Geometry: All-In-One Answers Version A

Geometry: All-In-One Answers Version A (continued)

Name	Class _ Date
Lesson 1-3 Points, Lines, and Planes	
Lesson objectives \boldsymbol{V} Undestand dasic terms of geometry \boldsymbol{V} Understand basic postulates of geomery	NAEP 2005 Strand: Geometry Topic: Dimension and Shape Local Standards:
Vocabulary and Key Concepts	
	one line. y line that passes through points A and \qquad in exactly one point. \square ect at C ct in exactly one line. plane $S T W$ intersect in $\overleftrightarrow{S T}$. here is exactly one plane.
A point is a location. Space is the set of all points. A line is a series of points that exte without end. Collinear points are points that lie	e same line.
10 Geometry Lesson $1-3$

Geometry: All-In-One Answers Version A (continued)

Name
Date
\qquad
2. Finding the Midpoint $\overline{A B}$ has endpoints $(8,9)$ and $(-6,-3)$. Find the coordinates of its midpoint M
Use the Midpoint Formula. Let $\left(x_{1}, y_{1}\right)$ be $\square(8,9)$ and $\left(x_{2}, y_{2}\right)$ be
$(-6,-3)$.
The midpoint has coordinates
$\left(\frac{\boxed{x_{1}}+\sqrt{x_{2}}}{2}, \frac{y_{1}+\boxed{y_{2}}}{2}\right) . \quad$ Midpoint Formula
The x-coordinate is $\frac{8+(\boxed{-6})}{2}=\frac{2}{2}=1$ substitute 8 for x_{1} and \square for x_{2}. Simplify.

ick Check

Use a straightedge to draw $\overline{X Y}$. Then construct $\overline{R S}$ so that $R S=2 X Y$

. a. Construct $\angle F$ with $m \angle F=2 m \angle B$.
. Explain how you can use your protractor to check that $\overrightarrow{Y P}$ is the angle bisector of $\angle X Y Z$.

The coordinates of the midpoint M are $(1,3)$
(3) Finding an Endpoint The midpoint of $\overline{D G}$ is $M(-1,5)$. One endpoint is $D(1,4)$. Find the coordinates of the other endpoint G Use the Midpoint Formula. Let $\left(x_{1}, y_{1}\right)$ be $(1,4)$ and the midpoint $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ be $(-1,5)$. Solve for x_{2} and y_{2}, the coordinates of G.
Find the x-coordinate of G

The coordinates of G are $(-3,6)$

Geometry: All-In-One Answers Version A (continued)

Example

(4) Finding the Truth Value of a Converse Write the converse of the conditional. Then determine the truth value of each.
If $a^{2}=25$, then $a=5$
Conditional: If $\mathrm{a}^{2}=25$, then $a=5$
The converse exchanges the \quad hypothesis and the \quad conclusion
Converse: If $a=5$, then $\mathrm{a}^{2}=25$.
The conditional is false. A counterexample is $a=-5$:
$(-5)^{2}=25$, and $-5 \neq 5$
Because $5^{2}=25$, the converse is \quad true .

Quick Check

3. Write the converse of the following conditional:

4. Write the converse of each conditional. Determine the truth value of the conditional and its converse. (Hint: One of these conditionals is not true.)
a. If two lines do not intersect, then they are parallel.

Converse:

The conditional is false and the converse is \square true
b. If $x=2$, then $|x|=2$

Converse:

Name	Class	Date
Lesson 2-3		Deductive Reasoning
Lesson Objectives V Use the Law of Detachment V Use the Law of Syllogism	NAEP 2005 Strand: Geometry Topic: Mathematical Reasoning Local Standards: \qquad	

Vocabulary and Key Concepts

Law of Detachment
If a conditional is true and its hypothesis is true, then its conclusion is true.
In symbolic form:
If $p \rightarrow q$ is a true statement and p is true, then \square is true.
Law of Syllogism
If $p \rightarrow q$ and $q \rightarrow r$ are true statements, then $r \rightarrow r$ is a true statement.

Deductive reasoning is a process of reasoning logically from given facts to a conclusion.

Examples

(1) Using the Law of Detachment A gardener knows that if it rains, the
garden will be watered. It is raining. What conclusion can he make?
The first sentence contains a conditional statement. The hypothesis is it rains.
Because the hypothesis is true, the gardener can conclude that the garden will be watered.

2 Using the Law of Detachment For the given statements, what can yo conclude?
Given: If $\angle A$ is acute, then $m \angle A<90^{\circ} . \angle A$ is acute.
A conditional and its hypothesis are both given as true.
By the Law of Detachment \square you can conclude that the conclusion of the conditional, $m \angle A<90^{\circ}$, is true

Name
(3) Using the Law of Syllogism Use the Law of Syllogism to draw a conclusion from the following true statements.
If a quadrilateral is a square, then it contains four right angles.
If a quadrilateral contains four right angles, then it is a rectangle.
The conclusion of the first conditional is the hypothesis of the second conditional. This means that you can apply the Law of Syllogism
The Law of Syllogism: If $p \rightarrow q$ and $q \rightarrow r$ are true statements, then $p \rightarrow r$ is a true statement.
So you can conclude
If a quadrilateral is a square, then it is a rectangle.
4 Drawing Conclusions Use the Laws of Detachment and Syllogism to draw a possible conclusion.
If the circus is in town, then there are tents at the fairground. If there are ents at the fairground, then Paul is working as a night watchman. The circus is in town
Because the conclusion of the first statement is the \square hypothesis of the second statement, you can apply the \square Law of Syllogism to write new conditional:

If the circus is in town, then Paul is working as a night watchman.
The third statement means that the hypothesis of the new conditional is true. You can use the Law of Detachment to form the conclusion: Paul is working as a night watchman.

Quick Check

1. Suppose that a mechanic begins work on a car and finds that the car will not start. Can the mechanic conclude that the car has a dead battery? Explain. No, there could be other things wrong with the car, such as a faulty starter.
2. If a baseball player is a pitcher, then that player should not pitch a complete game two days in a row. Vladimir Nuñez is a pitcher. On Monday, he pitches a complete game. What can you conclude?

Answers may vary. Sample: Vladimir Nuñez should not pitch a complete game on Tuesday.
.....................

Name

Example

(3) Using Properties of Equality and Congruence Name the property that justifies each statement.
If $x=y$ and $y+4=3 x$, then $x+4=3 x$
The conclusion of the conditional statement is the same as the equation
$y+4=3 x$ (given) after x has been substituted for y (given). The property used is the Substitution Property of Equality.
b. If $x+4=3 x$, then $4=2 x$.

The conclusion of the conditional statement shows the result after x is subtracted from each side of the equation in the hypothesis The property used is the Subtraction Property of Equality.
c. If $\angle P \cong \angle Q, \angle Q \cong \angle R$, and $\angle R \cong \angle S$, then $\angle P \cong \angle S$.

Use the \quad Transitive Property of Congruence for the first two parts of the hypothesis: If $\angle P \cong \angle Q$ and $\angle Q \cong \angle R$, then $\quad \angle P \cong \angle R$.

Use the Transitive Property of Congruence $\angle P \cong \angle R$ and the third part of the hypothesis: If $\angle P \cong \angle R$ and $\angle R \cong \angle S$, then $\angle P \cong \angle S$. The property used is the Transitive Property of Congruence.

Quick Check

3. Name the property of equality or congruence illustrated. a. $\overline{X Y} \cong \overline{X Y}$

Reflexive Property of Congruenc

b. If $m \angle A=45$ and $45=m \angle B$, then $m \angle A=m \angle B$

Transitive or Substitution Property of Equality

Geometry: All-In-One Answers Version A (continued)

Geometry: All-In-One Answers Version A (continued)

Quick Check

4. Given: $\angle A \cong \angle D, \angle E \cong \angle C, \overline{A E} \cong \overline{D C}, \overline{E B} \cong \overline{C B}, \overline{B A} \cong \overline{B D}$

7 \qquad

Example

(1) Using ASA Suppose that $\angle F$ is congruent to $\angle C$ and $\angle I$ is not congruent to $\angle C$. Name the triangles that are congruent by the ASA Postulate. The diagram shows $\angle N \cong \angle A \cong \angle D$ and $\overline{F N} \cong \overline{C A} \cong \overline{G D}$.

Therefore, $\triangle F N I \cong \triangle C A T \cong \triangle G D O$ by ASA.

Quick Check

1. Using only the information in the diagram, can you conclude that $\triangle I N F$ is congruent to either of the other two triangles? Explain.
No; Only one angle and one side are shown to be congruent. At least one more congruent side or angle is necessary to prove congruence
with SAS, ASA, or AAS. with SAS, ASA, or AAS.

Vocabulary

CPCTC stands for

Examples

(1) Congruence Statements The diagram shows the frame of an umbrella. What congruence statements besides $\angle 3 \cong \angle 4$ can you prove from the diagram, in which $\overline{S L} \cong \overline{S R}$ and $\angle 1 \cong \angle 2$ are given?
$\overline{S C} \cong \overline{S C}$ by the Reflexive Property of Congruence, and $\triangle L S C \cong \triangle R S C$ by $S A S$. $\angle 3 \cong \angle 4$ because corresponding parts of congruent triangles are congruent.

When two triangles are congruent, you can form congruence statements about three pairs of corresponding angles and
three pairs of corresponding sides. List the congruence three pairs of corresponding sides. List the congruence
Sides:

$\overline{S L} \cong \overline{S R}$	Given
$\overline{S C} \cong \overline{S C}$	Reflexive Property of Congruence
$\overline{C L} \cong \overline{C R}$	Other congruence statement

Angles:

$\angle 1 \cong \angle 2$	Given
$\angle 3 \cong \angle 4$	Co

$\angle 3 \cong \angle 4$ Corresponding Parts of Congruent Triangles

The congruence statements that remain to be proved are
$\angle C L S \cong \angle C R S$ and $\overline{C L} \cong \overline{C R}$.
80
Geometry Lesson $4-4 \quad$...
Name__Class___ Date___

Geometry: All-In-One Answers Version A (continued)

Geometry: All-In-One Answers Version A (continued)

Geometry: All-In-One Answers Version A (continued)

Name	Class ${ }^{\text {ate_ }}$
Lesson 5-2 Bisectors in Triangles	
Lesson Objective \mathbf{V} Use propertits of perpendicular bisectors and angle bisectors bisectors and angle bisectors	NAEP 2005 Strand: Geometry Topics: Relationships Among Geometric Figures Local Standards: \qquad
Vocabulary and Key Concepts	
Theorem 5-2: Perpendicular Bisector Theorem If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. Theorem 5-3: Converse of the Perpendicular Bisector Theorem If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.	
Theorem 5-4: Angle Bisector Theorem If a point is on the bisector of an angle, then it is equidistant from the sides of the angle. Theorem 5-5: Converse of the Angle Bisector Theorem If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the angle bisector.	
The distance from a point to a line is the length of the perpendicular segment from the point to the line.	
	$\overrightarrow{A B} \text { and } \widehat{A C} \text {. }$
94 Geometry Lesson 5 -2	Daily Notetaking Guide

Geometry: All-In-One Answers Version A (continued)

Geometry: All-In-One Answers Version A (continued)

Quick check

1. Find the values of a and c for which $P Q R S$ must be parallelogram.

2. Can you prove the quadrilateral is a parallelogram? Explain.
a. Given: $\overline{P Q} \cong \overline{S R}, \overline{P Q} \| \overline{S R}$

b. Given: $\overline{D H} \cong \overline{G H}, \overline{E H} \cong \overline{F H}$
 each other-the figure could be a trapezoid,
with $D G$ and $\overline{E F}$ being parallel but of with Q al
unequal length.
\qquad

Geometry Lesson 6-3
Name_Class_C_D Date_

Lesson 6-4 Special Parallelograms

Lesson Objectives	NAEP 2005 Strand: Geometry
V Use properties of diagonals of	
rhombuses and rectangles	Topic: Geometry
Determine whether a parallelogram is	Local Standards:
a rhombus or a rectangle	

Key Concepts

Rhombuses
Theorem 6-9
Each diagonal of a rhombus bisects two angles of the rhombus.
$\overline{A C}$ bisects $\angle B A D$, so $\angle 1 \cong \angle 2$
$\overline{A C}$ bisects $\angle \square B C D$
Theorem 6-10
so $\angle 3 \cong \angle 4$
The diagonals of a rhombus are \quad perpendicular.
$\overline{A C} \perp \square \overline{B D}$

Rectangles
Theorem 6-11
The diagonals of a rectangle are \square congruent .
$\overline{A C} \cong \overline{B D}$

Parallelograms
Theorem $6-12$
If one diagonal of a parallelogram bisects two angles of the parallelogram, then
the parallelogram is a rhombus.
Theorem 6-13
If the diagonals of a parallelogram are perpendicular, then
the parallelogram is a rhombus.
Theorem 6-14
If the diagonals of a parallelogram are congruent, then
the parallelogram is a rectangle.

Daily Notetaking Guide Geometry Lesson 6-4 117

Geometry: All-In-One Answers Version A (continued)

Name	Class	Date
Lesson 6-6		Placing Figures in the Coordinate Plane
Lesson Objective \mathbf{V} Name coordinates of special figures by using their properties	NAEP 2005 Strand: Geometry Topic: Position and Direction Local Standards: \qquad	

Example

(1) Proving Congruency Show that $T W V U$ is a parallelogram by roving pairs of opposite sides congruent.
 Use the coordinates $T(\boxed{a r, b}), W((\boxed{a+c}, \boxed{b+d}), V((\boxed{c+e}, \boxed{d})$, and $U(\sqrt{e}, \boxed{0}$
$T W=\sqrt{(\square a+c-a)^{2}+(\square b+d-\sqrt{b})^{2}}=\sqrt{\square c^{2}+d^{2}}$
$V U=\sqrt{\left(\overline{c+e}-[e)^{2}+(d-\sqrt{0})^{2}\right.}=\sqrt{\square c^{2}+d^{2}}$
言 $\quad W V=\sqrt{(\square a+c-a+e})^{2}+\left(\sqrt[b+d]{a+d)^{2}}=\sqrt{(a-e)^{2}+b^{2}}\right.$

Because $T W=V U$ and $W V=T U, T W V U$ is a \quad parallelogram

Quick Check

1. Use the diagram above. Use a different method: Show that $T W V U$ is a parallelogram by finding the midpoints of the diagonals.
Midpoint of $\overline{T V}=\left(\frac{a+c+e}{2}, \frac{b+d}{2}\right)=$ midpoint of $\overline{U W}$. Thus, the diagonals bisect each other, and $T W V U$ is a parallelogram.
Daily Notetaking Guide
Geometry Lesson 6-6
Name__Class__ Date___
\qquad
Lesson 6-7
Proofs Using Coordinate Geometry
(2) Naming Coordinates Use the properties of parallelogran OCBA to find the missing coordinates. Do not use any new variables.
The vertex O is the origin with coordinates $O \square(0,0)$ Because point A is p units to the left of point O, point B is also p units to the left of point \triangle, because $O C B A$ is a parallelogram. So the first coordinate of point B is $-p-x$. Because $\overline{A B} \| \overline{C O}$ and $\overline{C O}$ is horizontal, $\overline{A B}$ is
also horizontal . So point B has the same second
coordinate, q, as point A.

coordinate,
The missing coordinates are $O \square(0,0)$ and $B \square(-p-x, q)$.

Quick Check

. Use the pro
Use the properties of parallelogram $O P Q R$ to find the missing $Q(s+b, c)$

Geometry: All-In-One Answers Version A (continued)
\qquad

Example
(4) Using Proportions Two cities are $3 \frac{1}{2}$ in. apart on a map with the scale
$1 \mathrm{in}=.50 \mathrm{mi}$. Find the actual distance.
Let d represent the actual distance.
Let d represent the actual distance
$\frac{\text { map distance }(\mathrm{in.})}{\text { actual distance }(\mathrm{mi.})}=\frac{1 \mathrm{in} .}{50} 5$

$3 \frac{1}{2}$
d

The cities are actually 175 miles apart.

Quick Check

4. Recall Example 4. You want to make a new map with a scale of $1 \mathrm{in} .=35 \mathrm{mi}$. Two cities that are actually 175 miles apart are to be represented on your map What would be the distanc
5 inches

130 Geometry Lesson 7-1 \quad Daily Notetaking Guide

Name

Examples
2) Determining Similarity Determine whether the parallelograms are similar. Explain.
Check that corresponding sides are proportional.
$\frac{48}{8}=\square$
$\frac{C D}{L M}=\frac{2}{4}$
D 1
Corresponding sides of the two parallelogra are proportional.
Check that corresponding angles are congruent
$\angle B$ corresponds to $\angle K$, but $m \angle B \nexists m \angle K$, so corresponding angles are not congruent.
Although corresponding sides are proportional, the parallelograms are not similar because the corresponding angles are not congruent
(3) Using Similar Figures If $\triangle A B C \sim \triangle Y X Z$, find the value of X.

132 Geometry Lesson 7-2

Daily Notetaking Guide \qquad
Lesson 7-2 Similar Polygons NAEP 2005 Strand: Geometry and Measurement Topics: Transformation of Shapes and Preservation of Properties; Measuring Physical Attributes Local Standards:

Vocabulary

Similar figures have the same shape but not necessarily the same size. Two polygons are

The mathematical symbol for similarity is \sim
The similarity ratio is the ratio of the lengths of corresponding sides of similar figures.
A golden rectangle is a rectangle that can be divided into a square and a rectangle that is
similar to the original rectangle.
The golden ratio is the ratio of the length to the width of any golden rectangle, about
1.618: 1 .

Example
(1) Understanding Similarity $\triangle A B C \sim \triangle X Y Z$. Complete each statement.
$m \angle B=$
$\angle B \cong \angle Y$ and $m \angle Y=78$, so $m \angle B=78$
b. $\frac{B C}{Y Z}=\frac{\square}{X Z}$

$\overline{A C}$ corresponds to $\overline{X Z}$, so $\frac{B C}{Y Z}=\frac{A C}{X Z}$.

Quick Check

1. Refer to the diagram for Example 1. Complete

$$
m \angle A=42 \text { and } \frac{B C}{Y Z}=\frac{A B}{X Y}
$$

Geometry: All-In-One Answers Version A (continued)

Geometry: All-In-One Answers Version A (continued)

Geometry: All-In-One Answers Version A (continued)

\qquad Class \qquad
Examples
(1) Identifying Lines of Symmetry Draw all lines of symmetry for the isosceles trapezoid.

There is one line of symmetry.
2. Identifying Rotational Symmetry Judging from appearance, do the letters V and H have rotational symmetry? If so, give an angle of rotation The letter V does not have rotational symmetry because it must be rotated 360 ' before it is its own image.
The letter H is its own image after one half-turn, so it has rotational symmetry with a $180{ }^{\circ}$ angle of rotation.
(3) Finding Symmetry A nut holds a bolt in place. Some nuts have square faces, like the top view shown below. Tell whether the nut has rotational symmetry and/or reflectional symmetry. Draw all lines of symmetry

The nut has a square outline with a circular opening. The square and circle are concentric.
The nut is its own image after one quarter-turn, so it has $90{ }^{\circ}$ rotational symmetry.
The nut has 4 lines of symmetry.

Daily Notetaking Guide

Lesson 9-5
Lesson Objective \mathbf{V} Locate dilation images of figures NAEP 2005 Strand: Geometry Topic: Transformation of Shapes and Preservation of Propertics Local Standards:

Vocabulary

A dilation is a transformation with center C and scale factor n for which the following are true:

- The image of C is itself (that is, $C^{\prime}=C$).
\bullet For any point R, R^{\prime} is on $\overrightarrow{C R}$ and $C R^{\prime}=\square \times C R$.

$\overline{R^{\prime} Q^{\prime}}$ is the image of $\overline{R Q}$ under a $\quad \square$ dilation
with center \square and scale factor 3.

2. a. Judging from appearance tell whether the figure at the not rotational symmetry. If so, give the angle of rotation
rell yes; 180°
b. Does the figure have point symmetry?

3. Tell whether the umbrella has rotational symmetry about a line and/or
4. Tell whether the untry

172
Geometry Lesson $9-4$

Name		Class	Date
	Lesson 9-7		Tessellations
	Lesson Objectives V Identify transformation in tessellations, and figures that will V Idsellate Idenify symmetries in tesellations	NAEP 2005 Strand: Geometry Topic: Geometry Local Standards: \qquad	
	Vocabulary and Key Concepts		
	Theorem 9-6 Every triangle tessellates. Theorem 9-7 Every quadrilateral tessellates.		
	A tessellation, or tiling, is a repeating pattern of figures that completely covers a plane, without gaps or overlaps.		
	Translational symmetry is the type of symmetry for which there is a translation that maps a figure onto itself.		
	Examples		
	(1) Determining Figures That Will Tessellate Determine whether a regular 15 -gon tessellates a plane. Explain.		
	Because the figures in a tessellation do not overlap or leave gaps, the sum of the measures of the angles around any vertex must be 360 . Check		
	to see whether the measure of an angle of a regular 15 -gon is a factor of 360 . Use the formula for the measure of an angle of a regular polygon.		
	156 Simplify		
	Because 156 is not ${ }^{\text {a }}$ a factor of 360 , a regular 15 -gon		
	will not \square tessellate	a factor of 360, a regular 15-gon	
	Daily Notetaking Guide		son 9-7 179

\qquad

Examples

(3) Finding the Area of a Kite Find the area of kite $X Y Z W$ Find the lengths of the diagonals of kite $X Y Z W$.
$X Z=d_{1}=3+3=6$ and $Y W=d_{2}=1+4=5$ $A=\frac{1}{2} d_{1} d_{2}$ Use the formula for the area of a kite. $A=\frac{1}{2}(6)(5) \quad$ Substitute 6 for d_{1} and 5 for d_{2}. $A=15$ Simplify.
 The area of kite $X Y Z W$ is $15 \mathrm{~cm}^{2}$.
(4) Finding the Area of a Rhombus Find the area of rhombus RSTU To find the area, you need to know the lengths of both diagonals. Draw diagonal $\overline{S U}$, and label the intersection of the diagonals point X. $\triangle S X T$ is a right triangle because the diagonals of a rhombus are perpendicular.
The diagonals of a rhombus bisect each other, so $T X=12 \mathrm{ft}$.
You can use the Pythagorean triple 5,12,13 or the Pythagorean Theorem
o conclude that $S X=5 \mathrm{ft}$.
$S U=10 \mathrm{ft}$ because the diagonals of a rhombus bisect each other.
$A=\frac{1}{2}\left[d_{1} d_{2} \quad\right.$ Area of a rhombus
$A=\frac{1}{2}(\boxed{24})(\boxed{10})$ substitute $\quad 24$ for d_{1} and 10 for d_{2}.
$A=120$
The area of rhombus $R S T U$ is $\quad 120 \mathrm{ft}^{2}$.

Quick Check

3. Find the area of a kite with diagonals that are 12 in. and 9 in. long.

54 in 2 54 in
4. Critical Thinking In Example 4, explain how you can use a Pythagorean triple to conclude that $X U=5 \mathrm{ft}$

Daily Notetaking Guide

2 Finding the Area of a Regular Polygon A library is in the shape of a regular octagon. Each side is 18.0 ft . The radius of the octagon is 23.5 ft . Find the area of the library to the nearest $10 \mathrm{ft}^{2}$. Consecutive radii form an isosceles triangle, so an apothem bisects the side of the octagon.
To apply the area formula $A=\frac{1}{2} a p$, you need to find a and p. Step 1 Find the apothem a.
$a^{2}+(\square .0)^{2}=(\square 23.5)^{2}$ Pythagorean Theorem
$a^{2}+81=552.25$ Solve for a.
$\begin{aligned} a^{2} & =471.25 \\ a & \approx 21.7\end{aligned}$
Step 2 Find the perimeter p.
$p=n s$
Find the perimeter, where $n=$ the number of sides
Find the perimeter, wh
of a regular polygon. 2 3 Find the area A
$A=\frac{1}{2} a p$
$A \approx \frac{1}{2}(21.7$
$A=\frac{1}{2} a p$
$A \approx \frac{1}{2}(\square 21.7)(\square 144$
$A \approx=1562.4$
Area of a regular polygon $A \approx 1562.4$ To the nearest $10 \mathrm{ft}^{2}$, the area is 1560

Simplify.

(3) Applying Theorem 10-6 Find the area of an equilateral triangle with apothem 8 cm . Leave your answer in simplest radical form. This equilateral triangle shows two radii forming an angle that measures $\frac{360}{3}=120$. Because the radii and a side form an isosceles triangle, 3
the apothem bisects the 120° angle, forming two $\quad 60^{\circ}$ angles. angles. $=\sqrt{3} \cdot a-60^{\circ}-90^{\circ}$ triangle to find half the length of a side.
$\frac{1}{2} s=\sqrt{3} \cdot 8 \quad \begin{aligned} & \text { longer leg }=8 \sqrt{3} \\ & \text { Substitute } 8 \text { for a. }\end{aligned}$
$s=16 \sqrt{3} \quad$ Multiply each side by 2.
\square Find the perimeter.
$p=(\boxed{3})\binom{$\hline 16}{\hline}$=48, \sqrt{3}$
$A=\frac{1}{2} a p \quad$ Area of a regular polygon
$A=\frac{1}{2}(\sqrt[8]{4})(48 \sqrt{3})$
$A=192 \quad \sqrt{3}$
The area of the equilateral triangle is $192 \sqrt{3} \mathrm{~cm}^{2}$.
Daily Notetaking Guide
Geometry Lesson 10-3
189

Geometry: All-In-One Answers Version A (continued)

Name__Class_ Date	
Lesson 10-5 Trigonometry and Area	
Lesson Objectives V Find the area of a regular polygon using trigonometry $2 \begin{aligned} & \text { Find the area of a triangle using } \\ & \text { trigonometry }\end{aligned}$ trigonometry	NAEP 2005 Strand: Measurement Topic: Measuring Physical Attributes Local Standards: \qquad
Key Concepts	
Theorem 10.8: Area of a Triangle Given SAS The area of a triangle is one half the product of the length of two sides and the sine of the included angle Area of $\triangle A B C=\square \frac{1}{2} b(\sin A)$	
Examples	
(1) Finding Area The radius of a garden in the shape of a regular pentagon is 18 feet. Find the area of the garden. Find the perimeter p and apothem a, and then find the area using the formula \square $A=\frac{1}{2} a p$ Because a pentagon has five sides, $m \angle A C B=$ \square \square 72. $\overline{C A} \text { and } \overline{C B} \text { are radii, so } C A=C B \text {. Therefore, } \triangle A C M \cong \triangle B C M \text { by }$ \square	
194 Geometry Lesson 10-5........

Geometry: All-In-One Answers Version A (continued)

Example

(3) Applying Geometric Probability To win a rize you so that it lands entirely within the outer region of the circle at right. Find the probability that this happens with a quarter of radius $\frac{15}{32}$ in. Assume that the The center of a quarter with a radius of $\frac{15}{32}$ in. must land at least $\frac{15}{2}$ in beyond the boundary of the inner circle in order to lie entirely outsid inner circle. Because the inner circle has a radius of 9 in., the quarter must land outside the circle whose radius is $9 \mathrm{in} .+\frac{15}{32}$ in., or $9 \frac{15}{32}$ in. Find the area of the circle with a radius of $9 \frac{15}{32}$ in.

$$
A=\pi r^{2}=\pi\left(\frac{\boxed{15}}{\boxed{32}}\right)^{2} \approx \square 281.66648 \quad \mathrm{in.}^{2}
$$

$$
\text { Similarly, the center of a quarter with a radius of } \frac{15}{32} \text { in. must land at least }
$$

$$
\frac{15}{32} \text { in. within the outer circle. Because the outer circle has a radius of } 12 \text { in. }
$$

$$
\begin{aligned}
& \text { the quarter must land inside the circle whose radius is } 12 \text { in. }-\frac{15}{32} \text { in., or }
\end{aligned}
$$

$$
\begin{array}{|c|}
\hline 11 \frac{17}{32} \\
\mathrm{in} . \\
\hline
\end{array}
$$

Find the area of the circle with a radius of $11 \frac{17}{32}$ in.

Use the area of the outer region to find the probability that the quarter lands entirely within the outer region of the circle.
$P($ outer region $)=\frac{\text { area of outer circle }}{\text { area of large circle }} \approx \frac{417.73672-281.66648}{}$

The probability that the quarter lands entirely within the outer region of the circle is about 0.326 or 32.6 \%

Quick Check

3. Critical Thinking Use Example 3. Suppose you toss 100 quarters. Would you expect to win a prize? Explain
Yes; theoretically you should win 32.6 times out of 100 , \square

204 \qquad
Daly Nota

Lesson 11-1
Space Figures and Cross Sections

Lesson Objective	NAEP 2005 Strand: Geometry
V Recognize polyhedra and their parts	Topic: Dimension and Shape
2 Visualize cross sections of space figures	Local Standards:

Vocabulary and Key Concepts

Euler's Formula

The numbers of faces (F), vertices (V), and edges (E) of a polyhedron are related by the formula $\quad F+V=E+2$

A polyhedron is a three-dimensional figure whose surfaces are polygons.

A face is a flat surface of a polyhedron in the shape of a polygon.

An edge is a segment that is formed by the intersection of two faces.

A vertex is a point where three or more edges intersect.

A cross section is the intersection of a solid and plane.
\qquad
\qquad

Geometry: All-In-One Answers Version A (continued)

Geometry: All-In-One Answers Version A (continued)

Name__Cl__ Daste___

Example

(3) Using Volume to Find Surface Area The volume of a sphere is 1 in. ${ }^{3}$ Find its surface area to the nearest tenth.
$V=\frac{4}{43} \pi r^{3}$ Use the formula for volume of a sphere.
$1=\frac{4}{3} \pi r^{3} \quad$ Substitute
$\frac{\boxed{3}}{\boxed{4 \pi}}=r^{3} \quad$ Solve for r^{3}.

S. A. ≈ 4.83597587 Use r, S.A. $=4 \pi r^{2}$, and a calculator. To the nearest tenth, the surface area of the sphere is $4.8 \mathrm{in.}^{2}$.

Quick Check
2. Find the surface area of a spherical melon with circumference 18 in. Round your answer to the nearest ten square inches.

3. Find the volume to the nearest cubic inch of a sphere with diameter 60 in . 113,097 in. ${ }^{3}$
$1258.9 \mathrm{ft}^{2}$

Daily Notetaking Guide

\qquad
2 Finding the Similarity Ratio Find the similarity ratio of two similar cylinders with surface areas of $98 \pi \mathrm{ft}^{2}$ and $2 \pi \mathrm{ft}^{2}$.
Use the ratio of the surface areas to find the similarity ratios.
$\frac{a^{2}}{b^{2}}=\frac{98 \pi}{2 \pi}$
The ratio of the surface areas is $a^{2}: b^{2}$.
$\frac{a^{2}}{b^{2}}=\frac{49}{1} \quad$ Simplify
$\frac{a}{b}=\frac{7}{\square 1} \quad$ Take the square root of each side.
The similarity ratio is $7: 1$.
(3) Using a Similarity Ratio Two similar square pyramids have volumes of $48 \mathrm{~cm}^{3}$ and $162 \mathrm{~cm}^{3}$. The surface area of the larger pyramid is $135 \mathrm{~cm}^{2}$ ind the surface area of the smaller pyramid.

$$
\text { Step } 1 \text { Find the similarity ratio. }
$$

Step 2 Use the similarity ratio to find the surface area S_{1} of the smaller pyramid.
 The surface area of the smaller pyramid is $60 \mathrm{~cm}^{2}$.

[^0]Geometry Lesson 11-7 225

Geometry: All-In-One Answers Version A (continued)

\qquad

Examples

(1) Using the Inscribed Angle Theorem Find the values of x and y.

$x=7$ 70) Substitute.

Because $\widehat{E F G}$ is the intercepted arc of $\angle D$, you need to find $\overrightarrow{m F}$ in order to find $m \overline{E F G}$. The arc measure of a circle is 360°,so $m \widehat{F G}=360-70-80-90=120$. $y=\frac{1}{2} m \widehat{E F G}$
$y=\frac{\square}{\overline{-2}}(m \boxed{E F}+m \overline{\overline{F G}}) \quad$ Arc Addition Postulate

2. Using Corollaries to Find Angle Measures Find the values of a and b. By Corollary 2 to the Inscribed Angle Theorem, an angle inscribed in a semicircle is a right angle, so $a=90$.
The sum of the measures of the three angles of the triangle inscribed in $\odot O$ is 180 . Therefore, the angle whose intercepted arc has measure b must have measure $180-90-32$ or 58 .

Because the inscribed angle has half the measure of the intercepted arc, the intercepted arc has twice the measure of the inscribed angle, so $b=2(58)=116$.

Daily Notetaking Guide Geometry Lesson 12-3

Geometry: All-In-One Answers Version A (continued)

© Pearson Education, Inc., publishing as Pearson Prentice Hall.
Name_Class__ Date___

[^0]: Daily Notetaking Guide

