GEOMETRY AND VECTORS

Distinguishing Between Points in Space

- One Approach <u>Names</u>: ("Fred", "Steve", "Alice"...)
 - <u>Problem</u>: distance & direction must be defined point-by-point
- More elegant take advantage of geometry
 - Label points in organized fashion with numbers ("coordinates")
 - Use the coordinates to <u>calculate</u> distance & direction
 - Example: Instead of "Chicago" \rightarrow "42° N, 88° W"
- How to choose coordinates for each point?
 - <u>Common approach</u>: pick a reference point (the "origin")
 - Label each point P with:
 - distance(origin, P) and direction(origin, P)

<u>Measuring Direction – Projection</u>

- To make a "coordinate system" for a given space:
 - Must quantitatively define direction(A, B)
- <u>Approach</u>: Pick <u>some</u> direction to act as reference
 - Quantitatively compare direction(A, B) to reference direction
 - This comparison is called a "projection"
 - Measures how much of distance(A, B) is parallel to reference
 - Expressed as an angle or a number (between -1.0 and 1.0)

Reference direction (also called a coordinate axis)

In trigonometry, projection is represented by the cosine of the angle between direction(A, B) and the reference direction

Dimensions

- Points in a space can be organized a variety of ways
 - Depending on how they are "connected" to each other
- Dimension of a space
 - Smallest # of coordinates necessary to specify each point
 - In defining "direction" \rightarrow 1 "reference direction" per dimension

Reference Frames

- Ref. Frame specific origin and reference directions
 - "Conventions" man-made rules; convenient but <u>not</u> mathematically necessary:
 - Reference directions (called "coordinate axes") are orthogonal
 - 3-Dimensions: coordinate axes xyz named by "right-hand rule"

- Two conventions for "naming" points in D dimensions:
 - 1) project Dist(O, P) onto D coordinate axes (Example: x, y, z)
 - 2) Dist(O,P) and projection onto D-1 axes (Example: r, θ , ϕ)

Common Coordinate System Conventions

3-Dimensions

<u>"Cartesian" Coordinates</u>: (x, y, z)

 $\frac{"Cylindrical" Coordinates:}{(\rho, \phi, z) \text{ or } (r, \theta, z)}$

<u>"Spherical" Coordinates</u>: (r, θ , ϕ) or (ρ , θ , ϕ)

Coordinate System Consistency

• Geometry \rightarrow can "translate" coordinates between systems

Spatial "Transformations"

- Space itself is isotropic \rightarrow symmetric in all directions
 - There is no universal up, down, left, right -- it's all convention
 - No point in space is "special" or distinguishable from others

x'

Χ

- So any choice for <u>origin</u> and <u>coordinate axes</u> is valid
 - Physics needs to work for all reference frames!
 - <u>Tricky</u>: In different reference frames...
 - ...same point has different coordinates!
- How can reference frames differ?
 - <u>Translation</u> different origins
 - <u>Rotation</u> different coordinate axes
 - <u>Scaling</u> coordinates are multiplied by a constant

Vector Spaces

- Can scale reference frame using any constant quantity
 - Even one with <u>units</u>! (kg, m, sec, or any multiplicative mix)
 - Creates a new "space" with same directions but different units

• Vector space – mathematical generalization of "space"

- Which may or may not represent actual physical space
- Generalized term for points in a vector space: "Vectors"
- Generalized term for <u>coordinates</u>: "Components"
- Generalized term for <u>Distance(O, P')</u>: "Magnitude"

Vector Spaces – Conventions

- <u>Vector symbol</u>: letter with arrow (\vec{A}) or boldface (\mathbf{A})
 - Drawn graphically as an arrow directed from tail to tip
 - Magnitude is denoted by absolute value $(|\vec{A}|)$ or letter only (A)
- Can use usual coordinate systems (cartesian, polar...):
 - "Magnitude form" of a vector:
 - Magnitude (in any units) and direction usually angle(s)
 - Example: $a = 40.3 \text{ m/s}^2$ and $\theta = 73.2^\circ$
 - <u>"Component form" of a vector</u>:
 - One component for each dimension
 - Example: $(v_x = 3.0 \text{ m/s}, v_y = 4.1 \text{ m/s}, v_z = 2.2 \text{ m/s})$

"Adding" Vectors

- In physical space:
 - Every point is associated with a position vector
 - 2 different points are connected by a displacement vector
 - <u>Conventional notation</u>: $\vec{r}_B = \vec{r}_A + \vec{d}_{A \to B}$
- "+" operation can be generalized to any vector space
- For vectors in <u>component form</u>: $\vec{A} = \vec{B} + \vec{C} \longrightarrow \begin{bmatrix} A_x = B_x + C_x \\ A_y = B_y + C_y \\ A_z = B_z + C_z \end{bmatrix}$
 - Note: Impossible to add vectors from different vector spaces
 - (components would have different units \rightarrow makes no sense)
 - <u>Ex</u>: Cannot add a <u>displacement</u> vector to a <u>velocity</u> vector!

Unit Vectors

 $\hat{n} = \left(\frac{1}{\sqrt{2}}\right)\hat{i} + \left(\frac{1}{\sqrt{2}}\right)\hat{j} + 0\,\hat{k}$

- Vectors which are used only to define direction
 - Magnitude: dimensionless and equal to 1
- <u>Convention</u>: Unit vectors in the x, y, z directions

- Are called $\hat{i}, \hat{j}, \hat{k}$ or $\hat{x}, \hat{y}, \hat{z}$

• Can construct a unit vector in any direction

- With combinations of \hat{i} , \hat{j} , \hat{k}

Actual Physical Space – Conventions

- Displacement Vector
 - Vector from any point A to any point B
- Position Vector (denoted by \vec{r} or \vec{x})
 - From origin to any point $P \rightarrow \underline{Components}$: x, y, z

$$\vec{r}_A = x_A\hat{i} + y_A\hat{j} + z_A\hat{k}$$

$$\vec{d} = (x_B - x_A)\hat{i} + (y_B - y_A)\hat{j} + (z_B - z_A)\hat{k}$$

Magnitudes of Vectors in "position space":

Measured in units of length

$$|\vec{r}_{A}| \equiv r_{A} = \sqrt{x_{A}^{2} + y_{A}^{2} + z_{A}^{2}}$$
$$|\vec{d}| \equiv d = \sqrt{(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2} + (z_{B} - z_{A})^{2}}$$

Coordinate Transformations

• To describe the same point in 2 reference frames:

- Need to "transform" coordinates between frames

Rotating a reference frame about the z-axis

$$\begin{pmatrix} x_A \\ y_A \end{pmatrix} = \begin{pmatrix} x_A \cos \Phi + y_A \sin \Phi \\ -x_A \sin \Phi + y_A \cos \Phi \end{pmatrix}$$

To rotate about an axis other than z: Similar concept with more complicated geometry

Rotation Matrix

- <u>Matrix</u> structure for organizing numbers or functions
 - Matrices can "operate" on a vector (making a new vector)
 - Operations \rightarrow carried out in specific order (rows and columns)

- Rotation Matrix defines coordinate transformation
 - To a frame rotated about a particular axis by angle Φ
 - For rotation about the z-axis:

$$R(\Phi) = \begin{pmatrix} \cos \Phi & \sin \Phi & 0 \\ -\sin \Phi & \cos \Phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \vec{r} = R(\Phi) \vec{r}$$

Vectors and Unit Vectors – Examples

- Let $\vec{A} = (2 \ m) \ \hat{i} + (3 \ m) \ \hat{j} (1 \ m) \ \hat{k}$ and $\vec{B} = (5 \ m) \ \hat{i} (2 \ m) \ \hat{j} (3 \ m) \ \hat{k}$
 - In some particular reference frame S
- Consider a new reference frame S'
 - With the same origin as S, but rotated 45° about the z-axis
- In both reference frames:
 - Calculate the components of \hat{A} and \hat{B}
 - Calculate $|\vec{A} + \vec{B}|$ and $|\vec{A} \vec{B}|$

Unit Vectors in Polar Coordinates

- Vector components in Cartesian coordinates:
 - Are projections onto fixed directions xyz
- An alternate method for defining components:
 - Use projections parallel and perpendicular to position vector
 - Unit vectors in these directions are called \hat{r} and $\hat{\theta}$
 - <u>Note</u>: These unit vectors depend on position (not <u>fixed</u>!)

Graphical Representation of Vectors

- Vectors \rightarrow defined by direction and magnitude only
 - Their "location" in the vector space is arbitrary
- Can move vectors around to use geometry

 \vec{B}

- With the role of distance replaced by vector magnitudes

Comparing the directions of 2 vectors (i.e. measuring angle between them)

 $\vec{A} + \vec{B} = \vec{C}$ "Tail-to-tip" convention: $\vec{A} = \vec{C}$ $\vec{C} = \vec{B}$ $\vec{B} = \vec{C}$ $\vec{C} = \vec{B}$ $\vec{B} = \vec{C}$ $\vec{A} = \vec{C}$ $\vec{B} = \vec{C}$ $\vec{A} = \vec{C}$ $\vec{B} = \vec{C}$ $\vec{A} = \vec{C}$ $\vec{A} = \vec{C}$

"Tail-to-tail" convention:

<u>Note</u>: It is possible to compare directions of 2 vectors in <u>different</u> vector spaces

<u>Geometry</u>: These 3 vectors form a triangle in their vector space

Is this true? $\theta_{AB} + \theta_{BC} + \theta_{AC} = 180$

Dot Product

- Angle measurement compares direction of 2 vectors
 - Can be tricky to do with vectors in component form
- <u>Useful tool</u>: the "dot product"
 - Measures how one vector projects onto another
 - Can be defined in either magnitude form or component form

$$\vec{B}$$

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos(\theta_{AB})$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

$$\vec{A}$$

Prove it using Law of Cosines!

- Dot product can be positive, negative, or zero
- Units of dot product: multiply units of individual vectors
- Also called "scalar product" or "inner product"

Dot Product – Important Features

- Dot product is "invariant"
 - Has the same value in all reference frames $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$

 $-A_x, B_x, A_y$, etc. depend on frame but dot product does not

- Dot product is <u>commutative</u>: $\vec{U} \cdot \vec{V} = \vec{V} \cdot \vec{U}$
- Can take dot product of a vector with itself $(\vec{A} \cdot \vec{A})$

• Dot products of unit vectors:

 $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1 \qquad \qquad \hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$

^{- &}lt;u>Result</u>: "magnitude squared" of the vector (A^2)

Cross Product

- Any 2 vector directions define a plane
 - Ways to mathematically describe the plane:
 - 1) "Equation of constraint" governing coordinates of points
 - 2) Direction which is perpendicular to the plane
- "Cross Product" of 2 vectors \vec{A} and \vec{B}
 - Produces a 3rd vector \vec{C} with the properties:
 - Direction: perpendicular to both \vec{A} and \vec{B}
 - <u>Magnitude</u>: "area enclosed" by \vec{A} and \vec{B}

 $|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin(\theta_{AB})$

 $\vec{A} \times \vec{B} = (A_v B_z - A_z B_v) \hat{i} - (A_x B_z - A_z B_x) \hat{j} + (A_x B_v - A_v B_x) \hat{k}$

= "out of page"

X = "into page"

Convention: Direction of cross product decided by "right-hand rule"

Cross Product – Important Features

- Cross product is a vector \rightarrow frame-dependent
 - Components depend on reference frame magnitude doesn't
- Cross product is <u>anti-commutative</u>: $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$
- Cross product of a vector with itself $(\vec{A} \times \vec{A})$ is zero
- Cross products of unit vectors:

$\hat{i} \times \hat{j} = \hat{k}$	$\hat{j} \times \hat{i} = -\hat{k}$
$\hat{j} \times \hat{k} = \hat{i}$	$\hat{k} \times \hat{j} = -\hat{i}$
$\hat{k} \times \hat{i} = \hat{j}$	$\hat{i} \times \hat{k} = -\hat{j}$

These relationships are a result of the "right-hand rule" convention.

The 3 equations on the left are an example of a "cyclic permutation"

<u>Cross Product – Determinant Form</u>

- Concise way to remember order and sign of terms:
 - Use the determinant of a matrix!
 - Matrices and determinants to be described in detail later
 - For now, just a tool for getting terms and signs right

$$\begin{array}{c} \underline{2 \times 2 \text{ matrix:}} & \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ \hline \\ \underline{\text{Determinant:}} & \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \\ \hline \\ \underline{3 \times 3 \text{ matrix:}} & \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \\ \hline \\ \hline \\ \underline{\text{Determinant:}} & \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \\ \hline \\ \hline \\ \hline \\ \underline{\text{Determinant:}} & \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \left(det \begin{pmatrix} e & f \\ h & i \end{pmatrix} \right) - b \left(det \begin{pmatrix} d & f \\ g & i \end{pmatrix} \right) + c \left(det \begin{pmatrix} d & e \\ g & h \end{pmatrix} \right) \\ \hline \\ \end{array}$$

Dot/Cross Product Examples

- Which of the following makes sense?
 - And in each case, are parentheses necessary?

 $\vec{A} \cdot (\vec{B} \times \vec{C})$ $\vec{A} \times (\vec{B} \cdot \vec{C})$ $\vec{A} \cdot \vec{B} \cdot \vec{C}$ $\vec{A} \times \vec{B} \times \vec{C}$

- Imagine a set of N unit vectors such that:
 - 1) the sum of all N vectors is zero
 - 2) the angle between any 2 unit vectors is constant
 - Draw some examples for different N in 2-D and 3-D space
 - Calculate the angle between two vectors in each case