1. Which word best describes the figure?

[A] plane
[B] point
[C] line
[D] ray
2. Which word best describes the figure?

-

[A] line
[B] plane
[C] point
[D] ray
3. Which set of three points is noncollinear?

[A] C, D, G
[B] B, E, D
[C] B, F, C
[D] C, F, E
4. Which set of three points is collinear?

[A] A, B, D
[B] B, E, D
[C] C, F, E
[D] A, C, E
5. Which figure shows $\overrightarrow{A B}$?

[C]

[D] $\stackrel{\bullet}{A}$
6. Which figure shows $\overline{A B}$?
[A] $\stackrel{\circ}{A}$
[B]

[C]

7. Determine which coordinates are the midpoints of the sides of the quadrilateral.

[A] $(-2,2),(2,2),(2,-2),(-2,-2)$
[B] $(3,-1),(3,1),(-3,1),(-3,-1)$
$[\mathrm{C}](-1,3),(1,3),(1,-3),(-1,-3)$
$[\mathrm{D}](4,0),(0,-4),(-4,0),(0,4)$
8. Determine which coordinates are the midpoints of the sides of the quadrilateral.

[A] $(1,-1),(-1,-4),(-3,-1),(-1,2)$
$[B](-1,1),(1,4),(3,1),(1,-2)$
$[\mathrm{C}](-1,1),(-4,-1),(-1,-3),(2,-1)$
[D] $(1,-1),(4,1),(1,3),(-2,1)$
9. Name this angle in three different ways.

[A] $\angle F E G, \angle G E F, \angle E$
[B] $\angle F G E, \angle G F E, \angle E$
[C] $\angle F G E, \angle G F E, \angle F$
[D] $\angle F E G, \angle G E F, \angle F$
10. Use a protractor and straightedge to determine which angle measures 120°.

[B]

[C]

[D]

11. Use a protractor and straightedge to determine which angle measures 51°.
[A]

[B]

[C]

[D]

12. Find $m \angle O M N$ and $m \angle L M N$ if $m \angle O M N=(2 x+6)^{\circ}, m \angle L M N=(8 x-4)^{\circ}$, and $m \angle O M L=62^{\circ}$.

$$
\begin{array}{rlrl}
2 x+6+8 x-4 & =62 & & 2(6)+6=18 \\
10 x+2 & =62 & 8(6)-4=44 \\
10 x & =60 & & \\
x & =6 &
\end{array}
$$

[A] $m \angle O M N=20^{\circ}$ and $m \angle L M N=52^{\circ}$
[B] $m \angle O M N=18^{\circ}$ and $m \angle L M N=44^{\circ}$
[C] $m \angle O M N=20^{\circ}$ and $m \angle L M N=44^{\circ}$
[D] $m \angle O M N=18^{\circ}$ and $m \angle L M N=52^{\circ}$
13. Find $m \angle F D E$ and $m \angle C D E$ if $m \angle F D E=(2 x+8)^{\circ}, m \angle C D E=(6 x-6)^{\circ}$, and

$$
m \angle F D C=66^{\circ}
$$

$$
\begin{array}{rlrl}
2 x+8+6 x-6 & =66 & 2(8)+8 & =24 \\
8 x+2 & =66 & 6(8)-6 & =42 \\
8 x & =64 & \\
x & =8 &
\end{array}
$$

$$
\begin{array}{ll}
\text { [A] } m \angle F D E=24^{\circ} \text { and } m \angle C D E=42^{\circ} & \text { [B] } m \angle F D E=24^{\circ} \text { and } m \angle C D E=48^{\circ} \\
\text { [C] } m \angle F D E=26^{\circ} \text { and } m \angle C D E=48^{\circ} & \text { [D] } m \angle F D E=26^{\circ} \text { and } m \angle C D E=42^{\circ}
\end{array}
$$

14. If you hit the white ball, placed at any location on the table, in an attempt to strike the 8 -ball, and the white ball hit point X at a 55° incoming angle, how many degrees off would the white ball miss the 8 -ball?

[A] approximately 8°
[C] approximately 55°
[B] approximately 12°
[D] It would not miss the 8-ball.
15. Which is a counterexample to the definition below?

A rectangle is a figure with 2 pairs of congruent sides.
[A]

[C]

[D] There is no counterexample for this definition.
16. Determine whether the statement is true or false. If it is false, choose the correct counterexample.
Any number that is divisible by 2 is also divisible by 4 .
[A] True
[B] False. One counterexample is 16 .
[C] False. One counterexample is 454 .
[D] False. One counterexample is 88 .
17. Which is a counterexample to the following faulty definition?

A square is a figure with four right angles.
[A] Octagons are figures.
[C] A line connects two points.
[B] Rectangles also have four right angles.
[D] A triangle has three angles.
18. Which is a counterexample to the following faulty definition?

A circle is a figure that is round.
[A] Some ellipses are small.
[B] A circle can be big.
[C] Ovals or ellipses are also round.
[D] A square is a figure.
19. Which is a concave non-polygonal figure?
[A]

[B]

[C]

[D]

20. Which is a concave polygon?

21. Find a congruence statement for the two triangles. Then, determine whether $\overline{B C}$ and $\overline{Q R}$ represent corresponding angles, corresponding sides, or neither.

[A] $\triangle A B C \cong \triangle P Q R$; corresponding angles
[B] $\triangle A C B \cong \triangle P Q R$; corresponding angles
[C] $\triangle A B C \cong \triangle P Q R$; corresponding sides
[D] $\triangle A C B \cong \triangle P Q R$; corresponding sides
22. Find a congruence statement for the two triangles. Then, determine whether $\angle B$ and $\angle Q$ represent corresponding angles, corresponding sides, or neither.

[A] $\triangle A C B \cong \triangle P Q R$; corresponding angles [B] $\triangle A B C \cong \triangle P Q R$; neither
[C] $\triangle A C B \cong \triangle P Q R$; neither
[D] $\triangle A B C \cong \triangle P Q R$; corresponding angles
23. $\triangle A B C \cong$ \qquad

[A] $\triangle N M P$
[B] $\triangle N P M$
[C] $\triangle M N P$
[D] $\triangle C A B$
24. If $B C D E$ is congruent to $P Q R S$, which statement is true?

[B] $\overline{B C}$ is congruent to $\overline{Q R}$.
[C] $\overline{D E}$ is congruent to $\overline{P S}$.
25. Based on the marks in the diagram below, which pairs of lines can you assume perpendicular?

[A] $\overleftrightarrow{R O}$ is perpendicular to $\overleftrightarrow{O P}$ only
[B] $\overleftrightarrow{O P}$ is perpendicular to $\overleftrightarrow{P Q}$ only
[C] $\overleftrightarrow{R O}$ is perpendicular to $\overleftrightarrow{O P}$ and $\overleftrightarrow{O P}$ is perpendicular to $\overleftrightarrow{P Q}$
[D] cannot assume any lines perpendicular
26. Based on the marks in the diagram below, which pairs of lines can you assume parallel?

[A] $\overleftrightarrow{J K}$ is parallel to $\overleftrightarrow{N O}$
[B] $\overleftrightarrow{J K}$ is parallel to $\overleftrightarrow{L M}$
[C] $\overleftrightarrow{N O}$ is parallel to $\overleftrightarrow{L M}$
[D] cannot assume any lines parallel
27. Based on the marks in the diagram below, which angles can you assume congruent?

(A] $\angle B F A \cong \angle D F E$ and $\angle B F D \cong \angle A F E$)
[B] $\angle C$ and $\angle D E A$
[C] $\angle C$ and $\angle B A E$
[D] $\angle B A E$ and $\angle D E A$
28. Based on the marks in the diagram below, which sides can you assume congruent?

[A] $\overline{A E} \cong \overrightarrow{A C}$
[B] $\overline{C E} \cong \overline{A E}$
[C] $\overline{A E} \cong \overline{D C}$
[D] $\overline{C A} \cong \overline{C E}$
29. Based on the marks in the diagram below, which lines can you assume parallel?

[A] line o and line n
[C] line l and line m
[B] line l and line n
[D] cannot assume any lines parallel
30. Which figure is a quadrilateral with no special name?

[B]

[C]

31. Which figure is not a parallelogram?

[B]

[C]
\square
32. Find a radius of the circle.

[A] O
[B] $\overline{Q S}$
(C) $\frac{\partial}{O R}$
[D] $\overline{R S}$
33. Find the center of the circle.
[A] $\overline{R S}$
[B] $\overline{S Q}$
[C] $\overline{Q S}$
[D] O

34. Which figure shows center A and radius $\overline{A D}$?
[A]

[B]

[C]

35. Identify a central angle.

[A] $\angle D O C$
[B] $\angle A C O$
[C] $\overparen{D C}$
[D] $\overline{O C}$
36. Identify two chords.

[A] $\overline{C D}$ and $\overline{G H}$
[B] $\overline{E F}$ and $\overline{G H}$
[C] $\overline{C D}$ and $\overrightarrow{E F}$
[D] $\overline{C O}$ and $\overline{D O}$
37. Identify two chords.

[A] $\overline{P Q}$ and $\overline{T U}$
[B] $\overline{P O}$ and $\overline{Q O}$
[C] $\overline{R S}$ and $\overline{T U}$
[D] $\overline{P Q}$ and $\overline{R S}$
38. Can the rectangular prism below make a shadow in the shape of a circle?

[A] Yes
[B] No
39. Which of the following shows a three-dimensional figure sketched from these views?

Top

Right
[B]

[D]

40. Which of the following shows a three-dimensional figure sketched from these views?

Top
[A]

Front
[C]

Front

Front

Right

[D]

Front

41. The chairs for a concert are arranged so that each row has the same number of chairs. Melissa has 8 seats in front of her, and 6 behind her. There are 4 seats to her left and 6 to her right. How many chairs are set up?
[A] 169
[B] 167

[D] 173
42. The chairs for a concert are arranged so that each row has the same number of chairs. Christina has 9 seats in front of her, and 3 behind her. There are 5 seats to her left and 7 to her right. How many chairs are set up?
[A] 174
[B] 189
[C] 173

43. Identify the figure that models the associative property of multiplication.

44. Identify the figure that models the associative property of multiplication.

[B]

[C]

[D]

45. Which of the following solid figures does the net represent?

[A] cylinder
[B] cone
[C] hexagonal prism
[D] hexagonal pyramid
46. Which of the following solid figures does the net represent?

[A] hexagonal pyramid
[B] rectangular pyramid
[C] cylinder
[D] rectangular prism
47. Identify three solid figures that could have the cross section shown below.

[A] sphere, cylinder, and cone
[B] pyramid, cube, rectangular prism
[C] cylinder, triangular prism, cube
[D] cone, rectangular prism, pyramid
48. Which solid could have the following cross section when it is cut by a plane?

[A] hemisphere
[B] sphere
[C] triangular pyramid
[D] cylinder
49. Which solid could have the following cross section when it is cut by a plane?

[A] cube
[B] cone
[C] hexagonal prism
[D] sphere
50. Which is the best example of inductive reasoning?
[A] A math student observes that the number 132 is divisible by the number 4. The student concludes that any even number is divisible by 4.
[B] A student measures the angles of one square and finds they are all 90 degrees. The student concludes the angles in every square are 90 degrees.
[C] A scientist observes during many tests, that a certain bacteria colony doubles in size within an hour. The scientist concludes that this bacteria colony will always double in size within an hour.
[D] A scientist observes on Monday that it takes a certain material 2 hours to decompose. On Tuesday, the scientist observes the same material takes 3 hours to decompose, and on Wednesday it takes 2 hours to decompose. The scientist concludes that it will always take 2 hours for that type of material to decompose.
51. The two lists below give some examples of numbers which have a certain property and numbers which do not.
Do: $2,6,8,12,14,16,18, \ldots$
Do not: $1,5,9,15,19,25,33, \ldots$
Which conjecture could be true about the numbers which do not have this property?
[A] Numbers which do not have this property are odd.
[B] Numbers which do not have this property are even.
[C] Numbers which do not have this property are prime.
[D] Numbers which do not have this property are not prime.
52. The two lists below give some examples of numbers which have a certain property and numbers which do not.
Do: 2, 3, 6, 10, 11, 13, 15, ...
Do not: 1, 9, 16, 25, 36, 49, 81, ..
Which conjecture could be true about the numbers which have this property?
[A] Numbers which have this property are perfect squares.
[B] Numbers which have this property are not perfect squares.
[C] Numbers which have this property are not prime.
[D] Numbers which have this property are prime.
53. If the pattern were continued, what would be the ratio of the number of unshaded squares to the number of shaded squares in the next figure in the pattern?

54. When you use \qquad reasoning you are generalizing from careful observation that something is probably true. When you use \qquad reasoning you are establishing that, if a set of properties is accepted as true, something else must be true.
[A] inductive; deductive
[B] deductive; deductive
[C] deductive; inductive
[D] inductive; inductive
55. Three girls are in three different rooms. Jane always tells the truth. Kim sometimes tells the truth. Naomi never tells the truth. Use the statements made by the person in each room to tell who is in each of the rooms.

Room 1 Kim	Room 2	Room 3 Jane
The girl in Room 2 is Jane.	I'm Kim.	The girl in Room 2 is Naomi.

[A] Room 1 - Jane; Room 2 - Naomi; Room 3 - Kim
[B] Room 1 - Kim; Room 2 - Naomi; Room 3 - Jane
[C] Room 1 - Kim; Room 2 - Jane; Room 3 - Naomi
[D] Room 1 - Naomi; Room 2 - Kim; Room 3 - Jane
56. Three boys are in three different rooms. Sam always tells the truth. Ralph sometimes tells the truth. Hiro never tells the truth. Use the statements made by the person in each room to tell who is in each of the rooms.

Room 1	Room 2 Sam	Room 3 Ralph
I'm Ralph.	The guy in Room 1 is Hiro.	The guy in Room 1 is Sam.

[A] Room 1 - Ralph; Room 2 - Hiro; Room 3 - Sam
[B] Room 1 - Hiro; Room 2 - Sam; Room 3 - Ralph
[C] Room 1 - Sam; Room 2 - Ralph; Room 3 - Hiro
[D] Room 1 - Ralph; Room 2 - Sam; Room 3 - Hiro
57. The definition of a parallelogram says, "If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram." Quadrilateral $L N D A$ has both pairs of opposite sides parallel. What conclusion can you make? What type of reasoning did you use?
[A] $L N D A$ is a rectangle; deductive
[C] $L N D A$ is a rectangle; inductive
[B] $L N D A$ is a parallelogram; deductive
[D] $L N D A$ is a parallelogram; inductive
58. Choose the correct rule for the sequence. Find the nth term in the sequence if you know its term number is n.

Term	1	2	3	4	5	\ldots	n	
Value	-4	-1	2	5	8	\ldots		$3 \mathrm{~m}-7$

[A] Multiply the term number by -8 and add $4 ;-8 n+4$
[B] Multiply the term number by -7 and add $3 ;-7 n+3$
[C] Multiply the term number by 4 and subtract $8 ; 4 n-8$
[D] Multiply the term number by 3 and subtract 7; 3n-7)
59. Choose the correct rule for the sequence. Find the nth term in the sequence if you know its term number is n.

Term	1	2	3	4	5	\ldots	n
Value	-3	2	7	12	17	\ldots	
$+5+5+5+5$							

[A] Multiply the term number by -9 and add $6 ;-9 n+6$
[B] Multiply the term number by 5 and subtract $8 ; 5 n-8$
[C] Multiply the term number by 6 and subtract $9 ; 6 n-9$
[D] Multiply the term number by -8 and add $5 ;-8 n+5$
60. a. Draw as many diagonals as possible from one vertex of a convex hexagon. How many triangles are created within the hexagon by those diagonals?
b. What is the formula for the number of triangles, t, created in a polygon by drawing as many diagonals as possible from one vertex, if n is the number of sides of the polygon?
[A] a. 16 triangles
[B] a. 6 triangles
[C] a. 2 triangles
b. $t=n+10$
b. $t=n$
b. $t=\frac{n}{3}$
[D] a. 4 triangles
b. $t=n-2$
61. Find the rule for the nth figure. Then find the number of colored tiles in the 200th figure.

[A] $2 n ; 400$
[B] $n+8 ; 208$
[C] $8 n ; 1600$
[D] $n+2 ; 202$
62. There are thirty-two teams in a soccer tournament. Each team plays until it loses 1 game. There are no ties. How many games are played?
[A] 15 games
[B] 16 games
[C] 31 games
[D] 32 games
63. There are sixteen teams in a soccer tournament. Each team plays until it loses 1 game. 16-1 There are no ties. How many games are played?
[A] 7 games
[B] 16 games
[C] 8 games

64. If you draw 35 lines on a piece of paper so that no two lines are parallel to each other and no three lines are concurrent, how many times will they intersect?

[A] 1190

65. The 12 th grade class of 80 students is assembled in a large circle on the football field at half-time. Each student is connected by a string to each of the other class members. How many pieces of string are necessary to connect each student to all the others?
[A] $\frac{80(81)}{2}=3240$
[B] $\frac{79(80)}{2}=3160$
[C] $\frac{(80)}{2}=40$
[D] $79(80)=6320$
66. If a polygon has a total of 560 diagonals, how many vertices does it have?
[A] $n(n-3)=280$; there are 17 vertices
[B] $\frac{n(n-3)}{2}=280$; there are 17 vertices
[C] $n(n-3)=560$; there are 35 vertices
[D] $\frac{n(n-3)}{2}=560$; there are 35 vertices
67. If there are 20 people at a party and they shake hands with each other exactly once, how many handshakes are there in all?
[A] $n(n-1)$ yields 190 handshakes
[B] $\frac{n(n-1)}{2}$ yields 380 handshakes
[C] $\frac{n(n-1)}{2}$ yields 190 handshakes
[D] $n(n-1)$ yields 380 handshakes
68. Which pair of angles are a linear pair?

[B] $\angle C A D$ and $\angle G A F$
[C] $\angle B A C$ and $\angle F A E$
[D] $\angle F A B$ and $\angle G A E$
69. Which pair of angles are a linear pair?

A] $\angle E A F$ and $\angle F A B$
[B] $\angle D A E$ and $\angle E A F$
[C] $\angle E A F$ and $\angle C A D$
[D] $\angle F A B$ and $\angle F A D$
70. Which pair of angles are a vertical pair?

[B] $\angle B A D$ and $\angle D A E$
[D] $\angle D A E$ and $\angle D A E$
71. Which pair of angles are a vertical pair?

[A] $\angle C A E$ and $\angle C A E$
[C] $\angle C A D$ and $\angle D A E$
[B] $\angle B A C$ and $\angle C A E$
[D] $\angle C A D$ and $\angle G A F$
72. Determine the converse of the statement and whether it is true or false. If the converse is false determine the correct counterexample.
If two angles are vertical angles, then they have equal measures.
[A] If two angles do not have equal measures, then they are not vertical angles.; True
[B] If two angles have equal measures, then they are vertical angles.; False

[C] If two angles are vertical angles, then they have equal measures.; False

[D] If two angles have equal measures, then they are vertical angles.; True
73. Find a and b.

$$
a=180-62=118
$$

$$
b=180-124=56
$$

[A] $a=62^{\circ}, b=34^{\circ}$
[B] $a=62^{\circ}, b=56^{\circ}$
[C] $a=118^{\circ}, b=56^{\circ}$
[D] $a=118^{\circ}, b=34^{\circ}$
74. Find a and b.

[A] $a=114^{\circ}, b=59^{\circ}$
[B] $a=114^{\circ}, b=31^{\circ}$
[C] $a=66^{\circ}, b=31^{\circ}$
[D] $a=66^{\circ}, b=59^{\circ}$
75. Which quadrilateral is a parallelogram?
[A]

[C]

[D]

76. Which quadrilateral is a parallelogram?
[A]

[B]

[D]

77. Choose the missing reasons of the paragraph proof.

Lines l and m are parallel and intersected by transversal k. Pick any two alternate exterior angles, such as $\angle 1$ and $\angle 4$. According to the \qquad Conjecture $\angle 1 \cong \angle 4$. And, according to the \qquad Conjecture, $\angle 4 \cong \angle 3$. Substitute $\angle 1$ for $\angle 4$ in the statement to get $\angle 1 \cong \angle 3$. But $\angle 1$ and $\angle 3$ are corresponding angles. Therefore, if the alternate exterior angles are congruent, then the corresponding angles are congruent.
[A] Alternate Interior; Vertical Angles
[B] Corresponding Angles; Alternate Exterior
[C] Alternate Exterior; Vertical Angles
[D] Corresponding Angles; Vertical Angles
78. Which shows the slope of the line passing through the points $A(-3,-3)$ and $B(5,-6)$?
[A] $-\frac{9}{2}$
[B] 0
[C] $-\frac{3}{8}$
[D] $-\frac{8}{3}$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-(-3)}{5-(-3)}=\frac{-3}{8}$
79. Which shows the slope of the line passing through the points $A(6,5)$ and $B(-2,7)$?
[A] -4
[B] -1
[C] $-\frac{1}{4}$
[D] 3
80. Use slope triangles to calculate the slope of the graphed line.

$$
m=-\frac{8}{1}=-8
$$

[A] 8
[B] $\frac{1}{8}$
[C] -8
[D] $-\frac{1}{8}$
81. Use slope triangles to calculate the slope of the graphed line.

$$
m=-\frac{2}{3}
$$

[A] $-\frac{2}{3}$
[B] $\frac{3}{2}$
[C] $-\frac{3}{2}$
[D] $\frac{2}{3}$
82. Find the values of x, y, and z.

[A] $x=94^{\circ}, y=86^{\circ}, z=60^{\circ}$
[B] $x=94^{\circ}, y=86^{\circ}, z=58^{\circ}$
[C] $x=86^{\circ}, y=94^{\circ}, z=60^{\circ}$
[D] $x=86^{\circ}, y=94^{\circ}, z=58^{\circ}$
83. Find the values of x, y, and z.

[A] $x=96^{\circ}, y=84^{\circ}, z=56^{\circ}$
[B] $x=84^{\circ}, y=96^{\circ}, z=58^{\circ}$
[C] $x=96^{\circ}, y=84^{\circ}, z=58^{\circ}$
[D] $x=84^{\circ}, y=96^{\circ}, z=56^{\circ}$
84. Find the values of x and $y . \quad y=180-620=60$

[A] $x=60 ; y=80$
[B] $x=60^{\circ} ; y=40^{\circ}$
[C] $x=60^{\circ} ; y=120^{\circ}$

$$
k=120-60=60
$$

85. Find the values of x and y.

[A] $x=36^{\circ} ; y=108^{\circ}$
[B] $x=36^{\circ} ; y=72^{\circ}$
[C] $x=72^{\circ} ; y=52^{\circ}$
[D] $x=72^{\circ} ; y=108^{\circ}$
86. If the perimeter of $\triangle S T V$ is 18 yards, what is the value of y ?

[A] $y=12 \mathrm{yd}$
[B] $y=18 \mathrm{yd}$
[C] $y=60 \mathrm{yd}$
[D] $y=6 \mathrm{yd}$
87. If the perimeter of $\triangle S T V$ is 30 yards, what is the value of y ?

$$
(-5,0) \quad(0,-5)
$$

88. Find the slope-intercept form of the equation of the line with x-intercept -5 and y-intercept -5 .
[A] $y=-x+5$
[B] $y=x-5$
[C] $y=-5 x-1$
[D] $y=-x-5$
$-5-0$
$0-(-5)$
89. Find the slope-intercept form of the equation of the line with x-intercept $-\frac{1}{4}$ and $m=\frac{-1-0}{0-\left(-\frac{1}{4}\right)}=-4$ y-intercept -1 .
[A] $y=-x-4$
[B] $y=-4 x-1$
[C] $y=-4 x+1$
[D] $y=4 x-1$
90. Which graph has a line with the same slope as the line given by the equation $y=4 x-6$?

91. Which graph has a line with the same slope as the line given by the equation $y=-5 x+7$?
[A]

[B]

[D]

92. Find the x-intercepts of $y=-\frac{1}{2} x-\frac{3}{2}$.
$0=-\frac{1}{2} x-\frac{3}{2}$
[A] x-intercept $=\frac{2}{3}$
[B] x-intercept $=-3$
$\frac{1}{2} x=-\frac{3}{2}$
[C] x-intercept $=\frac{3}{2}$
[D] x-intercept $=-\frac{1}{3}$
93. Find the x-intercepts of $y=-1 x-\frac{5}{9}$.

$$
0=-1 x-\frac{5}{4}
$$

[A] x-intercept $=\frac{9}{5}$
[B] x-intercept $=-\frac{5}{9}$
$x=-\frac{5}{9}$
[C] x-intercept $=-\frac{9}{5}$
[D] x-intercept $=\frac{5}{9}$
94. Which equation could best represent the line in the graph below?

[A] $y=m x+b$ where m represents a negative slope and $b \geq 0$.
[B] $y=m x+b$ where m represents a positive slope and $b \geq 0$.
[C] $y=m x+b$ where m represents a negative slope and $b \leq 0$.
[D] $y=m x+b$ where m represents a positive slope and $b \leq 0$.
95. Which equation could best represent the line in the graph below?

[A] $y=m x+b$ where m represents a negative slope and $b \leq 0$.
[B] $y=m x+b$ where m represents a negative slope and $b \geq 0$.
[C] $y=m x+b$ where m represents a positive slope and $b \leq 0$.
[D] $y=m x+b$ where m represents a positive slope and $b \geq 0$.
96. Which equation best describes the graph below?

[A] $y=3 x+\frac{4}{3}$
[B] $y=3 x-4$
[C] $y=\frac{1}{3} x-4$
[D] $y=-\frac{1}{3} x-4$
97. Which equation best describes the graph below?

[A] $y=2 x-4$
[B] $y=2 x+2$
[C] $y=-2 x+4$
[D] $y=\frac{1}{2} x-4$
98. Determine which three lengths can be measures of the sides of a triangle.
[A] $4 \mathrm{~cm}, 12 \mathrm{~cm}, 18 \mathrm{~cm} \quad 16$ 亿. 18
[B] $7 \mathrm{~cm}, 8 \mathrm{~cm}, 15 \mathrm{~cm} \quad 15=15$
[C] $8 \mathrm{~cm}, 8 \mathrm{~cm}, 15 \mathrm{~cm} \quad \mid 6>15$
[D] $12 \mathrm{~cm}, 5 \mathrm{~cm}, 18 \mathrm{~cm}$
17218
99. Determine which three lengths can be measures of the sides of a triangle.
[A] $14 \mathrm{~cm}, 21 \mathrm{~cm}, 5 \mathrm{~cm} \quad 19<11$
[B] $7 \mathrm{~cm}, 14 \mathrm{~cm}, 7 \mathrm{~cm} \quad 14=14$
[C] $14 \mathrm{~cm}, 7 \mathrm{~cm}, 8 \mathrm{~cm} \quad 15>14$
[D] $21 \mathrm{~cm}, 14 \mathrm{~cm}, 6 \mathrm{~cm} \quad 20<21$
100. Arrange the unknown measures in order from greatest to least.

[A] c, b, a
[B] c, a, b
[C] b, c, a
[D] b, a, c
101. Arrange the unknown measures in order from least to greatest.

[A] a, b, c
[B] a, c, b
[C] c, b, a
[D] c, a, b
102. Find the value of x.

$$
\frac{88}{2}=44
$$

[A] 92°
[B] 176°
[C] 44°
[D] 88°
103. Find the value of x.

$$
\frac{72}{2}=36
$$

[A] 144°
[B] 72°
[C] 108°
104. Use the markings on the diagram to determine why $\triangle A D B \cong \triangle C D B$. Choose the correct corresponding parts.

[A] $\mathrm{SSS}, \angle A \cong \angle C, \angle A B D \cong \angle C B D, \angle A D B \cong \angle C D B$
[B] ASA, $\angle A \cong \angle C, \overline{A B} \cong \overline{C B}, \overline{A D} \cong \overline{C D}$
[C] $\mathrm{SAS}, \angle A \cong \angle C, \overline{A D} \cong \overline{C D}, \angle B D A \cong \angle B D C$
[D] $\mathrm{SSS}, \angle A \cong \angle C, \overline{A B} \cong \overline{C B}, \angle A B D \cong \angle C B D$
105. Use the markings on the diagram to determine why $\triangle A D B \cong \triangle C D B$. Choose the correct corresponding parts.

[A] ASA, $\angle A \cong \angle C, \overline{A B} \cong \overline{C B}, \overline{A D} \cong \overline{C D}$
[B] $\mathrm{SSS}, \angle A \cong \angle C, \angle A B D \cong \angle C B D, \angle A D B \cong \angle C D B$
[C] SAS, $\angle A \cong \angle C, \overline{A B} \cong \overline{C B}, \angle A B D \cong \angle C B D$
[D] SSS, $\angle A \cong \angle C, \overline{A B} \cong \overline{C D}, \angle B D A \cong \angle D B C$
106. Determine what information you would need to know in order to use the SSS Congruence Conjecture to show that the triangles are congruent.

[A] $\angle B A D \cong \angle C D B$
[B] $\overline{A D} \cong \overline{C B}$
[C] $\angle A D B \cong \angle C B D$
[D] $\overline{A D} \cong \overline{B D}$
107. Determine what information you would need to know in order to use the SAS Congruence Conjecture to show that the triangles are congruent.

[A] $\overline{A B} \| \overline{F E}$
[B] $\angle C A B \cong \angle D F E$
[C] $\overline{A C} \| \overline{D F}$
[D] $\angle C A B \cong \angle C E F$
108. Determine which triangles in the figure are congruent by SAA.

[A] $\triangle A D E \cong \triangle E B A$
[B] $\triangle A B F \cong \triangle E D F$
[C] $\triangle A B F \cong \triangle A F E$
[D] $\triangle E F D \cong \triangle A F E$
109. Determine which triangles in the figure are congruent by SAA.

[A] $\triangle A F E \cong \triangle E B C$
[B] $\triangle A B F \cong \triangle E D F$
[C] $\triangle A B E \cong \triangle E D A$
[D] $\triangle C E B \cong \triangle A E B$
110. Determine which triangles in the figure are congruent by ASA.

[A] $\triangle A B C \cong \triangle A D C$
[B] $\triangle C B D \cong \triangle A B C$
[C] $\triangle A B D \cong \triangle A D C$
[D] $\triangle A B D \cong \triangle C B D$
111. In the figure below, $\overline{L J}$ bisects $\angle I J K$ and $\angle I L J \cong \angle J L K$. Find a congruence statement for the two triangles in the figure and name the congruence shortcut used.

[A] $\Delta K L J \cong \triangle L I J ; ~ S A A$
© $] \triangle I L J \cong \triangle K L J ; \mathrm{ASA}$
[C] $\Delta K L J \cong \triangle L I J ; ~ A S A$
[D] $\Delta I L J \cong \triangle K L J ;$ SAA
112. Refer to the figure below. Find a congruence statement for two triangles in the figure and name the congruence shortcut used.

[A] $\triangle W R T \cong \triangle W P Z ;$ SAA
(B] $\triangle R P Q \cong \triangle S T R$; ASA
[C] $\triangle W R T \cong \triangle W P Z ;$ ASA
[D] $\triangle R P Q \cong \triangle S T R ;$ SAA
113. Refer to the figure shown. Which of the following statements is true? $\overline{B C} \| \overline{E F}, B C=F E$

[A] $\triangle B C D \cong \triangle E F D$ by ASA
[B] $\triangle B C D \cong \triangle D F E$ by SAS
[C] $\triangle B C D \cong \triangle D F E$ by ASA
[D] $\triangle B C D \cong \triangle F E D$ by ASA
114. Can you show that $\overline{B D}$ is a median of $\triangle A B C$?
[B] No

115. $\overline{D E}$ is a median and altitude of $\triangle G D F$. What is the measure of angle $D E F$?

[A] 180 degrees
[B] 45 degrees
[C] 90 degrees
[D] 360 degrees
116. Which shows a median of a triangle?
[A]

[B]

[C]

117. Can you show that $\overline{B D}$ is an altitude of $\triangle A B C$?
[A] Yes

118. $\overline{D E}$ is a median and altitude of $\triangle G D F$. Classify the triangle.

[A] scalene
[B] isosceles
[C] equilateral
[D] none of these
119. Which biconditional statement is true?
[A] Two angles are supplementary if and only if they form a linear pair.
[B] A ray bisects an angle if and only if it divides the angle into two congruent angles.
[C] Two lines are parallel if and only if they never intersect.
[D] A point is the midpoint of a segment if and only if it is between the endpoints of the segment.
120. Which biconditional statement is true?
[A] A point is the midpoint of a segment if and only if it is between the endpoints of the segment.
[B] Four points are non-coplanar if and only if they are non-collinear.
[C] Two lines are parallel if and only if they never intersect.
[D] Two angles form a linear pair if and only if their nonadjacent sides form a line.

