MATH 2030: ASSIGNMENT 1 SOLUTIONS

Geometry and Algebra of Vectors

Q.1: pg 16, q 1,2. For each vector draw the vector in standard position and with its tail at the point $(1,-3)$:

$$
\mathbf{u}=\left[\begin{array}{l}
3 \\
0
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right], \mathbf{z}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

Q.2: pg 17, 16. Simplify the vector expression, and indicate which properties from Theorem 0.6 are being used.

$$
-3(\mathbf{u}-\mathbf{w})+2(\mathbf{u}+2 \mathbf{v})+3(\mathbf{w}-\mathbf{v})
$$

A.2: To start we use property (5) and (7) to get

$$
(-3 \mathbf{u}+3 \mathbf{w})+(2 \mathbf{u}+2 \mathbf{v})+(3 \mathbf{w}-3 \mathbf{v})
$$

then by applying property (2) and (4) twice we find

$$
\begin{gathered}
-\mathbf{u}+4 \mathbf{v}+3 \mathbf{w}+(3 \mathbf{w}-3 \mathbf{v}) \\
-\mathbf{u}+\mathbf{v}+6 \mathbf{w}
\end{gathered}
$$

Q.3: $\mathbf{p g} \mathbf{1 7}, \mathbf{p g} \mathbf{1 7 , 1 8}$. Solve for the vector \mathbf{w} in terms of \mathbf{u} and \mathbf{v} :

- $\mathbf{w}-\mathbf{u}=2(\mathbf{w}-2 \mathbf{u})$
- $\mathbf{w}+2 \mathbf{u}-\mathbf{v}=3(\mathbf{w}+\mathbf{u})-2(2 \mathbf{u}-2 \mathbf{v})$
A.3.
- Solving for \mathbf{w} gives $\mathbf{w}=3 \mathbf{u}$.
- Here, $\mathbf{w}=-\frac{1}{2}(\mathbf{u}+\mathbf{v})$.
Q.4: $\mathbf{p g} \mathbf{1 7}, \mathbf{p} 21$. In \mathbb{R}^{2} given two vectors \mathbf{u}, \mathbf{v} such that $\mathbf{u} \neq c \mathbf{v}$ for all $c \in \mathbb{R}$, we may fill the coordinate plane with parallelograms with \mathbf{u} and \mathbf{v} as sides. In essence this construction gives a new coordinate system for the plane, e.g. consider $\mathbf{u}^{t}=[1,0]$ and $\mathbf{v}^{t}=[0,1]$ - these produce the standard coordinate axes.
Given $\mathbf{u}^{t}=[1,-1]$ and $\mathbf{v}^{t}=[1,1]$, draw the standard coordinate axes on the same diagram as the axes relative to \mathbf{u} and \mathbf{v}. Use these to find \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v}, where $\mathbf{w}^{t}=[2,6]$.

Q.5: pg 17 q 44,46,48. Solve the given equation or indicate there is no solution
- $2 x=1$ in \mathbb{Z}_{3}
- $x+3=2$ in \mathbb{Z}_{5}
- $2 x=1$ in \mathbb{Z}_{5}
A.5.
- Trying each element in \mathbb{Z}_{3} we find $x=2$ satisfies the equation as $2 \times 2=$ $4=3 \times 1+1$, and so the remainder is 1 .
- By exhaustion we find $x=4$ satisfies the equation in \mathbb{Z}_{5}.
- Here, $x=3$ is the only solution in \mathbb{Z}_{5}.

The dot product

Q.6: $\mathbf{p g} 29 \mathbf{q} 4,12$. Given $\mathbf{u}^{t}=[1.5,0.4,-2.1]$ and $\mathbf{v}^{t}=[3.0,5.2,-0.6]$ calculate $\mathbf{u} \cdot \mathbf{v},\|\mathbf{u}\|$ and finally give the unit vector in the direction of \mathbf{u}.
A.6. Calculating $\mathbf{u} \cdot \mathbf{v}=(1.5)(3.0)+(0.4)(5.2)+(2.1)(0.6) \approx 4.5+2.1+1.3=7.9$. The magnitude of u, is simply $\|\mathbf{u}\|=\sqrt{(1.5)^{2}+(0.4)^{2}+(2.1)^{2}} \approx \sqrt{6.8}=2.6$. Using this we find that the unit vector in the u-direction may be approxiated as

$$
\mathbf{u}^{\prime}=\frac{\mathbf{u}}{\|\mathbf{u}\|} \approx \frac{1}{2.6}[1.5,0.4,-2.1]
$$

Q.7: $\mathbf{p g} 29 \mathbf{q} \mathbf{2 0 , 2 6}$. Determine the angle between $\mathbf{u}=[5,4,-3]$ and $\mathbf{v}=$ $[1,-2,-1]$ is acute, obtuse or a right angle by calculating it explicitly.
A.7. Calculating $\mathbf{u} \cdot \mathbf{v}=5 * 1-2 * 4+3 * 1=5-8+3=0$, we conclude the angle is a right angle, implying the two vectors are orthogonal.
Q.8: pg 29 q 36. An airplane heading due east has a velocity of 200 miles per hour. A wind is blowing from the north at 40 miles per hour. What is the resultant velocity of the plane?
A.8. The resultant velocity will be $\sqrt{200^{2}+40^{2}}=\sqrt{41600} \approx 204$ with an angle of θ from east with $\tan \theta=\frac{40}{200}=0.2$, i.e. $\theta \approx 0.2$ radians.
Q.9: $\mathbf{p g} 30 \mathbf{q} 42$. Find the projection of \mathbf{v} onto \mathbf{u} where $\mathbf{u}^{t}=\left[\frac{2}{3},-\frac{2}{3},-\frac{1}{3}\right]$ and $\mathbf{v}^{t}=[2,-2,2]$.
A.9. Calculating $\|\mathbf{u}\|=1$, and $\mathbf{u} \cdot \mathbf{v}=\frac{4}{3}+\frac{4}{3}-\frac{2}{3}=\frac{6}{3}=2$ we find that $\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}=2$ and so

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\left[\begin{array}{c}
\frac{4}{3} \\
-\frac{4}{3} \\
-\frac{2}{3}
\end{array}\right]
$$

Q.10: pg 30 q 60. Suppose we know that $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$. Does it follow that $\mathbf{v}=\mathbf{w}$? If it does, give a proof that is valid in \mathbb{R}^{n}; otherwise, give a counterexample (that is, a specific choice of vectors for which $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$ but $\mathbf{v} \neq \mathbf{w}$).
A.10. As a counter-example, consider $\mathbf{u}=[1,0,0], \mathbf{v}=[0,1,0]$ and $\mathbf{w}=[0,0,1]$; the dot product $\mathbf{u} \cdot \mathbf{v}=0$ and $\mathbf{u} \cdot \mathbf{w}=0$ however $\mathbf{v} \neq \mathbf{w}$.

Lines and Planes

Q.11: pg 44 q 6. Write the equation of the line passing through P with direction vector \mathbf{d} in vector form and parametric form:

$$
P=(-3,1,2), \mathbf{d}=\left[\begin{array}{l}
1 \\
0 \\
5
\end{array}\right]
$$

A.11. Taking the coordinate and producing the vector in standard position $\mathbf{p}=$ $\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right]$ we find that the equation of the line will be $\mathbf{x}=\mathbf{p}+s \mathbf{d}$.

Expanding this into components we find that the parametric form is

$$
x=t-3, y=1, z=2+5 t
$$

Q.12: pg 44 q 12 . Give the vector equation of the line passing through $P=$ $(4,-1,3)$ and $Q=(2,1,3)$.
A.12. Calculating the direction vector as $\mathbf{d}=\mathbf{q}-\mathbf{p}=\left[\begin{array}{c}-2 \\ 2 \\ 0\end{array}\right]$ the vector equation for this line is then $\mathbf{x}=\left[\begin{array}{c}4 \\ -1 \\ 3\end{array}\right]+t\left[\begin{array}{c}-2 \\ 2 \\ 0\end{array}\right]$.
Q.13: pg 44 q 14 . Give the vector equation of the plane passing through $P=$ $(1,0,0), Q=(0,1,0)$ and $R=(0,0,1)$.
A.13. Calculating $\mathbf{d}_{1}=\mathbf{q}-\mathbf{p}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{d}_{2}=\mathbf{r}-\mathbf{p}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ we find that the vector equation is then $\mathbf{x}=\mathbf{p}+t \mathbf{d}_{1}+s \mathbf{d}_{2}$.
Q.14: pg 45 q 20 . Find the vector form of the equation of the line in \mathbb{R}^{2} that passes through $P=(2,-1)$ and is perpendicular to the line with general equation $2 x-3 y=1$.
A.14. For a general equation of a line in $\mathbb{R}^{2}, a x+b y=c$ the normal vector to this line will be $\mathbf{n}=\left[\begin{array}{l}a \\ b\end{array}\right]$ and so the vector equation of a line through P and perpendicular to the original line is then $\mathbf{x}=\left[\begin{array}{c}2 \\ -1\end{array}\right]+t\left[\begin{array}{c}2 \\ -3\end{array}\right]$
Q.15: pg 45 q 27 . Find the distance from the point $Q=(2,2)$ and the line ℓ with the equation,

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

A.15. Taking the parametric equations for the line and solving for t in terms of x and substituting this into the equation gives the general equation $x+y=1$ thus using the standard distance formula for the plane

$$
d(Q, \ell)=\frac{\left|a q_{1}+b q_{2}-c\right|}{\sqrt{a^{2}+b^{2}}}=\frac{1 * 2+1 * 2-1}{\sqrt{2}}=\frac{3}{\sqrt{2}} .
$$

Q.16: pg 46 q 36 . Find the distance between the parallel lines:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

A.16. Definining $\mathbf{p}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\mathbf{q}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ as the position vectors for two points one on each line. We may take their difference to produce a new vector connecting the two lines:

$$
\mathbf{v}=\mathbf{p}-\mathbf{q}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right]
$$

Calculating the projection of this vector onto the direction vector we find

$$
\operatorname{proj}_{\mathbf{d}}(\mathbf{v})=-\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Subtracting this from \mathbf{v} we find the required vector that measures the shortest distance between the lines, i.e. its magnitude will be the distance between the lines:

$$
\left\|\mathbf{v}-\operatorname{proj}_{\mathbf{d}}(\mathbf{v})\right\|=\sqrt{\frac{14}{3}}
$$

Q.17: pg 46 q 43 . Find the acute angle between the planes with the equations:

$$
x+y+z=0,2 x+y-2 z=0
$$

A.17. To calculate the angle between the planes, we note that for any plane in \mathbb{R}^{3} there is a unique vector that is orthogonal to the plane, and so if we consider the angle between the normal vectors of the two planes we will have found the angle between the planes.

As the general equations are listed, we may immediately identify the normal vectors for each plane:

$$
\mathbf{n}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{n}_{2}=\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]
$$

Calculating the angle formula we find that the angle between these vectors satisfiy the identity:

$$
\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left\|\mathbf{n}_{1}\right\|\left\|\mathbf{n}_{2}\right\|}=\frac{1}{3 \sqrt{3}}
$$

Applying arccosine (that is, the inverse function for cosine on the interval $[0, \pi], \theta$ may be determined.

Applications of Vectors

Q.18: pg 58 q 18,20. A parity check code vector \mathbf{v} is given, determine whether a single error could have occurred in the transmission of \mathbf{v} :

- $\mathbf{v}=[1,1,1,0,1,1]$
- $\mathbf{v}=[1,1,0,1,0,1,1,1]$

A. 18.

- In this case there are 4 s and so the check digit should be 0 , since it is an even number of 1 s . Hence an error was detected.
- There are 51 s , and the check digit is 1 , no error was detected.
Q.19: pg 58 q 24 . Consider the UPC $[0,4,6,9,5,6,1,8,2,0,1,5]$
- Show that this UPC cannot be correct.
- Assuming that a single error was made and that the incorrect digit is the 6 in the third entry, find the correct UPC.

A.19.

- The sum is equivalent to the linear equation $3(6+9)+2=7 \bmod 10$, and so this is incorrect as the sum should be $0 \bmod 10$.
- If we change 6 to 7 we find $3(7+9)+2=0 \bmod 10$, this gives a correct UPC.
Q.20: pg 58 q 30 .
- Prove that if a transposition error is made in the second and third entries of the UPC with

$$
[0,7,4,9,2,7,0,2,0,9,4,6]
$$

the error will be detected.

- Show that there is a transposition involving two adjacent entries of the UPC in the first part that would not be detected.

A.20.

- Switching 4 and 7 , we calculate the dot produce with the check vector, $3(0+7+2+0+0+4)+(4+9+7+2+9+6)=3 * 3+7=9+7=6 \bmod 10$
we conclude an error has been detected as this dot product must vanish.
- Notice that

$$
3 * 4+9=1=1 \bmod 10,3 * 9+4=1 \bmod 10
$$

Hence if we switch the fourth and fifth entries no error would be detected.

References

[1] D. Poole, Linear Algebra: A modern introduction - 3rd Edition, Brooks/Cole (2012).

