Geometry Honors Semester 1 Final Exam Review

Formulas:

- 1. Slope -
- 2. Midpoint -
- 3. Distance -
- 4. Pythagorean Theorem –
- 5. Point slope Form –
- 6. Slope Intercept Form –
- 7. Geometric Mean -

Transformations:

- 1. Translation -
- 2. Reflections -
- 3. Rotations
 - a. $R_{o, 90^{\circ}}$
 - b. $R_{o,-90^{\circ}}$
 - c. *R*_{0,180°}
- 4. Rotational Symmetry –

Concurrency:

- 1. How to find Altitude (orthocenter) –
- 2. How to find Median (centroid) –
- 3. How to find \perp bisector (circumcenter) –
- 4. How to find Angle Bisector (incenter) -

Theorems:

- All radii of a circle are congruent
- If two lines are parallel, then their slopes are equal
- If two lines are perpendicular each line's slope is the opposite reciprocal of the other's
- The sum of the measures of the angles in a triangle is 180 degrees ٠
- The measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles
- A segment joining the midpoints of two sides a of a triangle is parallel to the 3rd side, and its length is one half the length of the 3rd side (Triangle Midsegment Theorem)
- The median of a trapezoid is parallel to the bases and its length is the average of the lengths of the • base. (Trapezoid Median Theorem)

Name: _____ Period: _____

Definitions:

- 1. Complementary –
- 2. Supplementary –
- 3. Bisect –
- 4. Vertical Angles –
- 5. Perpendicular -

Triangle Congruence Criterion:

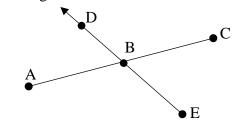
Triangle Similarity Criterion:

Type of Sentences:

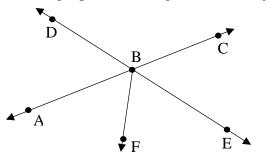
- 1. Conditional
 - a. Hypothesis -
 - b. Conclusion -
- 2. Converse –
- 3. Inverse –
- 4. Contrapositive –
- 5. Conjecture -
- 6. Bi Conditional –

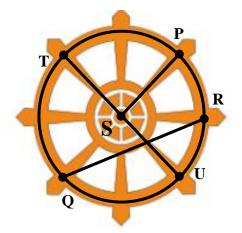
Properties and Definitions

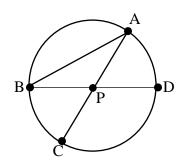
Quadrilaterals:


Parallelogram: Kite: 1. 1. 2. 2. 3. 3. 4. 4. 5. 5. **Rectangle:** Trapezoid: 1. 2. • Plus all 5 properties of the Parallelogram Isosceles Trapezoid: **Rhombus:** 1. 1. 2. 2. 3. • Plus all 5 properties of the Parallelogram

Square:Ways to prove Quad. is a parallelogram• All 5 properties of the Parallelogram1.• 2 properties of the Rectangle2.• 3 properties of the Rhombus3.4.


5.


$UNIT \ 1-ACTIVITIES - 1 - 8$


- 1. Identify the following on the given picture:
 - a. Chord:
 - b. Diameter:
 - c. Radius:
 - d. Center:
- 2. Use this diagram.
 - a. How many radii are shown? Name them.
 - b. How many diameters are shown? Name them.
 - c. How is a chord similar to a diameter?
 - d. How is a chord different from a diameter?
 - e. How is a radius different than a diameter?
- 3. Which describes the geometric figures in the diagram?
 - A. \overrightarrow{DE} intersects \overrightarrow{AC} at point B \overrightarrow{B} . \overrightarrow{ED} intersects \overrightarrow{AC} at point B C. \overrightarrow{ED} intersects \overrightarrow{AC} at point B D. \overrightarrow{DE} intersects \overrightarrow{AC} at point B

4. Name angle pairs in the figure that are adjacent and supplementary.

5. Consider the conjecture shown:

Conjectures:

If two angles are complementary, then both angles must be acute. If two angles are acute, then their sum must be less than 180° .

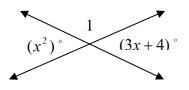
Which is a viable argument for these conjectures? CHECK ALL THAT APPLY.

- A. Given $\angle 1$ and $\angle 2$ are acute angles; therefore, they are complementary
- **B.** Given $\angle 1$ and $\angle 2$ are acute angles; therefore, their sum is less than 180°.
- **C.** Given $\angle 1$ and $\angle 2$ are complementary; therefore, they are both acute angles.
- **D.** Given $\angle 1$ and $\angle 2$ are complementary; therefore, their sum is less than 180°.
- **E.** Given $\angle 1$ and $\angle 2$ have a sum less than 180°; therefore, they are both acute angles.
- **F.** Given $\angle 1$ and $\angle 2$ have a sum less than 180°; therefore, they are complementary.
- 6. Consider the conditional statement, find a counterexample.

Conditional: If 2x + 5 > 7, then x < 1.

7. Identify the hypothesis and conclusion of the conditional statement.

Conditional: If it snows, then I will make a snowman.

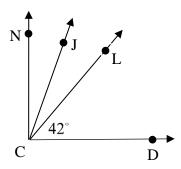

8. Suppose Q is the midpoint of \overline{PR} , PQ = x + 10, and QR = 4x - 2. What is the value of PR?

9. Suppose point *D* is in the interior of $\angle ABC$, $m \angle ABC = 12x - 110$, $m \angle ABD = 3x + 40$, and $m \angle DBC = 2x - 10$. What is $m \angle ABC$?

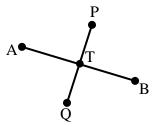
10. Julie is given two points (x, y) and (w, z). Explain the process you would use to find the distance between the two points.

11. The distance between P and N is 5 units. Point P has coordinates (2, 3). The x-coordinate of point N is 5. What are the possible values of the y-coordinate of N ? (Hint : use distance formula)

- 12. Suppose the midpoint of \overline{RT} is M = (3,0). If point *R* has the coordinates (-1,4), what are the coordinates of point *T*?
- 13. Find the measure of $m \angle 1$.



14. Use the diagram shown.



What is the justification for the statement that PQ + QR = PR?

15. If $\overline{NC} \perp \overline{DC}$ and \overline{CJ} bisects $\angle NCL$, find $m \angle NCL$.

- 16. In the diagram shown, AB \perp PQ. If PT = TQ, which statement is true?
 - A. AT = TB
 - **B.** \overline{PQ} is the perpendicular bisector of \overline{AB}
 - C. \overline{AB} is the perpendicular bisector of \overline{PQ}
 - **D.** \overline{PT} is the perpendicular bisector of \overline{AB}

Allison states $\angle AMC + \angle CMD + \angle DMB = \angle AMB$.

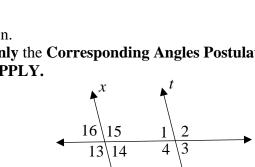
State the postulate that justifies this statement.

19. Billy is working on a proof given x || t and k || w as shown.He wants to write a statement that can be justified using only the Corresponding Angles Postulate.

Which statement could he write? CHECK ALL THAT APPLY.

- A. $\angle 2 \cong \angle 4$ B. $\angle 2 \cong \angle 6$ C. $\angle 2 \cong \angle 8$ D. $\angle 2 \cong \angle 10$ E. $\angle 2 \cong \angle 12$ F. $\angle 2 \cong \angle 15$
- 20. Given the diagram in #19, $x \parallel t$ and $k \parallel w$, if $m \ge 16 = 75^{\circ}$, then find $m \ge 8$.
- 21. In the diagram shown, lines *l* and *m* are parallel.

State if each pair of angles does or does **NOT** represent corresponding angles:


- a. $\angle 1$ and $\angle 4$
- b. $\angle 5$ and $\angle 7$
- c. $\angle 6$ and $\angle 8$
- d. $\angle 2$ and $\angle 4$

18. Suppose \overline{CM} and \overline{DM} intersect \overline{AB} as shown below.

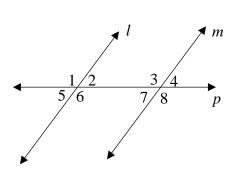
17. In the diagram, $\overline{OP} \cong \overline{QR}$. Find the length of \overline{PR} .

11\10

12

5

8


Μ

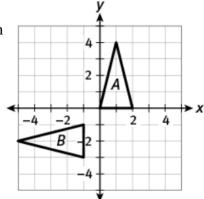
А

В

k

w

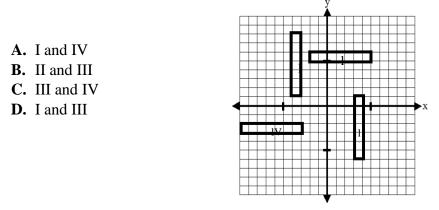
23. Write the equation of the line that passes through (-2, -3) and is perpendicular to the line x + y = 2.


UNIT 2 – ACTIVITIES 9 – 16

- 24. A polygon that goes undergoes a combined transformation $T_{(3,2)}(R_{0,90^\circ})$. The vertex (5,2) of the polygon maps to what final image?
- 25. Suppose $\triangle ABC \cong \triangle LMN$, and the side lengths of $\triangle ABC$ are shown in the table below.

What is the longest side in ΔLMN ?

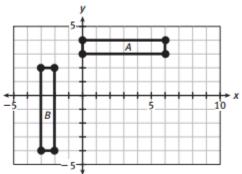
Side	Length (cm)
\overline{AB}	5.2
\overline{BC}	8.4
\overline{AC}	7.8


26. Triangle A and its rotated image B are shown on the grid. If the center of rotation is (1, -2), write the correct notation for the rotation.

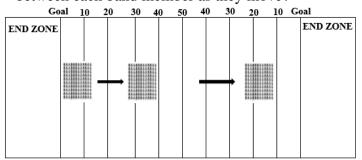
- 27. A point is located at (-4, 3). Which reflection maps that point to (10, 3)?
 - **A.** a reflection across the line x = 3
 - **B.** a reflection across the line x = 7
 - **C.** a reflection across the line x = 10
 - **D.** a reflection across the line y = 3

28. A regular polygon has a rotational symmetry with an angle of 36°. Identify the polygon it's referring to.

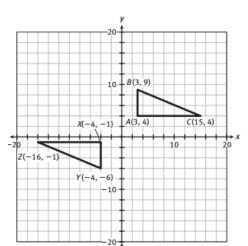
29. Use the diagram shown. Which pair of figures can represent the pre-image and image is a translation?

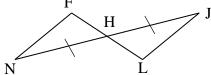

30. A translation of a rectangle under the transformation $(x, y) \rightarrow (x - 1, y + 3)$ is recorded in the table below. Fill in the corresponding table if the image is then moved an additional 3 units right and 2 units up.

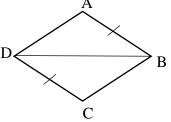
Point	Preimage	Original translation Image	Additional translation image
А	(2,-1)	(1,2)	
В	(2, -3)	(1, 0)	
С	(6,-1)	(5, 2)	
D	(6,-3)	(5, 0)	
	(x, y)		

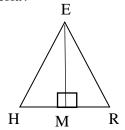

31. Given the transformation recorded in the table below state the transformation function that maps the preimage to image.

Point	Preimage	Original translation Image
А	(2,-1)	(9, -12)
В	(2, -3)	(9, -14)
С	(6,-1)	(13, -12)
D	(6,-3)	(13, -14)

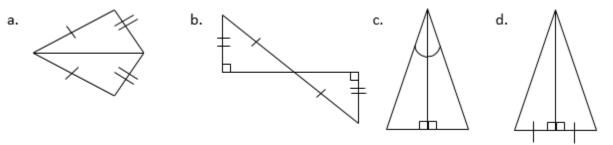

- 32. Which combination shows that rectangles A and B are congruent?
 - **A.** $R_{(0, 3), 90^{\circ}}(T_{(-3, 0)}(A))$
 - **B.** $T_{(-2, -7)}$, $(R_{(0, 3), 90^{\circ}}(A))$
 - **C.** $T_{(-2, -7)}$, $(R_{(0, 3), 90^{\circ}}(B))$
 - **D.** $T_{(-2, -7)}$, $(R_{(0, 3), -90^{\circ}}(A)$


33. The band is practicing a new rigid transformation halftime routine. What happens to the distance between each band member as they move?


34. Explain why $\triangle ABC$ and $\triangle XYZ$ are right triangles.


- 35. Suppose $\Delta QRS \cong \Delta TUV$ are congruent right triangles such that $\angle R$ is a right angle and $\angle V = 35^{\circ}$. What is the measure of $\angle Q$?
- 36. What additional information need to be given to develop the proof that $\Delta FHN \cong \Delta LHJ$ by ASA congruence criteria? F

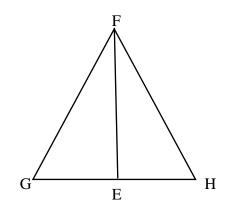
37. What additional information need to be given to develop the proof that $\triangle ABD \cong \triangle CBD$ by SAS congruence criteria? A



38. What additional information need to be given to develop the proof that $\Delta EMH \cong \Delta EMR$ by HL congruence criteria?

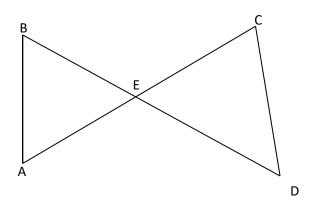
- 39. Which statement could be used in a proof with the reason CPCTC after proving $\triangle ABC \cong \triangle EFG$? Check all that apply.
 - $\underline{\qquad} \overline{AC} \cong \overline{EG}$ $\underline{\qquad} \overline{AB} / / \overline{EF}$ $\underline{\qquad} \overline{BC} \cong \overline{FG}$ $\underline{\qquad} \angle BCA \cong \angle FGE$ $\underline{\qquad} \angle CBA \cong \angle GEF$

40. Given the information provided, name the method, if any, that can be used to prove the triangles congruent:



41. When do you use CPCTC?

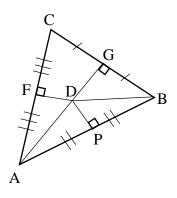
42. Write a two column proof:


Given: Isosceles ΔFGH with base \overline{GH} and \overline{FE} bisects $\angle GFH$

Prove: E is the midpoint of *GH*

43. Rewrite #42 as a flowchart proof:

44. Write a flow chart proof and two column proof: **Given**: E the midpoint of \overline{BD} and $\overline{AE} \cong \overline{EC}$ **Prove**: $\Delta AEB \cong \Delta CED$

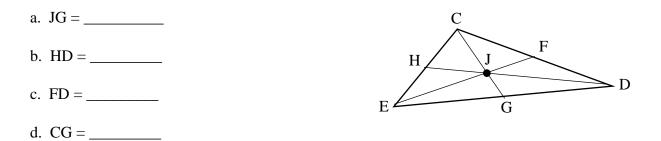


45. Given $\triangle ABC$:

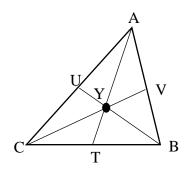
a. Name the point of currency at point D.

b. What do you know about segments \overline{AD} and \overline{DB} ? Why do you know this?

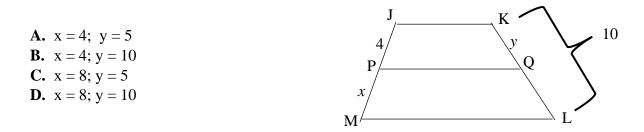
c. Given AD = 2x - 9 and DB = 27, find the value of x.


46. The equations shown represent two altitudes of a triangle.

y = x + 1 and y = -2x - 1


What are the coordinates of the orthocenter of the triangle?

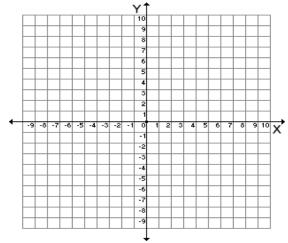
A. (0, 1)B. (2, 3)C. $\left(-\frac{2}{3}, \frac{1}{3}\right)$ D. $\left(-\frac{2}{3}, -\frac{1}{3}\right)$


47. In the diagram of $\triangle CDE$ and its medians, CJ = 15, HJ = 9.5, CD = 27. Find the following lengths.

48. Point *Y* is the centroid of this triangle. If YC = 2x + 10 and VC = 4x - 10, find x.

49. What values of x and y would prove that \overline{PQ} is the midsegment of trapezoid JKLM?

50. Write the missing reason in the proof to show that $\overline{YZ} \cong \overline{WZ}$

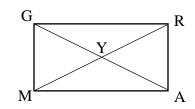

Given: Quadrilateral WXYZ is a rhombus

 \overline{ZX} bisects $\angle YXW$

Prove: $\overline{YZ} \cong \overline{WZ}$

Statement	Reason
1. Quadrilateral WXYZ is a rhombus	1. Given
\overline{ZX} bisects $\angle YXW$	
2. $\overline{YX} \cong \overline{WX}$	2. In a rhombus, all sides are congruent
3. $\angle YXZ \cong \angle WXZ$	3. In a rhombus, diagonals bisect opposite angles
4. $\overline{XZ} \cong \overline{XZ}$	4.
5. $\Delta YXZ \cong \Delta WXZ$	5.
6. $\overline{YZ} \cong \overline{WZ}$	б.

- 51. Three vertices of a parallelogram ABCD are given. Find the location of point D.
 - a. A(1,5), B(3,3), C(8,3)
 - b. A(-5,0), B(-2,-4), C(3,0)


Х

0

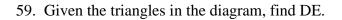
1

W

- 52. Which of the following sets of information is NOT enough to prove that parallelogram GRAM is a rectangle?
 - a. $\angle GMR \cong \angle AMR \cong \angle GRM \cong \angle ARM$
 - b. GY = AY = RY = MY
 - c. $\angle GRM$ and $\angle ARM$ are complementary
 - d. $GR^2 + RA^2 = GA^2$

- 53. Three vertices of a rectangle ABCD are A(3, 6), B(-2, 4), and C(0, -1), Find the location of point D. (Use the graph in #51 if needed)
- 54. Which of the following conditions is NOT enough to conclude that a figure is a rectangle?
 - A. It is a parallelogram and diagonals bisect their angles.
 - **B.** It is a parallelogram with a right angle.
 - **C.** It is a rhombus with congruent diagonals.
 - **D.** It is a parallelogram with opposite angles that are supplementary.
- 55. Which of the following conditions is NOT enough to conclude that a figure is a rhombus?
 - A. A figure is a parallelogram with two consecutive congruent sides.
 - **B.** A figure is a parallelogram with perpendicular diagonals.
 - C. A figure is a parallelogram and one diagonal forms two congruent triangles.
 - **D.** A figure is a parallelogram and one diagonal bisects its angles
- 56. Which of the following conditions is NOT sufficient to prove that a figure is a square?
 - **A.** The figure is a rectangle with perpendicular diagonals.
 - **B.** The figure is a parallelogram with perpendicular diagonals.
 - **C.** The figure is a rhombus with one right angle.
 - D. The figure is a rhombus with congruent diagonals.

57. Which of the following are sufficient to prove a quadrilateral is a parallelogram?


- **I.** Show both pairs of opposite sides parallel.
- II. Show both pairs of opposite angles are congruent.
- **III.** Show both pairs of opposite sides congruent.
- IV. Show one pair of opposite sides are both parallel and congruent.
- **V.** Show the diagonals bisect each other.

A. I, II, III only

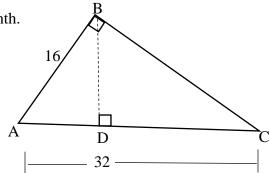
- **B.** I, II, III, and IV only
- C. I, II, III, and V only
- **D.** I, II, III, IV and V

UNIT 3 – ACTIVITIES 17 – 19

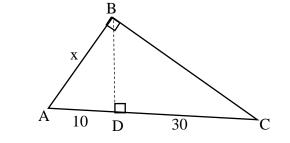
58. What are the ways to prove two triangles are similar?

60. Suppose $\angle ACB \cong \angle AED$ in the figure shown.

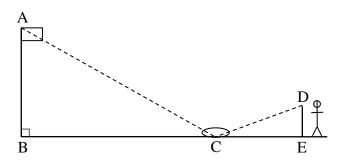
Based on the figure and the given statement, which can prove that $\triangle ACB \sim \triangle AED$?


- A. $m \angle ABC = m \angle ADE = 40^{\circ}$, and since the three corresponding angles are congruent, $\triangle ACB \sim \triangle AED$.
- **B.** $m \angle ABC = m \angle ADE = 80^{\circ}$, and since the three corresponding angles are congruent, $\triangle ACB \sim \triangle AED$.
- C. \overline{AC} is proportional to \overline{AE} , and since two corresponding angles are congruent, $\Delta ACB \sim \Delta AED$.
- **D.** \overline{AB} is proportional to \overline{AD} , and since two corresponding angles are congruent, $\Delta ACB \sim \Delta AED$.

61. If a school's 48-foot flagpole casts a 64-foot shadow, approximately how long will the shadow be for a 5'6" girl who is standing near the flagpole to the nearest tenth?


30

702


- 62. Determine the value of altitude BD to the nearest tenth.
 - **A.** 8.0
 - **B.** 13.9
 - **C.** 22.9
 - **D.** 24.0

- 63. Determine the value of *x*. Round to the nearest whole number, if necessary.
 - **A.** 14
 - **B.** 17
 - **C.** 20
 - **D.** 35

64. Ramon places a mirror on the ground 45 ft from the base of a flagpole. He walks backwards until he can see the top of the flagpole in the middle of the mirror. At that point, Ramon's eyes are 6 ft above the ground and he is 7.5 ft from the mirror. What is the height of the flagpole?

