## GEOMETRY AND VECTORS

## Distinguishing Between Points in Space

- One Approach - Names: ("Fred", "Steve", "Alice"...)
- Problem: distance \& direction must be defined point-by-point
- More elegant - take advantage of geometry
- Label points in organized fashion with numbers ("coordinates")
- Use the coordinates to calculate distance \& direction
- Example: Instead of "Chicago" $\rightarrow$ " $42^{\circ} \mathrm{N}, 88^{\circ} \mathrm{W}$ "
- How to choose coordinates for each point?
- Common approach: pick a reference point (the "origin")
- Label each point $P$ with:
- distance(origin, P ) and direction(origin, P )

| $-2 m$ | $\quad 2 m$ |  |
| :---: | :---: | :---: |
| $\stackrel{P}{P}$ | $\dot{O}$ | $\dot{P}$ |

## Measuring Direction - Projection

- To make a "coordinate system" for a given space:
- Must quantitatively define direction(A, B)
- Approach: Pick some direction to act as reference
- Quantitatively compare direction(A, B) to reference direction
- This comparison is called a "projection"
- Measures how much of distance(A, B) is parallel to reference
- Expressed as an angle or a number (between -1.0 and 1.0)
$\rightarrow$ Reference direction (also called a coordinate axis)

In trigonometry, projection is represented by the cosine of the angle between direction( $\mathrm{A}, \mathrm{B}$ ) and the reference direction

## Dimensions

- Points in a space can be organized a variety of ways
- Depending on how they are "connected" to each other
- Dimension of a space
- Smallest \# of coordinates necessary to specify each point
- In defining "direction" $\rightarrow 1$ "reference direction" per dimension



## Reference Frames

- Ref. Frame - specific origin and reference directions
- "Conventions" - man-made rules; convenient but not mathematically necessary:
- Reference directions (called "coordinate axes") are orthogonal
- 3-Dimensions: coordinate axes xyz named by "right-hand rule"

- Two conventions for "naming" points in D dimensions:
- 1) project $\operatorname{Dist}(O, P)$ onto $D$ coordinate axes (Example: $x, y, z$ )
- 2) $\operatorname{Dist}(\mathrm{O}, \mathrm{P})$ and projection onto D-1 axes (Example: $r, \theta, \phi)$


## Common Coordinate System Conventions



"Cartesian" Coordinates: ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ )

3-Dimensions

"Cylindrical" Coordinates: ( $\rho, \phi, z$ ) or (r, $\theta, z$ )


Note: Math and Physics use different conventions for spherical coordinates
"Spherical" Coordinates: $(r, \theta, \phi)$ or $(\rho, \theta, \phi)$

## Coordinate System Consistency

- Geometry $\rightarrow$ can "translate" coordinates between systems


## 2-Dimensions

## Cartesian / Polar

$$
r=\sqrt{x^{2}+y^{2}}
$$

$$
\theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

(actually $\arctan 2$ )

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

3-Dimensions

## Cartesian / Cylindrical

$$
\begin{gathered}
\rho=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
z=z \\
x=\rho \cos (\phi) \\
y=\rho \sin (\phi) \\
z=z
\end{gathered}
$$

## Cartesian / Spherical

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\cos ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right) \\
x=r \sin (\theta) \cos (\phi) \\
y=r \sin (\theta) \sin (\phi) \\
z=r \cos (\theta)
\end{gathered}
$$

## Spatial "Transformations"

- Space itself is isotropic $\rightarrow$ symmetric in all directions
- There is no universal up, down, left, right - it's all convention
- No point in space is "special" or distinguishable from others
- So any choice for origin and coordinate axes is valid
- Physics needs to work for all reference frames!
- Tricky: In different reference frames...
- ...same point has different coordinates!
- How can reference frames differ?
- Translation - different origins

- Rotation - different coordinate axes
- Scaling - coordinates are multiplied by a constant


## Vector Spaces

- Can scale reference frame using any constant quantity
- Even one with units! (kg, m, sec, or any multiplicative mix)
- Creates a new "space" with same directions but different units

- Vector space - mathematical generalization of "space"
- Which may or may not represent actual physical space
- Generalized term for points in a vector space: "Vectors"
- Generalized term for coordinates: "Components"
- Generalized term for Distance(O, P'): "Magnitude"


## Vector Spaces - Conventions

- Vector symbol: letter with arrow ( $\vec{A}$ ) or boldface ( A ) $\vec{A}$
- Drawn graphically as an arrow directed from tail to tip
- Magnitude is denoted by absolute value (| $|\vec{A}|$ ) or letter only (A)
- Can use usual coordinate systems (cartesian, polar...):
- "Magnitude form" of a vector:
- Magnitude (in any units) and direction - usually angle(s)
- Example: $a=40.3 \mathrm{~m} / \mathrm{s}^{2}$ and $\theta=73.2^{\circ}$
- "Component form" of a vector:
- One component for each dimension
- Example: $\left(v_{x}=3.0 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{y}}=4.1 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{z}}=2.2 \mathrm{~m} / \mathrm{s}\right)$


## "Adding" Vectors

- In physical space:
- Every point is associated with a position vector
- 2 different points are connected by a displacement vector
- Conventional notation: $\quad \vec{r}_{B}=\vec{r}_{A}+\vec{d}_{A \rightarrow B}$
- "+" operation can be generalized to any vector space
- For vectors in component form: $\vec{A}=\vec{B}+\vec{C} \longrightarrow \begin{aligned} & A_{x}=B_{x}+C_{x} \\ & A_{y}=B_{y}+C_{y} \\ & A_{z}=B_{z}+C_{z}\end{aligned}$
- Note: Impossible to add vectors from different vector spaces
- (components would have different units $\rightarrow$ makes no sense)
- Ex: Cannot add a displacement vector to a velocity vector!


## Unit Vectors

- Vectors which are used only to define direction
- Magnitude: dimensionless and equal to 1
- Convention: Unit vectors in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions
- Are called $\hat{i}, \hat{j}, \hat{k}$ or $\hat{x}, \hat{y}, \hat{z}$
- Can construct a unit vector in any direction
- With combinations of $\hat{i}, \hat{j}, \hat{k}$

Common vector notations:

$$
\begin{aligned}
\vec{v} & =v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k} \\
\vec{v} & =\left(v_{x}, v_{y}, v_{z}\right)
\end{aligned} \quad \vec{v}=\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)
$$

For any vector v:

$$
\hat{v} \equiv \frac{\vec{v}}{v}
$$

$$
\hat{n}=\left(\frac{1}{\sqrt{2}}\right) \hat{i}+\left(\frac{1}{\sqrt{2}}\right) \hat{j}+0 \hat{k}
$$

## Actual Physical Space - Conventions

- Displacement Vector
- Vector from any point $A$ to any point $B$
- Position Vector (denoted by $\vec{r}$ or $\vec{x}$ )
- From origin to any point $P \rightarrow$ Components: $x, y, z$


$$
\vec{r}_{A}=x_{A} \hat{i}+y_{A} \hat{j}+z_{A} \hat{k}
$$

$$
\vec{d}=\left(x_{B}-x_{A}\right) \hat{i}+\left(y_{B}-y_{A}\right) \hat{j}+\left(z_{B}-z_{A}\right) \hat{k}
$$

Magnitudes of Vectors in "position space":
Measured in units of length

$$
\begin{aligned}
& \left|\vec{r}_{A}\right| \equiv r_{A}=\sqrt{x_{A}{ }^{2}+y_{A}{ }^{2}+z_{A}{ }^{2}} \\
& |\vec{d}| \equiv d=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2}}
\end{aligned}
$$

## Coordinate Transformations

- To describe the same point in 2 reference frames:
- Need to "transform" coordinates between frames

Translating a reference frame


$$
\begin{gathered}
\vec{r}_{A}^{\prime}=\vec{r}_{A}-\vec{R} \\
\binom{x_{A}^{\prime}}{y_{A}^{\prime}}=\binom{x_{A}-R_{x}}{y_{A}-R_{y}}
\end{gathered}
$$

Rotating a reference frame about the $z$-axis


$$
\binom{x_{A}^{\prime}}{y_{A}^{\prime}}=\binom{x_{A} \cos \Phi+y_{A} \sin \Phi}{-x_{A} \sin \Phi+y_{A} \cos \Phi}
$$

To rotate about an axis other than z : Similar concept with more complicated geometry

## Rotation Matrix

- Matrix - structure for organizing numbers or functions
- Matrices can "operate" on a vector (making a new vector)
- Operations $\rightarrow$ carried out in specific order (rows and columns)

$$
\binom{a_{1}}{a_{2}}=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right)\binom{v_{1}}{v_{2}} \equiv\binom{M_{11} v_{1}+M_{12} v_{2}}{M_{21} v_{1}+M_{22} v_{2}} \quad \frac{\text { In index notation: }}{a_{i} \equiv M_{i j} v_{j}}
$$

- Rotation Matrix - defines coordinate transformation
- To a frame rotated about a particular axis by angle $\Phi$
- For rotation about the z-axis:

$$
R(\Phi)=\left(\begin{array}{ccc}
\cos \Phi & \sin \Phi & 0 \\
-\sin \Phi & \cos \Phi & 0 \\
0 & 0 & 1
\end{array}\right) \longrightarrow \vec{r}^{\prime}=R(\Phi) \vec{r}
$$

## Vectors and Unit Vectors - Examples

- Let $\vec{A}=(2 m) \hat{i}+(3 m) \hat{j}-(1 m) \hat{k}$ and $\vec{B}=(5 m) \hat{i}-(2 m) \hat{j}-(3 m) \hat{k}$
- In some particular reference frame $S$
- Consider a new reference frame $\mathrm{S}^{\prime}$
- With the same origin as S , but rotated $45^{\circ}$ about the $z$-axis
- In both reference frames:
- Calculate the components of $\hat{A}$ and $\hat{B}$
- Calculate $|\vec{A}+\vec{B}|$ and $|\vec{A}-\vec{B}|$


## Unit Vectors in Polar Coordinates

- Vector components in Cartesian coordinates:
- Are projections onto fixed directions xyz
- An alternate method for defining components:
- Use projections parallel and perpendicular to position vector
- Unit vectors in these directions are called $\hat{r}$ and $\hat{\theta}$
- Note: These unit vectors depend on position (not fixed!)



## Graphical Representation of Vectors

- Vectors $\rightarrow$ defined by direction and magnitude only
- Their "location" in the vector space is arbitrary

- Can move vectors around to use geometry
- With the role of distance replaced by vector magnitudes

Comparing the directions of 2 vectors (i.e. measuring angle between them)
"Tail-to-tail" convention:


Note: It is possible to compare directions of 2 vectors in different vector spaces
$\vec{A}+\vec{B}=\vec{C}$
"Tail-to-tip" convention:


Geometry: These 3 vectors form a triangle in their vector space

Is this true? $\theta_{A B}+\theta_{B C}+\theta_{A C}=180$

## Dot Product

- Angle measurement compares direction of 2 vectors
- Can be tricky to do with vectors in component form
- Useful tool: the "dot product"
- Measures how one vector projects onto another
- Can be defined in either magnitude form or component form

- Dot product can be positive, negative, or zero
- Units of dot product: multiply units of individual vectors
- Also called "scalar product" or "inner product"


## Dot Product - Important Features

- Dot product is "invariant"
- Has the same value in all reference frames

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

- $\mathrm{A}_{\mathrm{x}}, \mathrm{B}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}$, etc. depend on frame but dot product does not
- Dot product is commutative: $\vec{U} \cdot \vec{V}=\vec{V} \cdot \vec{U}$
- Can take dot product of a vector with itself ( $\vec{A} \cdot \vec{A}$ )
- Result: "magnitude squared" of the vector ( $\mathrm{A}^{2}$ )
- Dot products of unit vectors:

$$
\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1 \quad \hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0
$$

## Cross Product

- Any 2 vector directions define a plane
- Ways to mathematically describe the plane:
- 1) "Equation of constraint" governing coordinates of points
- 2) Direction which is perpendicular to the plane
- "Cross Product" of 2 vectors $\vec{A}$ and $\vec{B}$
- Produces a $3^{\text {rd }}$ vector $\vec{C}$ with the properties:
- Direction: perpendicular to both $\vec{A}$ and $\vec{B}$
- Magnitude: "area enclosed" by $\vec{A}$ and $\vec{B}$

- = "out of page"

X = "into page"

$$
\begin{aligned}
& |\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \left(\theta_{A B}\right) \\
& \vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}
\end{aligned}
$$

Convention: Direction of cross product decided by

## Cross Product - Important Features

- Cross product is a vector $\rightarrow$ frame-dependent
- Components depend on reference frame - magnitude doesn't
- Cross product is anti-commutative: $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$
- Cross product of a vector with itself $(\vec{A} \times \vec{A})$ is zero
- Cross products of unit vectors:

$$
\begin{array}{ll}
\hat{i} \times \hat{j}=\hat{k} & \hat{j} \times \hat{i}=-\hat{k} \\
\hat{j} \times \hat{k}=\hat{i} & \hat{k} \times \hat{j}=-\hat{i} \\
\hat{k} \times \hat{i}=\hat{j} & \hat{i} \times \hat{k}=-\hat{j}
\end{array}
$$

These relationships are a result of the "right-hand rule" convention.

The 3 equations on the left are an example of a "cyclic permutation"

## Cross Product - Determinant Form

- Concise way to remember order and sign of terms:
- Use the determinant of a matrix!
- Matrices and determinants to be described in detail later
- For now, just a tool for getting terms and signs right
$\underline{2 \times 2 \text { matrix: }}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Determinant: $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$
3×3 matrix: $\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$
Determinant form of cross product $\vec{A} \times \vec{B}$

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

$$
\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}
$$

Determinant: $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=a\left(\operatorname{det}\left(\begin{array}{cc}e & f \\ h & i\end{array}\right)\right)-b\left(\operatorname{det}\left(\begin{array}{ll}d & f \\ g & i\end{array}\right)\right)+c\left(\operatorname{det}\left(\begin{array}{ll}d & e \\ g & h\end{array}\right)\right)$

## Dot/Cross Product Examples

- Which of the following makes sense?
- And in each case, are parentheses necessary?

$$
\vec{A} \cdot(\vec{B} \times \vec{C}) \quad \vec{A} \times(\vec{B} \cdot \vec{C}) \quad \vec{A} \cdot \vec{B} \cdot \vec{C} \quad \vec{A} \times \vec{B} \times \vec{C}
$$

- Imagine a set of N unit vectors such that:
- 1) the sum of all $N$ vectors is zero
- 2) the angle between any 2 unit vectors is constant
- Draw some examples for different N in 2-D and 3-D space
- Calculate the angle between two vectors in each case

