
  

GEOMETRY AND VECTORS



  

Distinguishing Between Points in Space
● One Approach – Names:  (“Fred”, “Steve”, “Alice”...) 

– Problem: distance & direction must be defined point-by-point

● More elegant – take advantage of geometry
– Label points in organized fashion with numbers (“coordinates”)
– Use the coordinates to calculate distance & direction
– Example:  Instead of “Chicago” → “42º N, 88º W”

● How to choose coordinates for each point?
– Common approach: pick a reference point (the “origin”) 
– Label each point P with:
– distance(origin, P) and direction(origin, P) O PP'

2 m–2 m



  

Measuring Direction – Projection
● To make a “coordinate system” for a given space:

– Must quantitatively define direction(A, B)

● Approach: Pick some direction to act as reference
– Quantitatively compare direction(A, B) to reference direction
– This comparison is called a “projection”
– Measures how much of distance(A, B) is parallel to reference
– Expressed as an angle or a number (between -1.0 and 1.0) 

A

B

Reference direction (also called a coordinate axis)

In trigonometry, projection is represented by the 
cosine of the angle between direction(A, B) and the 
reference direction 



  

Dimensions
● Points in a space can be organized a variety of ways

– Depending on how they are “connected” to each other

● Dimension of a space
– Smallest # of coordinates necessary to specify each point
– In defining “direction” → 1 “reference direction” per dimension

1-Dimension 2-Dimensions 3-Dimensions N-Dimensional

???



  

Reference Frames
● Ref. Frame – specific origin and reference directions

– “Conventions” – man-made rules; convenient but not 
mathematically necessary:

– Reference directions (called “coordinate axes”) are orthogonal
– 3-Dimensions: coordinate axes xyz named by “right-hand rule”

● Two conventions for “naming” points in D dimensions:
– 1) project Dist(O, P) onto D coordinate axes (Example:  x, y, z)
– 2) Dist(O,P) and projection onto D-1 axes  (Example:  r, θ, ϕ)

x

y

x

y



  

Common Coordinate System Conventions
1-Dimension 2-Dimensions

3-Dimensions

O P

x

Coordinate:  x O

P

x

yr

θ

“Cartesian” Coordinates: x, y

“Polar” Coordinates: r, θ

O

P

xy

z

“Cartesian” Coordinates: 
(x, y, z)

“Cylindrical” Coordinates:  
(ρ, ϕ, z)   or   (r, θ, z)

“Spherical” Coordinates: 
 (r, θ, ϕ)   or  (ρ, θ, ϕ)

Note: Math 
and Physics 
use different 
conventions 
for spherical 
coordinates



  

Coordinate System Consistency
● Geometry → can “translate” coordinates between systems 

2-Dimensions

r =  x2 y2

 = tan−1 yx 
actually arctan2 

x = r cos 
y = r sin 

3-Dimensions

Cartesian / Cylindrical Cartesian / Spherical

 =  x2 y2

= tan−1 yx 
z = z

x = cos
y = sin 
z = z

r =  x2  y2  z2

 = cos−1  z

 x2  y2 z 2
 = tan−1  yx 
x = r sin cos
y = r sin sin 
z = r cos

Cartesian / Polar



  

Spatial “Transformations”
● Space itself is isotropic → symmetric in all directions 

– There is no universal up, down, left, right – it's all convention
– No point in space is “special” or distinguishable from others

● So any choice for origin and coordinate axes is valid
– Physics needs to work for all reference frames!
– Tricky:  In different reference frames...
– ...same point has different coordinates!

● How can reference frames differ?
– Translation – different origins
– Rotation – different coordinate axes
– Scaling – coordinates are multiplied by a constant 

x

y

x'

y'



  

Vector Spaces
● Can scale reference frame using any constant quantity

– Even one with units! (kg, m, sec, or any multiplicative mix)
– Creates a new “space” with same directions but different units

● Vector space – mathematical generalization of “space”
– Which may or may not represent actual physical space
– Generalized term for points in a vector space:  “Vectors”
– Generalized term for coordinates:  “Components”
– Generalized term for Distance(O, P'):  “Magnitude”

x

y

1m 2m

1m

2m

vx

vy

1m/s 2m/s

1m/s

2m/s

O O

P P'



  

Vector Spaces – Conventions
● Vector symbol: letter with arrow (    ) or boldface ( A )

– Drawn graphically as an arrow directed from tail to tip
– Magnitude is denoted by absolute value (     ) or letter only (A)

● Can use usual coordinate systems (cartesian, polar...):
– “Magnitude form” of a vector:
– Magnitude (in any units) and direction – usually angle(s)
– Example:  a = 40.3 m/s2  and  θ = 73.2º

– “Component form” of a vector:  
– One component for each dimension
– Example:  (vx = 3.0 m/s,  vy = 4.1 m/s,  vz = 2.2 m/s)

AA

∣A∣



  

“Adding” Vectors
● In physical space:

– Every point is associated with a position vector
– 2 different points are connected by a displacement vector
– Conventional notation:

● “+” operation can be generalized to any vector space

● For vectors in component form:

– Note:  Impossible to add vectors from different vector spaces
– (components would have different units → makes no sense)
– Ex: Cannot add a displacement vector to a velocity vector!

r B = r A d AB

A= B  C
Ax=BxC x

Ay=B yC y

Az=B zC z



  

Unit Vectors
● Vectors which are used only to define direction

– Magnitude: dimensionless and equal to 1

● Convention:  Unit vectors in the x, y, z directions
– Are called               or  

● Can construct a unit vector in any direction
– With combinations of 

i , j , k x , y , z

n

i

j

k

i , j , k

n =  1
2 i   1

2 j  0 k

Common vector notations:

v = v x i  v y j  v z k

v = v x , v y , v z 
v = v xv yv z

For any vector v :

v ≡
v
v



  

Actual Physical Space – Conventions
● Displacement Vector  

– Vector from any point A to any point B

● Position Vector (denoted by      or     )
– From origin to any point P → Components:  x, y, z

r x

x

y

O

A

B

d A B
r A

Magnitudes of Vectors in “position space”:

Measured in units of length

∣r A∣≡ r A=  x A2 y A
2zA

2

r A= x A i  yA j  z A k

d = x B−x A i   yB− y A j   zB−zA k

∣d∣≡ d =  xB−x A2 yB− y A2 zB−z A2



  

Coordinate Transformations
● To describe the same point in 2 reference frames:

– Need to “transform” coordinates between frames

Translating a reference frame

x

y

x'

y'
A

r A r A '

R

r A ' = r A− R

Rotating a reference frame about the z-axis

x

y

x'

y'

A

r A

x A 'y A '=
xA cos  y A sin 

−x A sin  y A cos 


x A 'yA '= 
xA− Rx
y A− R y

To rotate about an axis other than z:
Similar concept with more complicated
geometry



  

Rotation Matrix
● Matrix – structure for organizing numbers or functions

– Matrices can “operate” on a vector (making a new vector)
– Operations → carried out in specific order (rows and columns)

● Rotation Matrix – defines coordinate transformation
– To a frame rotated about a particular axis by angle
– For rotation about the z-axis: 

a1

a2
=M 11 M 12

M 21 M 22
 v1

v2
≡ M 11 v1  M 12 v2

M 21 v1  M 22 v2




R =  cos  sin  0
−sin  cos  0

0 0 1 r ' = R  r

ai≡ M ij v j
In index notation:



  

Vectors and Unit Vectors – Examples
● Let                                      and

– In some particular reference frame S

● Consider a new reference frame S'
– With the same origin as S, but rotated 45º about the z-axis

● In both reference frames:
– Calculate the components of       and
– Calculate              and           

A= 2 m  i  3 m j − 1 m k B= 5 m  i − 2 m  j − 3 m  k

A B
∣A B∣ ∣A− B∣



  

Unit Vectors in Polar Coordinates
● Vector components in Cartesian coordinates:

– Are projections onto fixed directions xyz

● An alternate method for defining components: 
– Use projections parallel and perpendicular to position vector
– Unit vectors in these directions are called     and
– Note: These unit vectors depend on position (not fixed!)  

x

y

r



r


A

r 

r




r = cos   i  sin   j

 =−sin   i  cos   j

A= Ar r  A


r = r r



  

Graphical Representation of Vectors
● Vectors → defined by direction and magnitude only

– Their “location” in the vector space is arbitrary

● Can move vectors around to use geometry
– With the role of distance replaced by vector magnitudes

A

B
C

A B = C

“Tail-to-tip” convention:

Geometry:  These 3 vectors form 
a triangle in their vector space

Is this true? 

U V
U = V

Comparing the directions of 2 vectors (i.e. measuring angle between them)

“Tail-to-tail” convention:

A

B
AB

AB BC  AC =180

Note: It is possible to compare directions 
of 2 vectors in different vector spaces



  

Dot Product
● Angle measurement compares direction of 2 vectors

– Can be tricky to do with vectors in component form

● Useful tool: the “dot product”
– Measures how one vector projects onto another
– Can be defined in either magnitude form or component form

– Dot product can be positive, negative, or zero
– Units of dot product:  multiply units of individual vectors
– Also called “scalar product” or “inner product”

A

B
AB

A⋅B =∣A∣∣B∣ cos AB 
A⋅B = Ax B xA y B y Az B z

Prove it using Law of Cosines!



  

Dot Product – Important Features
● Dot product is “invariant”

– Has the same value in all reference frames

– Ax, Bx, Ay, etc. depend on frame but dot product does not

● Dot product is commutative:

● Can take dot product of a vector with itself (      )
– Result: “magnitude squared” of the vector  ( A2 )

● Dot products of unit vectors:

A⋅B = Ax B xA y B y Az B z

A⋅A

i⋅i = j⋅j = k⋅k = 1 i⋅j = j⋅k = k⋅i = 0

U⋅V = V⋅U



  

Cross Product
● Any 2 vector directions define a plane

– Ways to mathematically describe the plane:
– 1) “Equation of constraint” governing coordinates of points
– 2) Direction which is perpendicular to the plane

● “Cross Product” of 2 vectors     and  
– Produces a 3rd vector      with the properties:
– Direction:  perpendicular to both     and
– Magnitude:  “area enclosed” by      and

A B

A B

C

A B

A

B

= “out of page”

X  = “into page”

C

∣A×B∣=∣A∣∣B∣ sin AB 

A×B = A y Bz−Az B y  i − Ax Bz−Az Bx  j  Ax B y−Ay Bx  k

Convention:
Direction of 
cross product 
decided by 
“right-hand rule”



  

Cross Product – Important Features
● Cross product is a vector → frame-dependent

– Components depend on reference frame – magnitude doesn't

● Cross product is anti-commutative:

● Cross product of a vector with itself (      ) is zero

● Cross products of unit vectors:

A×B =− B×A

A×A

i×j = k
j×k = i
k×i = j

j×i =−k
k×j =−i
i×k =−j

These relationships are a result of the 
“right-hand rule” convention.

The 3 equations on the left are an 
example of a “cyclic permutation”



  

Cross Product – Determinant Form
● Concise way to remember order and sign of terms:

– Use the determinant of a matrix!
– Matrices and determinants to be described in detail later
– For now, just a tool for getting terms and signs right

a b
c d 2 x 2 matrix:

Determinant: ∣a bc d∣= ad−bc

a b c
d e f
g h i 3 x 3 matrix:

Determinant: ∣a b c
d e f
g h i ∣= adet e f

h i − bdet d f
g i  cdetd e

g h

Determinant form of cross product A×B

∣ i j k
Ax A y Az
B x B y B z∣

A y Bz−Az B y  i − Ax Bz−Az Bx  j  Ax B y−Ay Bx  k



  

Dot/Cross Product Examples
● Which of the following makes sense?

– And in each case, are parentheses necessary?

● Imagine a set of N unit vectors such that:
– 1) the sum of all N vectors is zero 
– 2) the angle between any 2 unit vectors is constant
– Draw some examples for different N in 2-D and 3-D space
– Calculate the angle between two vectors in each case

A⋅B× C  A× B⋅C  A⋅B⋅C A× B× C
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