\qquad
\qquad
\qquad

GEOMETRY B: CIRCLE TEST PRACTICE

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Find the measures of the indicated angles. Which statement is NOT true? (The figure is not drawn to scale.)

a. $\quad a=53^{\circ}$
b. $b=106^{\circ}$
c. $c=73^{\circ}$
d. $d=37^{\circ}$
\qquad 2. A low-wattage radio station can be heard only within a certain distance from the station. On the graph below, the circular region represents that part of the city where the station can be heard, and the center of the circle represents the location of the station. Which equation represents the boundary for the region where the station can be heard?

a. $(x-6)^{2}+(y-1)^{2}=32$
b. $(x+6)^{2}+(y+1)^{2}=32$
c. $(x-6)^{2}+(y-1)^{2}=16$
d. $(x+6)^{2}+(y+1)^{2}=16$
3. The circles are congruent. What can you conclude from the diagram?

a. $\operatorname{arc} C A B \cong \operatorname{arc} F D E$
c. $\operatorname{arc} A B \cong \operatorname{arc} D E$
b. $\operatorname{arc} D F \cong \operatorname{arc} A C$
d. none of these

Short Answer

4. Name the minor arc and find its measure.

5. In the circle, $m(\operatorname{arc} A D)=82$, and $m \angle D=79$. Find $m \angle D C Q$. (The figure is not drawn to scale.)

6. Find the area of the shaded region. Leave your answer in terms of π and in simplest radical form.

7. If $m(\operatorname{arc} B Y)=45$, what is $m \angle Y A C$? (The figure is not drawn to scale.)

Find the value of x. If necessary, round your answer to the nearest tenth. The figure is not drawn to scale.
8.

9. $F G \perp O P, R S \perp O Q, F G=20, R S=32, O P=18$

10.

11. $\overline{J K}, \overline{K L}$, and $\overline{L J}$ are all tangent to O (not drawn to scale). $J A=5, A L=9$, and $C K=15$. Find the perimeter of $\Delta J K L$.

12. The circumference of a circle is $44 \pi \mathrm{~cm}$. Find the diameter, the radius, and the length of an arc of 200°.
13. $\overline{W Z}$ and $\overline{X R}$ are diameters. Find the measure of arc $Z W X$. (The figure is not drawn to scale.)

Assume that lines that appear to be tangent are tangent. O is the center of the circle. Find the value of x. (Figures are not drawn to scale.)
14. $m \angle P=24$

15. $m \angle O=152$

\qquad

Find the circumference. Leave your answer in terms of π.
16.

17. $m \angle R=39$. Find $m \angle O$. (The figure is not drawn to scale.)

18. $\overline{B C}$ is tangent to circle A at B and to circle D at C (not drawn to scale). $A B=9, B C=30$, and $D C=3$. Find $A D$ to the nearest tenth.

19. Name the major arc and find its measure.

In the figure, $\overrightarrow{P A}$ and $\overrightarrow{P B}$ are tangent to circle O and $\overrightarrow{P D}$ bisects $\angle B P A$. The figure is not drawn to scale.

20. For $m \angle A O C=61$, find $m \angle B P O$.
21. For $m \angle A O C=40$, find $m \angle P O B$.
22. The center of a circle is $(h, 7)$ and the radius is 10 . The circle passes through $(3,-1)$. Find all possible values of h.
23. $\overleftrightarrow{B D}$ is tangent to circle O at $C, m(\operatorname{arc} A E C)=270$, and $m \angle A C E=98$. Find $m \angle D C E$. (The figure is not drawn to scale.)

Find the area of the circle. Leave your answer in terms of π.
24.

25. The figure represents the overhead view of a deck surrounding a hot tub. What is the area of the deck? Round to the nearest tenth.

Write the standard equation for the circle.
26. center $(-8,6), r=4$
27. Find the area of the figure to the nearest tenth.

28. Find the center and radius of the circle with equation $(x+10)^{2}+(y+5)^{2}=64$.
29. Grade 7 students were surveyed to determine how many hours a day they spent on various activities. The results are shown in the circle graph below. Find the measure of each central angle in the circle graph.
a. Sleeping
b. Eating

How Students Spend Their Time

Essay

30. Jason designed an arch made of wrought iron for the top of a mall entrance. The 11 segments between the two concentric circles are each 1.25 m long. Find the total length of wrought iron used to make the structure. Round the answer to the nearest meter.

GEOMETRY B: CIRCLE TEST PRACTICE

Answer Section

MULTIPLE CHOICE

1. ANS: C
PTS: 1
DIF: L3
REF: 12-3 Inscribed Angles
OBJ: 12-3.1 Finding the Measure of an Inscribed Angle
NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-3 Example 2
KEY: circle |inscribed angle | intercepted arc | inscribed angle-arc relationship
2. ANS: D PTS: 1 DIF: L2
REF: 12-5 Circles in the Coordinate Plane
OBJ: 12-5.2 Finding the Center and Radius of a Circle
NAT: NAEP 2005 G4d | ADP K. 10.4
TOP: 12-4 Example 4
KEY: center | circle | coordinate plane | radius | equation of a circle | word problem
3. ANS: C PTS: 1 DIF: L2
REF: 12-2 Chords and Arcs
OBJ: 12-2.1 Using Congruent Chords, Arcs, and Central Angles
NAT: NAEP 2005 G3e | ADP K. 4 TOP: 12-2 Example 1
KEY: arc | central angle | congruent circles

SHORT ANSWER

4. ANS:
$\operatorname{arc} A B ; 115^{\circ}$
PTS: 1 DIF: L2 REF: 10-6 Circles and Arcs
OBJ: 10-6.1 Central Angles and Arcs
NAT: NAEP 2005 M1h | ADP K. 4
TOP: 10-6 Example 3
KEY: measure of an arc \| minor arc \| arc
5. ANS:

60
PTS: 1 DIF: L2 REF: 12-3 Inscribed Angles
OBJ: 12-3.2 The Angle Formed by a Tangent and a Chord NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-3 Example 3
KEY: circle |inscribed angle | tangent-chord angle | intercepted arc | arc measure | angle measure
6. ANS:
$(120 \pi+36 \sqrt{3}) \mathrm{m}^{2}$

PTS: 1 DIF: L3 REF: 10-7 Areas of Circles and Sectors
OBJ: 10-7.1 Finding Areas of Circles and Parts of Circles
NAT: NAEP 2005 M1h | ADP I.4.1 | ADP J.1.6 | ADP K.4 | ADP K.8.2
TOP: 10-7 Example 3
KEY: sector \mid circle \mid area \mid central angle
7. ANS:
67.5

PTS: 1 DIF: L2 REF: 12-3 Inscribed Angles
OBJ: 12-3.2 The Angle Formed by a Tangent and a Chord NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-3 Example 3
KEY: circle |inscribed angle | tangent-chord angle | intercepted arc | arc measure | angle measure
8. ANS:
13.9

PTS: 1 DIF: L2 REF: 12-2 Chords and Arcs
OBJ: 12-2.2 Lines Through the Center of a Circle NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-2 Example 3
KEY: bisected chords \mid circle | perpendicular | perpendicular bisector | Pythagorean Theorem
9. ANS:

13

PTS: 1 DIF: L3 REF: 12-2 Chords and Arcs
OBJ: 12-2.1 Using Congruent Chords, Arcs, and Central Angles
NAT: NAEP 2005 G3e | ADP K. 4 TOP: 12-2 Example 3
KEY: circle | radius | chord | congruent chords | right triangle | Pythagorean Theorem
10. ANS:

55
PTS: 1 DIF: L2 REF: 12-2 Chords and Arcs
OBJ: 12-2.1 Using Congruent Chords, Arcs, and Central Angles
NAT: NAEP 2005 G3e | ADP K. 4 TOP: 12-2 Example 1
KEY: arc | central angle | congruent arcs
11. ANS:

58
PTS: 1 DIF: L2 REF: 12-1 Tangent Lines
OBJ: 12-1.2 Using Multiple Tangents NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-1 Example 5 KEY: properties of tangents | tangent to a circle | triangle
12. ANS:
$44 \mathrm{~cm} ; 22 \mathrm{~cm} ; 24.4 \pi \mathrm{~cm}$
PTS: 1 DIF: L3 REF: 10-6 Circles and Arcs
OBJ: 10-6.2 Circumference and Arc Length NAT: NAEP 2005 M1h | ADP K. 4
TOP: 10-6 Example 4 KEY: circumference | radius
13. ANS:

219

PTS: 1 DIF: L2 REF: 12-2 Chords and Arcs
OBJ: 12-2.1 Using Congruent Chords, Arcs, and Central Angles
NAT: NAEP 2005 G3e | ADP K. 4 TOP: 12-2 Example 1
KEY: arc | central angle | congruent arcs | arc measure | arc addition | diameter
14. ANS:

66
PTS: 1 DIF: L2 REF: 12-1 Tangent Lines
OBJ: 12-1.1 Using the Radius-Tangent Relationship NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-1 Example 1
KEY: tangent to a circle | point of tangency | angle measure | properties of tangents | central angle
15. ANS:

28
PTS: 1 DIF: L2 REF: 12-1 Tangent Lines
OBJ: 12-1.1 Using the Radius-Tangent Relationship NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-1 Example 1
KEY: tangent to a circle | point of tangency | properties of tangents | central angle
16. ANS:
$3.7 \pi \mathrm{~cm}$
PTS: 1 DIF: L2 REF: 10-6 Circles and Arcs
OBJ: 10-6.2 Circumference and Arc Length NAT: NAEP 2005 M1h | ADP K. 4
TOP: 10-6 Example 4
KEY: circumference | diameter
17. ANS:

78
PTS: 1 DIF: L2 REF: 12-3 Inscribed Angles
OBJ: 12-3.1 Finding the Measure of an Inscribed Angle NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-3 Example 2
KEY: circle |inscribed angle |intercepted arc | inscribed angle-arc relationship
18. ANS:
30.6

PTS: 1 DIF: L2 REF: 12-1 Tangent Lines
OBJ: 12-1.1 Using the Radius-Tangent Relationship NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-1 Example 2
KEY: tangent to a circle | point of tangency | properties of tangents | Pythagorean Theorem
19. ANS:
$\operatorname{arc} A D B ; 310^{\circ}$
PTS: 1 DIF: L2 REF: 10-6 Circles and Arcs
OBJ: 10-6.1 Central Angles and Arcs
NAT: NAEP 2005 M1h | ADP K. 4
TOP: 10-6 Example 3
KEY: major arc | measure of an arc | arc
20. ANS:

29
PTS: 1
DIF: L2
REF: 12-1 Tangent Lines
OBJ: 12-1.2 Using Multiple Tangents
NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-1 Example 4
KEY: properties of tangents | tangent to a circle | Tangent Theorem
21. ANS:

40
PTS: 1 DIF: L2
OBJ: 12-1.2 Using Multiple Tangents
REF: 12-1 Tangent Lines
TOP: 12-1 Example 4
KEY: properties of tangents | tangent to a circle | Tangent Theorem
22. ANS:

9, -3
PTS: 1 DIF: L4 REF: 12-5 Circles in the Coordinate Plane
OBJ: 12-5.1 Writing an Equation of a Circle NAT: NAEP 2005 G4d | ADP K.10.4
KEY: equation of a circle \mid center \mid radius | point on the circle \mid algebra
23. ANS:

37
PTS: 1
DIF: L2
REF: 12-3 Inscribed Angles
OBJ: 12-3.2 The Angle Formed by a Tangent and a Chord NAT: NAEP 2005 G3e | ADP K. 4
TOP: 12-3 Example 3
KEY: circle |inscribed angle | tangent-chord angle | intercepted arc
24. ANS:
$50.41 \pi \mathrm{~m}^{2}$
PTS: 1 DIF: L2 REF: 10-7 Areas of Circles and Sectors
OBJ: 10-7.1 Finding Areas of Circles and Parts of Circles
NAT: NAEP 2005 M1h | ADP I.4.1 | ADP J.1.6 | ADP K.4 | ADP K.8.2
TOP: 10-7 Example 1 KEY: area of a circle | radius
25. ANS:
89.8 m 2

PTS: 1 DIF: L3 REF: 10-7 Areas of Circles and Sectors
OBJ: 10-7.1 Finding Areas of Circles and Parts of Circles
NAT: NAEP 2005 M1h | ADP I.4.1 | ADP J.1.6 | ADP K.4 | ADP K.8.2
TOP: 10-7 Example 1 KEY: area of a circle | radius
26. ANS:
$(x+8)^{2}+(y-6)^{2}=16$
PTS: 1 DIF: L2 REF: 12-5 Circles in the Coordinate Plane
OBJ: 12-5.1 Writing an Equation of a Circle NAT: NAEP 2005 G4d | ADP K.10.4
TOP: 12-5 Example $1 \quad$ KEY: equation of a circle | center | radius
27. ANS:
20.9 in. ${ }^{2}$

PTS: 1 DIF: L2 REF: 10-7 Areas of Circles and Sectors
OBJ: 10-7.1 Finding Areas of Circles and Parts of Circles
NAT: NAEP 2005 M1h | ADP I.4.1 | ADP J.1.6 | ADP K.4 | ADP K.8.2
TOP: 10-7 Example 2 KEY: sector | circle | area
28. ANS:
center $(-10,-5) ; r=8$
PTS: 1 DIF: L2 REF: 12-5 Circles in the Coordinate Plane
OBJ: 12-5.2 Finding the Center and Radius of a Circle NAT: NAEP 2005 G4d | ADP K.10.4
TOP: 12-5 Example $3 \quad$ KEY: center | circle | coordinate plane | radius
29. ANS:
$118.8^{\circ} ; 28.8^{\circ}$

PTS: 1
DIF: L2 REF: 10-6 Circles and Arcs
OBJ: 10-6.1 Central Angles and Arcs
NAT: NAEP 2005 M1h | ADP K. 4
TOP: 10-6 Example 1
KEY: central angle | circle graph | multi-part question | word problem | problem solving

ESSAY

30. ANS:
[4] Answers may vary. Sample: The total length of wrought iron used is the sum of the outer circumference plus the inner circumference plus the eleven segments.

$$
\begin{aligned}
\frac{1}{2} C_{\mathrm{o}}+\frac{1}{2} C_{\mathrm{i}}+11(1.25) & = \\
\frac{1}{2} \cdot \pi \cdot 15+\frac{1}{2} \cdot \pi \cdot 13.75+11(1.25) & = \\
7.5 \pi+6.875 \pi+13.75 & = \\
14.375 \pi+13.75 & \approx 59
\end{aligned}
$$

The length of wrought iron used is approximately 59 meters.
[3] correct methods used, but with computational error
[2] error in method
[1] correct answer with no work shown
PTS: 1 DIF: L3 REF: 10-6 Circles and Arcs
OBJ: 10-6.2 Circumference and Arc Length NAT: NAEP 2005 M1h | ADP K. 4
TOP: 10-6 Example 5
KEY: circumference | concentric circles | extended response | rubric-based question | word problem | problem solving

