\qquad

Review Packet:

1. The format of the review packet is not the format of the exam.
2. Please refer back to previous notes, homework, and class examples for more practice.
3. Complete the packet to the best of your ability on your own, then bring your remaining questions to us.

Exam Helpful Hints:

1. Read directions very carefully.
2. When necessary, draw a diagram!
3. Use the choices of multiple choice questions.

Exam Info:

1. Format: The exam will include multiple choice as well as open-ended questions.
2. Students will be allowed to use calculators (graphing calculators will be required to clear all memory!) You MUST bring your own! You will not be provided with one.
3. If you are found with any materials regarding this exam, or in your calculator, you will fail the exam with a ZERO.
4. No Cell phones are permitted in the exam area. Leave them at home or in your lockers.

Vocabulary: You are responsible for the following terms, theorems and postulates.

collinear Points coplanar Points ray plane line line Segment segment addition postulate segement subtraction postulate midpoint bisect acute angle right angle obtuse angle straight angle angle bisector complementary angles supplementary angles adjacent angles linear pair vertical angles linear pair postulate vertical angle theorem polygon equilateral equiangular regular polygon concave polygon convex polygon interior angles exterior angles conditional converse inverse contrapositive	Parallel Lines Perpendicular Lines Skew Lines Parallel Planes Perpendicular Planes Corresponding angles a. Postulate b. Converse Alternate interior angles a. Theorem b. Converse Alternate exterior angles a. Theorem b. Converse Consecutive interior angles a. Theorem b. Converse SSS SAS HL ASA AAS	Right Triangle Scalene Triangle Equilateral Triangle Equiangular Triangle Acute Triangle Isosceles Triangle Obtuse Triangle Exterior Angle Theorem Base Angles Theorem a. Converse Hinge Theorem a. Converse Triangle Inequality Theorem Perimeter Area of Triangle Midsegment a. Theorem Perpendicular Bisector a. Theorem b. Converse Median Altitude

Points, lines and planes

For questions 1-9, use the diagram to determine if the statement is true or false.

1. $\overline{\mathrm{BC}} \& \overline{\mathrm{GE}}$ are parallel
2. $\overline{A B} \& \overline{C D}$ are perpendicular
3. $\overline{G E} \& \overline{H D}$ are skew
4. B, J, and C are collinear
5. A, G, and E are collinear
6. B, J, H, and G are coplanar

7. A, G, H and D are coplanar
8. K is between A and B
9. There are no parallel planes in this diagram.

Angles

10. Use the diagram. Find the value of x and $\mathrm{m} \Varangle 1$.

11. Two angles are supplementary. One angle is 5 less than 4 times the other. Find the measure of each angle.
12. Use the diagram. $\overline{A Q}$ bisects $\Varangle P A T$, $m \Varangle Q A T=5 x-5$ and $m \Varangle P A Q=x+19$. Find the value of x, and the $m \Varangle$ PAT.

13. Two angles are complementary. One angle is 4 times the other. Find the measure of the larger angle.

For questions 14-19, use the diagram. Given that $\overline{B X} \perp \overline{A C}$ and $\overline{A D} \cong \overline{D B}$, identify each of the following.
14. A right angle
15. Two congruent supplementary angles
16. Two non-congruent supplementary angles
17. Two adjacent complementary angles
18. A pair of vertical angles

19. A midpoint
20. In the figure below $\overline{C E}$ bisects $\Varangle D C B$ and $\overline{C F}$ bisects $\Varangle E C B$.

$$
\Varangle E C F=4 x+7, \Varangle F C B=7 x-20
$$

a) Solve for x.

b) Determine the measure of $\Varangle D C A$.
21. In the figure below, $\Varangle A C D=x+7, \Varangle D C E=2 x-20, \Varangle E C B=70$.
a) Solve for x.

b) Determine the measure of $\Varangle B C D$.

Segment and Line Properties

22. K is a point between A and $\mathrm{B} . \overline{K A}=3 \mathrm{x}, \overline{A B}=2 \mathrm{x}+8$, and $\overline{B K}=\mathrm{x}-5$. What is the length of $\overline{\mathrm{AB}}$?
23. H is the midpoint of $\overline{O P} \cdot \overline{O P}=18$ and $\overline{H P}=3 \mathrm{x}+2$. Find the length of $\overline{H O}$?
24. In the diagram, C is the midpoint of $\overline{A B}$ and D is the midpoint of $\overline{A C}$.
$\overline{A D}=4 x-3 \quad \overline{A B}=12 x+26$
a) Solve for x.
b) What is the length of $\overline{C B}$?
25. What is the distance between the points $(4,-2) \&(2,-1)$
26. What is the midpoint of the segment that connects the points $(4,6) \&(0,-4)$
27. In segment $\overline{A B}, \mathrm{M}$ is the midpoint. Given $\mathrm{A}(2,3)$ and $\mathrm{M}(5,7)$, find the coordinates of endpoint B.
28. What is the slope of the line passing through the points $(-8,1) \&(-5,-8)$?
29. What is the slope of a line that is \|| to a line with slope $\frac{-3}{5}$?
30. What is the slope of a line that is \perp to a line that has a slope 3 ?
31. K is a point between A and $\mathrm{B} . \overline{K A}=3 \mathrm{x}, \overline{A B}=2 \mathrm{x}+8, \overline{B K}=\mathrm{x}-5$.
a) Solve for x.
b) Is K the midpoint of $\overline{A B}$?

Parallel Lines

For questions 37-43, use the diagram to determine which lines, if any, are parallel based on the given statement.
32. $\Varangle 3 \cong \Varangle P$
33. $\Varangle 4$ is supplementary to $\Varangle 5$
34. $\Varangle Q \cong \Varangle 7$
35. $\Varangle 8 \cong \Varangle 7$
36. $\Varangle 5$ is supplementary to $\Varangle X$.
37. $\Varangle Z \cong \Varangle 4$

38. $\Varangle 1 \cong \Varangle P$

For questions 39-43, use the diagram which shows two sets of parallel lines.
39. If $m \Varangle 1=100^{\circ}$, find $m \Varangle 14$.
40. If $\mathrm{m} \Varangle 9=120^{\circ}$, find $\mathrm{m} \Varangle 6$.
41. If $\mathrm{m} \Varangle 2=62^{\circ}$, find $\mathrm{m} \Varangle 12$.
42. If $\Varangle 7=(5 x+8)^{\circ}, \Varangle 14=(12 x+2)^{\circ}$, solve for x .

43. If $\Varangle 6=(8 x+5)^{\circ}, \Varangle 10=(10 x-7)^{\circ}$, solve for x.

Logic

For questions 44-48, use the conditional statement "If two angles are vertical, then they are congruent."
44. Write the converse: \qquad
45. Write the inverse: \qquad
46. Write the contrapositive:
47. Can this be written as a biconditional statement? \qquad
48. Since the conditional statement is true, which other statement is also true? \qquad

Triangles

49. The exterior angle at the base of an isosceles triangle measures 130°. Find the measure of the vertex angle.
50. In $\triangle A B C, m \Varangle A=40^{\circ}, \mathrm{m} \Varangle \mathrm{C}=70^{\circ}$ and $\overline{A C}=5$. Find $\overline{A B}$.
51. The three angles of a triangle are $(x+30),(4 x+30)$ and $(10 x-30)$. Find the value of the smallest angle.
52. $\triangle \mathrm{QRS}$ is isosceles with $\Varangle \mathrm{Q} \cong \Varangle \mathrm{S}$. If $\overline{Q R}=\mathrm{x}+16, \overline{Q S}=3 \mathrm{x}-30$ and $\overline{S R}=2 \mathrm{x}-20$. Find the length of the base.
53. In $\triangle A B C, m \Varangle A=30^{\circ}$ and $m \Varangle B=70^{\circ}$. What is the largest side of the triangle?
54. In equilateral $\triangle C A R$, point P is the midpoint of $\overline{C A}$, and point E is the midpoint of $\overline{C R}$. If $\overline{P E}=8$, what is the perimeter of $\triangle C A R$.
55. In $\Delta G H I, m \Varangle H$ is 20 more than $m \Varangle G$ and $m \Varangle G$ is 8 more than $m \Varangle I$. What is the measure of each angle?
56. If a triangle has sides length 5 and 8 , what are the possibilities for the length of the third side?

For questions 45-48, use the diagram.
57. $\mathrm{m} \Varangle 1=40^{\circ}, \mathrm{m} \Varangle 2=110^{\circ}, \mathrm{m} \Varangle 5=$ \qquad \circ
58. $\mathrm{m} \Varangle 1=55^{\circ}, \mathrm{m} \Varangle 2=95^{\circ}, \mathrm{m} \Varangle 6=$ \qquad $-$
59. $m \Varangle 4=118^{\circ}, m \Varangle 1=(2 x+8)^{\circ}, m \Varangle 3=(x+5)^{\circ} \cdot x=$ \qquad

60. $\mathrm{m} \Varangle 1=(3 \mathrm{x}+12)^{\circ}, \mathrm{m} \Varangle 2=(2 \mathrm{x}+14)^{\circ}, \mathrm{m} \Varangle 3=(8 \mathrm{x}-15)^{\circ} \cdot \mathrm{x}=$ \qquad

For questions 61-78, use the diagram.
61. $\Varangle Q V P \cong$
62. $\overline{P Q} \cong$ \qquad
63. $\overline{Q T} \cong$ \qquad
64. $\Varangle 2 \cong$ \qquad
65. $\overline{Q R} \cong$ \qquad
66. $\triangle \mathrm{QRT} \cong$ \qquad
67. $\Varangle Q V S \cong$ \qquad
68. What type of triangle is $\Delta \mathrm{PVT}$?
69. If $\mathrm{m} \Varangle 1=30^{\circ}$,

$$
\mathrm{m} \Varangle \mathrm{PVT}=
$$

\qquad

For questions 79-83, use the diagram to determine which method, if any, proves the triangles congruent.
79. $\overline{D B}$ is a median, $\Varangle 3 \cong \Varangle 4$.
80. $\overline{D B} \perp \overline{A C}, \overline{A D} \cong \overline{D C}$
81. $\Varangle 3 \cong \Varangle 4, \Varangle A \cong \Varangle C$
82. B is the midpoint of $\overline{A C}$

83. $\Varangle 1 \cong \Varangle 2, \overline{A B} \cong \overline{B C}$

For questions 84-86, name the postulate that proves the triangles are congruent.
84.

85.

86.

For questions 87-90, use $\triangle A B C$ with coordinates $A(1,7), B(5,2), C(0,-2)$.
87. Draw the triangle.
88. Find the slopes of each side.
89. Find the length of each side.

90. Prove that triangle $A B C$ is an isosceles right triangle.

Proofs - Write a complete proof (paragraph or two-column)

91. Given: C is the midpoint of $\overline{A B}$

$$
\overline{\overline{D C}} \cong \overline{\overline{F B}}, \overline{D C} \| \overline{F B}
$$

Prove: $\overline{D A} \cong \overline{C F}$

92. Given: $\overline{E G}$ bisects $\overline{A B}$
$\overline{E D} \cong \overline{F D}$
$\overline{D B}$ bisects $\Varangle F D G$
Prove: $\Varangle A \cong \Varangle B$

93. Use the diagram to solve for x and y. Round to the nearest tenth.

94. Use the diagram to solve for x and y .

For questions 95-106, determine if the statement is always, sometimes, or never true.
95. If a triangle is isosceles it is also equilateral
96. 'AAA' is a rule used to prove two triangles congruent.
97. If two angles are congruent, then they are vertical.
98. Angles that form a linear pair are complementary
99. In triangle $A B C$, if point D is the midpoint of $\overline{\mathrm{AB}}$, then $\overline{\mathrm{CD}}$ is a median of the triangle.
100. If alternate exterior angles are supplementary, then the lines are //.
101. An equilateral triangle is isosceles.
102. An acute triangle is right.
103. An acute triangle is isosceles.
104. A right triangle is scalene.
105. An altitude of a triangle can be outside the triangle.
106. An angle bisector of a triangle is also the median of the triangle.

Special Segments in Triangles.

107. In the diagram, $\overline{A D}$ is an altitude of $\triangle A B C . \overline{C D}=x+7, \overline{B D}=2 x-15$ and $m \Varangle A D C=$ $(4 x-6)^{\circ}$. Solve for x.

108. In the diagram, $\overline{P S}$ is a median of $\triangle P Q R . \overline{Q S}=10 x-7, \overline{R S}=5 x-3$ and $m \Varangle P S R=$ $(15 x+42)^{\circ}$. Solve for x.

109. Given M, N, and P are the midpoints of the sides of $\triangle A B C$:
a) Write an equation to find the value of x.
b) Find the value of x.
c) Find $M N$.

110. Given the picture below, find: $\mathrm{RT}=$ \qquad $\mathrm{Al}=$ \qquad $x=$ \qquad

111. Verify the Midsegment Theorem for $D E$ in $\triangle A B C$ below.

\qquad
Slope $\overline{D E}=$
Slope $\overline{A B}=$ \qquad

$$
D E=
$$

$$
A B=
$$

Explain your conclusion using complete sentences:
\qquad
\qquad
\qquad
\qquad

Polygons

Identify if each shape is a polygon. If it is, state if it is convex or concave.
112.

113.

114

For questions 115-117, fill in the table.

Polygon	Sum of Interior Angles	Sum of Exterior Angles
115. Heptagon		
116. Dodecagon		
117. 15 -gon		

For questions 118-120, fill in the table.

Regular Polygon	Each Interior Angle	Each Exterior Angle
118. Octagon		
119. Decagon		
120. 20 -gon		

For questions 121-123, an interior angle measure is given. Name the regular polygon.
121. 135°
122. 170°
123. 144°

For questions 124-126, an exterior angle measure is given. Name the regular polygon. 124. 72°
125.5°
126. 40°
127. A pentagon has angle measures of $(3 x+15)^{\circ},(2 x+6)^{\circ},(3 x-24)^{\circ},(5 x-18)^{\circ}$, and $(5 x+3)^{\circ}$. Find the measure of the largest angle.

Similar Triangles

128. Given $\Delta \mathrm{WXY} \sim \Delta \mathrm{LMN}$, with a scale factor of $\frac{3}{7}$, if $\overline{W X}=5$, find $\overline{L M}$.

For questions 125-128, solve for the variables in each diagram.
129.

130. $\overline{B D}$ is the angle bisector of $\Varangle A B C$

132.

