

Lesson 1-2
Lesson Objectives

V Make isometric and orthographic | | Drawing |
| :--- | :--- | Topic: Dimension and Shape Local Standards:

D Draw nets for three-dimensional

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Name__Class_ Date_	
Lesson 1-5 Measuring Segments	
Lesson Objectives \mathbf{V} Find the lengths of segments	NAEP 2005 Strand: Measurement Topic: Measuring Physical Attributes Local Standards: \qquad
Vocabulary and Key Concepts	
Postulate 1-5: Ruler Postulate The points of a line can be put into one-to-one correspondence with the real numbers so that the distance between any two points is the absolute value of the difference of the corresponding numbers.	
A coordinate is a point's distance and direction from zero on a number line.	
	with the same length. $\begin{aligned} & \vec{B} \\ & \stackrel{\rightharpoonup}{D} \end{aligned}$ ment into two congruent

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

\qquad

Examples

(1) Justifying Steps in Solving an Equation Justify each step used to solve
$5 x-12=32+x$ for x.
Given: $5 x-12=32+x$
$5 x=44+x \quad$ Addition Property of Equality
$4 x=44 \quad$ Subtraction Property of Equality $x=11 \quad$ Division Property of Equality
(2) Using Properties of Equality and Congruence Name the proter justifies each statement.
If $\angle P \cong \angle Q, \angle Q \cong \angle R$, and $\angle R \cong \angle S$, then $\angle P \cong \angle S$.
Use the \quad Transitive Property of Congruence for
the first two parts of the hypothesis.
If $\angle P \cong \angle Q$ and $\angle Q \cong \angle R$, then $\quad \angle P \cong \angle R$.
Use the \quad Transitive Property of Congruence
$\angle P \cong \angle R$ and the third part of the hypothesis:
If $\angle P \cong \angle R$ and $\angle R \cong \angle S$, then $\angle P \cong \angle S$

(1) Using the Vertical Angles Theorem Find the value of x.

The angles with labeled measures are vertical angles. Apply the
Vertical Angles Theorem to find x.

$4 x-101=2 x+3 \quad$ Vertical Angles Theorem	Vertical Angles Theorem
Addition Property of Equality	$2 x=104 \quad$ Subtraction Property of Equality $\begin{aligned} 2 x & =104 \quad \text { Subtraction Property of Equality } \\ x & =52 \quad \text { Division Property of Equality }\end{aligned}$

(2) Proving Theorem 2-2 Write a paragraph proof of Theorem 2-2 using the diagram at the right.
Start with the given: $\angle 1$ and $\angle 2$ are supplementary, $\angle 3$ and $\angle 2$ are supplementary. By the definition of supplementary angles,
$m \angle 1+m \angle 2=180$ and $m \angle 3+m \angle 2=180$. By substitution,
$m \angle 1+m \angle 2=m \angle 2+m \angle 3$. Using the Subtraction Property of Equality $m \angle 1+m \angle 2=\square \angle 2+m \angle 3$. Using the Subtraction Property of EqL
subtract $m \angle 2$ from each side. You get $m \angle 1=m \angle 3$, or $\angle 1 \cong \angle 3$.

Quick Check

1. Refer to the diagram for Example 1 .
a. Find the measures of the labeled pair of vertical angles.
107°
b. Find the measures of the other pair of vertical angles.
73°
c. Check to see that adjacent angles are supplementary. $107^{\circ}+73^{\circ}=180^{\circ}$

- \square Daily Notetaking Guide

Geometry Lesson 2-5

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Lesson 3-6
Lesson Objectives
\mathbf{V} Graph lines given their equations

Vrite equations of lines | Lines in the Coordinate Plane |
| :--- |
| $\begin{array}{l}\text { NAEP } 2005 \text { Strand: Algebra } \\ \text { Topics: Patterns, Relations, and Functions; } \\ \text { Algebraic Representations }\end{array}$ |
| Local Standards: |

Vocabulary

The slope-intercept form of a linear equation is $y=m x+b$.
The standard form of a linear equation is
$A x+B y=C$.
The point-slope form for a nonvertical line is $y-y_{1}=m\left(x-x_{1}\right)$.

Examples
(1) Graphing Lines Using Intercepts Use the x-intercept and y-intercept to graph $5 x-6 y=30$.

Geometry: All-In-One Answers Version B (continued)

Name_Class D_ Date
Lesson 4-3 Triangle Congruence by ASA and AAS
Lesson Objective V Prove tuw oriangles congruent using the ASP Aosutulate and the AAS Theorem NAEP 2005 Strand: Geometry Topicic Transtormation of Stapes and Preservation of Properies Local Standards:
Key Concepts
Postulate 4-3: Angle-Side-Angle (ASA) Postulate If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then \qquad the two triangles are congruent $\Delta N G B \cong \triangle N K P$ Theorem 4-2: Angle-Angle-Side (AAS) Theorem If two angles and a nonincluded side of one triangle are congruent to two angles and the corresponding nonincluded side of another triangle, then \qquad $\Delta \mathrm{CDM} \cong \triangle \mathrm{XGT}$
(1) Using ASA Suppose that $\angle F$ is congruent to $\angle C$ and $\angle I$ is not congruent to $\angle C$. Name the triangles that are congruent by the ASA Postulate. The diagram shows $\angle N \cong \angle A \cong \angle D$ and $\overline{F N} \cong \overline{C A} \cong \overline{G D}$. If $\angle F \cong \angle C$, then $\angle F \cong \angle C \cong \angle G$. Therefore, $\triangle F N I \cong \triangle C A T \cong \triangle G D O$ by ASA.
1. Using only the information in the diagram, can you conclude that $\triangle I N F$ is congruent to either of the other two triangles? Explain.
No; Only one angle and one side are shown to be eongruent. At least one enore congruent side or angle is necessany to prove congruence with SAS, ASA, or ASS.
50 Geometry Lesson 4-3

Lesson 4-4

Lesson Objective V Use triangle congruence and CPCTC to prove that parts of two triangles are congruent	NAEP 2005 Strand: Geometry Topic: Pransformation of Shapes and Preservation of Properties
Local Standards:	

Vocabulary
CPCTC stands for
\qquad

Examples

(1) Congruence Statements The diagram shows the frame of an umbrella .

What congruence statements besides $\angle 3 \cong \angle 4$ can you
prove from the diagr
$\angle 1 \cong \angle 2$ are given?
$\overline{S C} \cong \overline{S C}$ by the Reflexive Property of Congruence, and $\triangle L S C \cong \triangle R S C$ by SAS $\angle 3 \cong \angle 4$ because corresponding parts of congruent triangles are congruent.

When two triangles are congruent, you can form congruence
statements about three pairs of corresponding angles and
three pairs of corresponding sides. List the congruence
statements.
$\overline{\overline{S L}}$

$\overline{S L} \cong \overline{S R}$	Given
$\overline{S C} \cong \overline{\overline{S C}}$	Reflexive Property of Congruence

| $\overline{C L} \cong \overline{C R}$ | Other congruence statement |
| :--- | :--- | :--- |

Angles:

$\angle 1 \cong \angle 2$	Given

$\angle 3 \cong \angle 4$ Corresponding Parts of Congruent Triangles

$\angle C L S \cong \angle C R S$	Other congruence statement

The congruence statements that remain to be proved are
$\angle C L S \cong \angle C R S$ and $\overline{C L} \cong \overline{C R}$.

52
Geometry Lesson 4-4 ..

Example

Given: $\angle B \cong \angle D, \overline{A B} \| \overline{C D}$
Prove: $\triangle A B C \cong \triangle C D A$
2. In Example 2, explain how you could prove $\triangle A B C \cong \triangle C D A$ using ASA

$$
\text { It is given that } \angle B \cong \angle D \text {. You know that } \angle B A C \cong \angle D C A \text { by the }
$$

(2) Using Right Triangles According to legend, one of Napoleon's followers used congruent triangles to estimate the width of a river. On the riverbank, the officer
stood up straight and lowered the visor of his cap until the farthest thing he could stood up straight and lowered the visor of his cap until the farthest thing he could side of the river that was in line with his eye and the tip of his visor.

Given: $\angle D E G$ and $\angle D E F$ are right angles; $\angle E D G \cong \angle E D F$ The officer then paced off the distance to this spot and declared that distance to be the width of the river!
The given states that $\angle D E G$ and $\angle D E F$ are \quad right angles What conditions must hold for that to be true?
$\angle D E G$ and $\angle D E F$ are the angles that the officer makes with the ground So the officer must stand perpendicular to the ground, and the ground must be level or flat.

Quick Check

1. In Example 1, what can you say about $\angle 5$ and $\angle 6$? Explain.

They are congruent, because supplements of congruent angles are congruent.
2. Recall Example 2. About how wide was the river if the officer paced off 20 paces and each pace was about $2 \frac{1}{2}$ feet long? 50 feet

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Name		Class	Date	
Lesson 4-7 Usin			ing Corresponding Parts of Congruent Triangles	
Lesson Objectives \mathbf{V} Identify congruent overlapping triangles V Prove two triangles congruent by first proving two other triangles congruent		NAEP 2005 Strand: Geometry Topic: Relationships Among Geom Local Standards: \qquad	etric Figures	
Examples				
(1) Identifying Common Parts Name the parts of the sides that $\triangle D F G$ and $\triangle E H G$ share. Identify the overlapping triangles. Parts of sides $\overline{D G}$ and \square $\overline{E G}$ are shared by $\triangle D F G$ and $\triangle E H G$. These parts are \square $\overline{H G}$ and \square $\overline{F G}$ respectively.				㜢
	Using Two Pairs of Triangles Write Given: $\overline{X W} \cong \overline{Y Z}, \angle X W Z$ and $\angle Y Z W$ Prove: $\triangle X P W \cong \triangle Y P Z$ Plan: $\triangle X P W \cong \triangle Y P Z$ by AAS if $\angle W X$ are congruent by CPCTC if \triangle \qquad Proof: You are given $\overline{X W} \cong \overline{Y Z}$. Bec SAS. $\angle W X Z \cong \angle Y W$ by CPC because \square vertical angles $\triangle X P W \cong \triangle Y P Z$ by \square AAS	paragraph proof. are right angles. $\begin{aligned} & Z \cong \angle Z Y W \\ & V Z \cong \triangle Y Z W . \text { These triangles are } \end{aligned}$ se $\angle X W Z$ and $\angle Y Z W$ are $Z W \cdot \overline{W Z} \cong \overline{Z W}$ by the herefore, $\triangle X W Z \cong \triangle Y Z W$ by , and $\angle X P W \cong \angle Y P Z$ ngruent. Therefore,		
58 Geometry Lesson 4-7				

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Name
2 Is the Quadrilateral a Parallelogram? Can you prove the quadrilateral is a parallelogram from what is given? Explain.

Given: $m \angle E=m \angle G=75^{\circ}, m \angle F=105^{\circ}$
Prove: $E F G H$ is a parallelogram
The sum of the measures of the angles of a polygon is $(n-2) 180$ where n represents the number of sides, so the sum of the measures of the angles of a quadrilateral is $(4-2) 180=\square 360$.
If x represents the measure of the unmarked angle,
$x+75+105+75=360$, so $x=105$

Theorem 6 -6 states if both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Because both pairs of opposite angles are congruent, the quadrilateral is a parallelogram by \quad Theorem 6-6

Quick Check

Name_Class__ Dat		
Lesson 6-4		Special Parallelograms
Lesson Objectives V Use properties of diagonals of rhombuses and rectangles 27 Determine whether a parallelogram is a rhombus or a rectangle	NAEP 2005 Strand: Geometry Topic: Geometry Local Standards: \qquad	
Key Concepts		
Rhombuses Theorem 6-9 Each diagonal of a rhombus bisects two angles of the rhombus. $\overline{A C}$ bisects $\angle B A D$, so $\angle 1 \cong \angle 2$ $\overline{A C}$ bisects $\angle B C D$, so $\angle 3 \cong \angle 4$ Theorem 6-10 The diagonals of a rhombus are \square perpendicular . $\overline{A C}$ \qquad $\overline{B D}$		
Rectangles Theorem 6-11 The diagonals of a rectangle are \square congruent $\overline{\mathrm{AC}}$ \square		
Parallelograms Theorem 6-12 If one diagonal of a parallelogram bisects two angles of the parallelogram, the parallelogram is a rhombus. Theorem 6-13 If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. Theorem 6-14 If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.		
76 Geometry Lesson 6-4		Notetaking Guide

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Class Date	
Lesson 7-5 Proportions in Triangles	
Lesson Objectives V Use the Side-Splitter Theorem \mathbb{V} Use the Triangle-Angle-Bisector Theorem	NAEP 2005 Strand: Geometry Topic: Transformation of Shapes and Preservation of Properties Local Standards:
Key Concepts	
Theorem 7-4: Side-Splitter Th If a line is paralle to one side of then it divides those sides prop Theorem 7-5: Triangle-Angle If a ray bisects an angle of a tria are proportional to the other tw	le and intersects the other two sides, \qquad Theorem n it divides the opposite side into two segments that of the triangle.
Corollary to Theorem 7-4 If three parallel lines intersect two transversals, then the segments intercepted on the transversals are proportional.	
Examples (1) Using the Side-Splitter Theo $\begin{array}{rlr} \frac{C M}{M B} & =\frac{\boxed{C N}}{\boxed{N A}} & \text { Side-sp } \\ \frac{12}{y} & =\frac{10}{\boxed{6}} & \text { Substit } \\ 10 & y & =72 \\ y & =7.2 & \text { Cross-P } \\ & \text { Solve fo } \end{array}$	
92 Geometry Lesson 7-5	

Geometry: All-In-One Answers Version B (continued)

 Name
2. Using a Tangent Ratio To measure the height of a tree, Alma walked 125 ft from the tree and measured a 32° angle from the ground to the top 125 ft from the tree and measured a 32° an
of the tree. Estimate the height of the tree.

The tree forms a right angle with the ground, so you can use the tangent ratio to estimate the height of the tree.
$\begin{aligned} \tan 32^{\circ} & =\frac{\text { height }^{2}}{125} \\ \text { height } & =125\left(\tan 32^{\circ}\right.\end{aligned}$
Use the tangent ratio.
Solve for height.
125 IAAN 32 ENTER 78.108669
Use a calculator.
The tree is about 78 feet tall.

Quick Check

Daily Notetaking Guid

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Lesson 11-3
Surface Areas of Pyramids and Cones

Lesson Objectives	SuFface Areas of Pyramids and Cones
\boldsymbol{V} Find the surface area of a pyramid	NAEP 2005 Strand: Measurement Topic: Measuring Physical Attributes Find the surface area of a cone
Local Standards:	

Vocabulary and Key Concepts

Theorem 11-3: Lateral and Surface Area of a Regular Pyramid The lateral area of a regular pyramid is half the product of the perimeter of the base and the \square slant height L.A. $=\frac{1}{2} p \ell$

The surface area of a regular pyramid is the sum of the

 lateral area and the \square area of the base S.A. $=$ L.A. $+B$
A regular pyramid is a pyramid whose base is a regular polygon and whose lateral faces are

 congruent isosceles triangles.The altitude of a pyramid or cone is the perpendicular segment from the vertex to the plane of the base. The height of a pyramid or a cone is the length of the altitude.
The slant height of a regular pyramid is the length of the altitude of a lateral face. The lateral area of a pyramid is is the sum of the
 areas of the congruent lateral faces. The surface area of a pyramid is the sum of the lateral area and the area of the base.

Example

Finding Surface Area of a Pyramid Find the surface area of a square pyramid with base edges 7.5 ft and slant height 12 ft .

Name

The perimeter p of the square base is $4 \times 7.5 \mathrm{ft}$, or 30 ft
You are given $\ell=12 \mathrm{ft}$ and you found that $p=30 \mathrm{ft}$, so you can find the lateral area.

$$
\text { L.A. }=\frac{1}{2} p \rho \quad \text { Use the formula for lateral area of a pyramid. }
$$

$$
\begin{array}{ll}
=\frac{1}{2}(\boxed{30})(\boxed{12}) & \begin{array}{l}
\text { substitute. } \\
=180 \\
\end{array} \\
\text { simplify. }
\end{array}
$$

若 Find the area of the square base.
Because the base is a square with side length 7.5 ft ,
軖 $B=s^{2}=7.5{ }^{2}=\square 56.25$.

The surface area of the square pyramid is 236.25

Quick Check

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

\qquad

Examples

(1) Finding Surface Area The circumference of a rubber ball is 13 cm Calculate its surface area to the nearest whole number Step 1 First, find the radius.

To the nearest whole number, the surface area of the rubber ball is $54 \mathrm{~cm}^{2}$.
(2) Finding Volume Find the volume of the sphere. Leave your answer in terms of π.
$V=\frac{4}{3} \pi r^{3} \quad$ Use the formula for volume of a sphere
$=\frac{4}{3} \pi \cdot 15$ Substitute $r=\frac{30}{2}=15$.
$=4500 \pi \quad$ simplify.

The volume of the sphere is $4500 \pi \mathrm{~cm}^{3}$
Quick Check

1. Find the surface area of a sphere with $d=14 \mathrm{in}$. Give your answer in two
ways, in terms of π and rounded to the nearest square inch.

© Daily Notetaking Guide
147

Lesson 11-7
Areas and Volumes of Similar Solids

Lesson Objective V Find relationships between the ratios of hee areas and volumes of similar solids	NAEP 2005 Strand: Measurement Topic: Systems of Measurement Local Standards:

Vocabulary and Key Concepts

Theorem 11-12: Areas and Volumes of Similar Solids
If the similarity ratio of two similar solids is $a: b$, then
(1) the ratio of their corresponding areas is $a^{2}: b^{2}$, and
(2) the ratio of their volumes is $a^{3}: b^{3}$.

Similar solids have the same shape and all of their corresponding parts are proportional.
The
dimensions.

Examples
(1) Identifying Similar Solids Are the two solids similar? If so, give the similarity ratio

Both figures have the same shape. Check that the ratios of the
corresponding dimensions are equal.
The ratio of the radii is $\sqrt[3]{3}$, and the ratio of the heights is 5
The cones are \square not similar \square because $\square \frac{3}{\frac{3}{2} \neq \frac{8}{26}}$

148 Geometry Lesson 11-7 Daily Notetaking Guide \square

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Geometry: All-In-One Answers Version B (continued)

Chapter 1

Practice 1-1

1. 47,53 2. 42,54 3. $-64,128$ 4. Sample: 2 or 3
2. 6 or 8 6. Y or A 7. any hexagon 8. a 168.75° angle
3. 34 10. Sample:The farther out you go, the closer the ratio gets to a number that is approximately 0.618 .
4. $0,1,1,2,3,5,8,13$

Guided Problem Solving 1-1

1. The pattern is easier to visualize. 2. The graph will go up.
2. Use Years for the horizontal axis. 4. Use Number of Stations for the vertical axis. 5. increasing 6. greater 7. Yes. Since the number of stations increases steadily from 1950 to 2000, we can be confident that the number of stations in 2010 will be greater than in 2000. 8. Patterns are necessary to reach a conclusion through inductive reasoning. 9. (any list of numbers without a pattern would apply) 2,$435 ; 16,439$; 16,454; 3,765; 210,564

Practice 1-2

1.

2.

3.

Front

Front
4.

Front

Top

Right

Guided Problem Solving 1-2

1. They represent three-dimensional objects on a twodimensional surface. 2. nine 3 . See the figure in 4 , below.
2.

5. Yes. It is similar to the foundation drawing, except there are no numbers. 6. no

8. Yes.
9.

Practice 1-3

1. $\overleftrightarrow{A C}$ 2. any two of the following: $A B D, D B C, C B E$, $A B E, E C D, A D E, A C E, A C D$ 3. yes 4. no 5. yes 6. yes 7. yes 8. yes 9. G 10. $\overleftrightarrow{L M} \quad$ 11. the empty set
2. $\overleftrightarrow{K P}$
3. Sample: plane $A B D$
4. $\overleftrightarrow{A B}$
5. no
6. yes
7. the empty set
8. no
9. yes
10. yes

Guided Problem Solving 1-3

1. Collinear points lie on the same line. 2. Answers may vary. (Some people might note that the y-coordinate of two of the points is the same so that the third point must have the same y-coordinate to be collinear. Since it does not, the points are not collinear.) 3. horizontal 4. No. 5. No. 6. All points must have the same y-coordinate, -3 . 7. No. 8. $\left(1,-\frac{1}{2}\right)$

Practice 1-4

1. true 2. false 3. false 4. false 5. $\overline{J K}, \overline{H G} 6$. any three of the following pairs: $\overleftrightarrow{E F}$ and $\overleftrightarrow{J H} ; \overleftrightarrow{E F}$ and $\overleftrightarrow{G K} ; \overleftrightarrow{H G}$ and $\overleftrightarrow{J E} ; \overleftrightarrow{H G}$ and $\overleftrightarrow{F K} ; \overleftrightarrow{J K}$ and $\overleftrightarrow{E H} ; \overleftrightarrow{J K}$ and $\overleftrightarrow{F G} ; \overleftrightarrow{E J}$ and $\overleftrightarrow{F G} ; \overleftrightarrow{E H}$ and $\overleftrightarrow{F K} ; \overleftrightarrow{J E}$ and $\overleftrightarrow{K G} ; \overleftrightarrow{E H}$ and $\overleftrightarrow{K G} ; \overleftrightarrow{J H}$ and $\overleftrightarrow{K F}$; $\overleftrightarrow{J H}$ and $\overleftrightarrow{G F}$ 7. planes A and B 8. planes A and C
2. Sample: $\overrightarrow{E G}$
3. $\overrightarrow{E F}$ and $\overrightarrow{E D}$ or $\overrightarrow{E G}$ and $\overrightarrow{E D}$
4. $\overrightarrow{F E}, \overrightarrow{F D}$
5. yes
6. Sample:

7. Sample:

Guided Problem Solving 1-4

1. Opposite rays are two collinear rays with the same endpoint. 2. a line 3-4. See graph in Exercise 5 answer. 5. Answers may vary. Sample: $(0,0)$ (Answers will be coordinates (x, y), where $y=\frac{3}{2} x, x<2$.)

2. yes 7. $L(4,2)$

Practice 1-5

$\begin{array}{lllllllll}\text { 1. } 4 & \text { 2. } 12 & \text { 3. } 20 & \text { 4. } 6 & \text { 5. } 22 & \text { 6. }-3,4 & \text { 7. no } & \text { 8. }-2\end{array}$
9. 11 10. 29 11. 29

Guided Problem Solving 1-5

1. $\overline{A D} \cong \overline{D C}$ 2. $A D=D C$ 3. Segment Addition Postulate.
2. Since $A D=D C, A C=2(A D)$. 5. $A C=2(12)=24$
3. $y=15$ 7. $D C=A D=12$
4. Answers may vary.
5. $E D=11, D B=11, E B=22$

Practice 1-6

1. any three of the following: $\angle O, \angle M O P, \angle P O M, \angle 1$
2. $\angle A O B$ 3. $\angle E O C$
3. $\angle D O C$
4. 51
5. 90
6. 141 8. 68 9. $\angle A B D, \angle D B E, \angle E B F, \angle D B F, \angle F B C$
7. $\angle A B F, \angle D B C$ 11. $\angle A B E, \angle E B C$

Guided Problem Solving 1-6

1. Angle Addition Postulate 2. supplementary angles
2. $m \angle R Q S+m \angle T Q S=180$ 4. $(2 x+4)+(6 x+20)=180$
3. $x=19.5$ 6. $m \angle R Q S=43 ; m \angle T Q S=137$ 7. The sum of the angle measures should be $180 ; m \angle R Q S+m \angle T Q S=$ $43+137=180.8$ a. $x=11 \quad 8$ b. $m \angle A O B=17 ;$ $m \angle C O B=73$

Practice 1-7

1.

2.

3.

4.

5.

6.

7.

8.

9. true
10. false
11. false
12. true

Guided Problem Solving 1-7

1. $\angle D B C \cong \angle A B C \quad$ 2. complementary angles
2. $\angle C B D$ 4. $m \angle C B D=m \angle C B A=41$
3. $m \angle A B D=m \angle C B A+m \angle C B D=41+41=82$
4. $m \angle A B E+m \angle C B A=90$

$$
m \angle A B E+41=90
$$

$$
m \angle A B E=49
$$

7. $m \angle D B F=m \angle A B E=49$ 8. Answers may vary. Sample: The sum of the measures of the complementary angles should be 90 and the sum of the measures of the supplementary angles should be 180. 9. $m \angle C B D=21, m \angle F B D=69$, $m \angle C B A=21$, and $m \angle E B A=69$

Practice 1-8

1.-5.

6. 12 7. 13 8. $(5,5)$
9. $\left(-2 \frac{1}{2}, 6\right)$
10. $(-0.3,3.4)$
11. $(5,-2)$
12. yes; $A B=B C=C D=D A=6$
13. $\sqrt{401} \approx 20.025$
14.

15. ≈ 24.7 16. $(3.5,3)$

Guided Problem Solving 1-8

1. Distance Formula 2. The distance d between two points $A\left(x_{1}, y_{1}\right)$ to $B\left(x_{2}, y_{2}\right)$ is $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ 3. No; the differences are opposites but the squares of the differences are the same.
2. $X Y=\sqrt{(5-(-6))^{2}+(-2-9)^{2}} \quad$ 5. To the nearest tenth, $X Y=15.6$ units. 6. To the nearest tenth, $X Z=$ 12.0 units. 7. Z is closer to X. 8. The results are the same; e.g., $X Y=\sqrt{(-6-5)^{2}+(9-(-2))^{2}}=\sqrt{242}$, or about 15.6 units, as before.
3. $Y Z=\sqrt{(17-(-6))^{2}+(-3-9)^{2}}=\sqrt{673}$; to the nearest tenth, $Y Z=25.9$ units. To the nearest tenth,
$X Y+Y Z+X Z=53.5$ units.

Practice 1-9

1. $792 \mathrm{in.}^{2}$ 2. $2.4 \mathrm{~m}^{2}$
2. 16π 4. 7.8π 5. $26 \mathrm{~cm} ; 42 \mathrm{~cm}^{2}$
3. 29 in.; 42 in. ${ }^{2}$ 7. $40 \mathrm{~m} ; 99 \mathrm{~m}^{2}$
4. 26;22 9. 30;44
5. 156.25π
6. $10,000 \pi$
7. 36
8. $26 ; 13$

Guided Problem Solving 1-9

1. six 2. It is a two-dimensional pattern you can fold to form a three-dimensional object. 3. rectangles
2.

5. 208 in. ${ }^{2}$ 6. They are equal. 7. 208 in. ${ }^{2}$ 8. Answers will vary. Sample: $2(4 \cdot 6)+2(4 \cdot 8)+2(6 \cdot 8)$; the results are the same, 208 in. ${ }^{2}$ 9. $6\left(7^{2}\right)=294$ in. 2

1A: Graphic Organizer

1. Tools of Geometry 2. Answers may vary. Sample: patterns and inductive reasoning; measuring segments and angles; basic constructions; and the coordinate plane 3 . Check students' work.

1B: Reading Comprehension

1. Answer may vary. Sample: $\overleftrightarrow{A B}\|\overleftrightarrow{C D}, \overleftrightarrow{E F}\| \overleftrightarrow{G H}$, $\overline{J K} \cong \overline{L M}, \overline{J L} \cong \overline{K M}, m \angle A J F+m \angle F J K=180^{\circ}$, $\angle H K B \cong \angle K M D, \overrightarrow{D N} \perp \stackrel{\rightharpoonup}{C D} \quad$ 2. Points A, M, and S are collinear. 3. $\overleftrightarrow{A B}, \overleftrightarrow{H I}$, and $\overleftrightarrow{L N}$ intersect at point M. 4. a

1C: Reading/Writing Math Symbols

1. Line $B C$ is parallel to line $M N$. 2. Line $C D$
2. Line segment $G H$ 4. Ray $A B \quad$ 5. The length of segment $X Y$ is greater than the length of segment $S T$.
3. $M N=X Y \quad$ 7. $G H=2(K L) \quad$ 8. $\overline{S T} \perp \overline{U V}$
$\begin{array}{ll}\text { 9. plane } A B C \| \text { plane } X Y Z & \text { 10. } \overline{A B} \| \overline{D E}\end{array}$

1D: Visual Vocabulary Practice

1. parallel planes 2. Segment Addition Postulate
2. supplementary angles 4. opposite rays 5 . isometric drawing 6. perpendicular lines 7. foundation drawing 8. right angle 9. congruent sides

1E: Vocabulary Check

Net: A two-dimensional pattern that you can fold to form a three-dimensional figure.
Conjecture: A conclusion reached using inductive reasoning.
Collinear points: Points that lie on the same line.
Midpoint: A point that divides a line segment into two congruent segments.
Postulate: An accepted statement of fact.
1F: Vocabulary Review Puzzle

Chapter 2

Practice 2-1

1. Sample: It is $12: 00$ noon on a rainy day. 2. Sample: 6
2. If you are strong, then you drink milk. 4. If a rectangle is a square, then it has four sides the same length. 5. If $x=26$, then $x-4=22$; true. 6. If m is positive, then m^{2} is positive; true. 7. If lines are parallel, then their slopes are equal; true. 8. Hypothesis: If you like to shop; conclusion: Visit Pigeon Forge outlets in Tennessee. 9. If you visit Pigeon Forge outlets, then you like to shop. 10. Drinking Sustain makes you train harder and run faster. 11. If you drink Sustain, then you will train harder and run faster. 12. If you train harder and run faster, then you drink Sustain.

Guided Problem Solving 2-1

1. Hypothesis: x is an integer divisible by 3. 2. Conclusion: x^{2} is an integer divisible by 3 . 3 . Yes, it is true. Since 3 is a factor of x, it must be a factor of $x \cdot x=x^{2}$. 4. If x^{2} is an integer divisible by 3 then x is an integer divisible by 3 . 5. The converse is false. Counterexamples may vary. Let $x^{2}=3$. Then $x=\sqrt{3}$, which is not an integer and is not divisible by 3 . 6. No. The conditional is true, so there is no such counterexample. 7. No. By definition, a general statement is false if a counterexample can be provided. 8. If $5 x+3=23$, then $x=4$. The original statement and the converse are both true.

Practice 2-2

1. Two angles have the same measure if and only if they are congruent. 2. The converse, "If $|n|=17$, then $n=17$," is not true. 3. If a whole number is a multiple of 5 , then its last digit is either 0 or 5 . If a whole number has a last digit of 0 or 5 , then it is a multiple of 5. 4. If two lines are perpendicular, then the lines form four right angles. If two lines form four right angles, then the lines are perpendicular. 5. Sample: Other vehicles, such as trucks, fit this description. 6. Sample: Baseball also fits this definition. 7. Sample: Pleasing, smooth, and rigid all are too vague. 8. yes 9. no 10. yes

Guided Problem Solving 2-2

1. A good definition is clearly understood, precise, and reversible. 2. $\angle 3$ and $\angle 4, \angle 5$ and $\angle 6$ 3. No 4. They are not supplementary. 5. A linear pair has a common vertex, shares a common side, and is supplementary. 6. yes 7. yes; yes 8. linear pairs: $\angle 1$ and $\angle 2, \angle 3$ and $\angle 4$; not linear pairs: $\angle 1$ and $\angle 3, \angle 1$ and $\angle 4, \angle 2$ and $\angle 3, \angle 2$ and $\angle 4$

Practice 2-3

1. Football practice is canceled for Monday. 2. $\triangle D E F$ is a right triangle. 3. If two lines are not parallel, then they intersect at a point. 4. If you vacation at the beach, then you like Florida. 5. Tamika lives in Nebraska. 6. not possible 7. It is not freezing outside. 8. Shannon lives in the smallest state in the United States.

Guided Problem Solving 2-3

1. conditional; hypothesis 2. Yes 3. Beth will go.
2. Anita, Beth, Aisha, Ramon 5. No; only two students went.
3. Beth, Aisha, Ramon; no-only two went. 7. Aisha, Ramon
4. The answer is reasonable. It is not possible for another pair to go to the concert. 9. Ramon

Practice 2-4

$\begin{array}{llll}\text { 1. } U T=M N & \text { 2. } y=51 & \text { 3. } \overline{J L} & \text { 4. Addition; }\end{array}$ Subtraction Property of Equality; Multiplication Property of Equality; Division Property of Equality 5. Substitution 6. Substitution 7. Symmetric Property of Congruence
8. Definition of Complementary Angles; 90 , Substitution; $3 x$, Simplify; 3x, 84, Subtraction Property of Equality; 28, Division Property of Equality

Guided Problem Solving 2-4

1. Angle Addition Postulate 2. Substitution Property of Equality; Simplify; Addition Property of Equality; Division Property of Equality 3.40 4. yes; yes 5.13;13

Practice 2-5

1. 30 2. 15 3. 6 4. $m \angle A=135 ; m \angle B=45$
2. $m \angle A=10 ; m \angle B=80$ 6. $m \angle P M O=55$; $m \angle P M Q=125 ; m \angle Q M N=55$
3. $m \angle B W C=m \angle C W D, m \angle A W B+m \angle B W C=180$; $m \angle C W D+m \angle D W A=180 ; m \angle A W B=m \angle A W D$

Guided Problem Solving 2-5

1. 90 2. See graph in Exercise 5 answer. 3. on the positive y-axis 4. Answers may vary. B can be any point on the positive y-axis. Sample: $B(0,3)$.
2. They are adjacent complementary angles. 7. Answers may vary. C can be any point on the line $y=-\frac{1}{3} x, x>0$. Sample: $C(3,-1)$. 8. a right angle 9. Yes; their sum corresponds to the right angle formed by the positive x-axis and the positive y-axis. 10. Answers may vary. D can be any point on the negative x-axis, sample: $D(-4,0)$

2A: Graphic Organizer

1. Reasoning and Proof 2. Answers may vary. Sample: conditional statements; writing biconditionals; converses; and using the Law of Detachment 3. Check students' work.

2B: Reading Comprehension
 1. 42 degrees 2.38 degrees 3 .b

2C: Reading/Writing Math Symbols

1. Segment $M N$ is congruent to segment $P Q$. 2. If p, then q.
2. The length of $\overline{M N}$ is equal to the length of $\overline{P Q}$.
3. Angle $X Q V$ is congruent to angle $R D C$. 5. If q, then p.
4. The measure of angle $X Q V$ is equal to the measure of angle $R D C$. 7. p if and only if q. 8. $a \rightarrow b \quad$ 9. $A B=M N$ 10. $m \angle X Y Z=m \angle R P S \quad$ 11. $b \rightarrow a \quad$ 12. $\overline{A B} \cong \overline{M N}$ 13. $a \leftrightarrow b \quad$ 14. $\angle X Y Z \cong \angle R P S$

2D: Visual Vocabulary Practice

1. Law of Detachment 2. hypothesis 3. Distributive Property 4. Reflexive Property 5. Law of Syllogism 6. biconditional 7. conclusion 8. good definition
2. Symmetric Property

2E: Vocabulary Check

Truth value: "True" or "false" according to whether the statement is true or false, respectively
Hypothesis: The part that follows if in an if-then statement. Biconditional: The combination of a conditional statement and its converse; it contains the words "if and only if."
Conclusion: The part of an if-then statement that follows then.
Conditional: An if-then statement.

2F: Vocabulary Review Puzzle

Chapter 3

Practice 3-1

1. corresponding angles 2. alternate interior angles 3. sameside interior angles 4. $\angle 1$ and $\angle 5, \angle 2$ and $\angle 6, \angle 3$ and $\angle 8$, $\angle 4$ and $\angle 7$ 5. $\angle 4$ and $\angle 6, \angle 3$ and $\angle 5$ 6. $\angle 4$ and $\angle 5, \angle 3$ and $\angle 6$ 7. $m \angle 1=100$, alternate interior angles; $m \angle 2=100$, corresponding angles or vertical angles 8. $m \angle 1=135$, corresponding angles; $m \angle 2=135$, vertical angles 9. $x=103 ; 77^{\circ}, 103^{\circ}$ 10. $x=30 ; 85^{\circ}, 85^{\circ}$

Guided Problem Solving 3-1

1. The top and bottom sides are parallel, and the left and right sides are parallel. 2. The two diagonals are transversals, and also each side of the parallelogram is a transversal for the two sides adjacent to it. 3. Corresponding angles, interior and exterior angles are formed. 4. v, w and x; By the Alternate Interior Angles Theorem, $v=42, w=25$ and $x=76$.
2. Answers may vary. Possible answer: By the Same-Side Interior Angles Theorem, $(w+42)+(y+76)=180$. Since $w=25, y=37$. (The two y 's are equal by Theorem 3-1.) 6. $w=25, y=37, v=42, x=76$; yes 7. $v=42, w=35$, $x=57, y=46$

Practice 3-2

1. l and m, Converse of Same-Side Interior Angles Theorem
2. none 3. $\overline{B C}$ and $\overline{A D}$, Converse of Same-Side Interior

Angles Theorem 4. $\overline{B H}$ and $\overline{C I}$, Converse of Corresponding
Angles Postulate
5. 43 6. 90
7. 38
8. 100

Guided Problem Solving 3-2

1. ℓ and m 2. transversals 3. x 4. the angles measuring $19 x^{\circ}$ and $17 x^{\circ}$ 5. 180° 6. $17 x^{\circ}$ 7. $180-19 x=17 x$ or $19 x+17 x=180 \quad$ 8. $x=5$ 9. With $x=5,19 x=95$ and $17 x=85$. 10. $x=6$

Practice 3-3

1. True. Every avenue will be parallel to Founders Avenue, and therefore every avenue will be perpendicular to Center City Boulevard, and therefore every avenue will be perpendicular to any street that is parallel to Center City Boulevard.
2. True. The fact that one intersection is perpendicular, plus the fact that every street belongs to one of two groups of parallel streets, is enough to guarantee that all intersections are perpendicular. 3. Not necessarily true. If there are more than three avenues and more than three boulevards, there will be some blocks bordered by neither Center City Boulevard nor Founders Avenue. 4. $a \perp e$ 5. $a\|e \quad 6 . a\| e$ 7. $a \| e$ 8. If the number of \perp statements is even, then $\ell_{1} \| \ell_{n}$. If it is odd, then $\ell_{1} \perp \ell_{n}$.

Guided Problem Solving 3-3

1. supplementary angles 2. right angle 3. Any one of the following: Postulate 3-1, or Theorem 3-1, 3-2, 3-3 or 3-4 4. 90 5. It is congruent; Postulate 3-1 6.90 7. $a \perp c \quad$ 8. It is true for any line parallel to b. 9. Yes. The point is that a transversal cannot be perpendicular to just one of two parallel lines. It has to be perpendicular to both, or else to neither.

Practice 3-4

$\begin{array}{lllll}\text { 1. } 125 & \text { 2. } 143 & \text { 3. } 129 & \text { 4. } 136 & \text { 5. } x=35 ; \\ y=145 ; \\ z=25\end{array}$ 6. $v=118 ; w=37 ; t=62$ 7. 50 8. 88 9. $m \angle 1=33$; $m \angle 2=52$ 10. right scalene 11. obtuse isosceles
12. equiangular equilateral

Guided Problem Solving 3-4

1. three 2. 180 3. right triangle 4. $z=90$; Because it is given in the figure that $\overline{B D} \perp \overline{A C}$. 5. Theorem 3-12, the Triangle Angle-Sum Theorem 6. $x=38$ 7. $y=36$
2. $\triangle A B D$ is a 36-54-90 right triangle. $\triangle B C D$ is a 38-52-90 right triangle. 9.74 10. $\triangle A B C$ is a 52-54-74 acute triangle. 11. Yes, all three are acute angles, with $\angle A B C$ visibly larger than $\angle A$ and $\angle C$. 12. $\angle B C D$

Practice 3-5

1. $x=120 ; y=60$ 2. $n=51 \frac{3}{7}$ 3. $a=108 ; b=72$
2. 109 5. 133 6. 129 7. 30 8. 150 9. 6 10. 5
3. $B E D C$ 12. $\angle F A E$ 13. $\angle F A E$ and $\angle B A E$
4. $A B C D E$

Guided Problem Solving 3-5

1. A theater stage, consisting of a large platform surrounding a smaller platform. The shapes in the bottom part of the figure may represent a ramp for actors to enter and exit. 2. The measures of angles 1 and 2 3. 8 ; octagon 4. $(8-2) 180=$ 1080 degrees $\mathbf{5 . 1 3 5} \mathbf{6 . 4 5} \mathbf{7}$. Yes, angle 1 is an obtuse angle and angle 2 is an acute angle. 8. trapezoids 9.360

Practice 3-6

1. $y=\frac{1}{3} x-7$ 2. $y=-2 x+12$ 3. $y=\frac{4}{5} x-2$
2. $y=4 x-13$
3.

6.

7.

8. $y=x+4$ 9. $y=\frac{1}{2} x-3$ 10. $y=-\frac{1}{2} x-\frac{1}{2}$
11. $y=-6 x+4512 y=-11 ; x=2 \quad$ 13. $y=2 ; x=0$
14.

15.

16.

Guided Problem Solving 3-6

1.

2. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ 3. $y-y_{1}=m\left(x-x_{1}\right)$ 4. Slope of $\overleftrightarrow{A B}=\frac{5}{2}$; slope of $\overleftrightarrow{B C}=-\frac{5}{2}$. The absolute values of the slopes are the same, but one slope is positive and the other is negative. 5. Point-slope form: $y-0=\frac{5}{2}(x-0)$; slope-intercept form: $y=\frac{5}{2} x \quad 6$. Point-slope form: $y-5=-\frac{5}{2}(x-2)$ or $y-0=-\frac{5}{2}(x-4)$; slope-intercept form: $y=-\frac{5}{2} x+10 \quad$ 7. Of line $\overleftrightarrow{A B}:(0,0)$ of line $\overleftrightarrow{B C}:(0,10) \quad$ 8. $\triangle A B C$ appears to be an isosceles triangle, which is consistent with a horizontal base and two remiaining sides having slopes of equal magnitude and opposite sign. 9. Slope $=0 ; y=0 ; y$-intercept $=(0,0)$ just as for line $\overleftrightarrow{A B}$ (they intersect on the y-axis).

Practice 3-7

1. neither; $3 \neq \frac{1}{3}, 3 \cdot \frac{1}{3} \neq-1 \quad$ 2. perpendicular; $\frac{1}{2} \cdot-2=-1$ 3. parallel; $-\frac{2}{3}=-\frac{2}{3}$ 4. perpendicular; $y=2$ is a horizontal line, $x=0$ is a vertical line 5. perpendicular; $-1 \cdot 1=-1$ 6. neither; $\frac{1}{2} \neq-\frac{5}{3}$, $\frac{1}{2} \cdot-\frac{5}{3} \neq-1$ 7. neither; $\frac{9}{2} \neq 4, \frac{9}{2} \cdot 4 \neq-1$ 8. parallel; $\frac{1}{2}=\frac{1}{2}$ 9. $y=\frac{2}{3} x \quad$ 10. $y=2 x-4$

Guided Problem Solving 3-7

1.

2. a right angle 3. $m_{1} \cdot m_{2}=-1$ 4. sides $\overline{G H}$ and $\overline{G K}$
5. Slope of $\overline{G H}=\frac{3}{5}$; slope of $\overline{G K}=\frac{8}{3}$
6. Product $=-\frac{8}{5} \neq-1$. Sides $\overline{G H}$ and $\overline{G K}$ are not perpendicular. 7. $\triangle G H K$ has no pair of perpendicular sides. It is not a right triangle. 8. No 9. $\angle H G K$; approximately 80 10. Slope of $\overline{L M}=\frac{7}{2}$ and slope of $\overline{L N}=-\frac{2}{7}$. The product of the slopes is -1 , so $\overline{L M}$ and $\overline{L N}$ are perpendicular.

Practice 3-8

1.

3.

4. Sample:

Guided Problem Solving 3-8

1. a line segment of length $c \quad$ 2. Construct a quadrilateral with one pair of parallel sides of length c, and then examine the other pair. 3. The procedure is given on p. 181 of the text.

2. Adjust the compass to exactly span line segment c, end to end. Then tighten down the compass adjustment as necessary. 5.

3.

7. They appear to be both congruent and parallel. 8. The answers to Step 7 are confirmed. 9. yes; a parallelogram

3A: Graphic Organizer

1. Parallel and Perpendicular Lines 2. Answers may vary. Sample: properties of parallel lines; finding the measures of angles in triangles; classifying polygons; and graphing lines 3. Check students' work.

3B: Reading Comprehension

1. 14 spaces
2. 6 spaces
3. 60°
4. corresponding
5. $\$ 7000 ; \$ 480$ 6. the width of the stalls, 10 ft 7. b

3C: Reading/Writing Math Symbols
 1. $m \perp n \quad$ 2. $m \angle 1+m \angle 2=180 \quad$ 3. $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$
 4. $m \angle M N P+m \angle M N Q=90 \quad$ 5. $\angle 3 \cong \angle E F D$

6. Line 1 is parallel to line 2. 7. The measure of angle $A B C$ is equal to the measure of angle $X Y Z$.
7. Line $A B$ is perpendicular to line $D F$. 9. Angle $A B C$ and angle $A B D$ are complementary. 10. Angle 2 is a right angle, $\stackrel{\text { or the measure of angle } 2 \text { is } 90^{\circ} \text {. 11. Sample answer: }}{\leftrightarrows}$ $\overleftrightarrow{C B} \| \overleftrightarrow{G D}, m \angle B A F=m \angle G F A$

3D: Visual Vocabulary Practice/High-Use Academic Words

1. property
2. conclusion
3. describe
4. formula
5. measure
6. approximate
7. compare
8. contradiction
9. pattern

3E: Vocabulary Check

Transversal: A line that intersects two coplanar lines in two points.
Alternate interior angles: Nonadjacent interior angles that lie on opposite sides of the transversal.
Same-side interior angles: Interior angles that lie on the same side of a transversal between two lines.
Corresponding angles: Angles that lie on the same side of a transversal between two lines, in corresponding positions. Flow proof: A convincing argument that uses deductive reasoning, in which arrows show the logical connections between the statements.

3F: Vocabulary Review

$\begin{array}{llllllll}\text { 1. } \mathrm{C} & \text { 2.E } & \text { 3.D 4.B 5.A } & \text { 6.F 7.K 8.H } & \text { 9.L } & \text { 10. } G\end{array}$ 11. I 12. J

Chapter 4

Practice 4-1

1. $m \angle 1=110 ; m \angle 2=120 \quad$ 2. $m \angle 3=90 ; m \angle 4=135$
2. $\overline{C A} \cong \overline{J S}, \overline{A T} \cong \overline{S D}, \overline{C T} \cong \overline{J D}$ 4. $\angle C \cong \angle J$, $\angle A \cong \angle S, \angle T \cong \angle D \quad$ 5. Yes; $\angle G H J \cong \angle I H J$ by Theorem 4-1 and by the Reflexive Property of \cong. Therefore, $\triangle G H J \cong \triangle I H J$ by the definition of \cong triangles.
3. No; $\angle Q S R \cong \angle T S V$ because vertical angles are congruent, and $\angle Q R S \cong \angle T V S$ by Theorem 4-1, but none of the sides are necessarily congruent. 7a. Given
7b. Vertical angles are \cong. 7c. Theorem 4-1 7d. Given
7e. Definition of \cong triangles

Guided Problem Solving 4-1

1. right triangles 2. $m \angle A=45, m \angle B=m \angle L=90$, and $A B=4$ in. 3. $\triangle A B C$ is congruent to $\triangle K L M$ means corresponding sides and angles are congruent. 4. x and t $\begin{array}{llll}\text { 5. } 45 & 6 . \\ m & \angle K=m \angle M=45 & 7.3 x=45 & 8 . \\ x=15 & 9.4\end{array}$ 10. $2 t=4 \quad$ 11. $t=2 \quad$ 12. The angle measures indicate that the two triangles are isosceles right triangles. This matches the appearance of the figure. 13. $m \angle M=60$

Practice 4-2

1. $\triangle A D B \cong \triangle C D B$ by SAS 2. not possible
2. $\triangle T U S \cong \triangle X W V$ by SSS 4. not possible
3. $\triangle D E C \cong \triangle G H F$ by SAS 6. $\triangle P R N \cong \triangle P R Q$
by SSS 7. $\angle C$ 8. $\overline{A B}$ and $\overline{B C}$ 9. $\angle A$ and $\angle B$ 10. $\overline{A C}$ 11a. Given 11b. Reflexive Property of Congruence 11c. SAS Postulate

Guided Problem Solving 4-2

1. $\overline{I S O S}$ and $\overline{S P}$ bisects $\angle I S O$. 2. Prove whatever additional facts can be proven about $\triangle I S P$ and $\triangle O S P$, based on the given information. 3. $\overline{I S} \cong \overline{S O}$. 4. $\angle I S P \cong \angle P S O$ 5. $\overline{S P}$ 6. $\triangle I S P \cong \triangle O S P$ by Postulate $4-2$, the Side-AngleSide(SAS)Postulate 7. It does not matter. The Side-AngleSide Postulate applies whether or not they are collinear.
2. It does follow, because $\triangle I S P \cong \triangle O S P$ and because $\overline{I P}$ and $\overline{P Q}$ are corresponding parts.

Practice 4-3

1. not possible 2. ASA Postulate
2. AAS Theorem
3. ASA Postulate 5. not possible
4. Statements
5. AAS Theorem
6. $\angle K \cong \angle M, \overline{K L} \cong \overline{M L}$ Reasons
7. $\angle J L K \cong \angle P L M$
8. Given
9. $\triangle J K L \cong \triangle P M L$
10. Vertical $\angle \mathrm{s}$ are \cong.
11. ASA Postulate
12. $\overline{B C} \cong \overline{E F}$ 9. $\angle K H J \cong \angle H K G$ or $\angle K J H \cong \angle H G K$

Guided Problem Solving 4-3

1. Corresponding angles and alternate interior angles.
2. $\angle E A B$ and $\angle D B C$. 3. $\angle E B A$ and $\angle D C B$. 4. $\angle E A B$
and $\angle D B C$ 5. $\angle E A B \cong \angle D B C, \overline{A E} \cong \overline{B D}$, and
$\angle E \cong \angle D .6 . \triangle A E B \cong \triangle B D C$ by Postulate $4-3$, the Angle-Side-Angle (ASA) Postulate 7. Yes; Theorem 4-2, the Angle-Angle-Side (AAS) Theorem; $\angle E B A \cong \angle D C B$.
3. No, because now there is no way to demonstrate a second pair of congruent sides, nor a second pair of congruent angles.

Practice 4-4

1. $\overline{B D}$ is a common side, so $\triangle A D B \cong \triangle C D B$ by SAS, and $\angle A \cong \angle C$ by CPCTC. 2. $\overline{F H}$ is a common side, so $\triangle F H E \cong \triangle H F G$ by ASA, and $\overline{H E} \cong \overline{F G}$ by CPCTC. 3. $\overline{Q S}$ is a common side, so $\triangle Q T S \cong \triangle S R Q$ by AAS. $\angle Q S T \cong \angle S Q R$ by CPCTC. 4. $\angle Z A Y$ and $\angle C A B$ are vertical angles, so $\triangle A B C \cong \triangle A Y Z$ by ASA. $\overline{Z A} \cong \overline{A C}$ by СРСТС. 5. $\angle J K H$ and $\angle L K M$ are vertical angles, so $\triangle H J K \cong \triangle M L K$ by AAS, and $\overline{J K} \cong \overline{K L}$ by СРСТС. 6. $\overline{P R}$ is a common side, so $\triangle P N R \cong \triangle R Q P$ by SSS, and $\angle N \cong \angle Q$ by СРСТС. 7. First, show that $\angle A C B$ and $\angle E C D$ are vertical angles. Then, show $\triangle A B C \cong \triangle E D C$ by ASA. Last, show $\angle A \cong \angle E$ by СРСТС.

Guided Problem Solving 4-4

1. A compass with a fixed setting was used to draw two circular arcs, both centered at point P but crossing ℓ in different locations, which were labeled A and B. The compass was used again, with a wider setting, to draw two intersecting circular arcs, one centered at A and one at B. The point at which the new arcs intersected was labeled C. Finally, line $\overleftrightarrow{C P}$ was drawn. 2. Find equal lengths or distances and explain why $\overleftrightarrow{C P}$ is perpendicular to ℓ. 3. $\triangle A C P$ and $\triangle B C P$ 4. $A P=P B$ and $A C=B C$. 5. $\triangle A P C \cong \triangle B P C$, by Postulate 4-1, the Side-Side-Side (SSS) Postulate 6. $\angle A P C \cong \angle B P C$ by СРСТС 7. Since $\angle A P C \cong \angle B P C$, $m \angle A P C=m \angle B P C$ and $m \angle A P C+m \angle B P C=180$, it follows that $m \angle A P C=m \angle B P C=90$. 8. from the definition of perpendicular and the fact that $m \angle A P C=$ $m \angle B P C=90$ 9. The distances do not matter, so long as $A P=B P$ and $A C=B C$. That is what is required in order that $\triangle A P C \cong \triangle B P C$. 10. Draw a line, and use the construction technique of the problem to construct a second line perpendicular to the first. Then do the same thing again to construct a third line perpendicular to the second line. The first and third lines will be parallel, by Theorem 3-10.

Practice 4-5

$\begin{array}{ll}\text { 1. } x=35 ; y=35 & \text { 2. } x=80 ; y=90 \\ \text { 3. } t=150\end{array}$
4. $x=55 ; y=70 ; z=125$ 5. $x=6 \quad$ 6. $z=120$
7. $\overline{A D} ; \angle D \cong \angle F$ 8. $\overline{K J} ; \angle K I J \cong \angle K J I ~ 9 . ~ \overline{B A}$;
$\angle A B J \cong \angle A J B \quad 10.130$ 11. 130 12. $x=70 ; y=55$

Guided Problem Solving 4-5

1. One angle is obtuse. The other two angles are acute and congruent. 2. Highlight an obtuse isosceles angle and find its angle measures, then find all the other angle measures represented in the figure.
2. Possible answer:

3. 605.30 , because the measure of each base angle is half the measure of an angle of the equilateral triangle. 6.120° because the sum of the angles of the highlighted triangle must equal 180°.
4. The other measures are 90° and 150°. Examples:

5. Yes; $3 \times 120=360$. 9. Answers may vary.

Practice 4-6

1. Statements

1. $\overline{A B} \perp \overline{B C}, \overline{E D} \perp \overline{F E}$
2. $\angle B, \angle E$ are right $\angle \mathrm{s}$.
3. $\overline{A C} \cong \overline{F D}, \overline{A B} \cong \overline{E D}$
4. $\triangle A B C \cong \triangle D E F$

Reasons

1. Given
2. Perpendicular lines form right $\angle \mathrm{s}$.
3. Given
4. HL Theorem
5. $\angle M J N$ and $\angle M J K$ are right $\angle s$.
Perpendicular lines form right $\angle s$.

Reflexive Property of \cong
3. $\overline{R S} \cong \overline{V W}$ 4. none 5. $m \angle C$ and $m \angle F=90$
6. $\overline{S T} \cong \overline{U V}$ or $\overline{S V} \cong \overline{U T}$ 7. $m \angle A$ and $m \angle X=90$
8. $\overline{G I} \perp \overline{J H}$

Guided Problem Solving 4-6

1. Two congruent right triangles. Each one has a leg and a hypotenuse labeled with a variable expression. 2. the values of x and y for which the triangles are congruent by HL
2. The two shorter legs are congruent. 4. $x=y+1 \quad$ 5. The hypotenuses are congruent. 6. $x+3=3 y$ 7. $x=3$; $y=2$
3. $\frac{\text { hypotenuse }}{\text { shorter leg }}=2$; yes, this matches the figure. 9. The solution remains the same: $x=3$ and $y=2$. The reason is that one is still solving the same two equations, $x=y+1$ and $x+3=3 y$.

Practice 4-7

1. $\triangle Z W X \cong \triangle Y X W$; SAS \quad 2. $\triangle L N P \cong \triangle L M O$; SAS
2. $\triangle A D F \cong \triangle B G E$; SAS
3.

 G \mathbf{G}

5.

6. Sample:

Statements

1. $\overline{A X} \cong \overline{A Y}$
2. $\overline{C X} \perp \overline{A B}, \overline{B Y} \perp \overline{A C}$
3. $m \angle C X A$ and $m \angle B Y A=90$

Reasons

1. Given
2. Given
3. Perpendicular lines form right $\angle \mathrm{s}$.
4. $\angle A \cong \angle A$
5. $\triangle B Y A \cong \triangle C X A$
common angle: $\angle L$

Guided Problem Solving 4-7

1. The figure, a list of parallel and perpendicular pairs of sides, and one known angle measure, namely $m \angle A=56$
2. nine 3. They are congruent and have equal measures.
3. $m \angle A=m \angle 1=m \angle 2=56 \quad$ 5. $m \angle 4=90$
4. $m \angle 3=34$ 7. $m \angle D C E=56$ 8. $m \angle 5=22$
$\begin{array}{ll}\text { 9. } m \angle F C G=90 & \text { 10. } m \angle 6=34 \\ \text { 11. } m \angle 7=34 \text {, }\end{array}$
$m \angle 8=68$, and $m \angle 9=112 \quad$ 12. $m \angle 9=56+56=112$
5. $m \angle F I C=180-(m \angle 2+m \angle 3)=90$;
$m \angle D H C=m \angle 4=90 ; m \angle F J C=180-m \angle 9=68$;
$m \angle B I G=m \angle F I C=90$

4A: Graphic Organizer

1. Congruent Triangles 2. Answers may vary. Sample: congruent figures; triangle congruence by SSS, SAS, ASA, and AAS; proving parts of triangles congruent; the Isosceles Triangle Theorem 3. Check students' work.

4B: Reading Comprehension

1. Yes. Using the Isosceles Triangle Theorem, $\angle W \cong \angle Y$. It is given that $\overline{W X} \cong \overline{Y X}$ and $\overline{W U} \cong \overline{Y V}$. Therefore $\triangle W U X \cong \triangle Y V X$ by SAS. 2. There is not enough information. You need to know if $\overline{A C} \cong \overline{E C}$, if $\angle A \cong \angle E$, or if $\angle B \cong \angle D$. 3. a

4C: Reading/Writing Math Symbols

\author{

1. Angle-Angle-Side 2. triangle $X Y Z$ 3. angle $P Q R$
 4. line segment $B D \quad$ 5. line $S T \quad$ 6. ray $W X \quad$ 7. hypotenuseleg 8. line 3 9. angle 6 10. Angle-Side-Angle
}

4D: Visual Vocabulary Practice

1. theorem 2. congruent polygons 3. base angle of an isosceles triangle 4. CPCTC 5 . postulate 6 . vertex angle of an isosceles triangle 7. corollary 8. base of an isosceles triangle 9. legs of an isosceles triangle

4E: Vocabulary Check

Angle: Formed by two rays with the same endpoint. Congruent angles: Angles that have the same measure. Congruent segments: Segments that have the same length. Corresponding polygons: Polygons that have corresponding sides congruent and corresponding angles congruent.
CPCTC: An abbreviation for "corresponding parts of congruent triangles are congruent."

4F: Vocabulary Review Puzzle

1. postulate 2. hypotenuse 3. angle 4. vertex 5. side 6. leg 7. perpendicular 8. polygon 9. supplementary 10. parallel 11. corresponding

Chapter 5

Practice 5-1

1a. 8 cm 1b. 16 cm 1c. 14 cm 2a. 9.5 cm 2b. 17.5 cm
2c. 14.5 cm 3. 17 4. $\mathbf{~ 5 . ~} 42$ 6. 16.5 7a. 18 7b. 61
8. $\overline{P R}\|\overline{Y Z}, \overline{P Q}\| \overline{X Z}, \overline{X Y} \| \overline{R Q}$

Guided Problem Solving 5-1

1. 30 units 2. The three sides of the large triangle are each bisected by intersections with the two line segments lying in the interior of the large triangle. 3. the value of x 4. They are called midsegments. 5. They are parallel, and the side labeled 30 is half the length of the side labeled x. 6. $x=60$ 7. Yes; the side labeled x appears to be about twice as long as the side labeled 30. 8. No. Those lengths are not fixed by the given information. (The triangle could be vertically stretched or shrunk without changing the lengths of the labeled sides.) All one can say is that the midsegment is half as long as the side it is parallel to.

Practice 5-2

1. $\overline{W Y}$ is the perpendicular bisector of $\overline{X Z}$. 2. 4 3. 9
2. right triangle 5. 5 6. 17 7. isosceles triangle 8. 3.5
3. 21 10. right triangle 11. $\overrightarrow{J P}$ is the bisector of $\angle L J N$.
4. 9 13. 45 14. 14 15. right isosceles triangle

Guided Problem Solving 5-2
1.

2. See answer to Step 1, above. 3. See answer to Step 1, above. 4. Plot a point and explain why it lies on the bisector of the angle at the origin. 5 . line $\ell: y=-\frac{3}{4} x+\frac{25}{2}$; line m : $x=10 \quad$ 6. $C(10,5)$ 7. $C A=C B=5$; yes 8. Theorem 5-5, the Converse of the Angle Bisector Theorem 9. $m \angle A O C=$ $m \angle B O C \approx 27$ 10. Draw ℓ, m, and C, then draw $\overline{O C}$. Since $O A=O B=10$, it follows that $\triangle O A C \cong \triangle O B C$, by HL. Then $\overline{C A} \cong \overline{C B}$ and $\angle A O C \cong \angle B O C$ by СРСТС.

Practice 5-3

1. $(-2,2)$ 2. $(4,0)$ 3. altitude 4. median
2. perpendicular bisector 6 . angle bisector

7a. $(2,0)$ 7b. $(-2,-2)$ 8a. $(0,0)$ 8b. $(3,-4)$

Guided Problem Solving 5-3

1. the figure and a proof with some parts left blank 2. Fill in the blanks. 3. $\overline{A B}$ 4. Theorem 5-2, the Perpendicular Bisector Theorem 5. $\overline{B C} ; X C$ 6. the Transitive Property of Equality 7. Perpendicular Bisector. (This converse is Theorem 5-3.) 8. The point of the proof is to demonstrate that n runs through point X. It would not be appropriate to show that fact as already given in the figure. 9. Nothing essential would change. Point X would lie outside $\triangle A B C$ (below $\overleftrightarrow{B C}$), but the proof woud run just the same.

Practice 5-4

1. I and III 2. I and II 3. The angle measure is not 65 .
2. Tina does not have her driver's license. 5. The figure does not have eight sides. 6. $\triangle A B C$ is congruent to $\triangle X Y Z$. 7a. If you do not live in Toronto, then you do not live in Canada; false. 7b. If you do not live in Canada, then you do not live in Toronto; true. 8. Assume that $m \angle A \neq m \angle B$. 9. Assume that $\overline{L M}$ does not intersect $\overline{N O}$. 10. Assume that it is not sunny outside. 11. Assume that $m \angle A \geq 90$. This means that $m \angle A+m \angle C \geq 180$. This, in turn, means that the sum of the angles of $\triangle A B C$ exceeds 180 , which contradicts the Triangle Angle-Sum Theorem. So the assumption that

Guided Problem Solving 5-4

1. Ice is forming on the sidewalk in front of Toni's house.
2. Use indirect reasoning to show that the temperature of the sidewalk surface must be $32^{\circ} \mathrm{F}$ or lower. 3. The temperature
$m \angle A \geq 90$ must be incorrect. Therefore, $m \angle A<90$.
of the sidewalk in front of Toni's house is greater than $32^{\circ} \mathrm{F}$. 4. Water is liquid (ice does not form) above $32^{\circ} \mathrm{F}$. 5. There is no ice forming on the sidewalk in front of Toni's house.
3. The result from step 5 contradicts the information identified as given in step 1. 7. The temperature of the sidewalk in front of Toni's house is less than or equal to $32^{\circ} \mathrm{F}$. 8. If the temperature is above $32^{\circ} \mathrm{F}$, water remains liquid. This is reliably true. Converse: If water remains liquid, the temperature is above $32^{\circ} \mathrm{F}$. This is not reliably true. Adding salt will cause water to remain liquid even below $32^{\circ} \mathrm{F}$.
4. Suppose two people are each the world's tallest person. Call them person A and person B. Then person A would be taller than everyone else, including B, but by the same token B would be taller than A . It is a contradiction for two people each to be taller than the other. So it is impossible for two people each to be the World's Tallest Person.

Practice 5-5

1. $\angle M, \angle N$ 2. $\angle C, \angle D$ 3. $\angle R, \angle P$ 4. $\angle A, \angle T$
2. yes; $4+7>8,7+8>4,8+4>7$ 6. no; $6+$
$10 \ngtr 17$ 7. yes; $4+4>4$ 8. yes; $11+12>13$,
$12+13>11,13+11>12$ 9. no; $18+20 \ngtr 40$
$\begin{array}{lll}\text { 10. no; } 1.2+2.6 \ngtr 4.9 & \text { 11. } \overline{B O}, \overline{B L}, \overline{L O} & \text { 12. } \overline{R S}, \overline{S T}, \overline{R T}\end{array}$
3. $\angle D, \angle S, \angle A$ 14. $\angle N, \angle S, \angle J$ 15. $3<x<11$
4. $8<x<26$ 17. $0<x<10$ 18. $9<x<31$

Guided Problem Solving 5-5

1.

2. The side opposite the larger included angle is greater than the side opposite the smaller included angle. 3. The angle opposite the larger side is greater than the angle opposite the smaller side 4. The opposite sides each have a length of nearly the sum of the other two side lengths. 5. The opposite sides are the same length. They are corresponding parts of triangles that are congruent by SAS.

5A: Graphic Organizer

1. Relationships Within Triangles 2. Answers may vary. Sample: midsegments of triangles; bisectors in triangles; concurrent lines, medians, and altitudes; and inverses, contrapositives, and indirect reasoning 3. Check students' work.

5B: Reading Comprehension

1. The width of the tar pit is 10 meters. 2. b

5C: Reading/Writing Math Symbols

1. L 2.F 3.O 4.G 5.A 6.I 7.M 8. H 9.E 10. K 11. B 12. D 13. N 14.J 15. C

5D: Visual Vocabulary Practice

1. median 2. negation 3. circumcenter 4. contrapositive
2. centroid 6. equivalent statements 7. incenter 8. inverse
3. altitude

5E: Vocabulary Check

Midpoint: A point that divides a line segment into two congruent segments.
Midsegment of a triangle: The segment that joins the midpoints of two sides of a triangle.
Proof: A convincing argument that uses deductive reasoning. Coordinate proof: A proof in which a figure is drawn on a coordinate plane and the formulas for slope, midpoint, and distance are used to prove properties of the figure.
Distance from a point to a line: The length of the perpendicular segment from the point to the line.

5F: Vocabulary Review

1. altitude 2. line 3. median 4. negation 5. contrapositive 6. incenter 7. orthocenter 8. slope-intercept
2. exterior 10. obtuse 11. alternate interior 12. centroid 13. equivalent 14. right 15. parallel

Chapter 6

Practice 6-1

1. parallelogram 2. rectangle 3. quadrilateral 4. kite, quadrilateral 5. trapezoid, isosceles trapezoid, quadrilateral 6. square, rectangle, parallelogram, rhombus, quadrilateral 7. $x=7 ; A B=B D=D C=C A=11$ 8. $f=5$; $g=11 ; F G=G H=H I=I F=17$ 9. parallelogram 10. kite

Guided Problem Solving 6-1

1. a labeled figure, which shows an isosceles trapezoid
2. The nonparallel sides are congruent. 3. the measures of the angles and the lengths of the sides 4. $m \angle G=c$
3. $c+(4 c-20)=180 \quad 6.40 \quad$ 7. $m \angle D=m \angle G=40$, $m \angle E=m \angle F=140 \quad$ 8. $a-4=11 \quad$ 9. $15 \quad$ 10. $D E=F G=$ $11, E F=15, D G=32 \quad 11.40+40+140+140=360=$ $(4-2) 180$ 12. $m \angle D=m \angle G=39, m \angle E=m \angle F=141$

Practice 6-2

[^0]
Guided Problem Solving 6-2

1. the ratio of two different angle measures in a parallelogram 2. The consecutive angles are supplementary.

2. the measures of the angles 5. The angles are supplementary angles, because they are consecutive.
3. $x+9 x=180 \quad 7.18$ and $162 \quad$ 8. No; the lengths of the sides are irrelevant in this problem. 9. 30 and 150

Practice 6-3

1. no 2. yes 3. yes 4. yes 5. $x=2 ; y=3$ 6. $x=64$; $y=10$ 7. $x=8$; the figure is a \square because both pairs of opposite sides are congruent. 8. $x=25$; the figure is a \square because the congruent opposite sides are $\|$ by the Converse of the Alternate Interior Angles Theorem. 9. No; the congruent opposite sides do not have to be $\|$. 10. No; the figure could be a trapezoid. 11. Yes; both pairs of opposite sides are congruent. 12. Yes; both pairs of opposite sides are \| by the converse of the Alternate Interior Angles Theorem. 13. No; only one pair of opposite angles is congruent. 14. Yes; one pair of opposite sides is both congruent and $\|$.

Guided Problem Solving 6-3

1. a labeled figure, which shows a quadrilateral that appears to be a parallelogram 2. The consecutive angles are supplementary. 3. find values for x and y which make the quadrilateral a parallelogram 4. $m \angle A+m \angle D=180$, so that $\angle A$ and $\angle D$ meet the requirements for same-side interior angles on the transversal of two parallel lines (Theorems 3-2 and 3-6). 5. $\angle B \cong \angle D$, by Theorem 6-2. $6.3 x+10+5 y=$ $180 ; 8 x+5=5 y$ 7. $x=15, y=25$ 8. $m \angle A=m \angle C=55$ and $m \angle B=m \angle D=125$, which matches the appearance of the figure. $9 .(3 x+10)+(8 x+5)=180$; yes

Practice 6-4

1a. rhombus 1b. 72; 54; 54;72 2a. rectangle 2b. 37; 53; 106;74 3a. rectangle 3b. 60;30;60;30 4a. rhombus
4b. 22; 68; 68;90 5. Possible; opposite angles are congruent in a parallelogram. 6. Impossible; if the diagonals are perpendicular, then the parallelogram should be a rhombus, but the sides are not of equal length. 7. $x=7 ; H J=7$; $I K=7$ 8. $x=6 ; H J=25 ; I K=25$ 9a. 90; 90; 29; 29
9b. $288 \mathrm{~cm}^{2}$ 10a. $38 ; 90 ; 90 ; 38$ 10b. $260 \mathrm{~m}^{2}$

Guided Problem Solving 6-4

1. A labeled figure, which shows a parallelogram. One angle is a right angle, and two adjacent sides are congruent. Algebraic expressions are given for the lengths of three line segments. 2. diagonals 3. Find the values of x and y. 4. It is a square. Theorem 6-1 and the fact that $\overline{A B} \cong \overline{A D}$ imply that all four sides are congruent. Theorems $3-11$ and $6-2$ plus the fact that $m \angle B=90$ imply that all four angles are right angles.
2. congruent; bisect 6. $4 x-y+1=(2 x-1)+(3 y+5)$; $2 x-1=3 y+5 \quad$ 7. $x=7 \frac{1}{2} ; y=3$ 8. It was not necessary to know $\overline{A B} \cong \overline{A D}$, but it was necessary to know $m \angle B=90$. The key fact, which enables the use of Theorem 6-11 in addition to Theorem $6-3$, is that $A B C D$ is a rectangle. It does not matter whether all four sides are congruent. 9. 40

Practice 6-5

$\begin{array}{llll}\text { 1. } 118 ; 62 & \text { 2. } 59 ; 121 & 3 . & 96 ; 84 \\ \text { 4. } 101 ; 79 & \text { 5. } x=4\end{array}$ 6. $x=1$ 7. 105.5; 105.5 8. 118;118 9. 90; 63; 63
10. $107 ; 107$ 11. $x=8$ 12. $x=7$

Guided Problem Solving 6-5

1. Isosceles trapezoid $A B C D$ with $\overline{A B} \cong \overline{D C} \quad 2 . \angle B \cong \angle C$ and $\angle B A D \cong \angle D$ 3. $\overline{A B} \cong \overline{D C}$ is Given. $\overline{D C} \cong \overline{A E}$ because opposite sides of a parallelogram are congruent (Theorem 6-1). $\overline{A B} \cong \overline{A E}$ is from the Transitive Property of Congruency. 4. Isosceles; \cong; because base angles of an isosceles triangle are congruent. $\quad 5 . \angle 1 \cong \angle C$ because corresponding angles on a transversal of two parallel lines are congruent. 6. $\angle B \cong \angle C$ by the Transitive Property of Congruency. 7. $\angle B A D$ is a same-side interior angle with $\angle B$, and $\angle D$ is a same-side interior angle with $\angle C$. 8. This is not a problem, because for $A D>B C$ there is a similar proof with a line segment drawn from B to a point E lying on $\overline{A D}$. 9. The two drawn segments can be shown to be congruent, and then one has two congruent right triangles by the HL Theorem. $\angle B \cong \angle C$ follows by CPCTC and $\angle B A D \cong \angle D$ because they are supplements of congruent angles.

Practice 6-6

1. $(1.5 a, 2 b) ; a$ 2. $(0.5 a, 0) ; a$ 3. $(0.5 a, b) ; \sqrt{a^{2}+4 b^{2}}$
2. 0 5. 1 6. $-\frac{1}{2}$
3. $\frac{2 b}{3 a}$
4. $-\frac{2 b}{3 a}$
5. $E(a, 3 b) ; I(4 a, 0)$
6. $D(4 a, b) ; I(3 a, 0)$ 11. $(-4 a, b)$ 12. $(-b, 0)$

Guided Problem Solving 6-6

1. a rhombus with coordinates given for two vertices
2. Arhombus is a parallelogram with four congruent sides.
3. the coordinates of the other two vertices 4. They are the diagonals. 5. They bisect each other. 6. $W(-2 r, 0)$,
$Z(0,-2 t)$ 7. No; neither Theorem 6-3 nor any other theorem or result would apply. 8. Slope of $\overline{W X}=0$ and slope of $\overline{Y Z}$ is undefined. This confirms Theorem 6-10, which says that the diagonals of a rhombus are perpendicular.

Practice 6-7

1a. $\frac{p}{q}$
1b. $y=m x+b ; q=\frac{p}{q}(p)+b ; b=q-\frac{p^{2}}{q}$; $q-\frac{p^{2}}{q} ; y=\frac{r p}{q}+\frac{p^{2}}{q}+q-\frac{p^{2}}{q} ; y=\frac{r p}{q}+q$; intersection at $\left(r+p, \frac{r p}{q}+q\right)$ 1e. $\frac{r}{q}$ 1f. (r, q) 1g. $y=m x+b$; $q=\frac{r}{q}(r)+b ; b=q-\frac{r^{2}}{q} ; y=\frac{r}{q} x+q-\frac{r^{2}}{q}$ 1h. $y=\frac{r}{q}(r+p)+q-\frac{r^{2}}{q} ; y=\frac{r^{2}}{q}+\frac{r p}{q}+q-\frac{r^{2}}{q}$;
$y=\frac{r p}{q}+q$; intersection at $\left(r+p, \frac{r p}{q}+q\right)$
1i. $\left(r+p, \frac{r p}{q}+q\right)$ 2a. $(-2 a, 0)$ 2b. $(-a, b)$
2c. $\left(-\frac{3 a}{2}, \frac{b}{2}\right)$ 2d. $\frac{b}{a}$

Guided Problem Solving 6-7

1. kite $D E F G$ with $D E=E F$ with the midpoint of each side identified 2. A kite is a quadrilateral with two pairs of adjacent sides congruent and no opposite sides congruent.
2. The midpoints are the vertices of a rectangle.
3. $D(-2 b, 2 c), G(0,0) \quad$ 5. $L(b, a+c), M(b, c), N(-b, c)$, $K(-b, a+c)$ 6. Slope of $\overline{K L}=$ slope of $\overline{N M}=0$, slopes of $\overline{K N}$ and $\overline{L M}$ are undefined 7. Opposite sides are parallel; it is a rectangle. 8. Adjacent sides are perpendicular. 9. right angles 10. Answers will vary. Example: $a=3, b=2$, $c=2$ yields the points $D(-4,4), E(0,6), F(4,4), G(0,0)$ with midpoints at $(-2,2),(-2,5),(2,5)$, and $(2,2)$. Connecting these midpoints forms a rectangle. 11. Construct $\overline{D F}$ and $\overline{E G}$. Slope of $\overline{D F}=0$, so $\overline{D F}$ is horizontal. Slope of $\overline{E G}$ is undefined, so $\overline{E G}$ is vertical.

6A: Graphic Organizer

1. Quadrilaterals 2. Answers may vary. Sample: classifying quadrilaterals; properties of parallelograms; proving that a quadrilateral is a parallelogram; and special parallelograms
2. Check students' work.

6B: Reading Comprehension

1. $\overline{Q T} \cong \overline{S R}, \overline{Q R} \cong \overline{S T}, \overline{Q T}\|\overline{R S}, \overline{Q R}\| \overline{T V}$
2. No, it cannot be proven that $\triangle Q T V \cong \triangle S R U$ because with
the given information, only one side and one angle of the two triangles can be proven to be congruent. Another side or angle is needed. If it were given that $Q U S V$ is a parallelogram, then the proof could be made. 3. All four sides are congruent.
3. Yes. Since $\overline{E G} \cong \overline{E G}$ by the Reflexive Property,
$\triangle E F G \cong \triangle E H G$ by SSS. 5. b
6C: Reading/Writing Math Symbols
4. $\overline{A H}, \overline{C H}$, or $\overline{B H}$ 2. $\overline{D G}, \overline{F G}$, or $\overline{E G} \quad$ 3. G
$\begin{array}{lll}\text { 4. } \overline{D E} & \text { 5. rhombus } & \text { 6. rectangle } \\ \text { 7. square } & \text { 8. isosceles }\end{array}$ trapezoid

6D: Visual Vocabulary Practice/High-Use Adademic Words

1. solve 2. deduce 3. equivalent 4 . indirect 5 . equal
2. analysis 7. identify 8. convert 9. common

6E: Visual Vocabulary Check
 Consecutive angles: Angles of a polygon that share a common side.

Kite: A quadrilateral with two pairs of congruent adjacent sides and no opposite sides congruent.
Parallelogram: A quadrilateral with two pairs of parallel sides.
Rhombus: A parallelogram with four congruent sides.
Trapezoid: A quadrilateral with exactly one pair of parallel sides.

6F: Vocabulary Review Puzzle

Chapter 7

Practice 7-1

1. $1: 278$ 2. 18 ft by 10 ft 3 . 18 ft by 16 ft 4 . 10 ft by 3 ft 5. true 6. false 7. true 8. false 9. true 10 . true
2. 12
3. 12
4. 33 14. ± 8
5. 6 16. $\frac{5}{2}$
6. $14: 5$
7. $12: 7$
8. $\frac{8}{3}$ 20. $\frac{7}{13}$

Guided Problem Solving 7-1

1. ratios 2. $\frac{42}{42,000,000}$ or $\frac{1}{1,000,000}$ 3. the denominator
2. $\frac{x}{29,000}=\frac{1}{1,000,000} \quad$ 5. Cross-Product Property
3. 0.029
4. 0.348 8. yes 9. 21.912

Practice 7-2

1. $\triangle A B C \sim \triangle X Y Z$, with similarity ratio $2: 1$
2. Not similar; corresponding sides are not proportional.
3. Not similar; corresponding angles are not congruent.
4. $\triangle A B C \sim \triangle K M N$, with similarity ratio $4: 7$
5. $\angle I$
6. $\angle O$
7. NO
8. $L O$
9. $3.96 \mathrm{ft} \quad 10.3 .75 \mathrm{~cm}$
10. $\frac{2}{3}$
11. 53
12. $7 \frac{1}{2}$
13. $4 \frac{1}{2}$
14. 37

Guided Problem Solving 7-2

1. equal 2. $\frac{6.14}{2.61}$ 3. 2.61; 6.14 4. 19.3662; 19.2182 5. no 6. no 7. $2.3706 ; 2.3525$ 8. Since the quotients are not equal, the ratios are not equal, and the bills are not similar rectangles. 9. 4.045

Practice 7-3

1. $\angle A X B \cong \angle R X Q$ because vertical angles are $\cong . \angle A \cong$ $\angle R$ (Given). Therefore $\triangle A X B \sim \triangle R X Q$ by the AA \sim Postulate. 2. Because $\frac{M P}{L W}=\frac{P X}{W A}=\frac{X M}{A L}=\frac{3}{4}, \triangle M P X \sim$ $\triangle L W A$ by the SSS \sim Theorem. 3. $\angle Q M P \cong \angle A M B$ because vertical $\angle s$ are \cong. Then, because $\frac{Q M}{A M}=\frac{P M}{B M}=\frac{2}{1}$, $\triangle Q M P \sim \triangle A M B$ by the SAS \sim Theorem. 4. Because $A X=B X$ and $C X=R X, \frac{A X}{C X}=\frac{B X}{R X} . \angle A X B \cong \angle C X R$ because vertical angles are \cong. Therefore $\triangle A X B \sim \triangle C X R$ by the SAS \sim Theorem. 5. $\frac{15}{2}$ 6. $\frac{48}{7}$ 7. $\frac{20}{3} 8.36$ 9. 33 ft

Guided Problem Solving 7-3

1. no; N/A 2. yes; $\overline{W T}, \overline{R S}$ 3. It is a trapezoid. 4. They are congruent. 5. They are parallel. 6. They are congruent. 7. $\triangle R S Z$ and $\triangle T W Z$ 8. AA \sim or Angle-Angle Similarity Postulate 9. No; there is only one pair of congruent angles. 10. yes; parallelogram, rhombus, rectangle, and square

Practice 7-4

1. 16 2. 8 3. $10 \sqrt{2}$ 4. $6 \sqrt{5}$ 5. h 6. y 7. a 8. c
2. $\frac{9}{2}$ 10. $x=6 ; y=6 \sqrt{3}$ 11. $x=4 \sqrt{5} ; y=\sqrt{55}$
3. $2 \sqrt{15}$ in.

Guided Problem Solving 7-4

1. $\triangle A B C, \triangle A C D, \triangle B C D \quad 2.1$ 3. 1;1 4.1 5.1
2. $2 ; 1$ 7. 2 8. $\sqrt{2}$ 9. $\sqrt{2}$ 10. yes 11. no (This would require the Pythagorean Theorem.)

Practice 7-5

1. $B E$
2. $B C$ 3. $J D$ 4. $B E$
3. $\frac{16}{3} 6.4$ 7. $x=\frac{25}{9}$;
$y=4$
4. $\frac{15}{4}$
5. $x=6 ; y=6$
6. 2
7. 10

Guided Problem Solving 7-5

1. parallel 2. $C E ; B D$ 3. $6 ; 15$ 4.90 5. yes 6. yes 7. The sides would not be parallel. 8. They are similar triangles.

7A: Graphic Organizer

1. Similarity 2. Answers may vary. Sample: ratios and proportions; similar polygons; proving triangles similar; and similarity in right triangles 3 . Check students' work.

7B: Reading Comprehension

1. $\triangle D H B \sim \triangle A C B \quad$ 2. AA similarity postulate The triangles have two similar angles. 3.1:2 4.1:2
2. $\frac{D B}{A B}=\frac{H B}{C B} \quad 6.250 \mathrm{ft} 7 . \mathrm{a}$

7C: Reading/Writing Math Symbols

1. no 2. no 3. yes 4. no 5. yes 6. no 7. yes, AAS 8. yes, Hypotenuse-Leg Theorem 9. yes, SAS or ASA or AAS 10. not possible

7D: Visual Vocabulary Practice

1. Angle-Angle Similarity Postulate 2. golden ratio
2. Side-Side-Side Similarity Theorem 4. geometric mean
3. scale 6. Cross-Product Property 7. golden rectangle
4. simplest radical form 9. Side-Angle-Side Similarity Theorem

7E: Vocabulary Check

Similarity ratio: The ratio of lengths of corresponding sides of similar polygons.
Cross-Product Property: The product of the extremes of a proportion is equal to the product of the means.
Ratio: A comparison of two quantities by division.
Golden rectangle: A rectangle that can be divided into a square and a rectangle that is similar to the original rectangle. Scale: The ratio of any length in a scale drawing to the corresponding actual length.

7F: Vocabulary Review

1.L 2.E 3.I 4.A 5.J 6.K 7.C 8.D 9.G 10.O 11. N 12. M 13.H 14.B 15.F

Chapter 8

Practice 8-1

1. $\sqrt{51}$ 2. $2 \sqrt{65}$
2. $2 \sqrt{21}$
3. $18 \sqrt{2} \quad$ 5. 46 in .
4. 78 ft 7.279 cm
5. 19 m
6. acute
7. obtuse 11. right

Guided Problem Solving 8-1

1. the sum of the lengths of the sides 2. Pythagorean Theorem
$3.7 \mathrm{~cm} \quad 4.4 \mathrm{~cm} \times 3 \mathrm{~cm} \quad 5 . c^{2}=4^{2}+3^{2} \quad 6.5 \quad 7.12 \mathrm{~cm}$
2. perimeter of rectangle $=14 \mathrm{~cm}$; yes 9 . Answers will vary; example: Draw a $4 \mathrm{~cm} \times 3 \mathrm{~cm}$ grid, copy the given figure, measure the lengths with a ruler, add them together. $\mathbf{1 0 . 2 0} \mathrm{cm}$

Practice 8-2

1. $x=2 ; y=\sqrt{3}$ 2. $8 \sqrt{2} \quad$ 3. $14 \sqrt{2} \quad$ 4. $2 \quad$ 5. $x=15$; $y=15 \sqrt{3} \quad$ 6. $3 \sqrt{2} \quad$ 7. 42 cm 8. $10.4 \mathrm{ft}, 12 \mathrm{ft} \quad$ 9. $a=4$; $b=3$ 10. $p=4 \sqrt{3} ; q=4 \sqrt{3} ; r=8 ; s=4 \sqrt{6}$

Guided Problem Solving 8-2

1. $30^{\circ}-60^{\circ}-90^{\circ}$ triangle
2. $l 3$. h
3. $\sqrt{3}$ 5. $\frac{24}{\sqrt{3}}$ or $8 \sqrt{3}$
4. 2 7. $\frac{48}{\sqrt{3}}$ or $16 \sqrt{3}$
5. 28 ft
6. 0.28 min
7. yes
11.34 ft

Practice 8-3

1. $\tan E=\frac{3}{4} ; \tan F=\frac{4}{3} \quad$ 2. $\tan E=\frac{2}{5} ; \tan F=\frac{5}{2} \quad$ 3. 12.4
2. 31.0°
3. 7.1
4. 6.4 7. 26.6
5. 71.6
9.39 10. 72
6. 39 12. 54

Guided Problem Solving 8-3

2. 180 3. $m \angle A=2 m \angle X 4.90 \quad$ 5. base: 40 cm , height:
$\begin{array}{lllllll}10 & \mathrm{~cm} & 6.4 & 7.4 & 8.76 & 9.152 & \mathbf{1 0 .} 28 \\ \mathbf{1 1} . y \mathrm{y} & \mathbf{1 2 . 4 6}\end{array}$

Practice 8-4

1. $\sin P=\frac{2 \sqrt{10}}{7} ; \cos P=\frac{3}{7}$ 2. $\sin P=\frac{4}{5} ; \cos P=\frac{3}{5}$
2. $\sin P=\frac{\sqrt{11}}{6} ; \cos P=\frac{5}{6}$ 4. $\sin P=\frac{15}{17} ; \cos P=\frac{8}{17}$
3. 64 6. 11.0 7. 7.0 8. 7.8 9. 53 10. 6.6 11. 11.0
4. 11.5

Guided Problem Solving 8-4

1. The sides are parallel. 2. sine 3. $\sin 30^{\circ}=\frac{w}{6} \quad 4.3 .0$
2. yes 6. cosine 7. $\cos x^{\circ}=\frac{3}{4} \quad 8.41 \quad$ 9. Answers may vary. Sample: $\cos 60^{\circ} \stackrel{?}{=} \frac{3}{6} ; \sin 49^{\circ} \stackrel{?}{=} \frac{3}{4} \quad$ 10. 5.2, 2.6

Practice 8-5

1a. angle of depression from the plane to the person
1b. angle of elevation from the person to the plane
1c. angle of depression from the person to the sailboat
1d. angle of elevation from the sailboat to the person
2. 116.6 ft 3. 84.8 ft 4. $46.7 \mathrm{ft} \quad$ 5. 31.2 yd

6 a.

6b. 26 ft

Guided Problem Solving 8-5

1. $\angle e=1, \angle d=\angle 4$ 2. congruent 3. $m \angle e=m \angle d$
2. $7 x-5=4(x+7) \quad 5.11 \quad 6.72 \quad 7.72 \quad$ 8. yes
3. 44,44

Practice 8-6

1. $\langle 46.0,46.0\rangle$ 2. $\langle 89.2,-80.3\rangle$ 3. $38.6 \mathrm{mi} / \mathrm{h} ; 31.2^{\circ}$ north of east 4. $134.5 \mathrm{~m} ; 42.0^{\circ}$ south of west 5.55° north of east
2. 33° west of north 7a. $\langle 1,5\rangle$
$7 b$.

8a. $\langle 1,-1\rangle 8$ b.

9. Sample:

Guided Problem Solving 8-6

1. Check students' work. 2. $\frac{x}{100} ; \frac{y}{100}$
2. $100 \cos 30^{\circ} ; 100 \sin 30^{\circ}$
3. 86.6; 50 5. $\langle 86.6,50\rangle$
4. $\langle 86.6,-50\rangle$ 7. $\langle 173.2,0\rangle$
5. 173; due east 9. yes
6. 100; due east

8A: Graphic Organizer

1. Right Triangles and Trigonometry 2. Answers may vary. Sample: the Pythagorean Theorem; special right triangles; the tangent ratio; sine and cosine ratios; angles of elevation and depression; vectors 3. Check students' work.

8B: Reading Comprehension

1. A 2.J 3. B
 4.J 5.B
 6. B 7.b

8C: Reading/Writing Math Symbols

1. F 2. G 3. D
2. A 5. C 6. B
3. H
4. E
5. $\sin ^{-1} A=\frac{5}{12}$
6. $\triangle A B C \sim \triangle X Y Z$
7. $m \angle A \approx 52^{\circ}$
8. $\tan Z=\frac{7}{24}$

8D: Visual Vocabulary Practice

1. $30^{\circ}-60^{\circ}-90^{\circ}$ triangle 2. inverse of tangent 3. congruent sides 4. tangent 5. Pythagorean Theorem 6. hypotenuse 7. $45^{\circ}-45^{\circ}-90^{\circ}$ triangle 8. Pythagorean triple 9. obtuse triangle

8E: Vocabulary Check

Obtuse triangle: A triangle with one angle whose measure is between 90 and 180 .
Isosceles triangle: A triangle that has at least two congruent sides.
Hypotenuse: The side opposite the right angle in a right triangle.
Right triangle: A triangle that contains one right angle.
Pythagorean triple: A set of three nonzero whole numbers a, b and c that satisfy the equation $a^{2}+b^{2}=c^{2}$.

8F: Vocabulary Review Puzzle

Chapter 9

Practice 9-1

1. No; the triangles are not the same size. 2. Yes; the ovals are the same shape and size. 3a. $\angle C^{\prime}$ and $\angle F^{\prime}$ 3b. $\overline{C D}$ and $\overline{C^{\prime} D^{\prime}}, \overline{D E}$ and $\overline{D^{\prime} E^{\prime}}, \overline{E F}$ and $\overline{E^{\prime} F^{\prime}}, \overline{C F}$ and $\overline{C^{\prime} F^{\prime}}$
2. $(x, y) \rightarrow(x-2, y-4)$ 5. $(x, y) \rightarrow(x+4, y-2)$
3. $(x, y) \rightarrow(x+2, y+2)$ 7. $W^{\prime}(-2,2), X^{\prime}(-1,4)$,
$Y^{\prime}(3,3), Z^{\prime}(2,1)$ 8. $J^{\prime}(-5,0), K^{\prime}(-3,4), L^{\prime}(-3,-2)$
4. $(x, y) \rightarrow(x+13, y-13)$ 10. $(x, y) \rightarrow(x, y)$ $(x+3, y+3)$ 11a. $P^{\prime}(-3,-1)$ 11b. $P^{\prime}(0,8)$, $N^{\prime}(-5,2), Q^{\prime}(2,3)$

Guided Problem Solving 9-1

1. the four vertices of a preimage and one of the vertices of the image 2. Graph the image and preimage. 3. $C(4,2)$ and $C^{\prime}(0,0)$ 4. $x=4, y=2, x+a=0, y+b=0 \quad$ 5. $a=-4$; $b=-2 ;(x, y) \rightarrow(x-4, y-2)$ 6. $A^{\prime}(-1,4), B^{\prime}(1,3)$, $D^{\prime}(-2,1)$
2.

8. yes 9. $(x, y) \rightarrow(x+1, y-3), A^{\prime}(4,3), B^{\prime}(6,2), D^{\prime}(3,0)$

Practice 9-2

1. $(-3,-2)$ 2. $(-2,-3)$ 3. $(-1,-4)$
2. $(4,-2)$ 5. $(4,-1)$ 6. $(3,-4)$

7a.

7b.

8.

9.

10. $(-6,4)$

Guided Problem Solving 9-2

1. a point at the origin, and two reflection lines
2. A reflection is an isometry in which a figure and its image have opposite orientations. 3. the image after two successive reflections
3.

5.

6.

7. $(0,-6)$ 8. Yes. The x-coordinate remains 0 throughout.
9. $O^{\prime}(0,0)$ and $O^{\prime}(0,6)$

Practice 9-3

1. I 2. I 3. I 4. $\overline{G H}$ 5. G 6. $\overline{S T}$
2.

8.

9.

Guided Problem Solving 9-3

1. The coordinates of point A, and three rotation transformations. It is assumed that the rotations are counterclockwise. 2. Parallelogram, rhombus, square
2.

4.

5. slope of $\overline{O B}=-\frac{5}{2}$; slope of $\overline{O C}=\frac{2}{5}$; slope of $\overline{O D}=-\frac{5}{2}$; the slopes of perpendicular line segments are negative reciprocals. 6. square 7. yes 8. $B(2,7), C(7,-2)$, $D(-2,-7)$

Practice 9-4

1. The helmet has reflectional symmetry. 2. The teapot has reflectional symmetry. 3. The hat has both rotational and reflectional symmetry.
2.

5.

6.

line symmetry and 72° rotational symmetry
7.

8.

9.

10.

11.

180° rotational symmetry
12.

14.

Guided Problem Solving 9-4

1. the coordinates of one vertex of a figure that is symmetric about the y-axis $\mathbf{2}$. Line symmetry is the type of symmetry for which there is a reflection that maps a figure onto itself.
2. the coordinates of another vertex of the figure
3. images (and preimages) 5. reflection across the y-axis 6. $(-3,4)$ 7. Yes 8. $(-6,7)$

Practice 9-5

1. $\frac{5}{3}$
2. $\frac{1}{2} 3.2$
3. yes
4. no
5. no
6.

8.

9. $P^{\prime}(-12,-12), Q^{\prime}(-6,0), R^{\prime}(0,-6)$ 10. $P^{\prime}(-2,1)$, $Q^{\prime}(-1,0), R^{\prime}(0,1)$

Guided Problem Solving 9-5

1. A description of a square projected onto a screen by an overhead projector, including the square's area and the scale factor in relation to the square on the transparency. 2. The scale factor of a dilation is the number that describes the size change from an original figure to its image. 3. the area of the square on the transparency 4. smaller; The scale factor $16>1$, so the dilation is an enlargement. 5. $\frac{1}{16} ; \frac{1}{16}$ 6. $\frac{1}{256}$; Being $\frac{1}{16}$ as high and $\frac{1}{16}$ as wide, the square on the tranparency has $\frac{1}{16} \times \frac{1}{16}=\frac{1}{256}$ times the area. 7. $\frac{3}{256} \mathrm{ft}^{2}$ 8. The shape does not matter. Regardless of the shape, the figure is being enlarged by a factor of 16 in two directions, so
that the screen image has $16 \times 16=256$ as large an area as the figure on the transparency. 9. $2520 \mathrm{ft}^{2}$

Practice 9-6

1. I. D II. C III. B IV. A
2.

3.

4.

5.

6.

7. reflection 8. rotation 9. glide reflection
10. translation

Guided Problem Solving 9-6

1. assorted triangles and a set of coordinate axes
2. a transformation 3. the transformation that maps one

[^0]: 1. 15 2. 32 3. 7 4. 12 5. 9 6. 8 7. 100 8. $40 ; 140 ; 40$
 2. $113 ; 45 ; 22$ 10. $115 ; 15 ; 50$ 11. $55 ; 105 ; 55$ 12. $32 ; 98 ; 50$
 3. 16 14. 35 15. 28
