. 19
d. 28
98. Name a median for $\triangle A B C$.

a. $\overline{A D}$
b. $\overline{C E}$
c. $\overline{A F}$
d. $\overline{B D}$

