Geometry - Chapter 6 Test Review

Standards/Goals:

- D.2.b.: I can identify medians, altitudes, perpendicular bisectors, and angle bisectors of triangles and use their properties to solve problems.
- D.2.c.: I can apply the triangle inequality theorem to determine if a triangle exists and the order of sides and angles.
- G.CO.12.: I can solve problems with triangles that involve a midsegment.
- G.CO.9.: I can prove theorems in proofs about triangles.
- G.MG.1: I can model real life objects using triangles.
- D.2.i. :I can use the Angle Sum Theorem to find angles of a triangle whether they are interior or exterior.

IMPORTANT VOCABULARY							
Midsegment	Triangle Midsegment Theorem	Angle Bisector	Perpendicular Bisector	Perpendicular Bisector Theorem	Equidistant	Angle Bisector Theorem	
Concurrent Lines	Point of concurrency	Circumcenter	Circumcenter Theorem	Incenter	Incenter Theorem	Altitude	
Median	Centroid	Centroid Theorem	Orthocenter	Triangle Inequality Theorem	SAS Inequality Theorem	SSS Inequality Theorem (Hinge Theorem) of Hinge Theorem)	
Exterior Angle Inequality Theorem	Isosceles Triangle Theorem	Scalene Triangle Theorem	Equilateral Triangle Theorem	Congruent Triangles	Transitive Property of Inequality	SSS, ASA, SAS, AAS, CPCTC	

Short Answer

\#1. Multiple Choice: In $\Delta X Y Z, X Y=10$ and $X Z=14$. Which measure cannot be YZ ?
a. 18
b. 20
c. 9
d. 4
\#2. Name the longest side of $\triangle \mathrm{DEF}$.

\#3. Which angle in $\triangle A B C$ has the greatest measure?

\#4. Use the figure to find the angles.

$m<1=$ \qquad $m<2=$ \qquad $m<3=$ \qquad $\mathrm{m}<4=$ \qquad
\#5. If $\overline{\mathrm{PO}}$ is an angle bisector of $\Varangle \mathrm{MON}$, find x .
\#6. If $\overline{\mathrm{PO}}$ is a perpendicular bisector, find x .

\#7. If HK is an altitude find IJ and $<\mathrm{J}$.

\#8. Use the following figure to answer part a \& part b.
a. Which angle has the greatest measure?
<3, <6, or <7
b. Which angle has the greatest measure?
 $<9,<5$, or <2
\#9. Write an inequality comparing EF and GH.

\#10. Write an inequality comparing $\mathrm{m} \Varangle 1$ and $\mathrm{m} \Varangle 2$.

\#11. Find x in the triangle below:

\#12. Consider the following figure: $\Delta \mathbf{G H I}$ has midpoints at $\mathrm{R}, \mathrm{S}, \& \mathbf{T}$.
Fill in the blank:
Part a: $\overline{R T} \|$ \qquad Part b: $\overline{H G} \|$ \qquad

Part c: If $\mathrm{GH}=16$ and $\mathrm{HI}=12$, find RT .

Part d: If $<\mathrm{G}=45$ find $\mathrm{m}<\mathrm{HRS}$.

Part e: If $m<G=m<H=m<l$ and $R T=26$, find the perimeter of $\Delta \mathrm{GH}$.

\#13. What value must x be greater than, and what value must x be less than?

\#14. What is the relationship between a and y? Explain.

\#15. Use the figure shown to answer the following:
a. What is $m<D B E$?
b. What is $m<A B E$?
c. If $m<F B A=7 x+6 y$, what is $m<F B A$?

d. What is $m<F B D$?
e. What is $m<A B C$?
f. What is $m<D B F$?
g. What is $\mathrm{m}<E B F$?

\#17. GIVEN: P is the midpoint of MO
$\mathrm{MN}>\mathrm{NO}$
PROVE: $m<1>m<2$

STATEMENTS	REASONS
\#1. P is the midpoint of $\mathrm{MO} ; \mathrm{MN}>\mathrm{NO}$	\#1. Given
\#2. NP = NP	\#2.
\#3. $\mathrm{MP}=\mathrm{PO}$	\#3.
$\# 4 . \mathrm{m}<1>\mathrm{m}<2$	$\# 4$.

\#22. \quad GIVEN: $Y Z \| W V ; \Delta W X V$ is an isosceles Δ

PROVE: $\triangle X Y Z$ is an isosceles Δ

STATEMENTS	REASONS		
\#1. $\mathrm{YZ}\\|\\| \mathrm{WV} ; \Delta \mathrm{WXV}$ is an isosceles Δ	\#1. Given		
\#2. $<2=<4$	\#2.		
\#3. $<1 \&<2$ are \qquad <'s $<3 \&<4$ are \qquad <'s -	\#3.		
\#4. $<1=<2 ;<3=<4$	\#4.		
\#5. $<1=<3$	\#5.		
\#6. $\Delta X Y Z$ is an isosceles Δ	\#6.		

\#23. Given: $<1=<2$; $\overline{\mathrm{AK}}$ bisects $<$ ZKC.
Prove: $\triangle A K Z \cong \triangle A K C$

STATEMENTS	REASONS
$\# 1 .<1=<2 ; \overline{A K}$ bisects <ZKC	\#1. Given
$\# 2 .<3=<4$	$\# 2$.
\#3. AK $=\mathrm{AK}$	$\# 3$.
$\# 4 . \Delta \mathrm{AKZ} \cong \triangle \mathrm{AKC}$	\#4.

\#24. What are the missing coordinates of these triangles?

\#25. Classify each triangle as: equilateral, isosceles, scalene, acute, equiangular, obtuse, or right. Some of the triangles may have more than ONE answer:
\#1. K

\#2.

\#3.

\#5.

Solve, graph, and write an interval for each:
\#26. $10+|x+9|<8$
\#27. $-4|8 x-9|>20$
\#18. $|x+9|+18=17$
\#32. What is the equation, in standard form, of the line that passes through $(10,-6)$ and has a slope of 3/4?
\#33. What is the equation, in standard form, of the line that passes through $(8,-2)$ and has a slope of 4/3?
\#34. Solve by any method you choose:

$$
\left\{\begin{array}{l}
2 x+y=7 \\
2 x+y=-1
\end{array}\right.
$$

\#35. Short Answer
Refer to the figure below and determine whether each pair of equations has NO SOLUTION, INFINITELY MANY SOLUTIONS or ONE SOLUTION.
\#1.

$$
\begin{aligned}
& x-2 y=-3 \\
& 4 x+y=6
\end{aligned}
$$

ANSWER:
\#2.

$$
x+y=3
$$

$$
x+y=0
$$

ANSWER:
\#3.
$y=-x$
$4 x+y=6$
ANSWER:
\#4.
$x+y=0$
$y=-x$
ANSWER: \qquad

\#36. Word Problem: The point $(-7,-12)$ is on the graph of a linear equation. Another point on the graph of the same equation can be found by going 21 units up and 29 units to the right from ($-7,-12$). What is the slope of the line represented by the equation? Write the equation in slope-intercept form and then write it in standard form.

Find the x and y intercepts for the given equations. Graph the equations, after finding the intercepts. \#37. $-4 x-2 y=-8$ \#38. $2 x+3 y=-6$

Write the following equations in slope intercept form. Afterwards, state what the slope of a line is that perpendicular to the original line would be.

$$
\text { \#39. }-4 x-2 y=-8
$$

\#40. $2 x+3 y=-6$
\#41. Find the other endpoint of the line segment with the given endpoint and midpoint. Endpoint: (-5, 4); Midpoint (-10, -6)
\#42. In the figure, segments RZ and WT are transversals that cut parallel lines m and I . Find the value of x. Show your work algebraically.

