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GEOMETRY INSTITUTE - DAY 5 

Geometry on Various Surfaces 
Time Topic TEKS Approach 

30 The Cable Guy 6b  

10 Reflection on The Cable Guy   

20 Distance on the Euclidean Plane 7a, b, c, 8c  

30 Plane vs. Spherical Geometry 1c, 6c  

60 Geometry on a Cube 1c  

30 Texas Bullet Train 2a, 9b  

15 Connect the Dots 1a, 3e  

60 Fractal Tetrahedron 5b, 8  

15 Reflection & Post it notes in texts   

30 Closure - Where do we go from here? 

Evaluations 

  

300    
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Day 5:  Materials Needed: 
 Sketchpad 

Sketches 

 bullet train 

Scripts 

 

 Models of regular polyhedra 

 Models of other polyhedra with regular faces 

 Rubber bands 

 Large sphere for each group 

 String for each group 

 A large cardboard cube for each group. 

 Several colored straight pins for each group 

 Large map of Texas with Dallas, Houston, San Antonio highlighted 

 One cardstock regular tetrahedron (6” edge), 6 card stock equilateral triangles for 

each group 
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THE CABLE GUY 

CUBICAL ROOM 

A cable installer wants to use the least amount of wire through the wall, floor or ceiling of a 

cubical room to connect the television and cable outlet which are located on two walls of the 

room. Where should he run the wire? Give a geometric description of this path. 

Could the television and cable box be located so that there is more than one way to join them 

using the least amount of wire? 

 

After solving the above problems, consider other possible room shapes. 

 

CYLINDRICAL ROOM 

Suppose the room were a turret in a castle (cylindrical). What would be the shortest path for the 

wire to follow if it had to wrap around the room once. What if it had to wrap around twice before 

connecting the television and the cable box?  

PYRAMID SHAPED ROOM 

The lobby of the Luxor Hotel in Las Vegas is shaped like a square pyramid. If the television and 

cable box were on adjacent walls, what path would use the least amount of wire? What path 

would the Cable Guy use if they were on opposite walls? 

GEODESIC DOME 

Suppose the room were the geodesic dome of Epcot Center. What is the shortest path in that 

case? 

HEMISPHERICAL ROOM 

Suppose the room were an igloo (a hemisphere). If the television and cable box are at any two 

points on the floor next to the wall of the igloo, what should be the wire’s path? If the television 

and cable box are not on the floor, what is the shortest path for the wire to follow? 
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THE CABLE GUY 

Solutions 
This problem is a variation of the Spider and the Fly problem. After solving the problem, 

most people will realize that building a model and/or drawing a net is an effective problem 

solving tool. Reducing the rooms to their plane nets makes the problem much simpler.  

The problem leads to the definition of line segments and lines on various polyhedra and on 

the sphere. 

CUBICAL ROOM 

To obtain the shortest path between two points on two adjacent faces, think of the faces as 

being hinged along the  common edge and then lay the faces flat on a table. When the faces are 

lying flat, the shortest path between A and Bis the line segment joining A to B as shown in figure 

2. If C is the point at which the line segment crosses the edge common to the two faces, then 

m∠1 = m∠2 in figure 2. Since rotating the two faces about the hinge does not change ∠1 and 

∠2, nor change the length of AC and BC, the shortest path between A and B is the one shown in 

figure 1. It can be described geometrically as the unbroken path formed by straight lines on each 

face that meet the common edge in supplementary angles.  

When, as in figure 3, A and B do not lie on adjacent faces the shortest path is the one such that 

m∠1 = m∠2. Again the shortest path can be described as the unbroken path formed by straight 

lines on each face that meet the common edge between adjacent faces in supplementary angles. 

This description remains true for any polyhedral surface.  

 
Figure 1 

 
Figure 2 

 
Figure 3 

 

The solution is not unique if the television and cable box are located at the same height on 

opposite walls. 
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CYLINDRICAL ROOM 

The shortest path is found by unwrapping the cylinder and drawing the straight line from A 

to B However when the wire must wrap around the room twice before connecting to the 

television and cable box, the shortest paths are parallel lines. 

 
Figure 4 

PYRAMID SHAPED ROOM 

The shortest path is once again a straight line when the pyramid is flattened. Note that this 

path can be found without a net by ensuring that the angles the path makes with the edges (which 

are vertical angles on the net) are equal. 

 

 

GEODESIC DOME 

The shortest path between two points on the walls of the dome is the straight line on the net 

of the dome, as in the case of the pyramid shaped room. 
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HEMISPHERICAL ROOM 

The minimal path between the two points on a sphere or hemisphere lies on the great circle 

joining the points. 
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THE CABLE GUY 

Reflections 
1. Discuss the presentation styles used in this problem.  

• Hands on  

• Modeling 

• Cooperative learning 

  

2. Discuss the geometry learned from this problem. 

  

3. Discuss the geometric concepts used in the solution to this problem. 

• Prisms 

• Cylinders 

• Pyramids 

• Model building  

• Nets  

• Shortest Path (Geodesics) 

• Parallel lines 

• Optimization 

  

4. How could this problem be adapted to the classroom? 

  

5. Direction of the day. Where could this problem lead? 

• Parallel and perpendicular lines 

• Distance on the Euclidean plane and other surfaces 

• Angles 

• Properties of solids and spheres 

• Optimization problems 

• Polyhedra 
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NOTES 
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DISTANCE IN THE EUCLIDEAN PLANE 

Institute Notes 
Lesson Pages Time TEKS 

Distance in the Euclidean Plane  20 min 7a, b, c, 8c 

MATERIALS AND SETUP 

Transparencies 

LEARNING STYLES 

Cooperative learning 

MATH LINKS 

Algebra, measurement, coordinate geometry 

OTHER LINKS 

Architecture, surveying 

LESSON OVERVIEW 

“The shortest distance between two points is a straight line.” Young children 

instinctively know that it is shorter to cut across the lawn than to go around it. This is 

axiomatic for the student of geometry as well as for the general population. What many 

fail to realize is that this axiom is valid only in the Euclidean plane. Although the earth is 

spherical, within our immediate neighborhood we can think of it as flat - a Euclidean 

plane. 

A study of the distance formula and its applications shows the power of the Cartesian 

plane in making the important connection between algebra and geometry. The 

Pythagorean Theorem is the key to understanding the formulas. Linear equations and 

systems of equations are also used to solve problems involving distance. 

These lessons derive methods for computing distance in the plane and help develop 

the student’s understanding of what is meant by the distance between a point and a line 

and the distance between two lines.  
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Distance Between Points 

Finding the distance in a plane is an important concept that can be easily derived from 

the Pythagorean Theorem. It is important for students to understand how formulas are 

derived and how they work. 

Have the participants work through parts I, III, IV and V. Discuss the importance of 

having students derive the formula. 

Distance Between Points and Lines 

This activity incorporates the distance formula, linear equations and slopes of 

perpendicular lines to solve problems involving the distance between a point and a line. 

Distance Between Parallel Lines 

This activity uses the distance formula, linear equations and slopes of perpendicular 

lines. 
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NOTES 
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DISTANCE IN THE EUCLIDEAN PLANE 

Teacher Guide 
GOAL: 

Develop the distance formula using the Pythagorean Theorem, find the shortest 

distance from a point to a line, find the distance between parallel lines 

PREREQUISITES: 

The Pythagorean Theorem, distance formula, parallel lines, perpendicular lines, 

slopes of perpendicular lines 

MATERIALS: 

The Distance Formula worksheets, dot grid overlays, transparencies of problems 

PROCEDURE (Between Points): 

Students can either work individually or in groups. 

• Work I, II, III. 

• Discuss I, II, and III. 

• Work IV. 

• Discuss IV. 

• Work V (individually or as a class). 

• Work VI — examples. 

EXTENSION:  

Show the video: The Theorem of Pythagoras by Project MATHEMATICS! 

Use the distance formula to:  

• prove that perpendicular lines have negative reciprocal slopes  

• find the distance from a point to a line 

• find the distance between two parallel lines. 

PROCEDURE (Between Points and Lines): 

• Show students the Sea Turtle problem. 

• Class discussion: What is the shortest distance from a point to a line?  

 Perpendicular distance. 
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• Suggest solving the Sea Turtle problem using a dot grid overlay. Place the dot grid 

with dots parallel to edges of overhead. Students may suggest rotating the grid so that 

dots are parallel to the ocean to make the problem easier to solve. Point out that grids 

may pre-exist on maps, city plats, etc., or there may be many such distance probems 

on one map. Therefore, it is useful to be able to solve problems no matter the 

orientation of the grid. 

• Work through the problem with the class to come up with a solution. 

• Have students complete the Electric Lines problem in groups. Discuss the processes 

the students used. 

PROCEDURE (Between Parallel Lines): 

• Show parallel sidewalks overhead to class and discuss what is meant by the distance 

between two parallel lines (perpendicular distance). 

• Suggest solving parallel sidewalks problem using dot grid overlay. Place dot grid 

with dots parallel to edges of overhead. Students may suggest rotating grid so that 

dots are parallel to sidewalks to make problem easier to solve. Point out that grids 

may pre-exist on maps, city plats, etc., or there may be many such distance problems 

on one map. Therefore it is useful to be able to solve problem no matter the 

orientation of the grid.  

• Either demonstrate solution or have students suggest method. 

• Have students work in groups to complete solutions and solve chicken problem. 

• After completion discuss processes used and results. 

 

SOLUTIONS (Between Points) 

I. 1. 3 blocks 

2. 4 blocks 

3. 7 blocks 

4. No; A right triangle 

5. 5 blocks 

II. A(-3, 3), B(3, -1), C(-3, -1) 

 AC = 4; BC = 6; AB = 2 13 ! 7.2  

 A(5, -2), B(3, 3), C(5, 3) 
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 AC = 5; BC = 8; AB = 89 ! 9.4   

III. C(-3, -2) or C(0, 3) 

 AC = 5, BC = 3, AB = 34 ! 5.8 ; 

 or AC = 3, BC = 5; AB = 34 ! 5.8  

 C(-5, 3) or C(4, 1) 

 AC = 9, BC = 2, AB = 85 ! 9.2 ; 

 or AC = 2, BC = 9, AB = 85 ! 9.2  

VI. (11, 3) or (3, 7) 

 8 or 4 found the difference between the different coordinates 

 4 or 8 found the difference between the different coordinates 

 AB = 4 5 ! 8.9  

SOLUTIONS (Between Points and Lines): 

Sea Turtles 
To find the distance, drop a perpendicular line (L) from the turtle to the ocean shore. Find 
the slope of the ocean shore. The slope of L is the negative reciprocal of the slope of the 
ocean shore. Using the turtle as a point and slope of L, write the point slope equation of 
L.  
Find the coordinates of the point where line L intersects the shore by solving the 

equations simultaneously.  

The distance from the turtle to the ocean shore is the distance from the turtle to the point 

of intersection. 

Use the distance formula to find the distance. 

Electric Lines  Repeat the above procedure. 

SOLUTIONS (Between Parallel Lines): 

Find the slope of each line. Since the lines are parallel, they will have the same slope. 

Take the slope of the line perpendicular to the parallel lines (negative reciprocal). Take 

any convenient point on the line. Using the point and new slope, write an equation of the 

line perpendicular to the parallel lines. Find the intersection of the perpendicular line to 

the other parallel line. Find the distance between the two points. The perpendicular 

distance from that point to the other line is the distance between the two parallel lines. 
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DISTANCE IN THE EUCLIDEAN PLANE 

Between Points 
I. Alicia, Babbs and Carlos live in Parallel and Perpendicular City. The city was named 

so because all the streets are either parallel or perpendicular to each other. Pictured 

below is a map of the city. Alicia, Babbs and Carlos’ houses are all on the corners of 

the block as shown. 

 
 

Answer the following questions: 

1. Draw the shortest path from Alicia’s to Carlos’ house. If Alicia is to walk to 

Carlos’ house, how many blocks would she walk? _________ 

2. On the map, draw the shortest path from Carlos’ house to Babb’s house. If Carlos 

wants to ride his bike to Babb’s house, how many blocks will he ride? 

__________ 

3. If Babbs wants to go to Alicia’s house, she must walk along the streets. How far 

must Babbs walk to go to Alicia’s house? __________ 

4. Is the path that Babbs walked to Alicia’s house the shortest distance between the 

houses? ______ On the map, draw the shortest distance—as “the crow flies.” 

What type of triangle did you draw on the map? _______ 
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5. What is the shortest distance between Babb’s house and Alicia’s house? (Write 

and equation and determine the distance.) _________ 
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II. For each grid below: 

• Give the coordinates for points A, B, and C. 

• Determine the distance AC, BC, and AB. Leave your answers in simplest radical 

form and then as a decimal to the nearest tenth. 

 

  
 

 

 

III. For each grid below: 

• Draw a right triangle with the right angle at point C so that either AC  or BC  is 

parallel to the x-axis and the other is parallel to the y-axis. 

• Determine the coordinates for C. 

• Find AC, BC, and AB. Leave answers in simplest radical form and then leave 

answers as decimals rounded to the nearest tenth. 
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IV. 

• Plot the points A(3, 3) and B(11, 7). 

• Complete right triangle ABC by finding right angle C. 

• What are the coordinates of C? (_______, ________) 

• AC = ___________ 

• How did the coordinates of points A 

and C help to determine the distance 

AC? 

 

 

 

• BC = ___________ 

• How did the coordinates of points B 

and C help to determine the distance 

BC? 

 

 

 

• AB = ___________ 

(Leave answer in simplest radical form and then as a decimal rounded to the 

nearest tenth.) 

 

We can find the distance from A to B without having to find the coordinates of C.  

 

• Look back at the length of AC .  

 It was determined by finding the distance between the x-coordinates:  11 ! 3 = 8 . 

• Now look at the length of BC . 

 It was determined by finding the distance between the y-coordinates:  3 ! 7 = 4 . 

• Find the distance from A to B using the Pythagorean theorem and the differences 

between the x-coordinates and the y-coordinates. 
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V. Develop a formula to find the distance between two points A and B.  

 A has the coordinates x
1
,y
1
)(  and B has the coordinates x

2
,y
2
)( . 

 

• Mark the points A x
1
,y
1
)(  and B x

2
,y
2
)(  anywhere on the grid except in a vertical 

or horizontal line. 

 
 

• Create a right triangle ABC with the right angle at C so that either AC  or BC  is 

parallel to the x-axis and the other is parallel to the y-axis.  

• Find the coordinates of C. (________, ________) 

• Find the distance from A to C. _____________ 

• Find the distance from B to C. _____________ 

• Use the Pythagorean Theorem to find the distance AB. 
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The Distance Formula:  

 

 

 

 

VI. Now use the distance formula that you developed to find the distance between points 

A and B. Leave answers in simplest radical form and as a decimal rounded to the 

nearest tenth. 

1. A(5, 13) B(–7, 4) 

 

 

 

 

 

 

2. A(–3, –10) B(–6, –1) 

3. A(5, 2) B(2, 1) 4. A(–6, –6) B(6, 0) 
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DISTANCE IN THE EUCLIDEAN PLANE 

Between Points and Lines 
SEA TURTLES 

Sea Turtles lay their eggs on sandy beaches. When the eggs hatch, the tiny turtles 

instinctively crawl in the shortest straight line to the ocean.  

Find the shortest distance the turtle must crawl to get to the ocean. 

(Assume the ocean shore is a straight line and the turtle is a point.) 
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ELECTRIC LINES 

Your family is building a house out in the country. You need to run an electric line from 
your house to the main line. What is the shortest length of wire that is needed? 
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DISTANCE IN THE EUCLIDEAN PLANE 

Between Parallel Lines 
PARALLEL SIDEWALKS 

Pictured below is a street with sidewalks. Find the shortest distance between the 

sidewalks. 

 

 
 



 

TEXTEAM Geometry Institute 5.23 

THE CHICKEN AND THE ROAD 

How far did the chicken have to walk to cross the road? Find the shortest distance. 
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PLANE VS. SPHERICAL GEOMETRY 

Teacher Guide 
GOAL: 

Use the parallel postulate, to understand a fundamental difference between 

Euclidean geometry (plane geometry) and a non-Euclidean geometry (spherical 

geometry). 

PREREQUISITES: 

The line and parallel postulates for Euclidean plane geometry, lines of longitude 

and latitude on the sphere. 

MATERIALS: 

Large plastic sphere, string, ruler, large globe. 

PROCEDURE: 

Working alone or in groups, students compare and contrast geometry on the plane and on 

the sphere by examining two of the postulates for Euclidean plane geometry. A class 

discussion should follow the exploration of each postulate. 

 

Postulates 

Line Postulate:  

“For any two distinct points, there is one and only one line containing them”. 

Parallel Postulate:   

“Through a point not on a given line, one and only one line is parallel to the given 

line.” 

 

EXTENSIONS: 

• Compare triangles and their angle sums on the plane and on the sphere. 

• Investigate airplane routes - an important practical application of spherical geometry. 

• Research other non-Euclidean geometries and their discoverers. 
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SOLUTIONS: 

Line Postulate 

2. Straight line segment 

8. Answers will vary 

10. Yes, only if the points are antipodal. There are infinitely many great circles through 

the North and South Poles, for example. 

11. It fails. 

12. All lines of longitude are lines, the equator is the only line of latitude that is a line in 

spherical geometry. 

13. All lines of longitude are great circles, the equator is the only line of latitude that is a 

great circle. 

14. Similarities: Shortest path between points lies on the lines. 

Differences: In a plane, a line has infinite length; on a sphere a line has finite length.  

 

Parallel Postulate 

1.   Non-intersecting lines - this is the best definition because it uses only the notion of 

lines.  

 Equidistant lines - this requires a notion of distance on the sphere to apply to 

spherical geometry.  

 Two line perpendicular to the same line - this requires a notion of angles in spherical 

geometry.  

3. Exactly one line contains point P and is parallel to AB . 

4. Two non-intersecting lines. 

6.   It is not possible to draw a line on a sphere that is parallel to AB  because on a sphere, 

a line is a great circle and all great circles intersect in exactly two points. Parallel 

lines do not intersect.  

7.  Thus the parallel postulate, is not valid in spherical geometry. 

 

Geometry on a sphere is considered to be non-Euclidean because spherical geometry does 

not satisfy of the basic postulates of Euclidean geometry. 
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PLANE VS. SPHERICAL GEOMETRY 

 
GOAL: 

Use the line and parallel postulates to understand a fundamental difference 

between plane geometry and spherical geometry. 

PROCEDURE: 

Compare and contrast geometry on the plane and geometry on the sphere by examining 

two postulates. 

 

Line Postulate.  

“For any two distinct points, there is one and only one line containing 

them”. 

 

Line postulate on the plane. 

1. Draw 2 points on a sheet of paper and label them A and B.  

 (A sheet of paper is a model for the plane.) 

 

 

 

 

 

 

2. Draw at least 3 different paths containing points A and B. 

Of all the possible paths between A and B, which is the shortest? 

 

3. Highlight the shortest path - called the line segment between A and B. 

If this line segment is extended indefinitely in both directions the result is the line 

containing A  and B in plane geometry. 
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4. Draw a representation of this line containing points A and B.  

This is the path referred to in the Line Postulate, 

“For any two distinct points, there is one and only one line containing them.” 

 

Line postulate on the sphere. 

5. Draw 2 points on the sphere and label them A and B. 

 

6. Draw at least 3 different paths containing points A and B. 

 

7. Find the shortest path between A and B. Use the string to follow the paths and 

measure the lengths of the paths with the ruler. 

 

8. Record the path length in the following spaces. 

Path 1 ____________ Path 2 ___________ Path 3 _____________ 

 

9. Use the string to extend the shortest path between A and B to a path around the 

sphere. Trace this path on the sphere with a pen. This is a line containing A and B in 

spherical geometry.  

 

10. Can there be more than one line in spherical geometry which contains points A and 

B? 

      Hint: Think of the North and South Pole on the globe.  

 

 

11. What does this say about the line postulate for spherical geometry? 

 

12. A globe of the earth is a good example of a sphere. On a globe, when are lines of 

latitude and longitude lines in spherical geometry? 
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13. A great circle is the intersection of the sphere and a plane passing through the center 

of the sphere. On the sphere a great circle is the path that contains the shortest 

distance between any two points. 

      When is a line of latitude or longitude on the globe a great circle? 

 

 

14. In what ways are the line in the plane and the line on the sphere similar?  

In what ways are they different? 
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Parallel Postulate:  

“Through a point not on a given line, one and only one line is parallel to 

the given line.” 

 

Parallel postulate on the plane. 

1. What is meant by parallel lines in the plane?  

 

 

2.  On the plane draw a point P not contained on line AB . 

 Through point P draw a line parallel to line AB . 

3. How many lines contain point P and are parallel to AB? 

 

Parallel postulate on the sphere. 

4. What might be meant by parallel lines on a sphere? 

5. On the sphere, draw a point P not contained on line AB . 

 Try to draw a line through point P parallel to AB . (Remember - a line on a sphere is a 

great circle.) 

 

6. Can you draw a line on the sphere that is parallel to AB? 

Why or why not? 

 

 

7.   What does this day about the parallel postulate in spherical geometry?  
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Non-Euclidean geometry. 

Geometry on a sphere is said to be non-Euclidean. Is this reasonable? 
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GEOMETRY ON OTHER SURFACES 

Institute Notes 
Lesson Pages Time TEKS 

Plane vs. Spherical Geometry  30 min. 1c, 6c 

Geometry on a Cube  60 min. 1c 

MATERIALS AND SETUP 

Large (4”) cardboard cubes (2 per group), rubber bands, colored straight pins, models of 

regular solids and other convex polyhedra with regular faces, large sphere and string for 

each group 

LEARNING STYLES 

Hands on, deductive reasoning 

MATH LINKS 

Topology, differential geometry, mechanics 

OTHER LINKS 

Navigation, cartography, building construction 

LESSON OVERVIEW 

To study geometry on a surface we need to know how to specify the ‘line segments’ 

joining pairs of points on the surface. On the plane a line segment joining two points is 

the shortest path between those two points and a ‘line’ in plane geometry is the usual 

straight line extension of this shortest path. The Cable Guy problem investigates the 

shortest path between two points on the surface of a cube as well as other polyhedral 

surfaces and curved surfaces. This shows how to define line segments on such surfaces.  

But what is a line segment on a sphere? The shortest path between two points on the 

earth is the route a plane would fly between any two airports or the sea route of a ship 

sailing between, say, San Francisco and Hawaii. It is well known that the shortest route 

on the earth is always an arc of a great circle, so a line segment between two points on the 

earth is the arc of a great circle passing through those two points. This makes sense on all 
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spheres because great circles are exactly the cross-sections produced when we slice the 

sphere with a plane through the center of the sphere. If we slice a sphere with a plane we 

always get a circle, but the circle will have smallest radius when the plane passes though 

the center of the sphere - this is why arcs of great circles are the shortest paths on a 

sphere. This is not obvious because any plane passing through two points A and B on a 

sphere will always intersect the sphere in a circle. However, an arc AB of the circle will 

be shortest when the radius of the circle is smallest. This occurs when the plane passes 

throughthe center of the sphere as well as through A and B.  

Thus a sphere is a model for spherical geometry in which the lines are the great 

circles and the line segments are arcs of great circles just as a plane is a model for 

Euclidean plane geometry in which the lines are the usual straight lines. 

Plane vs. Spherical Geometry  

Ever since Euclid, one way of studying plane geometry is to try to establish all of its 

properties from a set of axioms or postulates. In the plane one of the most obvious facts is 

that exactly one straight line passes through two points. This is often called the Line 

Postulate of Euclidean geometry.  

Another fact is that there is exactly one straight line parallel to a given line and 

passing through a given point not on the given line. This is the famous Parallel 

Postulate. Many of the most important properties of Euclidean geometry, such as the fact 

that the sum of the angles of a triangle is always 180°, follow from this postulate. 

Because of this, any geometry in which the Parallel Postulate fails is said to be non-

Euclidean. By taking simple measurements of path lengths on a sphere, students discover 

that arcs of Great Circles are the shortest paths between two points on a sphere and so 

obtain a model of spherical geometry. Using this model they the discover that both the 

Line and Parallel Postulates fail in spherical geometry.  

Geometry on a Cube  

A triangle in the plane is formed by the line segments joining three points in the 

plane. Triangles can be formed on any surface on which line segments have been 

specified. For instance, the arcs of Great Circles joining three points on the sphere form a 

spherical triangle. The Cable Guy forms a triangle on a cube when he runs wire 
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efficiently between three points in a room or on the walls of the pyramid shaped lobby of 

the Luxor Hotel in Las Vegas or on the geodesic dome at Epcot Center.  

In the plane the sum of the angles of a triangle is always 180°, a consequence of the 

Parallel Postulate. But will the sum of the angles of a triangle always be 180° in a 

geometry in which the Parallel Postulate fails? If not, can the sum of the angles be related 

to the shape of the surface? 

 The plane is flat, whereas a sphere is not flat  - it is curved. A soccer ball and a 

basketball are both spherical, so they have the same curvature at every point unlike a 

football which has greater curvature at the two ends than near the middle. The faces of a 

cube are flat but the corners are sharp - we can even measure how sharp each corner is 

using the angle deficit idea from the Day 1. In a tiling of the plane by squares, four 

squares meet each vertex unlike a cube where three squares meet at each corner. Thus 

each vertex of a cube is 90° from being flat. The Luxor Hotel is the upper half of an 

octahedron, so the top of the Luxor Hotel is 120° from being flat - it has greater curvature 

than the  corner of a cube. This lesson discovers the remarkable result that the sum of the 

angles of a triangle on a cube is equal to 180° plus 90° times the number of corners inside 

the triangle. It is done first by direct measurement and then by a short proof using the 

sum of angles of triangles and quadrilaterals in the plane. Extensions to other polyhedra 

are made.  

 By totalling the curvature at all the corners of a cube we obtain another 

remarkable result relating the total curvature of a cube to its Euler Characteristic. 

Extensions to other polyhedra  are again made. 
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NOTES 
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COMPLEX SURFACES 

Institute Notes 
Lesson Pages Time TEKS 

Fractal Tetrahedron  60 min. 5b, 8 

MATERIALS AND SETUP 

Each group requires: one regular tetrahedron constructed from card stock (with 6” edge), 

6 card stock equilateral triangles (6” edge), three squares forming one corner of a cube 

(edge 3 2 ), fast drying glue or rubber cement, two-sided tape 

LEARNING STYLES 

Hands on, cooperative groups, technology 

MATH LINKS 

Algebra, sequences and series, topology, similarity 

OTHER LINKS 

Fractals 

LESSON OVERVIEW 

The Fractal Tetrahedron 

We will look again at tetrahedra and their relation to cubes. On previous days the 

tetrahedron kite was constructed by attaching many tetrahedra together at their vertices to 

create a larger tetrahedron. In the study of cross-sections of a cube, a boxed tetrahedron 

was constructed by slicing off pyramids from corners of a cube. 

Now we shall reassemble the boxing cube for a tetrahedron by adding ever smaller 

tetrahedra to each face of fractal polyhedra, starting with the tetrahedron to be boxed. If 

we could think of doing this construction infinitely many times, then ultimately the box 

would be reassembled, but in reality the boxing cube can never be put back together 

again with this construction. 
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Participants will follow the instructions and build the fractal beginning with a 

prefabricated tetrahedron and precut triangles. The trainer will demonstrate that the 

volume of the fractal polyhedra approaches the volume of the boxing cube using the sum 

of an infinite geometric series. (The lesson could be used in an algebra class as a concrete 

illustration of geometric series.) Point out that the volume of the fractal polyhedron at 

each stage can be determined with a calculator without knowing anything about 

geometric series. 

If time allows, participants will create the Koch snowflake or see its construction 

demonstrated on Sketchpad. 
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NOTES 
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GEOMETRY ON A CUBE 

Teacher Guide  
GOAL:  

Discover the relationship between the sum of the angles of a triangle on a cube 

and the number of vertices contained in the cube. Understand curvature. 

MATERIALS: 

Pre-assembled models Platonic solids; protractors; colored straight pins; rubber 

bands. 

PREREQUISITES: 

Sum of interior angles of a triangle and a quadrilateral in the plane. Solution to the 

Cable Guy problem for cube. 

PROCEDURE: 

Students work in small groups to create triangles on a cube using pins to mark the 

vertices and rubber bands stretched between the  pins to create line segments forming the 

sides of the triangle. Encourage different groups to create different triangles, some 

triangles lying entirely on one face, others containing one vertex of the cube, others 

containing two vertices of the cube. Students draw the rubber bandtriangle on the cube. 

The pins have created the vertices of the triangle and the use of rubber bands ensures that 

the pencil lines are the shortest paths between the pinholes. The choice of pinholes should 

be sufficiently far from the sides of the cube so that the angles can be measured 

accurately. 

Students tabulate the angle measurements  in the table. On comparing data they 

should conjecture that the sum of the angles of a triangle on a cube is always 180° plus 

90° times the number of vertices contained within the triangle. For a triangle on a 

tetrahedron the sum of the angles is always 180° plus 180° times the number of vertices 

of the tetrahedron contained inside the triangle; for an octahedron it would 180° plus 

120° times the number of vertices of the octahedron inside the triangle. Notice that 

number of degrees a polyhedron loses at a vertex by not being flat has been added to the 

sum of the angles of any triangle surrounding that vertex. 
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This conjecture is substantiated for triangles containing one vertex of the cube. It uses 

the fact that the shortest path between points on adjacent faces of a cube consists of the 

unbroken path formed by straight lines on each face that meet the common edge between 

adjacent faces in supplementary angles. This property was established earlier in the Cable 

Guy problem. 
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GEOMETRY ON A CUBE 
GOAL: 

Investigate the relationship between the sum of the angles of a triangle on a cube 

and the number of vertices of the cube contained in the triangle. 

PROCEDURE: 

1. Working in small groups insert the colored pins in the faces of a cube at any three 

points other than vertices and label them A, B, C. Use a rubber band to form a 

triangle on the cube having A, B, C as vertices.  

Is there more than one way to place the rubber band?  

If so, which is the most natural choice?  

2. Trace the path of the rubberband:   

Mark with a pencil where the rubber band crosses the edges of the cube.  

Remove the rubber band and pins.  

Draw straight lines on the cube joining a pin-hole (a vertex A, B, or C) on a face 

of the cube to the points marked on the edges of that face.  

If two or more pin-holes are on the same face, draw straight lines joining the pin-

holes on that face. Repeat this for every face for which there is a pin-hole.  

 

3. Measure the angle between the straight lines 

at each vertex A, B, C and record the angles 

in the data table and find their total. 

4. Compare totals with other groups.  

What formula do these totals suggest for the 

sum of the angles of a triangle on a cube? 

Vertex Angle 

A  

B  

C  

TOTAL  
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5. Confirm the conjecture in special cases:  

a) A, B, C all lie on the same face of the cube, 

b) A, B, C are the centers of three adjacent faces of the cube, 

c) A is the centers of a face and B, C are the midpoints of adjacent edges of the 

opposite face. 

 

 

6.  To confirm your conjecture for the sum of the angles of a general triangle ABC 

containing one vertex, use the following figure to show that  ∠A + ∠B+ ∠C = 270°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure contains  3 quadrilaterals ADVF, BDVE, and CEVF which meet at the vertex 

V of the cube.  

The sum of the angles of ADVF = ∠A + ∠ADV + ∠DVF + ∠AFV. 

The sum of the angles of BDVE = ∠B + ∠BDV + ∠DVE + ∠BEV. 

The sum of the angles of CFVE = ∠C + ∠CFV + ∠FVE + ∠CEV. 

A

B

C

D

E

F

V
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What is the relationship between angles ∠ADV and ∠BDV formed by the line segment 

AB and the edge DV? 

What is the sum of the angles of any quadrilateral? 

Now compute ∠A + ∠B + ∠C using the above information. 

 

 

 

 

 

 

7. How would your calculations change for a triangle ABC on a tetrahedron when the 

triangle contains one vertex of the tetrahedron?  

 

 

 

 

 

8.  What results would you expect for an octahedron? 

 

 

9.  How would you modify your calculations when ABC is a triangle on a cube 

containing two vertices of the cube? 
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OPTIMAL PATHS 

Institute Notes 
Lesson Pages Time TEKS 

The Texas Bullet Train  30 min. 5b, 9a 

Connect the Dots  15 min. 1a, 3e 

MATERIALS AND SETUP 

Geometer’s Sketchpad Sketches: “bullet train” 

Large map of Texas with Dallas, Houston, and San Antonio highlighted 

LEARNING STYLES 

Technology, hands on, cooperative groups, deductive reasoning 

MATH LINKS 

Optimization, network theory (minimum spanning trees), isometries 

OTHER LINKS 

Physics, engineering, management science 

LESSON OVERVIEW 

Optimal paths are a recurring theme in many fields including mathematics, physics, 

network theory management science, navigation, and the design of work spaces. Even 

ants are required to solve such problems as they wear out a path from their nest to the 

garbage can. Navigators of ships and airplanes plan their routes using the geodesics (great 

circles) of our spherical planet. 

Each optimal path problem includes restrictions and requirements that arise from the 

context of the problem. Mathematicians model the problems, together with their specific 

contexts. In creating models, it is sometimes observed that problems arising from very 

different context are fundamentally the same. Frequently, geometry provides the best 

model for a problem. 
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The Texas Bullet Train 

This problem models the problem of connecting three cites with the least amount of 

train track. 

Participants model the problem with technology and calculate the sums of the 

distances, moving the tracks until the sum is a minimum. The solution involves 

connecting the three cities to a point known as the Steiner point. Any junction point in a 

network that is formed by three branches coming together at 120° angles is called a 

Steiner Point of the network. 

Connect the Dots 

This proof of the general solution to the problem of characterizing the minimum path 

connecting three points requires only that students are familiar with rotations, equilateral 

triangles, and the shortest distance between two points. It should be presented in the 

classroom after posing the Texas Bullet Train problem. Both can be done with or without 

technology. 

Demonstrate the proof with participant input using Geometer’s Sketchpad. 
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NOTES 
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THE TEXAS BULLET TRAIN 

Teacher Guide 
GOAL: 

Find the path of minimum length that connects three points, and investigate its 

properties. 

PREREQUISITES:  

Knowledge of the Measure menu on Geometer’s Sketchpad. 

MATERIALS:  

Sketchpad sketch “bullet train”, large map of Texas with Dallas, Houston, and 

San Antonio highlighted. 

NOTES TO TEACHER: 

This is a lesson in optimization. The goal is to minimize a path length and thereby 

minimize the cost of the track. See C. V. Boys for a soap solution method to find minimal 

paths connecting many points. 

A proof is found in CONNECT THE DOTS 

TI-92 Adaptation:   

The lesson may be done on the TI-92 calculator. Have students open a geometry session 

and place three points on the screen. Then they should draw segments and make 

measurements to find the minimum path that connects the three points. They can use the 

student lab worksheet. The only difference is that the Sketchpad lesson represents the 

actual distances between Dallas, Houston and San Antonio. 

PROCEDURE: 

• Put students in pairs at the computer to investigate solutions to the problem.  

• Record results on the lab worksheet. 

• It is unlikely that students will consider adding points. Point out the HINT at the 

bottom of the screen after they have tried the shortest path. Mention that other points 

may be added to the picture. Such points are call Steiner Points or Fermat Points. 

EXTENSION: 

• Prove that the segments forming a minimum path meet at 120°angles.  

 The CONNECT THE DOTS lesson provides one proof. 
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• Investigate Network Theory (Graph theory) and minimum spanning trees. 
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SOLUTIONS: 

1. The student logs will vary.  The optimal solution has a total distance of 376 miles. 

2. Add another point. The path should be 376 miles long and the segments from the 

cities to the new point meet at 120° angles. 

 

 
 

3. The segments connecting the three cities to the Steiner Point always create 120° 

angles. 

4. To connect four points with a minimal path, two Steiner Points are required. The 

angles around those Steiner Points are all 120° angles. 



TEXTEAM Geometry Institute 5.42 

THE TEXAS BULLET TRAIN 

 
Problem: 

It has been proposed that the cities of Houston, Dallas and San Antonio be connected by 

a “bullet train”. Building a rail line is very expensive, hence it is important to design the 

layout of the tracks so that the amount of track laid is minimal. The focus of this problem 

is to minimize the total cost of the track used, not to accommodate the passenger’s travel 

time. The only restriction is that a passenger must be able to travel between any two 

cities.  

Where should the tracks be laid? Assume the land is flat and that there are no impassable 

obstacles (such as cities or rivers) to any possible track. 
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PROCEDURE: 

• Open the sketch “bullet train” on Sketchpad. 

1. Write a log of the process you go through to minimize the distance of the track 

laid. Include measurements and drawings of each significant stage in your 

solution. 

2. Describe your final track design.  

Include a drawing with length and angle measurements. 

 

 

 

 

 

 

 

3. Open a new sketch and draw three random points. Find the minimal path 

connecting the three points. Drag the points around and make generalizations 

about the minimal path connecting any three points. 

 

 

 

 

 

 

 

 

 

 

 

4. Open a new sketch and draw four random points. Find the minimal path 

connecting the four points. Drag the points around and make generalizations 

about the minimal path connecting any four points. 
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CONNECT THE DOTS 
Teacher Guide 

GOAL: 

Find the path of minimum length that connects three points and its properties.. 

PREREQUISITES: 

Equilateral triangle, rotations, congruent triangles, straight angles. 

PROCEDURE: 

Assume the three points A,B, C are the vertices of an acute triangle.  

Restatement of the goal: Find point P such that AP + BP + CP is minimal. 

Assume P is any point and consider AP + BP + CP. 

Rotate ΔAPB 60°about point B to get ΔC’P’B. 

 ΔAPB is congruent to ΔC’P’B so AP = C’P’ 

P

C
B

A

A'

P'

m CPB = 142°

m APC = 104°

m APB = 114°

 
Draw PP’ creating ΔPBP’. 

Angle PBP’ is 60°and BP = BP’ by the rotation. 

Thus ΔPBP’ is an isosceles Δ with vertex angle 60°. 

Therefore, ΔPBP’ must be an equilateral Δ and BP=P’P. 

By substitution, AP + BP + CP = C’P’ + P’P + PC, a broken line joining C’ and C, with 

bends in the line at P’ and P. 

A line joining C’ and C will have minimal length if it is a straight line,  

that is, if the angles at P’ and P are 180°. 
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One of the angles at each of P and P’ is 60°, since the angles are in equilateral ΔPBP’.  

Therefore, for the distance to be minimal, angle BPC = 120° and ∠C’P’B = 120°.  

Notice that ∠C’P’B = ∠APB by the rotation. 

Hence, in order for AP + BP + CP to be minimal, point P must be located so that the 

segments AP, BP, and CP meet at 120°angles. 

How can one locate such a point P? 

Returning to the original figure, draw C’A.  

By the rotation, ΔABC’ is an equilateral Δ. P lies on C’C. 

 

The proof could also have been done by rotating ΔAPC 60° about A with P lying on B’B, 

or by rotating ΔBPC 

60° about C with P 

lying on A’A.. 

Thus, to find point 

P, construct 

equilateral Δs on 

any two faces of 

ΔABC.  

Point P is the 

intersection of CC’ 

and BB’ and AA’. 

This also proves 

that CC’, BB’ and 

AA’ are concurrent. 

P

C
B

A
P'

C'

P''

B'

A'

P'''
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EXTENSIONS USING SKETCHPAD: 

• Demonstrate the proof if the triangle is obtuse, but with all angles less than 120°. 

• Where is P if one angle of ΔABC is ≥ 120°? 

• Construct the circumcircles of the three equilateral Δs built on the sides of ΔABC.  

 How is P related to those circles? P lies on the three circles.  

 Join the centers of the three circles. What kind of triangle results? Equilateral 

• Find the minimal path and its properties when connecting 4 or more points.  

Add points to the diagram so that the angles formed at those points are 120°. 

NOTES: 

The added points are called Steiner points (Jakob Steiner, 1796-1863) or Fermat points. 

Soap solution can be used to locate the Fermat points. See C.V.Boys. 

REFERENCES: 

Boys, C. V. Soap Bubbles. 

Hildebrandt & Tromba, Mathematics and Optimal Form. 
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FRACTAL TETRAHEDRON 

Teacher Guide 
GOAL:  

Understand volumes of simple polyhedra and the relation of volume to dimension 

and dilation. 

MATERIALS: 

Each group requires: one regular tetrahedron constructed from card stock (with 6” 

edge), 6 card stock equilateral triangles (6” edge), three squares forming one 

corner of a cube (edge 3 2 ), fast drying glue or rubber cement, two-sided tape, 

ruler, stella octangula. 

PREREQUISITES: 

Volume and surface area of a pyramid, Pythagorean theorem, stella octangula, 

volume and surface area of similar figures. 

PROCEDURE: 

The basic construction begins with a tetrahedron and at each step consists of placing a 

tetrahedron of edge length e
2

 on every equilateral triangle of side length e so that the 

vertices of one face of the smaller tetrahedron lie on the midpoints of the sides of the 

larger triangle. This creates six new equilateral triangles each having side length e
2

 where 

there had been just one - three on the uncovered part of the larger triangle and the 

remaining three are the uncovered portions of the smaller tetrahedron. Repeat the 

processes by adding ever smaller tetrahedra to all equilateral triangles. 

Students record the volume and surface area of the figure at each generation of the 

construction.  

Lead students to see a pattern in the volumes and surface areas as more and more 

generations are constructed. 

The classroom construction can be terminated at any generation. 
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NOTES TO TEACHER: 

 

Volumes:   

Students should compute the volume of a tetrahedron and compare it to the volume of the 

tetrahedron's circumscribing cube. 
TetV =

1

3
CubeV . 

This is worked out in detail below. 

 

 

Similar Figures:  Successive generations involve similar figures with each new 

generation's tetrahedron having edge length 1
2

 that of the previous generation.  

Hence, the volume of the new tetrahedra are 
3

1

2
( ) =

1

8
 the volume of the tetrahedrons of 

the previous generation.  

Also, the area of each new face is 
2

1

2
( ) =

1

4
 the area of the face of the previous 

generation. 

 

 

 

Patterns:   

It may be easier to see patterns emerge in the charts if the volumes and surface areas are 

presented as sums and products and not simplified. Both simplified and non-simplified 

representations appear in the completed charts. 
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Geometric Series:  

The sum of an infinite geometric series  

a + ar + ar2 + ar3 + ... = ar
k

k=0

!

" =
a

1# r
   if –1 < r < 1. 

So, 3

4( )
k

k=0

!

" =
1

1# 3

4

= 4  since a = 1 and r = 3

4
.  

 

This sum can be found for larger and larger k using a calculator.  

Charting the partial sums will show them approaching 4. 

 

 

 

 

Sequences:   

The limit of a sequence in the form t, t2, t3, t4, ..., tn as n! "  depends on the value of t. 

 

If –1 < t < 1, then tn ! o  as n! " . 

 For example, if t = 1

2
 then 1

2
,
1

4
,
1

8
,
1

16
! 0 . If t = ! 1

2
 , then ! 1

2
,
1

4
,!
1

8
,
1

16
 also 

approaches 0. 

 

 If t > 1, then n
t ! "  as n! " .  

For example, if t = 3
2

, then 3
2
,
9

4
,
27

8
,
4
3
4
2
,  = 1.5, 2.25, 3.375, 5.0625.  

These numbers are getting arbitrarily large.  

 

These patterns can be observed on a graphing calculator by graphing  

y =
x

1

2
( )  and y =

x
3

2
( )  for x ! 0 . 
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Volume of a Tetrahedron 

 

Tetrahedron with edge e, volume = v = 2

12

3e  

Derivation: 

Find B = Area of base of tetrhedron = 1
2
eh  = 1

2
e
e 3

2( ) =
2
e 3

4
 

 2

e =
2

h +
2
e

4
 

 2

h =
2

3e

4
 

 h =
e 3

2
 

Find H = Height of tetrahedron. 

Base

e/2

x

e 3

2
! x

" 

# 
$ % 

& 
' 

  

H

x

e 3

2

 

H

e 3

2

x =
e

2 3
 

There are two possible methods for computing x:  Compute the height of the  

         tetrahedron: 

x =
1

3
h                  or         

2
e

2
( ) + 2x =

2
e 3

2
! x( )  2

H + 2e =

2
e 3

2( )  

                         
2
e

4
+ 2
x =

2
3e

4
! ex 3 + 2

x  

 

  2
H =

2

3

2
e  

   

 

e

e

h

e/2

 

2
H =

2
3e

4
!

2
e

12
=
8

12

2
e  =

1

3
!
3

2
e

 

ex 3 =
1

2

2
e

 
H =

2

3
e  

x =
1

2 3
e

 

x =

2
e

2

e 3
=

e

2 3
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Volume .of.Pyramid =
1

3
! base ! height

 
 

v =
1

3
BH =

1

3
!
3

4

2
e !

2

3
e =

2

12

3
e  

 

 

Compare the volume of the tetrahedron to the volume of its boxing cube: 

Volume of the boxing cube with edge s, 
cv =

3

s   

The edge, e, of the tetrahedron is the diagonal of the face of the boxing cube. 

 

 

 

 

 

Since e = s 2 , v = 2

12

3

s 2( ) =
4

12

3s =
1

3

3s  

 

So v = 1
3

cV  or cV = 3v  

 

 

 

 

SOLUTIONS: 

See charts and notes to the teacher. 

There is no generation at which the fractal tetrahedron fills the cube completely. 

EXTENSIONS: 

• Repeat with the dual octahedron and its boxing cube, building tetrahedra on each 

triangular face as above. 

e

s

s

 

2e = 2s + 2s !e = s 2  
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• Create a fractal from an equilateral triangle in the plane by attaching smaller 

equilateral triangles to each edges of the previous generation. Analyze area and 

perimeter.  
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FRACTAL TETRAHEDRON 

 
GOAL:  

Understand volumes of polyhedra and the relation of volume to dimension and 

dilation. 

PROCEDURE: 

• The basic construction begins with a tetrahedron and at each step consists of placing a 

tetrahedron of edge length e
2

 on every equilateral triangle of side length e so that the 

vertices of one face of the smaller tetrahedron lie on the midpoints of the sides of the 

larger triangle. This creates six new equilateral triangles each having side length e
2

 

where there had been just one - three being the uncovered part of the larger triangle 

and the remaining three being the uncovered portions of the smaller tetrahedron. This 

is repeated as ever smaller tetrahedra are applied to all equilateral triangles. 

• Record the volume and surface area of the figure at each generation of the 

construction. 

• Compare the fractal tetrahedron to the corner of the cube at each generation.  

• Look for a pattern in the volumes and a pattern in the surface areas as more and more 

generations are constructed. 

 

Constructing the Fractal Tetrahedron 

 

Generation 0:  

• Begin with the pre-assembled tetrahedron of edge length e.  

• Record its volume and surface area. 

 

Generation 1:  

• Assemble 4 tetrahedra using the equilateral triangles as nets and attach one to each 

face of the first tetrahedron so that the vertices of one face of the small tetrahedron 
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are at the midpoints of the edges of a face of the large tetrahedron. The construction  

produces a polyhedron which is a Stella Octangula.  

• Determine and record the number of faces of the Stella Octangula and its volume and 

surface area. 
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Generation 2:  

• Cut two of the equilateral triangles along midsegments into 8 congruent equilateral 

triangles (four from each triangle).  

• Assemble 6 of these into tetrahedra having half the edge length of generation 1 

tetrahedra and attach them to 6 adjacent  faces of the previous polyhedron. (It would 

be too time consuming to create 24 tetrahedra and attach them to all the faces.)  

• Determine and record the number of faces, volume and surface area of the polyhedron 

that would be obtained if this construction were applied to each face of the previous 

polyhedron. 

 

Generation 3:  

• Cut one of the remaining small equilateral triangles into 4 equilateral triangles.  

• Assemble them into tetrahedra having edge length half those in generation 2 and 

attach them to four of the faces of generation 2 tetrahedra in the previous polyhedron.  

• Determine the number of faces, the volume and surface area of the polyhedron that 

would be obtained if this construction were applied to each face of the previous 

polyhedron. 

 

Patterns:  

• Conjecture what the polyhedron would look like if this construction were applied 

numerous times to each face at each stage.  

• Look for patterns in the entries in the tables as the generations increase.  

• Complete the tables for the nth generation. 

• Conjecture what the volume and surface area of the polyhedron would be after an 

infinite number of generations. Test your conjecture (by calculator or by summing a 

geometric series). 

• Does the polyhedron totally fill the boxing cube after infinitely many generations? 

• If the edge of a tetrahedron is e, what is the edge, S, of its boxing cube? 
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Fractal Tetrahedron 

Surface Area through the Generations 

 

Generation # of 

Faces 

Area of each face Total Surface area = 
ns  

0 4 2
e 3

4
 

2

e 3  

1 4 ! 6    

2    

3    

4    

n     

 

Pattern: 
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Fractal Tetrahedron 

Volumes through the Generations 
 Let v  = volume of original tetrahedron 

 

Generation # of 

Faces 

# of New 

Tetrahedra 

Volume of 1 

New 

tetrahedron 

Total New 

Volume 

Total cummulativeVolume =
nV   

 
nV   

Simplified 

0 4 1 v  v  v  v =1v  
1 4 ! 6  4 1

8
v  4

1

8( ) v  v + 4 1

8( )v = v 1+
4

8[ ] = v 1+ 1

2[ ]  3

2
v = 1.5v  

2       

3       

4       

n       

Pattern:  
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FRACTAL TETRAHEDRON 
 

Surface Area through the Generations 
 

  
  
What happens to the surface area, 

ns  as n gets large? 
 
As n! " , 

n
3

2( ) !"  
  
So, 

nS ! " . 
 
 
The surface area of the fractal tetrahedron grows without bound. 
 
Thus, this is an example of a solid with finite volume and infinite surface area. 

 

Generation # of 
Faces 

Area of each face Total Surface area = 
ns  

0 4 2
e 3

4
 

2

e 3  

1 4 ! 6 1

4

2
e 3

4

! 

" 
# $ 

% 
&  3

2( ) !
2

e 3  

2 24 ! 6  2
1

4( )
2
e 3

4

! 

" 
# $ 

% 
&  

2
3

2( ) !
2

e 3  

3 34 ! 6  3
1

4( )
2
e 3

4

! 

" 
# $ 

% 
&  

3
3

2( ) !
2

e 3  

4 44 ! 6  4
1

4( )
2
e 3

4

! 

" 
# $ 

% 
&  

4
3

2( ) !
2

e 3  

n  n4 ! 6  n
1

4( )
2
e 3

4

! 

" 
# $ 

% 
&  

n
3

2( ) !
2

e 3  



FRACTAL TETRAHEDRON 
 

Volume through the Generations 
 Let v  = volume of original tetrahedron 
 
Generation # of 

Faces 
# of New 

Tetra-
hedra 

Volume of 
1 New 
Tetra-
hedron 

Total New 
Volume 

Total cummulative Volume 
 

=
nV   

 

nV   
 

Simplified 

0 4 1 v  v  v  v =1v  
1 4 ! 6 4 1

8
v  4

1

8( ) v  v + 4 1

8( )v = v 1+
4

8[ ] = v 1+ 1

2[ ] 3

2
v = 1.5v  
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What happens to the volume, 
nV  ,as n gets large? As n  gets large, 

k
3

4( )
k=0

n!1

"  approaches 4. 

 So, 
nV  approaches v 1+ 1

2
4( )[ ] = 3v  



LAST DAY CLOSURE: 

♦ After experiencing the institute, what changes would participants make in their 

teaching. 

♦ Write down 2 goals for themselves as geometry trainers/teachers and put in a self-

addressed envelope to be sent to them at the end of the year. For the trainers too. 

♦ Suggest the trainers work with a partner in their area or region for support. 

♦ Look back at ideal vision - has it changed? 

♦ What further training would they be interested in? 

♦ Evaluation form  

∗ do feel that a 3-day institue has adequately prepared to present a five day 
∗ what kind of support will you need 
∗  

WHERE DO WE GO FROM HERE: the Institue will show how this vision can be 

realized in the high school classroom. One of the goals is to provide participants with 

experiences in a variety of teaching and learnng styles, while allowing time to reflect on 

personal classroom goals. The Institute can be a starting point for participants to make 

changes at various levels, to take the ideas developed here and adapt them to their own 

classrooms.  
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