Geometry Honors Semester 1
Final Exam Review

Formulas:

1. Slope -
2. Midpoint -
3. Distance -
4. Pythagorean Theorem -
5. Point - slope Form -
6. Slope - Intercept Form -

7. Geometric Mean -

Transformations:

1. Translation -
2. Reflections -
3. Rotations -
a. $R_{o,} 90^{\circ}$
b. $R_{o,-90^{\circ}}$
c. $R_{o, 180^{\circ}}$
4. Rotational Symmetry -

Concurrency:

1. How to find Altitude (orthocenter) -
2. How to find Median (centroid) -
3. How to find \perp bisector (circumcenter) -
4. How to find Angle Bisector (incenter) -

Name:
Date: \qquad Period: \qquad

Definitions:

1. Complementary -
2. Supplementary -
3. Bisect -
4. Vertical Angles -
5. Perpendicular -

Triangle Congruence Criterion:

Triangle Similarity Criterion:

Type of Sentences:

1. Conditional -
a. Hypothesis -
b. Conclusion -
2. Converse -
3. Inverse -
4. Contrapositive -
5. Conjecture -
6. $\mathrm{Bi}-$ Conditional -

Theorems:

- All radii of a circle are congruent
- If two lines are parallel, then their slopes are equal
- If two lines are perpendicular each line's slope is the opposite reciprocal of the other's
- The sum of the measures of the angles in a triangle is 180 degrees
- The measure of an exterior angle of a triangle is equal to the sum of the measures of the remote interior angles
- A segment joining the midpoints of two sides a of a triangle is parallel to the $3^{\text {rd }}$ side, and its length is one half the length of the $3^{\text {rd }}$ side (Triangle Midsegment Theorem)
- The median of a trapezoid is parallel to the bases and its length is the average of the lengths of the base. (Trapezoid Median Theorem)

Properties and Definitions

Quadrilaterals:

Parallelogram:

1.
2.
3.
4.
5.

Rectangle:

1.
2.

- Plus all 5 properties of the Parallelogram

Rhombus:

1.
2.
3.

- Plus all 5 properties of the Parallelogram

Square:

- All 5 properties of the Parallelogram
- 2 properties of the Rectangle
- 3 properties of the Rhombus

Kite:

1.
2.
3.
4.
5.

Trapezoid:

Isosceles Trapezoid:

1.
2.

Ways to prove Quad. is a parallelogram

2.
3.
4.
5.

UNIT 1 - ACTIVITIES - 1 - 8

1. Identify the following on the given picture:
a. Chord:
b. Diameter:
c. Radius:
d. Center:
2. Use this diagram.
a. How many radii are shown? Name them.
b. How many diameters are shown? Name them.
c. How is a chord similar to a diameter?
d. How is a chord different from a diameter?

e. How is a radius different than a diameter?
3. Which describes the geometric figures in the diagram?
A. $\overrightarrow{D E}$ intersects $\overline{A C}$ at point B
B. $\overrightarrow{E D}$ intersects $\overleftrightarrow{A C}$ at point B
C. $\overrightarrow{E D}$ intersects $\overline{A C}$ at point B
D. $\overrightarrow{D E}$ intersects $\overleftrightarrow{A C}$ at point B

4. Name angle pairs in the figure that are adjacent and supplementary.

5. Consider the conjecture shown:

Conjectures:

If two angles are complementary, then both angles must be acute. If two angles are acute, then their sum must be less than 180°.

Which is a viable argument for these conjectures? CHECK ALL THAT APPLY.
A. Given $\angle 1$ and $\angle 2$ are acute angles; therefore, they are complementary
B. Given $\angle 1$ and $\angle 2$ are acute angles; therefore, their sum is less than 180°.
C. Given $\angle 1$ and $\angle 2$ are complementary; therefore, they are both acute angles.
D. Given $\angle 1$ and $\angle 2$ are complementary; therefore, their sum is less than 180°.
E. Given $\angle 1$ and $\angle 2$ have a sum less than 180°; therefore, they are both acute angles.
F. Given $\angle 1$ and $\angle 2$ have a sum less than 180°; therefore, they are complementary.
6. Consider the conditional statement, find a counterexample.

Conditional: If $2 \mathrm{x}+5>7$, then $\mathrm{x}<1$.
7. Identify the hypothesis and conclusion of the conditional statement.

Conditional: If it snows, then I will make a snowman.
8. Suppose Q is the midpoint of $\overline{P R}, P Q=x+10$, and $Q R=4 x-2$. What is the value of $P R$?
9. Suppose point D is in the interior of $\angle A B C, m \angle A B C=12 x-110, m \angle A B D=3 x+40$, and $m \angle D B C=2 x-10$. What is $m \angle A B C$?
10. Julie is given two points (x, y) and (w, z). Explain the process you would use to find the distance between the two points.
11. The distance between P and N is 5 units. Point P has coordinates $(2,3)$. The x -coordinate of point N is 5 . What are the possible values of the y-coordinate of N ? (Hint : use distance formula)
12. Suppose the midpoint of $\overline{R T}$ is $M=(3,0)$. If point R has the coordinates $(-1,4)$, what are the coordinates of point T ?
13. Find the measure of $m \angle 1$.

14. Use the diagram shown.

What is the justification for the statement that $\mathrm{PQ}+\mathrm{QR}=\mathrm{PR}$?
15. If $\overline{N C} \perp \overline{D C}$ and $\overline{C J}$ bisects $\angle N C L$, find $m \angle N C L$.

16. In the diagram shown, $\mathrm{AB} \perp \mathrm{PQ}$. If $\mathrm{PT}=\mathrm{TQ}$, which statement is true?
A. $A T=T B$
B. $\overline{P Q}$ is the perpendicular bisector of $\overline{A B}$
C. $\overline{A B}$ is the perpendicular bisector of $\overline{P Q}$
D. $\overline{P T}$ is the perpendicular bisector of $\overline{A B}$

17. In the diagram, $\overline{O P} \cong \overline{Q R}$. Find the length of $\overline{P R}$.

18. Suppose $\overline{C M}$ and $\overline{D M}$ intersect $\overline{A B}$ as shown below.

Allison states $\angle A M C+\angle C M D+\angle D M B=\angle A M B$. State the postulate that justifies this statement.

19. Billy is working on a proof given $x \| t$ and $k \| w$ as shown.

He wants to write a statement that can be justified using only the Corresponding Angles Postulate. Which statement could he write? CHECK ALL THAT APPLY.
A. $\angle 2 \cong \angle 4$
B. $\angle 2 \cong \angle 6$
C. $\angle 2 \cong \angle 8$
D. $\angle 2 \cong \angle 10$
E. $\angle 2 \cong \angle 12$
F. $\angle 2 \cong \angle 15$

20. Given the diagram in \#19, $x \| t$ and $k \| w$, if $\mathrm{m} \angle 16=75^{\circ}$, then find $\mathrm{m} \angle 8$.
21. In the diagram shown, lines l and m are parallel.

State if each pair of angles does or does NOT represent corresponding angles:
a. $\angle 1$ and $\angle 4$
b. $\angle 5$ and $\angle 7$
c. $\angle 6$ and $\angle 8$
d. $\angle 2$ and $\angle 4$

22. Write the equation of the line that passes through $(6,-2)$ and is parallel to the line $2 x+y=3$.
23. Write the equation of the line that passes through $(-2,-3)$ and is perpendicular to the line $\mathrm{x}+\mathrm{y}=2$.

UNIT 2 - ACTIVITIES 9 - 16

24. A polygon that goes undergoes a combined transformation $T_{(3,2)}\left(R_{0,90^{\circ}}\right)$. The vertex $(5,2)$ of the polygon maps to what final image?
25. Suppose $\triangle A B C \cong \triangle L M N$, and the side lengths of $\triangle A B C$ are shown in the table below.

What is the longest side in $\triangle L M N$?

Side	Length (cm)
$\overline{A B}$	5.2
$\overline{B C}$	8.4
$\overline{A C}$	7.8

26. Triangle A and its rotated image B are shown on the grid. If the center of rotation is $(1,-2)$, write the correct notation for the rotation.

27. A point is located at $(-4,3)$. Which reflection maps that point to (10,3$)$?
A. a reflection across the line $x=3$
B. a reflection across the line $x=7$
C. a reflection across the line $\mathrm{x}=10$
D. a reflection across the line $y=3$
28. A regular polygon has a rotational symmetry with an angle of 36°. Identify the polygon it's referring to.
29. Use the diagram shown. Which pair of figures can represent the pre-image and image is a translation?
A. I and IV
B. II and III
C. III and IV
D. I and III

30. A translation of a rectangle under the transformation $(x, y) \rightarrow(x-1, y+3)$ is recorded in the table below.

Fill in the corresponding table if the image is then moved an additional 3 units right and 2 units up.

Point	Preimage	Original translation Image	Additional translation image
A	$(2,-1)$	$(1,2)$	
B	$(2,-3)$	$(1,0)$	
C	$(6,-1)$	$(5,2)$	
D	$(6,-3)$	$(5,0)$	
	(x, y)		

31. Given the transformation recorded in the table below state the transformation function that maps the preimage to image.

Point	Preimage	Original translation Image
A	$(2,-1)$	$(9,-12)$
B	$(2,-3)$	$(9,-14)$
C	$(6,-1)$	$(13,-12)$
D	$(6,-3)$	$(13,-14)$

32. Which combination shows that rectangles A and B are congruent?
A. $\mathrm{R}_{(0,3), 90^{\circ}}\left(\mathrm{T}_{(-3,0)}(\mathrm{A})\right)$
B. $\mathrm{T}_{(-2,-7),}\left(\mathrm{R}_{(0,3), 90^{\circ}}(\mathrm{A})\right)$
C. $\mathrm{T}_{(-2,-7)},\left(\mathrm{R}_{(0,3), 90^{\circ}}(\mathrm{B})\right)$
D. $\mathrm{T}_{(-2,-7)},\left(\mathrm{R}_{(0,3),-90^{\circ}}(\mathrm{A})\right.$

33. The band is practicing a new rigid transformation halftime routine. What happens to the distance between each band member as they move?

34. Explain why $\triangle A B C$ and $\triangle X Y Z$ are right triangles.

35. Suppose $\triangle Q R S \cong \triangle T U V$ are congruent right triangles such that $\angle R$ is a right angle and $\angle V=35^{\circ}$. What is the measure of $\angle Q$?
36. What additional information need to be given to develop the proof that $\Delta F H N \cong \Delta L H J$ by ASA congruence criteria?

37. What additional information need to be given to develop the proof that $\triangle A B D \cong \triangle C B D$ by SAS congruence criteria?

38. What additional information need to be given to develop the proof that $\triangle E M H \cong \triangle E M R$ by HL congruence criteria?

39. Which statement could be used in a proof with the reason CPCTC after proving $\triangle A B C \cong \triangle E F G$? Check all that apply.
\qquad

$$
\overline{A C} \cong \overline{E G}
$$

\qquad $\overline{A B} / / \overline{E F}$
$\overline{B C} \cong \overline{F G}$
\qquad $\angle B C A \cong \angle F G E$
\qquad $\angle C B A \cong \angle G E F$
40. Given the information provided, name the method, if any, that can be used to prove the triangles congruent:
a.

b.

d.

41. When do you use CPCTC?
42. Write a two column proof:

Given: Isosceles $\triangle F G H$ with base $\overline{G H}$ and $\overline{F E}$ bisects $\angle G F H$ Prove: E is the midpoint of $G H$

43. Rewrite \#42 as a flowchart proof:
44. Write a flow chart proof and two column proof:

Given: E the midpoint of $\overline{B D}$ and $\overline{A E} \cong \overline{E C}$ Prove: $\triangle A E B \cong \triangle C E D$

D
45. Given $\triangle A B C$:
a. Name the point of currency at point D.
b. What do you know about segments $\overline{A D}$ and $\overline{D B}$? Why do you know this?
c. Given $\mathrm{AD}=2 \mathrm{x}-9$ and $\mathrm{DB}=27$, find the value of x .

46. The equations shown represent two altitudes of a triangle.

$$
y=x+1 \quad \text { and } \quad y=-2 x-1
$$

What are the coordinates of the orthocenter of the triangle?
A. $(0,1)$
B. $(2,3)$
C. $\left(-\frac{2}{3}, \frac{1}{3}\right)$
D. $\left(-\frac{2}{3},-\frac{1}{3}\right)$
47. In the diagram of $\triangle C D E$ and its medians, $\mathrm{CJ}=15, \mathrm{HJ}=9.5, \mathrm{CD}=27$. Find the following lengths.
a. $\mathrm{JG}=$ \qquad
b. $\mathrm{HD}=$ \qquad
c. $\mathrm{FD}=$ \qquad

d. $\mathrm{CG}=$ \qquad
48. Point Y is the centroid of this triangle. If $Y C=2 x+10$ and $V C=4 x-10$, find x .

49. What values of x and y would prove that $\overline{P Q}$ is the midsegment of trapezoid JKLM?
A. $x=4 ; y=5$
B. $x=4 ; y=10$
C. $x=8 ; y=5$
D. $x=8 ; y=10$

50. Write the missing reason in the proof to show that $\overline{Y Z} \cong \overline{W Z}$

Given: Quadrilateral WXYZ is a rhombus $\overline{Z X}$ bisects $\angle Y X W$

Prove: $\overline{Y Z} \cong \overline{W Z}$

Statement	
1. Quadrilateral WXYZ is a rhombus $\overline{Z X}$ bisects $\angle Y X W$	1. Given
2. $\overline{Y X} \cong \overline{W X}$	2. In a rhombus, all sides are congruent
3. $\angle Y X Z \cong \angle W X Z$	3. In a rhombus, diagonals bisect opposite angles
4. $\overline{X Z} \cong \overline{X Z}$	4.
5. $\Delta Y X Z \cong \Delta W X Z$	5.
6. $\overline{Y Z} \cong \overline{W Z}$	6.

51. Three vertices of a parallelogram ABCD are given. Find the location of point D.
a. $\mathrm{A}(1,5), \mathrm{B}(3,3), \mathrm{C}(8,3)$
b. $\mathrm{A}(-5,0), \mathrm{B}(-2,-4), \mathrm{C}(3,0)$

52. Which of the following sets of information is NOT enough to prove that parallelogram GRAM is a rectangle?
a. $\angle G M R \cong \angle A M R \cong \angle G R M \cong \angle A R M$
b. $G Y=A Y=R Y=M Y$
c. $\angle G R M$ and $\angle A R M$ are complementary

d. $G R^{2}+R A^{2}=G A^{2}$
53. Three vertices of a rectangle ABCD are $\mathrm{A}(3,6), \mathrm{B}(-2,4)$, and $\mathrm{C}(0,-1)$, Find the location of point D . (Use the graph in \#51 if needed)
54. Which of the following conditions is NOT enough to conclude that a figure is a rectangle?
A. It is a parallelogram and diagonals bisect their angles.
B. It is a parallelogram with a right angle.
C. It is a rhombus with congruent diagonals.
D. It is a parallelogram with opposite angles that are supplementary.
55. Which of the following conditions is NOT enough to conclude that a figure is a rhombus?
A. A figure is a parallelogram with two consecutive congruent sides.
B. A figure is a parallelogram with perpendicular diagonals.
C. A figure is a parallelogram and one diagonal forms two congruent triangles.
D. A figure is a parallelogram and one diagonal bisects its angles
56. Which of the following conditions is NOT sufficient to prove that a figure is a square?
A. The figure is a rectangle with perpendicular diagonals.
B. The figure is a parallelogram with perpendicular diagonals.
C. The figure is a rhombus with one right angle.
D. The figure is a rhombus with congruent diagonals.
57. Which of the following are sufficient to prove a quadrilateral is a parallelogram?
I. Show both pairs of opposite sides parallel.
II. Show both pairs of opposite angles are congruent.
III. Show both pairs of opposite sides congruent.
IV. Show one pair of opposite sides are both parallel and congruent.
V. Show the diagonals bisect each other.
A. I, II, III only
B. I, II, III, and IV only
C. I, II, III, and V only
D. I, II, III, IV and V

UNIT 3 - ACTIVITIES 17 - 19

58. What are the ways to prove two triangles are similar?
59. Given the triangles in the diagram, find DE.

60. Suppose $\angle A C B \cong \angle A E D$ in the figure shown.

Based on the figure and the given statement, which can prove that $\triangle A C B \sim \triangle A E D$?
A. $m \angle A B C=m \angle A D E=40^{\circ}$, and since the three corresponding angles are congruent, $\triangle A C B \sim \triangle A E D$.
B. $m \angle A B C=m \angle A D E=80^{\circ}$, and since the three corresponding angles are congruent, $\triangle A C B \sim \triangle A E D$.
C. $\overline{A C}$ is proportional to $\overline{A E}$, and since two corresponding angles are
 congruent, $\triangle A C B \sim \triangle A E D$.
D. $\overline{A B}$ is proportional to $\overline{A D}$, and since two corresponding angles are congruent, $\triangle A C B \sim \triangle A E D$.
61. If a school's 48 -foot flagpole casts a 64 -foot shadow, approximately how long will the shadow be for a $5^{\prime} 6^{\prime \prime}$ girl who is standing near the flagpole to the nearest tenth?
62. Determine the value of altitude BD to the nearest tenth.
A. 8.0
B. 13.9
C. 22.9
D. 24.0

63. Determine the value of x. Round to the nearest whole number, if necessary.
A. 14
B. 17
C. 20
D. 35

64. Ramon places a mirror on the ground 45 ft from the base of a flagpole. He walks backwards until he can see the top of the flagpole in the middle of the mirror. At that point, Ramon's eyes are 6 ft above the ground and he is 7.5 ft from the mirror. What is the height of the flagpole?

